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Efficient Generation of Random Bits from Finite
State Markov Chains

Hongchao Zhou and Jehoshua Bruck,Fellow, IEEE

Abstract—The problem of random number generation from
an uncorrelated random source (of unknown probability distri-
bution) dates back to von Neumann’s 1951 work. Elias (1972)
generalized von Neumann’s scheme and showed how to achieve
optimal efficiency in unbiased random bits generation. Hence,
a natural question is what if the sources are correlated? Both
Elias and Samuelson proposed methods for generating unbiased
random bits in the case of correlated sources (of unknown prob-
ability distribution), specifically, they considered finite Markov
chains. However, their proposed methods are not efficient orhave
implementation difficulties. Blum (1986) devised an algorithm for
efficiently generating random bits from degree-2 finite Markov
chains in expected linear time, however, his beautiful method is
still far from optimality on information-efficiency. In thi s paper,
we generalize Blum’s algorithm to arbitrary degree finite Markov
chains and combine it with Elias’s method for efficient generation
of unbiased bits. As a result, we provide the first known algorithm
that generates unbiased random bits from an arbitrary finite
Markov chain, operates in expected linear time and achieves the
information-theoretic upper bound on efficiency.

Index Terms—Random sequence, Random bits generation,
Markov chain.

I. I NTRODUCTION

The problem of random number generation dates back to
von Neumann [8] who considered the problem of simulating
an unbiased coin by using a biased coin with unknown
probability. He observed that when one focuses on a pair of
coin tosses, the eventsHT andTH have the same probability
(H is for ‘head’ andT is for ‘tail’); hence, HT produces
the output symbol0 and TH produces the output symbol
1. The other two possible events, namely,HH andTT , are
ignored, namely, they do not produce any output symbols.
More efficient algorithms for generating random bits from a
biased coin were proposed by Hoeffding and Simons [6], Elias
[3], Stout and Warren [16] and Peres [11]. Elias [3] was the
first to devise an optimal procedure in terms of the information
efficiency, namely, the expected number of unbiased random
bits generated per coin toss is asymptotically equal to the
entropy of the biased coin. In addition, Knuth and Yao [7]
presented a simple procedure for generating sequences with
arbitrary probability distributions from an unbiased coin(the
probability ofH andT is 1

2 ). Han and Hoshi [4] generalized
this approach and considered the case where the given coin
has an arbitrary known bias.
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In this paper, we study the problem of generating random
bits from an arbitrary and unknown finite Markov chain (the
transition matrix is unknown). The input to our problem is
a sequence of symbols that represent a random trajectory
through the states of the Markov chain - given this input
sequence our algorithm generates an independent unbiased
binary sequence called the output sequence. This problem was
first studied by Samuelson [13]. His approach was to focus on
a single state (ignoring the other states) treat the transitions out
of this state as the input process, hence, reducing the problem
of correlated sources to the problem of a single ‘independent’
random source; obviously, this method is not efficient. Elias [3]
suggested to utilize the sequences related to all states: Produc-
ing an ‘independent’ output sequence from the transitions out
of every state and then pasting (concatenating) the collection of
output sequences to generate a long output sequence. However,
neither Samuelson nor Elias proved that their methods work
for arbitrary Markov chains, namely, they did not prove that
the transitions out of each state are independent. In fact, Blum
[1] probably realized it, as he mentioned that: (i) “Elias’s
algorithm is excellent, but certain difficulties arise in trying to
use it (or the original von Neumann scheme) to generate bits
in expected linear time from a Markov chain”, and (ii) “Elias
has suggested a way to use all the symbols produced by a
MC (Markov Chain). His algorithm approaches the maximum
possible efficiency for a one-state MC. For a multi-state MC,
his algorithm produces arbitrarily long finite sequences. He
does not, however, show how to paste these finite sequences
together to produceinfinitely long independent unbiased se-
quences.” Blum [1] derived a beautiful algorithm to generate
random bits from a degree-2 Markov chainin expected linear
time by utilizing the von Neumann scheme for generating
random bits from biased coin flips. While his approach can be
extended to arbitrary out-degrees (the general Markov chain
model used in this paper), the information-efficiency is still
far from being optimal due to the low information-efficiency
of the von Neumann scheme.

In this paper, we generalize Blum’s algorithm to arbitrary
degree finite Markov chains and combine it with existing meth-
ods for efficient generation of unbiased bits from biased coins,
such as Elias’s method. As a result, we provide the first known
algorithm that generates unbiased random bits from arbitrary
finite Markov chains, operates in expected linear time and
achieves the information-theoretic upper bound on efficiency.
Specifically, we propose an algorithm (that we call Algorithm
A), that is a simple modification of Elias’s suggestion to
generate random bits, it operates on finite sequences and its
efficiency can asymptotically reach the information-theoretic
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upper bound for long input sequences. In addition, we propose
a second algorithm, called AlgorithmB, that is a combination
of Blum’s and Elias’s algorithms, it generates infinitely long
sequences of random bits in expected linear time. One of our
key ideas for generating random bits is that we explore equal-
probability sequences of the same length. Hence, a natural
question is: Can we improve the efficiency by utilizing as
many as possible equal-probability sequences? We provide a
positive answer to this question and describe AlgorithmC,
that is the first known polynomial-time and optimal algorithm
(it is optimal in terms of information-efficiency for an arbitrary
input length) for random bits generation from finite Markov
chains.

In this paper, we use the following notations:

xa : the ath element ofX
X [a] : same asxa, theath element ofX
X [a : b] : subsequence ofX from theath to bth element
Xa : X [1 : a]
X ∗ Y : the concatenation ofX andY

e.g. s1s2 ∗ s2s1 = s1s2s2s1
Y ≡ X : Y is a permutation ofX

e.g. s1s2s2s3 ≡ s3s2s2s1
Y

.
= X : Y is a permutation ofX andy|Y | = x|X|

namely the last element is fixed
e.g. s1s2s2s3

.
= s2s2s1s3 wheres3 is fixed

The remainder of this paper is organized as follows. Section
II reviews existing schemes for generating random bits from
arbitrarily biased coins. Section III discusses the challenge in
generating random bits from arbitrary finite Markov chains and
presents our main lemma - this lemma characterizes the exit
sequences of Markov chains. AlgorithmA is presented and an-
alyzed in Section IV, it is related to Elias’s ideas for generating
random bits from Markov chains. AlgorithmB is presented
in Section V, it is a generalization of Blum’s algorithm. An
optimal algorithm, called AlgorithmC, is described in Section
VI. Finally, Section VII provides numerical evaluations ofour
algorithms.

II. GENERATING RANDOM BITS FOR BIASED COINS

Consider a sequence of lengthN generated by a biased
n-face coin

X = x1x2...xN ∈ {s1, s2, ..., sn}
N

such that the probability to getsi is pi, and
∑n

i=1 pi = 1.
While we are given a sequenceX the probabilities that
p1, p2, ..., pn are unknown, the question is: How can we
efficiently generate an independent and unbiased sequence of
0’s and 1’s from X? The efficiency (information-efficiency)
of a generation algorithm is defined as the ratio between the
expected length of the output sequence and the length of the
input sequence, namely, the expected number of random bits
generated per input symbol. In this section we describe three
existing solutions for the problem of random bits generation
from biased coins.

A. The von Neumann Scheme

In 1951, von Neumann [8] considered this question for
biased coins and described a simple procedure for generating
an independent unbiased binary sequencez1z2... from the
input sequenceX = x1x2.... In his original procedure, the
coin is binary, however, it can be simply generalized for the
case of ann-face coin: For an input sequence, we can divide
it into pairsx1x2, x3x4, ... and use the following mapping for
each pair

sisj(i < j) → 0, sisj(i > j) → 1, sisi → φ

whereφ denotes the empty sequence. As a result, by concate-
nating the outputs of all the pairs, we can get a binary sequence
which is independent and unbiased. The von Neumann scheme
is computationally (very) efficient, however, its information-
efficiency is far from being optimal. For example, when the
input sequence is binary, the probability for a pair of input
bits to generate an output bit (not aφ) is 2p1p2, hence the
efficiency is p1p2, which is 1

4 at p1 = p2 = 1
2 and less

elsewhere.

B. The Elias Scheme

In 1972, Elias [3] proposed an optimal (in terms of ef-
ficiency) algorithm as a generalization of the von Neumann
scheme; for the sake of completeness we describe it here.

Elias’s method is based on the following idea: The possible
nN input sequences of lengthN can be partitioned into classes
such that all the sequences in the same class have the same
number ofsk ’s with 1 ≤ k ≤ n. Note that for every class,
the members of the class have the same probability to be
generated. For example, letn = 2 andN = 4, we can divide
the possiblenN = 16 input sequences into 5 classes:

S0 = {s1s1s1s1}

S1 = {s1s1s1s2, s1s1s2s1, s1s2s1s1, s2s1s1s1}

S2 = {s1s1s2s2, s1s2s1s2, s1s2s2s1,

s2s1s1s2, s2s1s2s1, s2s2s1s1}

S3 = {s1s2s2s2, s2s1s2s2, s2s2s1s2, s2s2s2s1}

S4 = {s2s2s2s2}

Now, our goal is to assign a string of bits (the output) to each
possible input sequence, such that any two output sequencesY
andY ′ with the same length (sayk), have the same probability
to be generated, namelyck2n for some0 ≤ ck ≤ 1. The idea is
that for any given class we partition the members of the class
to groups of sizes that are a power of 2, for a group with
2i members (for somei) we assign binary strings of length
i. Note that when the class size is odd we have to exclude
one member of this class. We now demonstrate the idea by
continuing the example above.

Note that in the example above, we cannot assign any bits to
the sequence inS0, so if the input sequence iss1s1s1s1, the
output sequence should beφ (denotes the empty sequence).
There are4 sequences inS1 and we assign the binary strings
as follows:

s1s1s1s2 → 00, s1s1s2s1 → 01
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s1s2s1s1 → 10, s2s1s1s1 → 11

Similarly, for S2, there are6 sequences that can be divided
into a group of4 and a group of2:

s1s1s2s2 → 00, s1s2s1s2 → 01

s1s2s2s1 → 10, s2s1s1s2 → 11

s2s1s2s1 → 0, s2s2s1s1 → 1

In general, for a class withW members that were not
assigned yet, assign2j possible output binary sequences of
lengthj to 2j distinct unassigned members, where2j ≤ W <
2j+1. Repeat the procedure above for the rest of the members
that were not assigned. Note that when a class has an odd
number of members, there will be one and only one member
assigned toφ.

Given an input sequenceX of lengthN , using the method
above, the output sequence can be written as a function ofX ,
denoted byΨE(X), called the Elias function. In [12], Ryabko
and Matchikina showed that the Elias function of an input
sequence of lengthN (that is generated by a biased coin with
two faces) is computable inO(N log3 N log log(N)) time. We
can prove that their conclusion is valid in the general case of
a coin withn faces withn > 2.

C. The Peres Scheme

In 1992, Peres [11] demonstrated that iterating the orig-
inal von Neumann scheme on the discarded information
can asymptotically achieve optimal efficiency. Let’s define
the function related to the von Neumann scheme asΨ1 :
{0, 1}∗ → {0, 1}∗. Then the iterated proceduresΨv with v ≥
2 are defined inductively. Given input sequencex1x2...x2m,
let i1 < i2 < ... < ik denote all the indicesi ≤ m for which
x2i = x2i−1, thenΨv is defined as

Ψv(x1, x2, ..., x2m)

= Ψ1(x1, x2, ..., x2m) ∗Ψv−1(x1 ⊕ x2, ..., x2m−1 ⊕ x2m)

∗Ψv−1(xi1 , ..., xik)

Note that on the righthand side of the equation above, the
first term corresponds to the random bits generated with the
von Neumann scheme, the second and third terms relate to
the symmetric information discarded by the von Neumann
scheme.

Finally, we can defineΨv for sequences of odd length by

Ψv(x1, x2, ..., x2m+1) = Ψv(x1, x2, ..., x2m)

Surprisingly, this simple iterative procedure achieves the op-
timal efficiency asymptotically. The computational complexity
and memory requirements of this scheme are substantially
smaller than those of the Elias scheme. However, a drawback
of this scheme is that its generalization to the case of ann-face
coin with n > 2 is not obvious.

D. Properties of the Schemes

Let’s denoteΨ : {s1, s2, ..., sn}
N → {0, 1}∗ as a scheme

that generates independent unbiased sequences from any bi-
ased coins (with unknown probabilities). SuchΨ can be the
von Neumann scheme, the Elias scheme, the Peres scheme or
any other scheme. LetX be a sequence generated from an
arbitrary biased coin, with lengthN , then a property ofΨ is
that for anyY ∈ {0, 1}∗ andY ′ ∈ {0, 1}∗ with |Y | = |Y ′|,
we have

P [Ψ(X) = Y ] = P [Ψ(X) = Y ′]

Namely, two output sequences of equal length have equal
probability.

That leads to the following property forΨ. It says that given
the number ofsi’s for all i with 1 ≤ i ≤ n, the number of
such sequences to yield a binary sequenceY equals to that of
sequences to yieldY ′ if Y andY ′ have the same length. It
further implies that given the condition of knowing the number
of si’s for all i with 1 ≤ i ≤ n, the output sequence ofΨ
is still independent and unbiased. This property is due to the
linear independence of probability functions of the sequences
with different numbers of thesi’s.

Lemma 1. Let S be a subset in{s1, s2, ..., sn}N such that it
includes all the sequences with the same number ofsi’s for all
i with 1 ≤ i ≤ n, namely,k1, k2, ..., kn. LetBY denote the set
{X |Ψ(X) = Y }. Then for anyY ∈ {0, 1}∗ andY ′ ∈ {0, 1}∗

with |Y | = |Y ′|, we have|S
⋂

BY | = |S
⋂

BY ′ |.

Proof: In S, the number ofsi’s in each sequence iski
for all 1 ≤ i ≤ n, then we can get that

P [Ψ(X) = Y ] =
∑

S

|S
⋂

BY |

n
∏

i=1

β(S)

where

β(S) =
n
∏

i=1

pki

i

SinceP [Ψ(X) = Y ] = P [Ψ(X) = Y ′], we have
∑

S

(|S
⋂

BY | − |S
⋂

BY ′ |)β(S) = 0

The set of polynomials
⋃

S{β(S)} is linearly independent
in the vector space of functions on[0, 1], so we can conclude
that |S

⋂

BY | = |S
⋂

BY ′ |.

III. SOME PROPERTIES OFMARKOV CHAINS

Our goal is to efficiently generate random bits from a
Markov chain with unknown transition probabilities. The
paradigm we study is that a Markov chain generates the se-
quence of states that it is visiting and this sequence of states is
the input sequence to our algorithm for generating random bits.
Specifically, we express an input sequence asX = x1x2...xN

with xi ∈ {s1, s2, ..., sn}, where{s1, s2, ..., sn} indicate the
states of a Markov chain.

One idea is that for a given Markov chain, we can treat
each state, says, as a coin and consider the ‘next states’ (the
states the chain has transitioned to after being at states) as the
results of a coin toss. Namely, we can generate a collection
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Input sequence Probability Ψ(π1(X)) Ψ(π1(X)) ∗Ψ(π2(X))
s1s1s1s1 (1 − p1)3 φ φ

s1s1s1s2 (1 − p1)2p1 0 0
s1s1s2s1 (1 − p1)p1p2 0 0
s1s1s2s2 (1 − p1)p1(1− p2) 0 0
s1s2s1s1 p1p2(1 − p1) 1 1
s1s2s1s2 p21p2 φ φ
s1s2s2s1 p1(1 − p2)p2 φ 1
s1s2s2s2 p1(1 − p2)2 φ φ

TABLE I
PROBABILITIES OF EXIT SEQUENCES- AN EXAMPLE THAT SIMPLE CONCATENATION DOES NOT WORK.

of sequencesπ(X) = [π1(X), π2(X), ..., πn(X)], called exit
sequences, whereπi(X) is the sequence of states following
si in X , namely,

πi(X) = {xj+1|xj = si, 1 ≤ j < N}

For example, assume that the input sequence is

X = s1s4s2s1s3s2s3s1s1s2s3s4s1

If we consider the states followings1 we getπ1(X) as the
set of states in boldface:

X = s1s4s2s1s3s2s3s1s1s2s3s4s1

Hence, the exit sequences are:

π1(X) = s4s3s1s2

π2(X) = s1s3s3

π3(X) = s2s1s4

π4(X) = s2s1

Lemma 2 (Uniqueness). An input sequenceX can be uniquely
determined byx1 andπ(X).

Proof: Given x1 and π(X), according to the work of
Blum in [1], x1x2...xN can uniquely be constructed in the
following way: Initially, set the starting state asx1. Inductively,
if xi = sk, then setxi+1 as the first element inπk(X) and
remove the first element ofπk(X). Finally, we can uniquely
generate the sequencex1x2...xN .

Lemma 3 (Equal-probability). Two input sequencesX =
x1x2...xN and Y = y1y2...yN with x1 = y1 have the
same probability to be generated ifπi(X) ≡ πi(Y ) for all
1 ≤ i ≤ n.

Proof: Note that the probability to generateX is

P [X ] = P [x1]P [x2|x1]...P [xN |xN−1]

and the probability to generateY is

P [Y ] = P [y1]P [y2|y1]...P [yN |yN−1]

By permutating the terms in the expression above, it is not hard
to get thatP [X ] = P [Y ] if x1 = y1 andπi(X) ≡ πi(Y ) for
all 1 ≤ i ≤ n. Basically, the exit sequences describe the edges
that are used in the trajectory in the Markov chain. The edges
in the trajectories that correspond toX andY are identical,
henceP [X ] = P [Y ].

In [13], Samuelson considered a two-state Markov chain,
and he pointed out that it may generate unbiased random bits

by applying the von Neumann scheme to the exit sequence of
states1. Later, in [3], in order to increase the efficiency, Elias
has suggested a scheme that uses all the symbols produced
by a Markov chain. His main idea was to create the final
output sequence by concatenating the output sequences that
correspond toπ1(X), π2(X), .... However, neither Samuelson
nor Elias proved that their methods produce random output
sequences that are independent and unbiased, in fact, their
proposed methods are not correct for some cases. To demon-
strate it we consider: (1)Ψ(π1(X)) as the final output. (2)
Ψ(π1(X)) ∗ Ψ(π2(X)) ∗ ... as the final output. For example,
consider the two-state Markov chain in whichP [s2|s1] = p1
andP [s1|s2] = p2, as shown in Fig. 1.

1s 2s

1p

2p

11 p- 21 p-

Fig. 1. An example of Markov chain with two states.

Assume that an input sequence of lengthN = 4 is generated
from this Markov chain and the starting state iss1, then
the probabilities of the possible input sequences and their
corresponding output sequences are given in Table I. In the
table we can see that the probabilities to produce0 or 1 are
different for somep1 and p2 in both methods, presented in
columns 3 and 4, respectively.

The problem of generating random bits from an arbitrary
Markov chain is challenging, as Blum said in [1]: “Elias’s
algorithm is excellent, but certain difficulties arise in trying
to use it (or the original von Neumann scheme) to generate
random bits in expected linear time from a Markov chain”. It
seems that the exit sequence of a state is independent since
each exit of the state will not affect the other exits. However,
this is not always true when the length of the input sequence
is given, sayN . Let’s still consider the example of a two-
state Markov chain in Fig. 1. Assume the starting state of
this Markov chain iss1, if 1 − p1 > 0, then with non-zero
probability we have

π1(X) = s1s1...s1

whose length isN − 1. But it is impossible to have

π1(X) = s2s2...s2
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of length N − 1. That meansπ1(X) is not an independent
sequence. The main reason is that although each exit of a
state will not affect the other exits, it will affect the length of
the exit sequence. In fact,π1(X) is an independent sequence
if the length ofπ1(X) is given, instead of giving the length
of X .

In this paper, we consider this problem from another per-
spective. According to Lemma 3, we know that permutating
the exit sequences does not change the probability of a
sequence, however, the permuted sequence has to correspond
to a trajectory in the Markov chain. The reason for this
contingency is that in some cases the permuted sequence
does not correspond to a trajectory: Consider the following
example,

X = s1s4s2s1s3s2s3s1s1s2s3s4s1

and
π(X) = [s4s3s1s2, s1s3s3, s2s1s4, s2s1]

If we permutate the last exit sequences2s1 to s1s2, we cannot
get a new sequence such that its starting state iss1 and its exit
sequences are

[s4s3s1s2, s1s3s3, s2s1s4, s1s2]

This can be verified by attempting to construct the sequence
using Blum’s method (which is given in the proof of Lemma
2). Notice that if we permutate the first exit sequences4s3s1s2
into s1s2s3s4, we can find such a new sequence, which is

Y = s1s1s2s1s3s2s3s1s4s2s3s4s1

This observation motivated us to study the characterization of
exit sequences that are feasible in Markov chains (or finite
state machines).

Definition 1 (Feasibility). Given a Markov chain, a starting
statesα and a collection of sequencesΛ = [Λ1,Λ2, ...,Λn],
we say that(sα,Λ) is feasible if and only if there exists a
sequenceX that corresponds to a trajectory in the Markov
chain such thatx1 = sα and π(X) = Λ.

Based on the definition of feasibility, we present the main
technical lemma of the paper. Repeating the notation from the
beginning of the paper, we say that a sequenceY is a tail-fixed
permutation ofX , denoted asY

.
= X , if and only if (1) Y

is a permutation ofX , and (2)X andY have the same last
element, namely,y|Y | = x|X|.

Lemma 4 (Main Lemma: Feasibility and equivalence of exit
sequences). Given a starting statesα and two collections of
sequencesΛ = [Λ1,Λ2, ...,Λn] andΓ = [Γ1,Γ2, ...,Γn] such
that Λi

.
= Γi (tail-fixed permutation) for all1 ≤ i ≤ n. Then

(sα,Λ) is feasible if and only if(sα,Γ) is feasible.

The proof of this main lemma will be given in the Ap-
pendix. According to the main lemma, we have the following
equivalent statement.

Lemma 5 (Feasible permutations of exit sequences). Given
an input sequenceX = x1x2...xN with xN = sχ that
produced from a Markov chain. Assume that[Λ1,Λ2, ...,Λn]

is an aribitrary collection of exit sequences that corresponds
to the exit sequences ofX as follows:

1) Λi is a permutation (≡) of πi(X), for i = χ.
2) Λi is a tail-fixed permutation (

.
=) of πi(X), for i 6= χ.

Then there exists a feasible sequenceX ′ = x′
1x

′
2...x

′
N such

that x′
1 = x1 and π(X ′) = [Λ1,Λ2, ...,Λn]. For this X ′, we

havex′
N = xN .

One might reason that Lemma 5 is stronger than the main
lemma (Lemma 4). However, we will show that these two
lemmas are equivalent. It is obvious that if the statement in
Lemma 5 is true, then the main lemma is also true. Now we
show that if the main lemma is true then the statement in
Lemma 5 is also true.

Proof: GivenX = x1x2...xN , let’s add one more symbol
sn+1 to the end ofX (sn+1 is different from all the states in
X), then we can get a new sequencex1x2...xNsn+1, whose
exit sequences are

[π1(X), π2(X), ..., πχ(X)sn+1, ..., πn(X), φ]

According to the main lemma, we know that there exists
another sequencex′

1x
′
2...x

′
Nx′

N+1 such that its exit sequences
are

[Λ1,Λ2, ...,Λχsn+1, ...Λn, φ]

andx′
1 = x1. Definitely, the last symbol of this sequence is

sn+1, i.e., x′
N+1 = sn+1. As a result, we havex′

N = sχ.
Now, by removing the last element fromx′

1x
′
2...x

′
Nx′

N+1,
we can get a new sequencex = x′

1x
′
2...x

′
N such that its exit

sequences are

[Λ1,Λ2, ...,Λχ, ...Λn]

andx′
1 = x1. We also havex′

N = sχ.
This completes the proof.
We demonstrate the result above by considering the example

at the beginning of this section. Let

X = s1s4s2s1s3s2s3s1s1s2s3s4s1

with χ = 1 and its exit sequences is given by

[s4s3s1s2, s1s3s3, s2s1s4, s2s1]

After permutating all the exit sequences (fori 6= 1, we keep
the last element of theith sequence fixed), we get a new group
of exit sequences

[s1s2s3s4, s3s1s3, s1s2s4, s2s1]

Based on these new exit sequences, we can generate a new
input sequence

X ′ = s1s1s2s3s1s3s2s1s4s2s3s4s1

This accords with the statements above.
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IV. A LGORITHM A : M ODIFICATION OF ELIAS ’ S

SUGGESTION

In the section above, we see that Elias suggested to paste
the outputs of different exit sequences together, as the final
output, but the simple direct concatenation cannot always
work. By modifying the method of pasting these outputs, we
get AlgorithmA to generate unbiased random bits from any
Markov chains.

Algorithm A
Input: A sequenceX = x1x2...xN produced by a Markov
chain, wherexi ∈ S = {s1, s2, ..., sn}.
Output: A sequence of0′s and1′s.
Main Function:

SupposexN = sχ.
for i := 1 to n do

if i = χ then
OutputΨ(πi(X)).

else
OutputΨ(πi(X)|πi(X)|−1)

end if
end for

Comment: (1) Ψ(X) can be any scheme that generates
random bits from biased coins. For example, we can use
the Elias function. (2) Wheni = χ, we can also output
Ψ(πi(X)|πi(X)|−1) for simplicity, but the efficiency may be
reduced a little.

The only difference between AlgorithmA and direct con-
catenation is that: AlgorithmA ignores the last symbols of
some exit sequences. Let’s go back to the example of a two-
state Markov chain withP [s2|s1] = p1 andP [s1|s2] = p2 in
Fig. 1, which demonstrates that direct concatenation does not
always work well. Here, we still assume that an input sequence
with lengthN = 4 is generated from this Markov chain and
the starting state iss1, then the probability of each possible
input sequence and its corresponding output sequence (based
on AlgorithmA) are given by:

Input sequence Probability Output sequence
s1s1s1s1 (1− p1)

3 φ
s1s1s1s2 (1− p1)

2p1 φ
s1s1s2s1 (1− p1)p1p2 0
s1s1s2s2 (1− p1)p1(1− p2) φ
s1s2s1s1 p1p2(1− p1) 1
s1s2s1s2 p21p2 φ
s1s2s2s1 p1(1− p2)p2 φ
s1s2s2s2 p1(1− p2)

2 φ

We can see that when the input sequence lengthN = 4, a
bit 0 and a bit1 have the same probability to be generated
and no longer sequences are generated. In this case, the output
sequence is independent and unbiased.

In order to prove that all the sequences generated by
Algorithm A are independent and unbiased, we need to show
that for any sequencesY andY ′ of the same length, they have

the same probability to be generated.

Theorem 6 (Algorithm A). Let the sequence generated by a
Markov chain be used as input to AlgorithmA, then the output
of AlgorithmA is an independent unbiased sequence.

Proof: Let’s first divide all the possible sequences in
{s1, s2, ..., sn}

N into groups, and useG to denote the set of
the groups. Two sequencesX andX ′ are in the same group
if and only if

1) x′
1 = x1 andx′

N = xN = sχ for someχ.
2) If i = χ, πi(X

′) ≡ πi(X).
3) If i 6= χ, πi(X

′)
.
= πi(X).

We will show that for each groupS ∈ G, the number
of sequences to generateY equals to that of sequences
to generateY ′ if Y and Y ′ have the same length, i.e.,
|S

⋂

BY | = |S
⋂

BY ′ | if |Y | = |Y ′|, whereBY is the set
of sequences of lengthN that yieldY .

Now, given a groupS, if i = χ let’s defineSi as the set of
all the permutations ofπi(X) for X ∈ S, and if i 6= χ let’s
defineSi as the set of all the permutations ofπi(X)|πi(X)|−1

for X ∈ S. According to Lemma 1, we know that for any
Y, Y ′ ∈ {0, 1}l, there are the same number of members inSi

which generateY and Y ′. So we can use|Si(l)| to denote
the number of members inSi which generate a certain binary
sequence with lengthl (e.g.Y ).

According to the definitions above, letl1, l2, ..., ln be non-
negative integers, then we have

|S
⋂

BY | =
∑

l1+...+ln=|Y |

n
∏

i=1

|Si(li)|

where each combination(l1, l2, ..., ln) is a partition of the
length ofY .

Similarly, we also have

|S
⋂

BY ′ | =
∑

l1+...+ln=|Y ′|

n
∏

i=1

|Si(li)|

which tells us that|S
⋂

BY | = |S
⋂

BY ′ | if |Y | = |Y ′|.
Note that all the sequences in the same groupS have the

same probability to be generated. So when|Y | = |Y ′|, the
probability to generateY is

P [X ∈ BY ]

=
∑

S∈G

P [S]
∑

X∈S

P [X ∈ BY |X ∈ S]

=
∑

S∈G

P [S]
∑

X∈S

|S
⋂

BY |

|S|

=
∑

S∈G

P [S]
∑

X∈S

|S
⋂

BY ′ |

|S|

= P [X ∈ BY ′ ]

which implies that output sequence is independent and unbi-
ased.

Theorem 7 (Efficiency). Let X be a sequence of length
N generated by a Markov chain, which is used as input
to Algorithm A. Let Ψ in Algorithm A be Elias’s function.



7

Suppose the length of its output sequence isM , then the
limiting efficiencyηN = E[M ]

N
asN → ∞ realizes the upper

bound H(X)
N

.

Proof: Here, the upper boundH(X)
N

is provided by Elias
[3]. We can use the same argument in Elias’s paper [3] to
prove this theorem.

Let Xi denote the next state ofsi. Obviously, Xi is a
random variable for1 ≤ i ≤ n, whose entropy is denoted
as H(Xi). Let U = (u1, u2, . . . , un) denote the stationary
distribution of the Markov chain, then we have

lim
N→∞

H(X)

N
=

n
∑

i=1

uiH(Xi)

WhenN → ∞, there exists anǫN which → 0, such that
with probability 1 − ǫN , |πi(X)| > (ui − ǫN )N for all 1 ≤
i ≤ n. Using Algorithm A, with probability1−ǫN , the length
M of the output sequence is bounded below by

n
∑

i=1

(1− ǫN)(|πi(X)| − 1)ηi

whereηi is the efficiency of theΨ when the input isπi(X)
or πi(X)|πi(X)|−1. According to Theorem 2 in Elias’s paper
[3], we know that as|πi(X)| → ∞, ηi → H(Xi). So with
probability 1 − ǫN , the lengthM of the output sequence is
below bounded by

N
∑

i=1

(1− ǫN )((ui − ǫN )N − 1)(1− ǫN)H(Xi)

Then we have

lim
N→∞

E[M ]

N

≥ lim
N→∞

[
∑N

i=1(1− ǫN )3((ui − ǫN)N − 1)H(Xi)]

N

= lim
N→∞

H(X)

N

At the same time,E[M ]
N

is upper bounded byH(X)
N

. So we
can get

lim
N→∞

E[M ]

N
= lim

N→∞

H(X)

N

which completes the proof.
Given an input sequence, it is efficient to generate inde-

pendent unbiased sequences using AlgorithmA. However, it
has some limitations: (1) The complete input sequence has to
be stored. (2) For a long input sequence it is computationally
intensive as it depends on the input length. (3) The method
works for finite-length sequences and does not lend itself to
stream processing. In order to address these limitations we
propose two variants of AlgorithmA.

In the first variant of AlgorithmA, instead of applyingΨ
directly to Λi = πi(X) for i = χ (or Λi = πi(X)|πi(X)|−1

for i 6= χ), we first splitΛi into several segments with lengths
ki1, ki2, ... then applyΨ to all of the segments separately. It
can be proved that this variant of Algorithm A can generate
independent unbiased sequences from an arbitrary Markov
chain, as long aski1, ki2, ... do not depend on the order of

elements in each exit sequence. For example, we can split
Λi into two segments of lengths⌊ |Λi|

2 ⌋ and ⌈ |Λi|
2 ⌉, we can

also split it into three segments of lengths(a, a, |Λi| − 2a)
... Generally, the shorter each segment is, the faster we can
obtain the final output. But at the same time, we may have to
sacrifice a little information efficiency.

The second variant of AlgorithmA is based on the following
idea: for a given sequence from a Markov chain, we can split
it into some shorter sequences such that they are independent
of each other, therefore we can apply AlgorithmA to all of
the sequences and then concatenate their output sequences
together as the final one. In order to do this, given a sequence
X = x1x2..., we can usex1 = sα as a special state to it.
For example, in practice, we can set a constantk, if there
exists a minimal integeri such thatxi = sα and i > k, then
we can splitX into two sequencesx1x2...xi and xixi+1...
(note that both of the sequences have the elementxi). For the
second sequencexixi+1..., we can repeat the some procedure
... Iteratively, we can split a sequenceX into several sequences
such that they are independent of each other. These sequences,
with the exception of the last one, start and end withsα, and
their lengths are usually slightly longer thank.

V. A LGORITHM B : GENERALIZATION OF BLUM ’ S

ALGORITHM

In [1], Blum proposed a beautiful algorithm to generate
an independent unbiased sequence of0’s and 1’s from any
Markov chain by extending von Neumann scheme. His algo-
rithm can deal with infinitely long sequences and use only con-
stant space and expected linear time. The only drawback of his
algorithm is that its efficiency is still far from the information-
theoretic upper bound, due to the limitation (compared to the
Elias algorithm) of the von Neumann scheme. In this section,
we generalize Blum’s algorithm by replacing von Neumann
scheme with Elias’s. As a result, we get AlgorithmB: It
maintains some good properties of Blum’s algorithm and its
efficiency approaches the information-theoretic upper bound.

Algorithm B
Input: A sequence (or a stream)x1x2... produced by a
Markov chain, wherexi ∈ {s1, s2, ..., sn}.
Parameter:n positive integer functions (window size)̟i(k)
with k ≥ 1 for 1 ≤ i ≤ n.
Output: A sequence (or a stream) of0’s and1’s.
Main Function:
Ei = φ (empty) for all1 ≤ i ≤ n.
ki = 1 for all 1 ≤ i ≤ n.
c : the index of current state, namely,sc = x1.
while next input symbol issj ( 6= null ) do
Ec = Ecsj (Add sj to Ec).
if |Ej | ≥ ̟j(kj) then

OutputΨ(Ej).
Ej = φ.
kj = kj + 1.

end if
c = j.

end while
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In the algorithm above, we apply functionΨ on Ej to
generate random bits if and only if the window forEj is
completely filled and the Markov chain is currently at state
sj .

For example, we set̟ i(k) = 4 for all 1 ≤ i ≤ n and the
input sequence is

X = s1s1s1s2s2s2s1s2s2

After reading the last second (8th) symbols2, we have

E1 = s1s1s2s2 E2 = s2s2s1

In this case,|E1| ≥ 4 so the window forE1 is full, but we
don’t applyΨ to E1 because the current state of the Markov
chain iss2, not s1.

By reading the last (9th) symbols2, we get

E1 = s1s1s2s2 E2 = s2s2s1s2

Since the current state of the Markov chain iss2 and|E2| ≥ 4,
we produceΨ(E2 = s2s2s1s2) and resetE2 asφ.

In the example above, treatingX as input to AlgorithmB,
we can get the output sequence isΨ(s2s2s1s2). The algorithm
does not outputΨ(E1 = s1s1s2s2) until the Markov chain
reaches states1 again. Timing is crucial!

Note that Blum’s algorithm is a special case of Algorithm
B by setting the window size functions̟ i(k) = 2 for all
1 ≤ i ≤ n and k ∈ {1, 2, ...}. Namely, AlgorithmB is
a generalization of Blum’s algorithm, the key is that when
we increase the windows sizes, we can apply more efficient
schemes (compared to the von Neumann scheme) forΨ.
Assume a sequence of symbolsX = x1x2...xN with xN = sχ
have been read by the algorithm above, we want to show
that for anyN , the output sequence is always independent
and unbiased. Unfortunately, Blum’s proof for the case of
̟i(k) = 2 cannot be applied to our proposed scheme.

For all i with 1 ≤ i ≤ n, we can write

πi(X) = Fi1Fi2...Fimi
Ei

whereFij with 1 ≤ j ≤ mi are the segments used to generate
outputs. For alli, j, we have

|Fij | = ̟i(j)

and
{

0 ≤ |Ei| < ̟i(mi + 1) if i = χ
0 < |Ei| ≤ ̟i(mi + 1) otherwise

See Fig. 2 for simple illustration.

)(1 Xp

)(2 Xp

)(3 Xp

11F 12F 13F

21F

31F

22F

32F 33F

1E

2E

3E

Fig. 2. The simplified expressions for the exit sequences ofX.

Theorem 8 (Algorithm B). Let the sequence generated by a
Markov chain be used as input to AlgorithmB, then Algorithm

B generates an independent unbiased sequence of bits in
expected linear time.

Proof: In the following proof, we use the same idea as
in the proof for AlgorithmA.

Let’s first divide all the possible input sequences in
{s1, s2, ..., sn}

N into groups, and useG to denote the group
set. Two sequencesX andX ′ are in the same group if and
only if

1) x1 = x′
1 andxN = x′

N .
2) For all i with 1 ≤ i ≤ n,

πi(X) = Fi1Fi2...Fimi
Ei

πi(X
′) = F ′

i1F
′
i2...F

′
imi

E′
i

whereFij and F ′
ij are the segments used to generate

outputs.
3) For all i, j, Fij ≡ F ′

ij .
4) For all i, Ei = E′

i.

We will show that in each groupS ∈ G, the number
of sequences to generateY equals to that of sequences to
generateY ′ if |Y | = |Y ′|, i.e., |S

⋂

BY | = |S
⋂

BY ′ | for
|Y | = |Y ′|, whereBY is the set of sequences of lengthN
that yieldY .

Now, given a groupS, let’s defineSij as the set of all the
permutations ofFij for X ∈ S. According to Lemma 1, we
know that for differentY ∈ {0, 1}l, there are the same number
of members inSij which generateY . So we can use|Sij(l)|
to denote the number of members inSij which generate a
certain binary sequence with lengthl.

Let l11, l12, ..., l1m1 , l21..., lnmn
be non-negative integers

such that their sum is|Y |, we want to prove that

|S
⋂

BY | =
∑

l11+...+lnmn=|Y |

n
∏

i=1

mi
∏

j=1

|Sij(lij)|

The proof is by induction. Letw =
∑n

i=1 mi. First, the
conclusion holds forw = 1. Assume the conclusion holds
for w > 1, we want to prove that the conclusion also holds
for w + 1.

Given anX ∈ S, assumeFimi
is the last segment that

generates an output. According to our main lemma (Lemma
4), we know that for any sequence inS, Fimi

is always the
last segment that generates an output. Now, let’s fixFimi

and
assumeFimi

generates the lastlimi
bits of Y . We want to

know how many sequences inS
⋂

BY haveFimi
as their last

segments that generate outputs? In order to get the answer, we
concatenateFimi

with Ei as the newEi. As a result, we have
∑n

i=1 mi−1 = w segments to generate the first|Y |−limi
bits

of Y . Based on our assumption, the number of such sequences
will be

∑

l11+...+li(mi−1)+...=|Y |−limi

1

|Simi
(limi

)|

n
∏

k=1

mi
∏

j=1

|Skj(lkj)|

where l11, ..., li(mi−1), l(i+1)1..., lnmn
are non-negative inte-

gers. For a differentlimi
, there are|Simi

(limi
)| choices for

Fimi
. Therefore,|S

⋂

BY | can be obtained by multiplying
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|Simi
(limi

)| by the number above and summing them up over
limi

. Namely, we can get the conclusion above.
According to this conclusion, we know that if|Y | = |Y ′|,

then |S
⋂

BY | = |S
⋂

BY ′ |. Using the same argument as in
Theorem 6 we complete the proof of the theorem.

Normally, the window size functions̟ i(k) for 1 ≤ i ≤
n can be any positive integer functions. Here, we fix these
window size functions as a constant, namely,̟. By increasing
the value of̟ , we can increase the efficiency of the scheme,
but at the same time it may cost more storage space and need
more waiting time. It is helpful to analyze the relationship
between scheme efficiency and window size̟.

Theorem 9 (Efficiency). Let X be a sequence of lengthN
generated by a Markov chain with transition matrixP , which
is used as input to AlgorithmB with constant window size̟ .
Then as the length of the sequence goes to infinity, the limiting
efficiency of AlgorithmB is

η(̟) =

n
∑

i=1

uiηi(̟)

whereU = (u1, u2, ..., un) is the stationary distribution of
this Markov chain, andηi(̟) is the efficiency ofΨ when the
input sequence of length̟ is generated by an-face coin with
distribution (pi1, pi2, ..., pin).

Proof: WhenN → ∞, there exists anǫN which → 0,
such that with probability1 − ǫN , (ui − ǫN )N < |πi(X)| <
(ui + ǫN )N for all 1 ≤ i ≤ n.

The efficiency of AlgorithmB can be written asη(̟),
which satisfies

∑n

i=1⌊
|πi(X)|−1

̟
⌋ηi(̟)̟

N
≤ η(̟) ≤

∑n

i=1⌊
|πi(X)|

̟
⌋ηi(̟)̟

N

With probability1− ǫN , we have

∑n

i=1(
(ui−ǫN )N

̟
− 1)ηi(̟)̟

N
≤ η(̟) ≤

∑n

i=1
(ui−ǫN )N

̟
ηi(̟)̟

N

So whenN → ∞, we have that

η(̟) =

n
∑

i=1

uiηi(̟)

This completes the proof.
Let’s defineα(N) =

∑

nk2
nk , where

∑

2nk is the standard
binary expansion ofN . AssumeΨ is the Elias function, then

ηi(̟) =
1

̟

∑

k1+...+kn=̟

α(
̟!

k1!k2!...kn!
)pk1

i1 p
k2

i2 ...p
kn

in

Based on this formula, we can numerically study the relation-
ship between the limiting efficiency and the window size (see
Section VII). In fact, when the window size becomes large,
the limiting efficiency (n → ∞) approaches the information-
theoretic upper bound.

VI. A LGORITHM C : AN OPTIMAL ALGORITHM

Both Algorithm A and Algorithm B are asymptotically
optimal, but when the length of the input sequence is finite they
may not be optimal. In this section, we try to construct an op-
timal algorithm, called Algorithm C, such that its information-
efficiency is maximized when the length of the input sequence
is finite. Before presenting this algorithm, following the idea
of Pae and Loui [10], we first discuss the equivalent condition
for a function f to generate random bits from an arbitrary
Markov chain, and then present the sufficient condition forf
to be optimal.

Lemma 10(Equivalent condition). LetK = {kij} be ann×n
non-negative integer matrix with

∑n

i=1

∑n

j=1 kij = N−1. We
defineS(α,K) as

S(α,K) = {X ∈ {s1, s2, ..., sn}
N |kj(πi(X)) = kij , x1 = sα}

where kj(X) is the number ofsj in X . A function f :
{s1, s2, ..., sn}

N → {0, 1}∗ can generate random bits from
an arbitrary Markov chain, if and only if for any(α,K) and
two binary sequencesY and Y ′ with |Y | = |Y ′|,

|S(α,K)

⋂

BY | = |S(α,K)

⋂

BY ′ |

whereBY = {X |X ∈ {s1, s2, ..., sn}
N , f(X) = Y } is the

set of sequences of lengthN that yieldY .

Proof: If f can generate random bits from an arbitrary
Markov chain, thenP [f(X) = Y ] = P [f(X) = Y ′] for any
two binary sequencesY andY ′ of the same length. Here, we
can write

P [f(X) = Y ] =
∑

α,K

|S(α,K)

⋂

BY |φ(K)P (x1 = sα)

whereφ(K) =
∏n

i=1

∏n

j=1 p
kij

ij andφ(K)P (x1 = sα) is the
probability to generate a sequence with starting statesα and
with exit sequences specified byK if such input sequence
exists. Similarly,

P [f(X) = Y ′] =
∑

α,K

|S(α,K)

⋂

BY ′ |φ(K)P (x1 = sα)

As a result,
∑

(α,K)

(|S(α,K)

⋂

BY ′ |−|S(α,K)

⋂

BY |)φ(K)P (x1 = sα) = 0

SinceP (x1 = sα) can be any value in[0, 1], for all 1 ≤
α ≤ n we have

∑

K

(|S(α,K)

⋂

BY ′ | − |S(α,K)

⋂

BY |)φ(K) = 0

According to the linear independence of
⋃

K{φ(K)} in
the vector space of functions on[0, 1], we can conclude that
|S(α,K)

⋂

BY | = |S(α,K)

⋂

BY ′ | for all (α,K) if |Y | = |Y ′|.
Inversely, if for all Y, Y ′ with the same length,

|S(α,K)

⋂

BY | = |S(α,K)

⋂

BY ′ | for all (α,K), thenY and
Y ′ have the same probability to be generated. Therefore,f
can generate random bits from an arbitrary Markov chain.

Let’s defineα(N) =
∑

nk2
nk , where

∑

2nk is the standard
binary expansion ofN , then we have the sufficient condition
for an optimal function .
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Lemma 11 (Sufficient condition for an optimal function). Let
f∗ be a function that generates random bits from an arbitrary
Markov chain with unknown transition probabilities. If for
any α and anyn × n non-negative integer matrixK with
∑n

i=1

∑n

j=1 kij = N − 1, the following equation is satisfied,
∑

X∈S(α,K)

|f∗(X)| = α(|S(α,K)|)

then f∗ generates independent unbiased random bits with
optimal information efficiency. Note that|f∗(X)| is the length
of f∗(x) and |S(α,K)| is the size ofS(α,K).

Proof: Let h denote an arbitrary function that is able to
generate random bits from any Markov chain. According to
Lemma 2.9 in [10], we know that

∑

X∈S(α,K)

|h(X)| ≤ α(|S(α,K)|)

Then the average output length ofh is

E(|h(X)|) =
1

N

∑

(α,K)

∑

X∈S(α,K)

|h(X)|φ(K)P [x1 = sα]

≤
1

N

∑

(α,K)

α(|S(α,K)|)φ(K)P [x1 = sα]

=
1

N

∑

(α,K)

∑

X∈S(α,K)

|f∗(X)|φ(K)P [x1 = sα]

= E(|f∗(X)|)

So f∗ is the optimal one. This completes the proof.
Here, we construct the following algorithm (AlgorithmC)

which satisfies all the conditions in Lemma 10 and Lemma
11. As a result, it can generate unbiased random bits from an
arbitrary Markov chain with optimal information efficiency.

Algorithm C
Input: A sequenceX = x1x2..., xN produced by a Markov
chain, wherexi ∈ S = {s1, s2, ..., sn}.
Output: A sequence of0′s and1′s.
Main Function:

1) Get the matrixK = {kij} with

kij = kj(πi(X))

2) DefineS(X) as

S(X) = {X ′|kj(πi(X
′)) = kij∀i, j;x

′
1 = x1}

then compute|S(X)|.
3) Compute the rankr(X) of X in S(X) with respect to
a given order.
4) According to |S(X)| and r(X), determine the output
sequence. Let

∑

k 2
nk be the standard binary expansion

of |S(X)| with n1 > n2 > ... and assume the starting
value of r(X) is 0. If r(X) < 2n1 , the output is the
n1 digit binary representation ofr(x). If

∑i

k=1 2
nk ≤

r(x) <
∑i+1

k=1 2
nk , the output is theni+1 digit binary

representation ofr(x).

Comment: The fast calculations of|S(X)| andr(x) will be
given in the rest of this section.

In Algorithm A, when we use Elias’s function asΨ, the
limiting efficiencyηN = E[M ]

N
(asN → ∞) realizes the bound

H(X)
N

. Algorithm C is optimal, so it has the same or higher
efficiency. Therefore, the limiting efficiency of AlgorithmC
asN → ∞ also realizes the boundH(X)

N
.

In Algorithm C, for an input sequenceX with xN = sχ,
we can rank it with respect to the lexicographic order ofθ(X)
andσ(X). Here, we define

θ(X) = (π1(X)|π1(X)|, . . . , πn(X)|πn(X)|)

which is the vector of the last symbols ofπi(X) for 1 ≤ i ≤ n.
And σ(X) is the complement ofθ(X) in π(X), namely,

σ(X) = (π1(X)|π1(X)|−1, . . . , πn(X)|πn(X)|−1)

For example, when the input sequence is

X = s1s4s2s1s3s2s3s1s1s2s3s4s1

Its exit sequences is

π(X) = [s4s3s1s2, s1s3s3, s2s1s4, s2s1]

Then for this input sequenceX , we have that

θ(X) = [s2, s3, s4, s1]

σ(X) = [s4s2s1, s1s3, s2s1, s2]

Based on the lexicographic order defined above, both
|S(X)| and r(X) can be obtained using a brute-force
search. However, this approach in not computationally effi-
cient. Here, we describe an efficient algorithm for computing
|S(X)| and r(X), such that AlgorithmC is computable in
O(N log3 N log log(N)) time. This method is inspired by the
algorithm for computing the Elias function that is described
in [12].

Lemma 12. |S(X)| in Algorithm C is computable in
O(N(logN log logN)2) time.

Proof: The idea to compute|S(X)| in Algorithm C is
that we can divideS(X) into different classes, denoted by
S(X, θ) for different θ such that

S(X, θ) = {X ′|∀i, j, kj(πi(X
′)) = kij , θ(X

′) = θ}

wherekij = kj(πi(X)) is the number ofsj ’s in πi(X) for all
1 ≤ i, j ≤ n. θ(X) is the vector of the last symbols ofπ(X)
defined above. As a result, we have|S(X)| =

∑

θ |S(X, θ)|.
Although it is not easy to calculate|S(X)| directly, but it is
much easier to compute|S(X, θ)| for a givenθ.

For a given θ = (θ1, θ2, ..., θn), we need first deter-
mine whetherS(X, θ) is empty or not. In order to do this,
we quickly construct a collection of exit sequencesΛ =
[Λ1,Λ2, ...,Λn] by moving the firstθi in πi(X) to the end
for all 1 ≤ i ≤ n. According to the main lemma, we know
that S(X, θ) is empty if and only ifπi(X) does not include
θi for somei or (x1,Λ) is not feasible.
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If S(X, θ) is not empty, then(x1,Λ) is feasible. In this
case, based on the main lemma, we have

|S(X, θ)| =

n
∏

i=1

(ki1 + ki2 + ...+ kin − 1)!

ki1!...(kiθi − 1)!...kin!

= (
n
∏

i=1

(ki1 + ki2 + ...+ kin)!

ki1!ki2!...kin!
)(

n
∏

i=1

kiθi
(ki1 + ki2 + ...+ kin)

)

where the first term, denoted byZ, is computable in
O(N(logN log logN)2) time [2]. Further more, we can get
that

|S(X)| =
∑

θ

|S(X, θ)| = Z(
∑

θ

n
∏

i=1

kiθi
(ki1 + ki2 + ...+ kin)

)

is also computable inO(N(logN log logN)2) time.

Lemma 13. r(X) in Algorithm C is computable in
O(N log3 N log logN) time.

Proof: Based on some calculations in the lemma above,
we can try to obtainr(X) whenX is ranked with respect to
the lexicographic order ofθ(X) and σ(X). Let r(X, θ(X))
denote the rank ofX in S(X, θ(X)), then we have that

r(X) =
∑

θ<θ(X)

|S(X, θ)|+ r(X, θ(X))

where< is based on the lexicographic order. In the formula,
∑

θ<θ(X) |S(X, θ)| can be efficiently obtained by computing

Z

∑

θ<θ(X):|S(X,θ)|>0

∏n

i=1 kiθi
∏n

i=1(ki1 + ki2 + ...+ kin)

whereZ is defined in the last lemma. So far, we only need to
computer(X, θ(X)), with respect to the lexicography order
of σ(X). σ(X) can be written as a group of sequences
[σ1(X), σ2(X), ..., σn(X)] such that for all1 ≤ i ≤ n

σi(X) = πi(X)|πi(X)|−1

There areM = (N − 1)− n symbols inσ(X). Let ri(X)
be the number of sequencesX ′ ∈ S(X, θ(X)) such that the
first M − i symbols ofσ(X ′) are the same with that ofσ(X)
and theM − i+ 1th symbol ofσ(X ′) is smaller than that of
σ(X), then we can get that

r(X, θ(X)) =

M
∑

i=1

ri(X)

Assume theM − i+1th symbol inσ(X) is theuth
i symbol

in σvi(X). Then we can get that

ri(X) =
∑

sw<σvi
[ui]

kw(Ti)

|Ti|

|Ti|!

k1(Ti)!...kn(Ti)!

∏

j>vi

Nj(X)

whereTi is the subsequence ofσvi(X) from theuth
i symbol

to the end;Nj(X) is the number of permutations forσj(X).
Let’s define the values

ρ0i =
|Ti|

kwi
(Ti)

, λ0
i =

∑

sw<σvi
[ui]

kw(Ti)

|Ti|

wherewi is the index of the first symbol ofTi, i.e.,σvi [ui] =
swi

. Thenr(X, θ(X)) can be written as

r(X, θ(X)) =

M
∑

i=1

λ0
i ρ

0
i ρ

0
i−1...ρ

0
1

Suppose thatlog2 M is an integer. Otherwise, we can
add trivial terms to the formula above to makelogN an
integer. In order to quickly calculater(X, θ(X)), the following
calculations are performed:

ρsi = ρs−1
2i−1ρ

s−1
2i , λs

i = λs−1
2i−1 + λs−1

2i ρs−1
2i

s = 1, 2, ..., logM ; i = 1, 2, ..., 2−sM

Then applying the method in [12], we have that

r(X, θ(X)) = λ
log2 M

1

which is computable in O(M log3 M log logM) time.
As a result, for a fixed n, r(X) is computable in
O(N log3 N log logN) time.

Based on the discussion above, we know that AlgorithmC
is computable inO(N log3 N log logN) time.

VII. N UMERICAL RESULTS

In this section, we describe numerical results related to the
implementations of AlgorithmA, AlgorithmB, and Algorithm
C. We use the Elias function forΨ.

In the first experiment, we use the following randomly
generated a transition matrix for a Markov chain with three
states.

P =





0.300987 0.468876 0.230135
0.462996 0.480767 0.056236
0.42424 0.032404 0.543355





Consider a sequence of length12 that is generated by the
Markov chain defined above and assume thats1 is the first
state of this sequence. Namely, there are311 = 177147
possible input sequences. For each possible input sequence, we
can compute its generating probability and the corresponding
output sequences using our three algorithms. Table II presents
the results of calculating the probabilities of all possible output
sequences for the three algorithms. Note that the results show
that indeed the outputs of the algorithms are independent
unbiased sequences. Also, AlgorithmC has the highest in-
formation efficiency (it is optimal), and AlgorithmA has a
higher information efficiency than AlgorithmB (with window
size 4).

In the second calculation, we want to test the influence of
window size̟ (assume̟ i(k) = ̟ for 1 ≤ i ≤ n) on the
efficiency of AlgorithmB. Since the efficiency depends on the
transition matrix of the Markov chain we decided to evaluate
of the efficiency related to the uniform transition matrix,
namely all the entries are1

n
, wheren is the number of states.

We assume thatn is infinitely large. In this case, the stationary
distribution of the Markov chain is{ 1

n
, 1
n
, ..., 1

n
}. Fig. 3 shows

that when̟ = 2 (Blum’s Algorithm), the limiting efficiencies
for n = (2, 3, 5) are (14 ,

1
3 ,

2
5 ), respectively. When̟ = 15,

their corresponding efficiencies are(0.7228, 1.1342, 1.5827).
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Output Probability Probability Probability
Algorithm A Algorithm B Algorithm C

with ̟ = 4
Λ 0.0224191 0.1094849 0.0208336
0 0.0260692 0.0215901 0.0200917
1 0.0260692 0.0215901 0.0200917
00 0.0298179 0.1011625 0.0206147
10 0.0298179 0.1011625 0.0206147
01 0.0298179 0.1011625 0.0206147
11 0.0298179 0.1011625 0.0206147
000 0.0244406 0.0242258 0.0171941
100 0.0244406 0.0242258 0.0171941
. . . . . . . . . . . .
011111 0.0018831 1.39E-5 0.0029596
111111 0.0018831 1.39E-5 0.0029596
0000000 1.305E-4 6.056E-4
1000000 1.305E-4 6.056E-4
. . . . . .
0111111 1.305E-4 6.056E-4
1111111 1.305E-4 6.056E-4
00000000 1.44E-5
10000000 1.44E-5
. . . . . .
01111111 1.44E-5
11111111 1.44E-5
Expected Length 3.829 2.494 4.355

TABLE II
THE PROBABILITY OF EACH POSSIBLE OUTPUT SEQUENCE AND THE

EXPECTED OUTPUT LENGTH.
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Fig. 3. The limiting efficiency of AlgorithmB varies with the value of
window size̟ for different state numbern, where we assume that the
transition probabilitypij = 1

n
for all 1 ≤ i, j ≤ n.

So if the input sequence is long enough, by changing̟ from
2 to 15, the efficiency can increase189% for n = 2, 240%
for n = 3 and 296% for n = 4. When ̟ is small, we
can increase the efficiency of AlgorithmB significantly by
increasing the window size̟ . When̟ becomes larger, the
efficiency of AlgorithmB will converge to the information-
theoretical upper bound, namely,log2 n. Note that3 is not
a good value for the window size in the algorithm. That is
because the Elias function is not very efficient when the length
of the input sequence is3. Let’s consider a biased coin with
two statess1, s2. If the input sequence iss1s1s1 or s2s2s2,
the Elias function will generate nothing. For all other cases,

it has only2/3 chance to generate one bit and1/3 chance to
generate nothing. As a result, the efficiency is even worse than
the efficiency when the length of the input sequence equals to
2.

VIII. C ONCLUDING REMARKS

We considered the classical problem of generating inde-
pendent unbiased bits from an arbitrary Markov chain with
unknown transition probabilities. Our main contribution is the
first known algorithm that has expected linear time complexity
and achieves the information-theoretic upper bound on effi-
ciency.

Our work is related to a number of interesting results in
both computer science and information theory. In computer
science, the attention has focused on extracting randomness
from a general weak source (introduced by Zuckerman [17]).
Hence, the concept of an extractor was introduced - it converts
weak random sequences to ‘random-looking’ sequences, using
an additional small number of truly random bits. During the
past two decades, extractors and their applications have been
studied extensively, see [9] [14] for surveys on the topic. While
our algorithms generate truly random bits (given a prefect
Markov chain as a source) the goal of extractors is to generate
‘random-looking’ sequences which are asymptotically close to
random bits.

In information theory, it was discovered that optimal source
codes can be used as universal random bits generators from
arbitrary stationary ergodic random sources [15] [5]. When
the input sequence is generated from a stationary ergodic
process and it is long enough one can obtain an output
sequence that behaves like truly random bits in the sense of
normalized divergence. However, in some cases, the definition
of normalized divergence is not strong enough. For example,
supposeY is a sequence of unbiased random bits in the sense
of normalized divergence, and1∗Y is Y with a1 concatenated
at the beginning. If the sequenceY is long enough the
sequence1 ∗ Y is a sequence of unbiased random bits in the
sense of normalized divergence. However the sequence1 ∗ Y
might not be useful in applications that are sensitive to the
randomness of the first bit.

APPENDIX

In this appendix, we prove the main lemma.
Lemma 4 (Main Lemma: Feasibility and equivalence of exit
sequences).Given a starting statesα and two collections of
sequencesΛ = [Λ1,Λ2, ...,Λn] andΓ = [Γ1,Γ2, ...,Γn] such
that Λi

.
= Γi (tail-fixed permutation) for all1 ≤ i ≤ n. Then

(sα,Λ) is feasible if and only if(sα,Γ) is feasible.

In the rest of the appendix we will prove the main lemma.
To illustrate the claim in the lemma, we expresssα andΛ by a
directed graph that has labels on the vertices and edges, we call
this graph asequence graph. For example, whensα = s1 and
Λ = [s4s3s1s2, s1s3s3, s2s1s4, s2s1], we have the directed
graph in Fig. 4.

Let V denote the vertex set, then

V = {s0, s1, s2, ..., sn}



13

and the edge set is

E = {(si,Λi[k])}
⋃

{(s0, sα)}

For each edge(si,Λi[k]), the label of this edge isk. For
the edge(s0, sα), the label is1. Namely, the label set of the
outgoing edges of each state is{1, 2, ...}.

1s

2s

3s4s

1

3 4

2

1

1

2 3

1

2

3

2

0s

1

Fig. 4. An example of a sequence graphG.

Given the labeling of the directed graph as defined above,
we say that it contains acomplete walkif there is a path in
the graph that visits all the edges, without visiting an edge
twice, in the following way: (1) Start froms0. (2) At each
vertex, we choose an unvisited edge with the minimal label to
follow. Obviously, the labeling corresponding to(sα,Λ) is a
complete walkif and only if (sα,Λ) is feasible. In this case,
for short, we also say that(sα,Λ) is a complete walk. Before
continuing to prove the main lemma, we first give Lemma 14
and Lemma 15.

Lemma 14. Assume(sα,Λ) with Λ = [Λ1,Λ2, ...,Λχ, ...,Λn]
is a a complete walk, which ends at statesχ. Then (sα,Γ)
with Γ = [Λ1, ...,Γχ, ...,Λn] is also a complete walk ending
at sχ, if Λχ ≡ Γχ (permutation).

Proof: (sα,Λ) and (sα,Γ) correspond to different label-
ings on the same directed graphG, denoted byL1 andL2.
SinceL1 is a complete walk, it can travel all the edges inG
one by one, denoted as

(si1 , sj1), (si2 , sj2), ..., (siN , sjN )

wheresi1 = s0 and sjN = sχ. We call {1, 2, ..., N} as the
indexes of the edges.

Based onL2, let’s have a walk onG starting froms0 until
there is no unvisited outgoing edges to select. In this walk,
assume the following edges have been visited:

(siw1
, sjw1

), (siw2
, sjw2

), ..., (siwM
, sjwM

)

where w1, w2, ..., wN are distinct indexes chosen from
{1, 2, ..., N} and siw1

= s0. In order to prove thatL2 is a
complete walk, we need to show that (1)sjwM

= sχ and (2)
M = N .

First, let’s prove thatsjwM
= sχ. In G, let N (out)

i denote

the number of outgoing edges ofsi and letN (in)
i denote the

number of incoming edges ofsi, then we have that










N
(in)
0 = 0, N

(out)
0 = 1

N
(in)
χ = N

(out)
χ + 1

N
(in)
i = N

(out)
i for i 6= 0, i 6= χ

Based on these relations, we know that once we have a walk
starting froms0 in G, this walk will finally end at statesχ.
That is because we can always get out ofsi due toN (in)

i =

N
(out)
i if i 6= χ, 0.
Now, we prove thatM = N . This can be proved by

contradiction. AssumeM 6= N , then we define

V = {w1, w2, ..., wM}

V = {1, 2, ..., N}/{w1, w2, ..., wM}

whereV corresponds to the visited edges based onL2 and
V corresponds to the unvisited edges based onL2. Let v =
min(V ), then(siv , sjv ) is the unvisited edge with the minimal
index. Let l = iv, then (siv , sjv ) is an outgoing edge ofsl.
Here l 6= χ, because all the outgoing edges ofsχ have been
visited. Assume the number of visited incoming edges ofsl
is M

(in)
l and the number of visited outgoing edges ofsl is

M
(out)
l , then

M
(in)
l = M

(out)
l

see Fig. 5 as an example.

)(out

l
M

)(out

l
N

)(in

l
N

)(in

l
M

v

u

Fig. 5. An illustration of the incoming and outgoing edges ofsl. In which, the
solid arrows indicate visited edges, and the dashed arrows indicate unvisited
edges.

Note that the labels of the outgoing edges ofsl are the same
for L1 andL2, sincel 6= χ, 0. Therefore, based onL1, before
visiting edge(siv , sjv ), there must beM (out)

l outgoing edges
of sl have been visited. As a result, based onL1, there must
beM

(out)
l + 1 = M

(in)
l + 1 incoming edges ofsl have been

visited before visiting(siv , sjv ). Among all theseM (in)
l + 1

incoming edges, there exists at least one edge(siu , sju) such
thatu ∈ V , since onlyM (in)

l incoming edges ofsl have been
visited based onL2.

According to our assumption, bothu, v ∈ V and v is the
minimal one, sou > v. On the other hand, we know that
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(siu , sju) is visited before(siv , sjv ) based onL1, so u < v.
Here, the contradiction happens. Therefore,M = N .

This completes the proof.
Here, let’s give an example of the lemma above. We know

that, whensα = s1,Λ = [s4s3s1s2, s1s3s3, s2s1s4, s2s1],
(sα,Λ) is feasible. The labeling on a directed graph corre-
sponding to(sα,Λ) is given in Fig. 4, which is a complete
walk starting at states0 and ending at states1. The path of
the walk is

s0s1s4s2s1s3s2s3s1s1s2s3s4s1

By permutating the labels of the outgoing edges ofs1, we
can have the graph as shown in Fig. 6. The new labeling on
G is also a complete walk ending at states1, and its path is

s0s1s1s2s1s3s2s3s1s4s2s3s4s1

1s

2s

3s4s

1

1 2

3

4

1

2 3

1

2

3

2

0s

1

Fig. 6. The sequence graphG with new labels.

Based on Lemma 14, we have the following result

Lemma 15. Given a starting statesα and two collec-
tions of sequencesΛ = [Λ1,Λ2, ...,Λk, ...,Λn] and Γ =
[Λ1, ...,Γk, ...,Λn] such thatΓk

.
= Λk (tail-fixed permutation).

Then(sα,Λ) and (sα,Γ) have the same feasibility.

Proof: We prove that if(sα,Λ) is feasible, then(sα,Γ)
is also feasible. If(sα,Λ) is feasible, there exists a sequence
X such thatsα = x1 andΛ = π(X). Suppose its last element
is xN = sχ.

Whenk = χ, according to Lemma 14, we know that(sα,Γ)
is feasible.

Whenk 6= χ, we assume thatΛk = πk(X) = xk1xk2 ...xkw
.

Let’s consider the subsequenceX = x1x2...xkw−1 of X .
Then πk(X) = Λ

|Λk|−1
k and the last element ofX is sk.

According to Lemma 14, we can get that: there exists a
sequencex′

1x
′
2...x

′
kw−1 with x′

1 = x1 and x′
kw−1 = xkw−1

such that

π(x′
1x

′
2...x

′
kw−1) = [π1(X), ...,Γ

|Γk|−1
k , πk+1(X), ..., πn(X)]

sinceΓ|Γk|−1
k ≡ Λ

|Λk|−1
k .

Let x′
kw

x′
kw+1...x

′
N = xkw

xkw+1...xN , i.e., concatenating
xkw

xkw+1...xN to the end ofx′
1x

′
2...x

′
kw−1, we can generate

a sequencex′
1x

′
2...x

′
N such that its exit sequence of statesk

is
Γ
|Γk|−1
k ∗ xkw

= Γk

and its exit sequence of statesi with i 6= k is Λi = πi(X).
So if (sα,Λ) is feasible, then(sα,Γ) is also feasible.

Similarly, if (sα,Γ) is feasible, then(sα,Λ) is feasible. As
a result,(sα,Λ) and (sα,Γ) have the same feasibility.

According to the lemma above, we know that
(sα, [Λ1,Λ2, ...,Λn]) and(sα, [Γ1,Λ2, ...,Λn]) have the same
feasibility, (sα, [Γ1,Λ2, ...,Λn]) and (sα, [Γ1,Γ2, ...,Λn])
have the same feasibility, ...,(sα, [Γ1,Γ2, ...,Γn−1,Λn]) and
(sα, [Γ1,Γ2, ...,Γn−1,Γn]) have the same feasibility, so the
statement in the main lemma is true.
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