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I. Medea 

Insect species tend to produce a large number of offspring per adult; however the 

environment can only sustain a limited number of individuals (Service, 1993), leading to a 

situation in which individuals are essentially sampled from a larger population at each 

generation. For this reason, we implement a stochastic version of the two-population model to 

capture some of the randomness inherent in this process. We illustrate this model using Medea 

(Chen et al., 2007) as a case study. 

Stochastic model formulation: We denote the number of individuals in population A at 

generation k  having genotypes mm and MM by kAi ,  and kAj , , respectively. The equivalent 

number of individuals in population B are denoted by kBi ,  and kBj , , and each population has a 

total population size of N . Following from eqns (1-3), which describe the population dynamics 

of Medea, and eqn (18), which describe the substitutions required for the two-population model, 

the genotypes of embryos in the next generation in population A are described by the expected 

ratio 1,1,1,
ˆ:ˆ:ˆ

 kAkAkA wvu , where, 
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The expected genotype frequencies in the next generation are then given by eqns (4-6) and the 

normalizing term, 1, kAW , is given by eqn (7). At each generation, these expected frequencies are 

reduced to a population of N  adults consisting of 1, kAi  wild-types and 1, kAj  homozygotes by 

sampling from the multinomial distribution, 
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with an analogous procedure applying to population B. We consider a release of 0,Aj  

homozygotes in a population of 0,Ai  wild-types at generation 0 in population A. Population B 

initially consists of N  wild-types. Using this initial condition and the procedure described 

above, we can calculate the stochastic dynamics of the Medea element in both populations. 

 

II. Transposable elements 

Transposable elements (TEs) are particularly interesting genomic components due to 

their ability to transpose replicatively and hence spread into a population (Charlesworth et al., 

1994). TEs differ from allelic systems in that heterozygosity and homozygosity are irrelevant – 

TE copy number is a more meaningful variable. We treat each TE insertion as independent and 

keep track of the number of mosquitoes having different TE copy numbers in both populations. 

In population A, the proportion of mosquitoes that have i  TE copies at generation k  is denoted 

by kiAq ,, , where },...,1,0{ Ti  and T  is the maximum number of TE insertions in the genome. 

The corresponding proportion for population B is kiBq ,, . 

Let us begin with the case without migration, assuming random mating and an infinite 



population size (Marshall, 2008). We consider a system of 1T  difference equations, each 

representing the population frequency of a different TE copy number in the next generation, 

 
1,

,

,,,,,,

1,,

)1(








kA

nm

knAkmAinm

i

kiA
W

qqcs

q  .       (S5) 

Here, each TE copy is associated with a fitness cost of s , and fitness costs are multiplicative 

(assuming independence of TE copies, and to avoid a fitness cost greater than 100% at high copy 

numbers). The coefficient for each mating pair, inmc ,, , represents the probability that, when a 

type- m  mosquito (a mosquito having m  TE copies) mates with a type- n  mosquito, the 

offspring will have i  TE copies. This probability is given by, 
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where xm,  represents the proportion of haploid gametes of a type- m  mosquito that have x  TE 

copies. The number of TEs in the haploid gamete is determined by the number of TEs in the 

diploid cell that are passed on during meiosis. For a diploid cell with m  TE copies we assume, to 

a first approximation, that all of these TEs are far enough apart from each other that they 

segregate independently. The probability of having x  TE copies in a gamete is then proportional 

to the number of ways of choosing x  elements from m . If a replicative transposition event has 

occurred in the diploid cell, then the probability of having x  TE copies in the gamete is 

proportional to the number of ways of choosing x  elements from 1m , or from 1m  if a 

deletion event has occurred. Following this reasoning, a type- m  host produces a proportion, 

xm, , of gametes having x  TE copies according to the equation, 
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The proportion, xin , , is similarly defined. Here, m  represents the proportion of gametes that 

are derived from cells in which a replicative transposition event has occurred, and m  represents 

the proportion of gametes that are derived from cells in which a deletion event has occurred. The 

replicative transposition rate for a type- m  host, m , is equal to the replicative transposition rate 

per TE in a type- m  host, mu , multiplied by the number of TEs in the host genome (i.e. 



mm mu ). Here, mu  is a decreasing function of m  to account for suppression of transposition 

with increasing copy number (Townsend & Hartl, 2000). We model transposition rate as an 

exponentially decreasing function of copy number, 
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Here,   determines the rate at which the replicative transposition rate falls off with additional 

TE copies. Similarly, the deletion rate for a type- m  host, m , is equal to the deletion rate per 

element, v , multiplied by the number of elements in the host genome (i.e. mvm  ), where v  is 

generally considered a constant. Finally, the normalizing term for eqn (S5), 1, kAW , is obtained 

by summing the above terms for all TE copy numbers, and is given by, 
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Analogous equations apply for population B. 

Two-population model: As expected, analytic solutions to the source model are too 

complex to be useful. We therefore move straight on to the two-population model. We assume 

that the mating pool in both populations is made up of individuals from both populations. For a 

migration rate of   in both directions, we make the following substitution for mosquitoes 

having each copy number, 

 kiBkiAkiA qqq ,,,,,, )1(   .       (S10) 

Eqns (S6-S8) are unchanged, and eqn (S5) becomes, 
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Finally, the normalizing term, 1, kAW , is given by, 
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Analogous equations apply for population B. Considering a release of mosquitoes having one TE 

copy in population A at generation 0, the initial condition for the difference equations is given 

by, 

),1(),( 0,1,0,0, xxqq AA   ,        (S13) 

10,0, Bq  .          (S14) 



Here, released mosquitoes represent a proportion, x , of population A at the time of release. 

Using this initial condition and the difference equations described above, we can calculate the 

time-series dynamics of the TE in both populations through numerical iteration. We consider a 

default transposition rate of 1.01 u  gen
-1

 which, although high, is realistic (Seleme et al., 1999; 

Vasilyeva et al., 1999) and several modeling approaches have recommended it as a minimum 

requirement for gene drive to occur within a public health time frame (Rasgon & Gould, 2005; 

Le Rouzic & Capy, 2006; Marshall, 2008). 

 

III. Homing endonuclease genes 

Homing endonuclease genes (HEGs) spread by expressing an endonuclease which creates 

a double-stranded break on versions of the homologous chromosome lacking the HEG at the 

position where the HEG occurs. Homologous DNA repair then copies the HEG to the cut 

chromosome (Fig. S1E), increasing the representation of the HEG in subsequent generations 

(Burt, 2003). We denote the HEG allele by “T” and refer to the wild-type allele as “t.” In 

population A, the proportion of the k th generation that are mosquitoes of genotypes tt, Tt and TT 

are denoted by kAu , , kAv ,  and kAw , , respectively. The corresponding proportions for population B 

are kBu , , kBv ,  and kBw , . 

As for Medea, we begin by considering the dynamics of HEGs without migration, 

assuming random mating and an infinite population size (Deredec et al., 2008). We additionally 

assume that homing occurs at meiosis after gene expression, so that additional fitness costs are 

not experienced by the individual in which homing occurs. The HEG allele frequency at the k th 

generation is then given by, 

kAkAkA vwq ,,, 5.0  ,         (S15) 

and the wild-type allele frequency is, 

kAkA qp ,, 1  .         (S16) 

By considering all possible mating pairs, the genotype frequencies in the next generation in 

population A are given by, 
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Here, e  represents the homing rate of the HEG, s  and hs  represent the fitness costs associated 

with being homozygous or heterozygous for the HEG, and 1, kAW  is a normalizing term given by, 

kAkAkAkA qshpsqW ,,
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The HEG allele frequency at the 1k th generation is given by, 
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An analogous equation applies to population B. 

Source model: For the source model, we begin by assuming that the HEG has already 

reached equilibrium in population A, ignoring migratory effects. We calculate this equilibrium 

by solving the equality, 

,*,1, AkAkA qqq   .         (S22) 

For simplicity, let us assume a fitness cost with a heterozygosity of 5.0h , although other cases 

are explored for the two-population model. This gives us two solutions, 

 1,0,* Aq  .          (S23) 

The first of these represents loss and the second represents fixation. Calculating the stability of 

these equilibria, we see that fixation is stable for fitness costs less than )1/(2 ee   and is unstable 

for fitness costs greater than )1/(2 ee  . Loss, on the other hand, is stable for fitness costs greater 

than )1/(2 ee   and is unstable for fitness costs less than )1/(2 ee  . This suggests that the HEG 

will spread into population A irrespective of the release proportion (assuming a heterozygosity of 

5.0h ), provided that the fitness cost is not too high. For a homing rate of 5.0e , for example, 

the maximum tolerable fitness cost is 0.667, and for a homing rate of 75.0e , the maximum 

tolerable fitness cost is 0.857. 

We assume that the fitness cost is less than )1/(2 ee  , that population A remains fixed 

for the HEG, and that this population donates mosquitoes to population B at a rate,  , measured 

relative to the size of population B. The genotype frequencies in population B are then given by, 
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Eqns (S15-S16) still apply and the normalizing term, 1, kBW , is given by eqn (S20). Following 

from eqn (S21), the HEG allele frequency at the 1k th generation in population B is given by, 
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To characterize the dynamics of the HEG in population B, we begin by calculating its equilibria 

by solving the equality, 

,*,1, BkBkB qqq   .         (S28) 

This gives us two solutions, 
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The first of these represents fixation, and the second represents a mixture of all three genotypes. 

Calculating the stability of these equilibria, we see that fixation is stable for fitness costs less 

than )1/()(2 ee    and is unstable for fitness costs greater than )1/()(2 ee   . Noting that 

we had already assumed that the fitness cost is less than )1/(2 ee  , and is therefore less than 

)1/()(2 ee    for 0 , this suggests that the HEG will fix in population B and any other 

population it exchanges migrants with (assuming a heterozygosity of 5.0h ). 

Two-population model: For the two-population model, we assume that the mating pool 

in both populations is made up of individuals from both populations. For a migration rate of   

in both directions, this means that we need to make the following substitutions, 

  ),()1)(,(),( ,,,,,, kBkBkAkAkAkA qpqpqp   ,     (S30) 

Applying these substitutions to eqn (S18), for illustrative purposes, we obtain, 
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These substitutions apply to eqns (S17-S19) and analogous substitutions apply to population B. 

Considering a release in population A at generation 0, the initial condition for the difference 

equations is given by, 

 ),1(),( 0,0, xxwu AA   ,        (S32) 

 )0,1(),( 0,0, AA wu  .         (S33) 

Here, the released mosquitoes represent a proportion, x , of population A at the time of release. 



Using this initial condition and the difference equations described above, we can calculate the 

time-series dynamics of the HEG allele in both populations.  

 

IV. Wolbachia 

We consider a model in which Wolbachia-infected males and females are equally 

numerous. The Wolbachia bacterium can therefore be described by its overall frequency in the 

population. At the k th generation, we denote this frequency by kAq ,  in population A and kBq ,  in 

population B. We begin by considering the case without migration, assuming random mating and 

an infinite population size (Turelli & Hoffmann, 1991). The frequency of the Wolbachia 

bacterium at the k th generation is given by, 
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Here, s  represents the fitness cost associated with a Wolbachia infection, u  represents the 

proportion of offspring of crosses between Wolbachia-infected females and uninfected males 

that are uninfected by Wolbachia (the degree of imperfection in maternal transmission), and e  

represents the proportion of offspring of crosses between uninfected females and Wolbachia-

infected males that are sterile (the efficiency of CI-induced sterility). An analogous equation 

applies to population B. 

Two-population model: Analytic solutions to the source model are derived by Flor et al. 

(2007) and so we move straight on to the two-population model. We assume that the mating pool 

in both populations is made up of individuals from both populations. For a migration rate of   

in both directions, this means that we need to make the following substitution, 

 kBkAkA qqq ,,, )1(   .        (S35) 

Applying this substitution to eqn (S34), we obtain, 
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An analogous substitution applies to population B. Considering a release in population A at 

generation 0, the initial condition for the difference equations is given by, 

 xqA 0,  ,          (S37) 



00, Bq  .          (S38) 

Here, the released mosquitoes represent a proportion, x , of population A at the time of release. 

Using this initial condition and the difference equations described above, we can calculate the 

time-series dynamics of the Wolbachia infection in both populations. 

 

V. Engineered underdominance (single-locus) 

A novel form of underdominance has been proposed by Davis et al. (2001) consisting of 

two transgenic constructs, each of which possesses a gene whose expression induces lethality 

and a gene that suppresses the expression or activity of the gene inducing lethality carried by the 

other construct. The constructs can either be inserted at the same locus on a pair of homologous 

chromosomes or at different loci on nonhomologous chromosomes. Here, we consider the single-

locus system. As a three-allele system – two transgenic alleles, “T” and “R,” and one wild-type 

allele, “t” – there are six possible genotypes; however since individuals possessing only one 

transgenic construct express a lethal gene without its suppressor, only two of these genotypes are 

viable – tt and TR. In population A, we denote the proportion of the k th generation that are 

mosquitoes having these genotypes by kAu ,  and kAw , , respectively. The corresponding 

proportions for population B are kBu ,  and kBw , . The population dynamics of single-locus 

engineered underdominance in a single randomly-mating population are described by eqns (47-

48). 

Two-population model: For the two-population model, we assume that the mating pool 

in both populations is made up of individuals from both populations. For a migration rate of   

in both directions, this means that we need to make the following substitutions, 

  ),()1)(,(),( ,,,,,, kBkBkAkAkAkA wuwuwu   ,     (S39) 

Applying these substitutions to eqn (47), for illustrative purposes, we obtain, 
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These substitutions also apply to eqn (48) and analogous substitutions apply to population B. 

Considering a release in population A at generation 0, the initial condition for the difference 

equations is given by, 

 ),1(),( 0,0, xxwu AA   ,        (S41) 



 )0,1(),( 0,0, AA wu  .         (S42) 

Here, the released mosquitoes represent a proportion, x , of population A at the time of release. 

Using these equations, we can calculate the time-series dynamics of the engineered 

underdominance alleles in both populations.  

 

VI. Underdominance (single-allele) 

Molecular genetic strategies are currently being investigated to engineer underdominant 

alleles for which hybrids are completely unviable (Hay et al., unpublished). We consider an 

introduced allele denoted by “T” and a null allele denoted by “t.” In population A, the proportion 

of the k th generation that are mosquitoes of genotypes tt and TT are denoted by kAu ,  and kAw , , 

respectively. The corresponding proportions for population B are kBu ,  and kBw , . Considering the 

case without migration, the genotype frequencies in the next generation in population A are 

given by, 
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Analogous equations apply to population B. 

For the source model, we begin by assuming that the transgene has already reached 

equilibrium in population A, ignoring migratory effects, and calculate the equilibrium, 

,*,1, AkAkA www   .         (S45) 

This gives us three solutions, 
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The first of these represents loss, the second represents a mixture of homozygotes and wild-

types, and the third represents fixation. Calculating the stabilities of these equilibria, we see that 

fixation and loss are stable, while the internal equilibrium is unstable. This latter solution 

represents a release threshold, above which the introduced allele becomes fixed in the 

population. In the absence of a fitness cost, the release threshold is 50%, and with a fitness cost 

of 05.0s , the release threshold is 51.3%. 

Source model: Under the source model, we assume that population A remains fixed for 



the introduced allele and that this population donates homozygotes to population B at a rate,  , 

measured relative to the size of population B. The genotype frequencies in population B are then 

given by, 
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To characterize the dynamics of the introduced allele in population B, we begin by calculating 

the equilibria, 

,*,1, BkBkB www   .         (S49) 

This gives us three solutions, 
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The first of these represents fixation, and the second and third represent a mixture of 

homozygotes and wild-types. Calculating the stabilities of these equilibria, we see that fixation is 

stable, and the other two equilibria only exist when )48/(1 s . If this condition is satisfied, 

then the second equilibrium is stable and the third is unstable. This implies that, 
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The expression, )48/(1 s , represents a migration threshold, equal to 12.5% per generation in 

the absence of a fitness cost and 13.2% per generation for a fitness cost of 05.0s .  

Two-population model: For the two-population model, we assume that the mating pool 

in both populations is made up of individuals from both populations. For a migration rate of   

in both directions, this means that we need to make the following substitutions, 

  ),()1)(,(),( ,,,,,, kAkBkAkAkAkA wuwuwu   .     (S52) 

Applying these substitutions to eqn (S47), for illustrative purposes, we obtain, 
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These substitutions also apply to eqn (S48) and analogous substitutions apply to population B. 



Considering a release in population A at generation 0, the initial condition for the difference 

equations is given by, 

 ),1(),( 0,0, xxwu AA   ,        (S54) 

 )0,1(),( 0,0, AA wu  .         (S55) 

Here, the released mosquitoes represent a proportion, x , of population A at the time of release. 

Using these equations, we can calculate the time-series dynamics of the underdominant allele in 

both populations.  
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Figure S1: 

 

 

 

Fig. S1. Dynamics of invasive gene drive systems under the source and two-population models. 

(A): A transposable element (TE) expresses a transposase which facilitates its replicative 

transposition throughout the genome. At higher copy numbers it is represented more frequently 

in subsequent generations. (B): Single stochastic realization of a TE released at 50% in 

population A. Each of the released mosquitoes has four copies of the TE. Default parameters are 

used to characterize the TE ( 1.01 u , 
6104 v , 01.0s ). Population A exchanges migrants 

with population B at a rate of 0.1% per generation and the size of both populations is 10,000. 

The TE reaches near-fixation in both populations within 100 generations. (C): If the transposition 

rate is decreased (here, 05.01 u ), the TE spreads more slowly but still becomes established in 



both populations. (D): If the fitness cost is increased (here, 5.0s  and 1.01 u ), the TE also 

spreads more slowly but becomes established in both populations. However, if the fitness cost 

outweighs the TE replication rate, the TE is lost from both populations (not shown). (E): A 

homing endonucease gene (HEG) expresses an endonuclease which causes chromosome 

cleavage followed by gene conversion, increasing the representation of the HEG in subsequent 

generations. (F): Single stochastic realization of a HEG released at 50% (homozygotes) in 

population A. Default parameters are used to characterize the HEG ( 1.0e , 05.0s , 5.0h ). 

Population A exchanges migrants with population B at a rate of 0.1% per generation and the size 

of both populations is 10,000. The HEG fixes in both populations within 90 generations. (G): 

Threshold dynamics are possible for HEGs with partially dominant fitness costs ( 5.0h ). Here, 

the HEG is associated with a higher, dominant fitness cost ( 5.0s , 1h ) and homing 

efficiency ( 5.0e ). The HEG reaches near-fixation in population A within 15 generations, but 

only spreads to ~5% (in the form of HEG homozygotes and heterozygotes) in population B. (H): 

Depending on the homing efficiency, HEGs display threshold behavior with respect to migration 

rate for a small range of partially or fully-dominant fitness costs. (I): Wolbachia is a maternally-

inherited intracellular bacterium which causes offspring of matings between infected males and 

uninfected females to have reduced viability, thus increasing its representation in subsequent 

generations. (J): Single stochastic realization of a Wolbachia infection released at 50% in 

population A. Default parameters are used to characterize the bacterium ( 7.0e , 97.0u ). 

Population A exchanges migrants with population B at a rate of 1% per generation and the size 

of both populations is 10,000. When the infection is associated with a fitness cost of 2.0s , 

Wolbachia reaches near-fixation in population A within 12 generations but only spreads to ~4% 

in population B. (K): Wolbachia displays threshold behavior with respect to migration rate. (L): 

For smaller population sizes, there is a chance that Wolbachia will become established in 

neighboring populations for smaller migration rates. 


