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Abstract 

“!Iyper-reduiidaiiI” robots have a very  large or  anfi- 
nile degree of k inemat ic  redundancy.  Thas paper zn- 
trodaces a n e w  generalized resolved rate  technique for 
soli) I 11 g h ype r- redun da n t  m a n  apulat or  inverse kzne m a t -  
i c ~  i i s i i r y  a ‘backbone curve. ’ Thas method as applica- 
hlr e v e n  zn cases  w h e n  explzczt representataon of the 
hrickbone curve intransac geometry  cannot  be wr i t ten  an 
closed f o r m .  Problems  of end-ef fector  trajectory track- 
ziry tvhzch were previously  intractable can  now be han-  
d l e d  easily wi th  th i s  iechnaque. Examples  include con-  
fiyirmtrons geirerated usang the  calculus of vanat ions .  
A l 5 0 ,  the  method as natural ly  parallelazable f o r  f a s t  dtg- 
a I n l  nnd/or  analog computa t ion .  

1 Introduction 

1.1 Review of Hyper-Redundant Ma- 
nipulator Kinematics 

Consider the ‘infinitely redundant’ planar manipulator 
as shown in Figure 1. The actuatable degrees of free- 
dom of this manipulator cannot be represented with 
a finite length vector of joint angles, but rather con- 
sist of two functions O(s,t) and c ( s , t ) .  At each point 
denoted by the parameter s along the length of the ma- 
nipulator, B(s, t )  controls how the manipulator bends, 
while E ( S ,  t )  controls how the manipulator extends and 
contracts. The position of every point on this planar 
manipulator with respect to a base frame is given by 
Z ( s , t )  = [ x 1 ( s l t ) ,  z2(s , t )JT ,  where 

x l ( s , t )  = [ 1 +  c(a,t)]sinB(u,t)du (1) 1’ 
I” z 2 ( S , t )  = [I + ~ ( a , t ) l c o s ~ ( a , t ) d a .  (2) 

e ( s , t )  can be related to the classical curvature func- 
tion, & ( S , t ) ,  by observing : 111 recent work, a general kinematics and motion plan- 

I I  i ng framework for hyper-redundant robotic manipu- 
l a to rs  has been developed [Ch92,ChB90-92]. The com- 
plesit,y of t,asks such as end-effector placement and 

q s ,  t )  = 1‘ [ 1 +  €(U, t ) ]K(U, t )dU.  (3)  

t rajwtory generation is reduced using these meth- 
ods. The basis for these algorithms is straight for- 
ward : Only allow hyper-redundant manipulators to 

In the spatial case, four functions are needed to  fully 
specify manipulator configuration, and 

act as if they are kinematically sufficient while per- 
forining a particular task. This is referred to  as hyper- 
I c t l u  ndancy resolution. 

‘This paper is organized as follows: The remainder 
of this section reviews the parametrization of hyper- 
rcdutidant manipulator ‘backbone curves,’ and pro- 
vides motivational examples for the current work. Sec- 
tion 2 reviews standard numerical techniques for the 
solution of boundary value problems. Section 3 devel- 
ops a general technique for hyper-redundant manipu- 
lator inverse kinematics. 

J,”[l+ c(a,t)]cosK(u,t)cosT(u,t)do 

&’[I + ( ( U ,  t ) ]  sin ~ ( u ,  t ) d a  
(4) 

K ( s , t )  and T ( s , t )  are angles which determine the 
direction of the tangent t o  the curve representing the 
manipulator a t  every point, while c again specifies 
extensibility. By convention, the initial conditions 
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I<(O, t )  = T(0 , t )  = 0 are assumed. One final func- 
tion, the roil distribution, R(s, t ) ,  is defined to spec- 
ify how an actual mechanism twists about the curve 
.'( s, t ) .  These intrinsic functions form a vector denoted 
: t? In the planar case, e'= while in the spa- 
t,ial case $=  [A', T,  R,  €IT. Note that the classical arc 
length measure, L ,  is related to the curve parameter, 
s, through the extensibility: 

L(s , t )  = la[,, + E ( u , ~ ) ] ~ u .  (5) 

I n  addition to this idealized infinite degree of free- 
dom case, (1)-(5) are used to define continuous 'back- 
bone curves' [ChBSOb] for discrete hyper-redundant 
manipulator morphologies with a finite number of 
degrees of freedom. An appropriate 'fitting' prG 
cediire is then implemented to algorithmically link 
t.lw real manipulator and backbone curve kinematics 
[ C I I 139 1 a,  Ch 921. 

I n  t he  author's previous work, reduction of kine- 
matic and motion planning complexity for both con- 
tiiiuous and discrete hyper-redundant kinematic struc- 
tures resulted from restrictions of the form : 

$ ( S , t )  = $ ( s , p ( t ) )  

for i; E RN. N is the number of end-effector coordi- 
nates. For positioning in the plane N = 2, while for 
position and orientation in the plane N = 3. In space, 
N = 3 for positioning, and N = 6 for position and 
ori  PI^ t a tion. 

f\s task requirements change, these artificial restric- 
t ioiis imposed on hyper-redundant manipulator config- 
uration are allowed to change also. In [ChBSOa] it was 
first shown how closed form forward and inverse kine- 
mat.ic algorithms based on this method can be used 
for hyper-redundant manipulators. When closed form 
solutions cannot be obtained, a method analogous to 
rate linearized (or instantaneous) kinematics for kine- 
inatically sufficient manipulators was used with great 
S I I C C ~ S S  for both trajectory generation and analysis of 
algorit limic singularities [ChBSOb]. 

Ilowever, in a broader context, there are situations 
w l i ~ ~ i i  these previous methods need to be augmented. 
TLiis paper considers the case when an explicit alge- 
hraic representation of the functions e ' ( s , @ ( t ) )  is not 
available. In some situations only systems of differen- 
tial equations of the form: 

(7) 

with initial conditions 

are available, where p(.) E RM, e(-) E R2M, and 
M = dim(:). While the method developed in this 
paper will be general, all the examples will be for the 
planar case. 

1.2 Some Motivational Examples 
In previous papers, techniques for resolving hyper- 
redundancy were presented [ChB90b,ChB92a]. Two of 
these approaches are the 'modal approach' [ChBSOb] 
and the calculus of variations optimality based ap- 
proach [ChB92a]. 

A planar example of the modal approach for inetten- 
sible manipulators, i.e., manipulators with c(s,t) = 0, 
is 

N 

~ ( s ,  1 )  = pi( t )Qi(s) .  (9) 
i = l  

In this way the end-effector position and orientation is 
a function of { p i } .  For the case of planar inextensible 
manipulators, the calculus of variations approach seeks 
to extremize integrals such as 

subject to the end-effector constraints: 

Z e e  = 1' sin Ods yee = COS 6ds. (1 1) 1' 
Differential equations such as: 

6 - p1 cos6 + p2 sin0 = 0 (12) 

together with integral constraints (11) and initial con- 
ditions 

6 ( 0 , t )  = 0 B(0, t )  = p3 (13) 

result when using the calculus of variations (see 
[ChB92a] for a derivation). Here, and throughout this 
paper, a ' represents $. 

In either (9) or (12)-( 13) , several free variables map 
to the end-effector position and/or orientation. The 
differential relationship between free parameters { p i } ,  
which will be referred to as the reduced set, and end- 
effector coordinates is : 

AZee = J($)Ap. (14) 
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This relationship can be inverted to solve for incre- 
mental changes in the free parameters as a function of 
end-effector changes, 

(16) 1 Aji = J- (F)A2ee, 

in much the same way that kinematically sufficient m a  
nipulator kinematics is dealt with. I t  is clear that given 
an explicit function 

e(% t )  = @, @i(t)), (17) 

(16) can be computed numerically. The remainder of 
this paper addresses the issue of how such equations 
can be computed when a closed form representation of 
(17) cannot be written in terms of standard functions, 
such as is the case in (la)-( 13) . 

2 Standard Techniques for Nu- 
merical Solution of Boundary 
Value Problems 

In this section, mathematical and numerical techniques 
coininonly used for the numerical solution of boundary 
value problems are briefly reviewed. Three numeri- 
cal techniques are the most common : ‘shooting’ (also 
called initial value) methods, finite difference methods, 
and integral equation methods. These techniques are 
enumerated to give a comparison of potential solution 
strategies to the problem stated in the previous sec- 
tion. 

?‘lie idea behind shooting is straight forward: since 
i t  is relatively easy to solve initial value problems, 
gucss at initial conditions which may or may not make 
the differential equation satisfy conditions at  the far 
bouiitlary. Then, iteratively correct this initial guess 
based on the error between the desired and actual 
boundary conditions. 

111 finite difference methods, both the domain over 
wiiich the problem is defined, and derivatives in the 
eqrrat ions are discretized. This results in a (generally 
largc) system of algebraic equations which can be in- 
vt’rted (either explicitly or iteratively) to compute an 
approximate solution to the problem at a finite num- 
I w r  of points. If the initial differential equations are 

linear, the resulting finite difference equations will be 
as well. 

Integral equation techniques are most commonly 
used for the numerical solution of linear differential 
equations. A Green’s function can be found for the 
particular linear operator, and an integral of the prod- 
uct of the Green’s function, and forcing terms is ap- 
proximated with a quadrature algorithm to yield art 
approximate numerical solution. 

The method which will be used here is a form of 
shooting which is particularly natural in the context of 
manipulator end-effector trajectory tracking. For more 
information about shooting, and all numerical meth- 
ods for solving boundary value problems, see [KuH83], 
[Ke68], and [Me73]. 

3 Rate-Linearized 
Inverse Kinematics of Back- 
bone Curves 

The general numerical technique used here to solve the 
differential inverse kinematics of hyper-redundant ma- 
nipulators follows from elementary mathematical prin- 
ciples. 

From Equations (1)-(4), the position and orientation 
of the distal end of the backbone curve with respect to 
the base will be of the form: 

and 

where &(l , t )  is a representation of spatial rotation. 
Together, the vector representing end-eTector position 
and orientation is Zeee(t) = [2?(1,t),@T(1,t)]T. By 
restricting G ( s , t )  to the form in (6) , the configuration 
is a function of ji. 

The corresponding rate linearized, or differential, 
kinematics commonly used in robotics can then be 
written symbolically as: 

d ( 1 , t )  = V(G(l,t)), (19) 

and c 

Strictly speaking, differentiation with respect to a vec- 
tor is not mathematically correct notation. However, 
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such notation is understood to mean differentiation 
with respect to each component of the vector. 

Similarly, differentiation and function evaluation com- 
mute in the following cases : 

Together (20-21) can be put in the form of (14) , and 
can be solved for di;/dt as in (16). The only problem 

methods of computing (20) and (21) must be used. 
Aside from explicit representation of the vector func- 

tion B(s, i ; ) ,  it may be defined by a system of differen- 

is that if e'((.,@) is not an explicit function, indirect 
S=O 

tial equations of the form : s=O 

with initial conditions 

wliere 8, f(.) E RMI j i E  RN, and i(.) E R2M. M is 
the iiiinimuin number of intrinsic geometric functions 
nectletl to fully specify the hyper-redundant manipula- 
tor's backbone curve configuration, and N is the num- 
ber of end-effector coordinates. In the plane M = 2 
and N = 3, while for spatial manipulators A4 = 4 and 
hr = 6. 

111 situations described by (22) and (23) (which is 
commonly the case when seeking configurations de- 
rived from variational problems), a system of azlzilzary 
diffcrential equations must be solved. These N sets of 
auxiliary equations are derived by taking the deriva- 
t.ivc.s of (22) and (23) with respect to the N compo- 
nent,s of ji, denoted pi ,  The set of auxiliary equations 
are writt.en symbolically as the N x M matrix equation 

Note the linearity of the above equations in the aux- 
iliary variables 9. for ( i , j )  E (1, ..., M )  x ( I ,  ..., N ) .  
' Ilw initial conditions are written symbolically as the 
2Af x N matrix equation: 

P J  

The simultaneous (possibly parallel) solution of the 
original system of equations and the auxiliary equa- 
tions provides the means by which the instantaneous 
end-effector kinematics of the hyper-redundant manip- 
ulator backbone curve is computed at each time step. 

While this method may seem very computationally 
intensive, there are several ways to speed things up. 
First, if the algorithm is parallelized as in Figure 2, 
the computation time is no greater than if only the 
original system of differential equations is integrated 
forward. Since this must be done for the forward kine- 
matics anyway, there is no loss in time to compute 
instantaneous inverse kinematics when performed in 
parallel. Second, if the fastest possible numerical inte- 
gration techniques are used, or analog implementation 
of the equations is considered, the solution to initial. 
value problems like (22)-(25) can be solved approxi- 
mately in very little time. Third, if computations must 
be performed at  greater speeds than possible using this 
method, then this method can be used off-line to ini- 
tiate neural networks or look-up tables which contain 
the inverse kinematic mapping. 

As was mentioned in Subsection 1.2, when seeking 
backbone curve shapes based on optimization criteria, 
nonlinear differential equations in the intrinsic func- 
tions often arise. See [ChB92a,Ch92] for details. An 
example now illustrates how these nonlinear differen- 
tial equations are dealt with using the general formu- 
lation presented earlier in this section. 

Suppose that the variables p1, p2, p3 map to  the end- 
effector position and orientation through the differen- 
tial equation : 

B - p1 cos 0 + p2 sin 0 = 0 (29) = O  (25) 
S = O  with initial conditions : 

(30) 
which  can generally be separated. Note that because 
tlerivat.ives of smooth functions with respect to inde- 
peiitlent variables commute, 

e(o) = o i(o) = p3. 

Auxiliary equations are generated by simply taking 
derivatives of the differential equation and initial con- 
ditions with respect to the variables pl1p2 ,p3 .  

This results in the differential equations : (26) 
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-$(E) + p 1 ~ s i n O + p z - c o s O = c o s O  80 a0 (31) 
ap1 

with 

(32) 
80 d 80 

-(O) = - (-) (0) = 0, 
dP 1 ds ap1 

with 

(34) 
a0 d 80 

-(O) = - (-) (0) = 0, aP2 ds ap2 
and 

Eacli of these initial value problems can be solved sepa- 
rately by integrating forward simultaneously with (29) 
and (30).  Note that these differential equations are lin- 
ear i n  the variables e, with nonconstant coefficients 
and forcing terms which are dependent on 0. 

Figure 3 shows configurations defined by the Euler- 
Lagrange equations which have the end-effector follow 
tlie trajectory ( t e e , y e e )  = ( t  + a,+)  for t E [o,+]. In 
t.his example, since end-effector position is the only 
quantity of interest, the constraint O(0) = 0.2 = p 3  is 
iiiiposed arbitrarily, and a 2 x 2 Jacobian is used. 

4 S ingularit ies Associated with 
Complexity Reduct ion 

\Vltile constraining intrinsic geometric functions such 
as O ( s , f )  and c ( s , t )  to the form (6) reduces the com- 
plesity of end-effector positioning and trajectory track- 
ing. i t  int.roduces new algorithmic singularities. Re- 
call that. singularities of standard kinematically suffi- 
cicwi manipulators can be detected when the manipu- 
la tor  .Jacobian loses rank. Similarly, algorithmic singu- 
larit ies associated with hyper-redundant manipulators 
i v i t l i  intrinsic functions constrained to the form (6) will 
occiir when 

det(J) = 0. (37) 

Givcn explicit functions @(s, p),  inverse kinematics can 
solnc4nies be solved in closed form, as was  done in 
[ c‘ I I I390 h] . 

Using the methods presented earlier in this paper, 
(16) can be solved numerically without explicitly being 

given the functions q s ,  p ) .  
The easiest method for solving (16) numerically is 

simply to test a discretized set of all acceptable values 
of the free parameters. Then check which ones yield 
singularities by computing J( ji) as described earlier, 
and take the determinant. Space limitations prevent 
additional discussion of this issue. See [Ch93] for more 
information. 

5 Conclusions 

A new method for generating the inverse kinematics of 
hyper-redundant manipulator configurations without 
explicitly defined intrinsic shape functions has been 
presented. Examples illustrated the technique and 
showed how parallel numerical algorithms can be im- 
plemented. 
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I I  
Curve segment represents a 

continuous ‘infinite dof’ 

manipulator \ 

Figure  1: A Continuous ‘Infinitely Redundant’ Manipulator 

F igure  2: Schematic of a Parallel Algorithm 

Figure 3: 

Configurations Associated with Equations (29-30) 
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