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Electron dynamics of shocked polyethylene crystal
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Electron force field (eFF) wave-packet molecular-dynamics simulations of the single shock Hugoniot are
reported for a crystalline polyethylene (PE) model. The eFF results are in good agreement with previous
density-functional theories and experimental data, which are available up to 80 GPa. We predict shock Hugoniots
for PE up to 350 GPa. In addition, we analyze the structural transformations that occur due to heating. Our analysis
includes ionization fraction, molecular decomposition, and electrical conductivity during isotropic compression.
We find that above a compression of 2.4 g/cm3, the PE structure transforms into an atomic fluid, leading to a
sharp increase in electron ionization and a significant increase in system conductivity. eFF accurately reproduces
shock pressures and temperatures for PE along the single shock Hugoniot.
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I. INTRODUCTION

The material response of polyethylene (PE) to shock and its
behavior in the warm dense matter (WDM) regime is important
because it is a common ablator material in direct-drive
inertial confinement fusion (ICF) experiments.1,2 Experiments
at the National Ignition Facility (NIF) have demonstrated
that the ICF burn efficiency can be non-negligibly impacted
by the capsule material, so it is crucial to understand the
properties of this material.2,3 Macroscopic modeling of capsule
materials for these experiments requires accurate constitutive
engineering material models. Producing quality engineering
models requires a detailed microscopic understanding of the
equations of state (EOS), electrical conductivity, and optical
properties for a given material. Here, we examine the effects
of electronic excitations during hydrostatic shock of PE.

Theoretical studies of PE in extreme conditions are abun-
dant. A variety of methods including quantum mechanics
(QM), conventional force fields, and reactive force fields are
able to reproduce a common equation of state gauge: the
experimental Rankine-Hugoniot curve.1,4 Born-Oppenheimer
quantum molecular-dynamics (BOQMD) methods and con-
ventional force fields presume adiabaticity in their approach
to simulating the high-energy states of PE. This assumption
limits the scope of these techniques to temperatures well below
the Fermi temperature, near the electronic ground state of
PE.5 Conventional and reactive force fields are parametrized
based on Born-Oppenheimer potential energy surfaces. The
result of using Born-Oppenheimer methods is that the effects
of electronic excitations are absent from the system’s EOS,
and along the particular EOS path corresponding to the
Rankine-Hugoniot. Quantum-mechanical finite-temperature
density-functional theory (DFT) methods, unlike BOQMD
approaches, allow for electron excitations, however the Kohn-
Sham orbital description precludes these methods from re-
vealing dynamic electron effects such as Auger processes.6,7

Finite-temperature DFT methods, like those used in Refs. 4
and 1, are good points of comparison for the electron force
field (eFF) because they allow for thermal electron excitations.

II. THE ELECTRON FORCE FIELD

The first-principles-based electron force field is a mixed
quantum-classical approach for studying nonadiabatic reactive
dynamics based on floating spherical Gaussian wave packets.8

In the past, eFF was successfully applied to nonadiabatic
processes such as Auger decay,9 H2 in the WDM regime,10

the hydrostatic11 and dynamic12 shock Hugoniot, and exo-
electron emission due to fracture in silicon.13 eFF is unique in
that electronic and nuclear degrees of freedom are separate,
which allows for nonadiabatic motion to occur naturally.
eFF is many orders of magnitude faster than QM, which
allows us to perform large-scale and long-time-scale dynamics
simulations.12

The eFF method provides an approximate description of
quantum dynamics by describing every electron as a floating
spherical Gaussian orbital whose position and size vary
dynamically while the nuclei are treated as classical point-
charge particles.14 Here the total N -electron wave function is
written as a Hartree product of one-electron orbitals (rather
than as an antisymmetrized product). Orthogonality resulting
from the Pauli principle is enforced with a spin-dependent
Pauli repulsion Hamiltonian that is a function of the sizes
and separations of these Gaussian orbitals. The Pauli potential
accounts for the kinetic energy change due to orthogonaliza-
tion, arising from the Pauli principle (antisymmetrization).8,15

An additional quantum-derived term in the eFF Hamiltonian
is the kinetic energy for each orbital, which accounts for
the Heisenberg principle. The full Hamiltonian in eFF also
incorporates classical electrostatic terms between nuclei or
electrons.

eFF energies and forces are used to propagate the nuclei
and electron wave function in time using semiclassical wave-
packet molecular dynamics.16 The Gaussian wave packets are
subject to the potential produced by neighboring nuclei and
electrons; this potential is anharmonic, so the size of each
Gaussian is stable at low and intermediate energies. The fact
that the wave packets are stable is vindication of the harmonic
assumption made during the derivation of the wave-packet
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translational and radial equations of motion.8,12,16 If an electron
is excited sufficiently, it may escape its local potential and
its radius may expand, causing the collapse of the wave
function; this is the eFF analog of electron delocalization.
A radial restraint is used to prevent excited electrons from
expanding infinitely (which would lead to infinite kinetic
energy): Eres = 1/2ks(s − Lmin/2)2 for s > Lmin/2, where
Lmin is the smallest box bound and s is the Gaussian radius.
ks is arbitrarily set to 1 hartree per bohr, and the resulting
force is Fres = −ks(s − Lmin/2). The conditions that invoke
this restraint were not encountered in our simulations, though
had they been, the effect on the validity of the simulation
would be minimal. A large electron imparts a force on those
electrons and nuclei that it overlaps with, which is manifested
in an increase in pressure. Invoking the radial restraint limits
the increase in pressure and kinetic energy.

For this study we used a parallel version of eFF which is
included in the LAMMPS software package.12,17 The LAMMPS

website provides performance comparisons of eFF and other
conventional and reactive force fields.18 eFF is roughly 300
times slower (cpu time per time step per particle) than a
conventional Lennard-Jones potential, yet it has been demon-
strated to have linear strong and weak scaling over a broad
range of system sizes and number of processors in LAMMPS.
It is important to note that electrons are explicitly described
in eFF, i.e., it takes one carbon, two hydrogen, and eight
electrons to describe a single CH2 unit. Consequently, using
the true electron mass in eFF requires the use of much shorter
integration time steps, on the order of attoseconds.

III. COMPUTATIONAL DETAILS

A crystalline PE model was created by truncating and
hydrogen passivating the chains in a 2 × 6 × 3 supercell
of orthorhombic polyethylene. Truncating the chains in this
fashion prevents unnatural stresses from forming along the
length of each chain. The final cell contained 12 C12H26

molecules: 1632 particles total, 144 carbon, 312 hydrogen, and
1176 electrons. In real samples of crystalline PE, the chains
are finite in length and the PE is only crystalline in small
domains with lamella ranging from 70 to 300 Å in thickness
and extending several microns laterally.19,20 Because eFF lacks
van der Waals forces, the equilibrium volume of crystalline
PE is 30% too large in eFF. To counter this, the volume of the
PE cell was adjusted so that the ground-state reference has a
density of 0.95 g/cm3; this produced 1.3 GPa of stress, which
was subtracted from all subsequent pressure computations. To
generate points along the Hugoniot path, we prepared samples
of increasing density up to 3.0 g/cm3 by isothermally and
isotropically compressing the reference cell at 300 K. The
temperature was controlled with a Nosé-Hoover thermostat so
that the temperature, number of particles, and volume (NV T )
were defined. Each cell was then ramped to 1500 K over
the course of 500 fs and it was allowed to equilibrate as a
microcanonical ensemble with a fixed energy, volume, and
number of particles (NV E) at 1500 K for another 500 fs. After
heating, each cell was cooled by decreasing the temperature
in 30 K steps during which 200 fs of NV T dynamics was
followed by 200 fs of NV E dynamics.

FIG. 1. (Color online) (a) The principal Rankine-Hugoniot
for PE. Experimental data from the LASL shock compression
handbook24 and Nellis25 are provided along with data for the
classical MD potentials (OPLS and AIREBO).4 A reactive force
field (ReaxFF4) and quantum-mechanical approaches (DFT/AM05
and tight binding26) are included for comparison. (b) An expansion
of the low compression region of the Hugoniot .

In the eFF method, the electron mass is defined in three
separate locations: (i) in the electronic kinetic energy (i.e.,
wave function), (ii) in the spin-dependent Pauli energy, and
(iii) in the equations of motion.8,12 The effect of modifying
the electron mass in (i) and (ii) affects the sizes of electrons
in atoms and the lengths of bonds in molecules, therefore
we keep these fixed to avoid disrupting the chemistry of the
system. In all potential energy terms, the electron mass is set
to the true electron mass (5.486 × 10−4 amu). However, the
user may define a different dynamic electron mass to evolve
the kinetic equations of motion.8,12 Changing the mass in the
equations of motion varies the overall time scale of excited
electron motions, with the time scale of excitation relaxations
and energy transfer proportional to

√
me. We refer to this as

changing the dynamic masses. This does not affect the net
partitioning of energy in the system nor the magnitude of the
thermodynamic parameters we are interested in measuring.
This does not alter the system’s chemistry, just its evolution
in time. We verified this by computing a few Hugoniot points
with 1.0, 0.1, and 0.01 amu dynamic mass and found negligible
differences in pressure and temperature at these points. An
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artificially heavy electron mass enables the use of longer
integration time steps. For this study, we set the dynamic
electron mass to 0.1 amu. To conserve mass in the system,
we subtracted the mass of each atom’s electrons from the
standard atomic mass (e.g., we set carbon atom masses to
11.4107 amu and hydrogen atom masses to 0.907 94 amu).
With this dynamic electron mass, we used an integration time
step of 0.5 attoseconds (0.0005 fs).

The temperature in eFF (like pressure) is extracted from
the dynamics simulation using classical virial expressions
summing the kinetic energies of all the nuclear and electronic
degrees of freedom:

Eke = 3
2NkBT . (1)

The kinetic contribution to the heat capacity is set to 3
2kB by

setting N to the number of nuclei, which is valid for temper-
atures well below the Fermi temperature. The temperatures
presented in this paper were computed using Eq. (1).

A Hugoniot curve is the locus of thermodynamic states
that can be reached by shock compression of a specific
initial state. These states satisfy the Rankine-Hugoniot energy
condition21,22

U − U0 = 1
2 (P + P0)(V0 − V ), (2)

where U is the internal energy, P is the pressure of the
system, and V is the cell volume. It is assumed that each
point along this curve corresponds to a state of thermodynamic
equilibrium wherein the stress state is hydrostatic. For solids,
this latter condition is only valid when the yield stress is
much lower than the mean stress.23 When the initial-state
variables P0, V0, and U0 are those of the uncompressed sample
at room temperature, the Rankine-Hugoniot curve is called
the principal Hugoniot. We generated states on the principal
Hugoniot using the following iterative procedure. First the
volume of the system is specified, representing a particular
degree of compression. How each density point was prepared
is described in the preceding paragraph. The temperature of
the system is quickly increased by changing the set point of

the thermostat. A total of 100 fs of dynamics are run after
the thermostat jump, during which averages of the energy,
temperature, and pressure of the new state are obtained. These
values are used to evaluate the residual energy for a time step
i, Eres,i , given by

Eres,i = (U − U0) − 1
2 (P + P0)(V0 − V ). (3)

When |Eres,i |/Eke,i < 0.05, the Hugoniot condition is consid-
ered satisfied. If this inequality is not satisfied, an additional
100 fs iteration is performed. The new thermostat set point is
calculated from

Ti+1 = Ti

(
1 − 0.05

Eres,i

Eke,i

)
, (4)

where Eke,i is the average kinetic energy of the system at step i.
Once this iterative procedure has converged, the thermostat is
turned off and the system is allowed to evolve for an additional
3 ps. This calculation ensures that the Hugoniot condition is
actually met and the properties of the systems were obtained
from these dynamics.

IV. RESULTS AND DISCUSSION

A. The principal Hugoniot

Figure 1 is the principal Hugoniot projected onto the
pressure-density plane. For densities below 2.0 g/cm3, eFF
matched the experimental and DFT Hugoniot points quite
closely [see Fig. 1(b)]. At higher densities, the eFF simulations
overpredicted the shock pressure relative to DFT. Above 2.0
g/cm3, the results show that eFF is systematically “stiffer” than
the experimental and DFT/AM05 (Ref. 27) data. However,
eFF provides better agreement with the experimental Hugoniot
points than typical classical MD potentials such as AIREBO,28

OPLS,29 and exp-6 (not shown);30 the data for these can
be found in Ref. 4. eFF also outperformed the tight-binding
QM method above 2.0 g/cm3. These results demonstrate the
difficulty in modeling the behavior of materials under shock
compression. Figure 2 shows the temperature-pressure plane

FIG. 2. (Color online) (a) The pressure-temperature locus of the Hugoniot curve for the eFF, DFT/AM05, OPLS, AIREBO, and ReaxFF
methods. (b) An expansion of the pressure-temperature seam for lower pressures.
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of the Hugoniot calculated by the methods in Fig. 1 for which
temperature data were available. The system temperatures
produced by the eFF calculations are in good agreement with
conventional force fields, reactive force fields, and QM.

At high compression, interesting material features appear
in the principal Hugoniot. In the AM05 data series, a shoulder
feature appears at 2.3 g/cm3. This feature is not as pronounced
in the eFF Hugoniot; however, for both methods, inflections
in the temperature-density plane of the Hugoniot curve
indicate structural transitions (see figure 1 of the supplemental
material). Subtle temperature suppression is evident in the eFF
temperature-density curve at 2.0 and 2.6 g/cm3. These data
features correspond to tangible transitions in the molecular
structure. Mattsson reported that the AM05 shoulder at
2.3 g/cm3 corresponded to PE backbone bond breaking.4 The
causes for the eFF data features will be discussed shortly.

B. Structural decomposition

An analysis of the pairwise radial distribution functions
(RDFs) for different degrees of compression demonstrates
that significant structural decomposition occurs upon shock.31

Figure 3(a) shows that carbon bonds are compressed as the
sample is compressed. As the density of the material increases,
the nearest-neighbor C-C pair peak (1.55 Å) broadens and
the next-nearest-neighbor C-C pair distance (2.6 Å) is lost,
indicating that the carbon backbone is fragmented. The C-H
pair distribution function in Fig. 3(b) also demonstrates that
tetrahedral order is lost due to shock compression. The H-H
pair distribution function in Fig. 3(c) also shows that geminal
(normally 1.95 Å), synclinal (2.4 Å), and antiperiplanar (3.2 Å)
nearest-neighbor hydrogen peaks are lost at high compression.
The 2.9 g/cm3 series resembles a classical Lennard-Jones
fluid. For densities between 2.0 and 2.1 g/cm3 corresponding
to temperatures around 3000 K, small peaks in the H-H data
in Fig. 3(c) near 0.7 Å reveal the formation of molecular
hydrogen. Mattsson and collaborators also found H2 formation
when their shocked PE reached 2800–3100 K.32 In their
simulations and in the eFF simulations, this temperature
range corresponded to densities of 2.2–2.3 g/cm3. Select pair
correlation functions near DFT/AM05 Hugoniot points are
available in the supplemental material. For temperatures higher
than 3100 K, the molecular hydrogen dissociates, while at
lower temperatures the hydrogen atoms do not have enough
energy to dissociate from the polyethylene backbones. At high
degrees of compression (>2.2 g/cm3), the RDFs collectively
reveal a fluid phase. The eFF results are consistent with MD
and DFT results for equivalent temperatures.

One of eFF’s greatest assets is its ability to separate
electron degrees of freedom, energies, positions, momentum,
and forces from those of the nuclei. This gives us an unrivaled
ability to measure electronic physical quantities. In our
investigation of PE, we have used this to measure the ion
fraction at each stage of shock. To do this, we measure the
kinetic and potential energy of each electron at each time step
in our simulations.

Figure 4 shows the onset of electron ionization at 2.5 g/cm3.
Ionization increases exponentially for higher densities. The
rapid increase in the ionization fraction above 2.6 g/cm3 is
evidently the cause of the shoulder in the temperature-density

FIG. 3. (Color online) Radial distribution functions for (a) C-C
atom pairs, (b) C-H pairs, and (c) H-H pairs. Each curve corresponds
to a different density point (g/cm3) defined by the colors in the legend.

Hugoniot between 2.6 and 2.7 g/cm3. Above this threshold,
electron ionization draws energy from the system and this
affects the pressure and temperature of the Hugoniot. The
production of carriers in our simulations implies that PE is
conductive at high states of compression. The production of
ions is precipitated by the breaking of C-C bonds, and this
relationship is evident in Fig. 4. The percentage of intact
backbone for the DFT/AM05 study is also presented in Fig. 4.
eFF predicts that the polymer backbone begins to fracture at
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FIG. 4. (Color online) Structural decomposition along the PE
Hugoniot. The circles correspond to the % intact C-C backbone
for the eFF simulations. The open diamonds show the results from
DFT/AM05. The secondary axis shows the % ionization along the
Hugoniot calculated from the eFF simulations in open circles.

2.4 g/cm3 and DFT/AM05 predicts that fracture begins at
2.0 g/cm3.

Curiously, both the DFT/AM05 and eFF structural analyses
show that the hydrogen modes are excited concurrently with
the carbon modes. From bond dissociation energies alone,
one would expect C-C bonds (D0,expt = 83 kcal/mol) to
break more readily than C-H bonds (D0,expt = 98 kcal/mol).
eFF overestimates the strength of carbon-carbon σ bonds (for
ethane, the bond dissociation energy is 140 kcal/mol versus
110 kcal/mol zero-point energy-corrected snap bond energy).8

The loss of order in the C-H and H-H RDF functions indicates
significant excitation in the hydrogen modes. Likewise, the C-
C RDF functions are excited, but for DFT/AM05 and eFF the
nearest-neighbor peaks are well defined up to 2.6 g/cm3. We
believe that an entropic effect is the cause of this phenomenon.
Carbon atoms are constrained to the polymer backbone by
two heavy atoms while hydrogen atoms are only bound to
a single heavy atom. This effectively reduces the vibrational
flexibility of carbon atoms to pseudo-one-dimensional phonon
modes while hydrogen atoms are free to pivot and vibrate in
any direction. With a larger phase space, the hydrogen atoms
have greater entropy, which might decrease the free energy of
dissociation. Additionally, hydrogen atoms may be excited by
collisions with neighboring polyethylene chains since they are
more likely to collide before their carbon backbone.

C. Conductivity

In order to quantify the conductivity of the shocked
system, we determined the direct current conductivity using
a classical Green-Kubo analysis.33,34 We determined the
electrical conductivity from our NV E Hugoniot states using
the Green-Kubo integral of the electric current correlation
function:

σGK = 1

3kBT V

∫ ∞

0
〈j(t) · j(0)〉dt, (5)

where j(t) is the electric current flux, and the integral argument
corresponds to the electric current velocity correlation, which

FIG. 5. (Color online) The direct current electrical conductivity of
points along the eFF Hugoniot curve (circles) and finite-temperature
DFT (diamonds) from Horner.1 (a) Conductivity plotted against
temperature with densities (g/cm3) provided. (b) Conductivity plotted
against density with temperatures (K) provided.

is expressed as

J (t) = 〈j(t) · j(0)〉 =
N∑

i=1

N∑
j=1

〈qiqj vi(t) · vj (0)〉, (6)

where i and j are different particles, q is the charge on each
particle, and v(t) is the velocity of each particle. Figure 5
shows the results of this analysis for eFF Hugoniot points. eFF
predicts that conductivity increases exponentially along the
Hugoniot curve until the temperature reaches roughly 5000 K,
at which point it levels off. Indeed, FT-DFT studies of PE in
the warm dense matter1 regime find conductivities between
3000 and 10 000 S/cm for samples at 1 g/cm3 and 11 605 K
to 3 g/cm3 and 34 815 K. Figure 5(a) shows the temperature
dependence of the conductivity. Comparing the eFF and FT-
DFT data as a whole, there is a clear transition to a metallic
state in the vicinity of 5000 K. The downward slope connecting
the density points 2.4, 2.8, and 2.9 reflects the sensitivity of
the classical Green-Kubo method to thorough equilibration.
Outliers were omitted from Fig. 5(a), but all the data points
are provided in Fig. 5(b). Between 5000 and 20 391 K, the
sample has a conductivity of 2100 S/cm, which is roughly
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equivalent to the conductivity of shocked fluid hydrogen at
140 GPa.35 Above 2.5 g/cm3, in the metallic PE regime, the
RDF analysis suggests that hydrogen is fluid. This suggests that
our conductivity analysis might be applicable to hydrogen-rich
fluids at high temperatures and pressures.

The quality of our quasiclassical Green-Kubo analysis is
a result of the accuracy of the eFF potential. Despite not
being formulated in terms of occupied bands near the Fermi
level, eFF produces the correct excitations. The eFF potential
is rigorously derived from a solution to Schrödinger’s time-
dependent equation of motion, which integrates two quantum-
derived potential terms and classical electrostatics into its
Hamiltonian. In particular, the Pauli function is parametrized
based on the orthogonalization of valence bond-type orbitals.
When a sample is well described by valence bonding, like
polyethylene, eFF will succeed in modeling the potential of
each electron. Each electron “feels” the correct potential, thus
ionization potentials are accurate for carbon and hydrogen.
In extreme conditions, the distribution of valence and core
electronic states spreads and eventually the highest energy
electrons become unbound much like the tail of a Fermi-Dirac
distribution above the Fermi level. This behavior explains
why we observe the correct carrier mobilities, ionization
yields, and conductivities for eFF simulations in extreme
conditions.

V. CONCLUSIONS

We have simulated the response of PE to hydrostatic shock
compression using the eFF wave-packet molecular-dynamics
method. eFF accurately reproduces previously published

experimental and theoretical findings for high-energy shock
Hugoniots of PE and provides further insight into the effects
of electron excitations and ionization at extreme pressures and
temperatures (e.g., above 2.4 g/cm3 the polymer backbone
begins to break and electrons begin to ionize, which increases
with temperature along the Hugoniot). We find that by
300 GPa, significant structural deterioration and ionization
occur. eFF also enabled us to study the electronic conductivity
of PE as it transitions at high temperatures into a plasma phase,
a unique feature that is impossible to obtain via conventional
force fields or BOQMD. The fidelity of the eFF Hugoniot
indicates that van der Waals interactions are not important
under extreme shock conditions. We expect that the results
presented in this paper will stimulate further work on the
applicability of eFF to open problems in high-energy–density
physics.
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