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43aUniversité Nice-Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, F-06304 Nice, France
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The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic back-

grounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science

run: one optimized for pointlike sources and one for arbitrary extended sources. Finding no evidence to

support the detection of GWs, we present 90% confidence level (C.L.) upper-limit maps of GW strain

power with typical values between 2� 20� 10�50 strain2 Hz�1 and 5� 35� 10�49 strain2 Hz�1 sr�1

for pointlike and extended sources, respectively. The latter result is the first of its kind. We also set 90%

C.L. limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1,

SN 1987A and the Galactic center as low as � 7� 10�25 in the most sensitive frequency range near

160 Hz.

DOI: 10.1103/PhysRevLett.107.271102 PACS numbers: 95.85.Sz, 95.30.Sf, 97.60.Jd, 98.80.�k

Introduction.—One of the most ambitious goals of
gravitational-wave (GW) astronomy is to measure the
stochastic gravitational-wave background (SGWB), which
can arise through a variety of mechanisms including am-

plification of vacuum fluctuations following inflation [1],
phase transitions in the early Universe [2], cosmic strings
[3] and pre-big bang models [4,5]. Astrophysical sources
of the SGWB include the superposition of unresolved

PRL 107, 271102 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

30 DECEMBER 2011

271102-4

http://dx.doi.org/10.1103/PhysRevLett.107.271102


sources such as core-collapse supernovae [6], neutron-star
instabilities [7], binary mergers [8] and persistent emission
from neutron stars [9].

We present the results of two analyses using data from
the LIGO S5 science run: a radiometer analysis optimized
for pointlike sources and a spherical-harmonic decompo-
sition (SHD) analysis, which allows for arbitrary angular
distributions. This work presents the first measurement of
the GW sky in a framework consistent with an arbitrary
extended source.

Detectors.—We analyze data from LIGO’s 4 and 2 km
detectors (H1 and H2) in Hanford, WA and the 4 km
detector (L1) in Livingston Parish, LA during the S5
science run (Nov. 5, 2005—Sep. 30, 2007). During S5,
both H1 and L1 reached a strain sensitivity of 3� 10�23

strain Hz�1=2 in the most sensitive region between
100–200 Hz [10] and collected 331 days of coincident
H1L1 and H2L1 data. S5 saw milestones including limits
on GWs from the Crab pulsar surpassing those inferred
from the Crab’s spindown [11], as well as limits on the
isotropic SGWB surpassing indirect limits from big bang
nucleosynthesis and the cosmic microwave background
[12]. This work builds on [12,13].

Methodology.—Following [13,14] we present a frame-
work for analyzing the angular distribution of GWs. We
assume that the GW signal is stationary and unpolarized,
but not necessarily isotropic. It follows that the GWenergy
density �GWðfÞ, can be expressed in terms of the GW

power spectrum, P ðf; �̂Þ:

�GWðfÞ � f

�c

d�GW

df
¼ 2�2

3H2
0

f3
Z
S2
d�̂P ðf; �̂Þ: (1)

Here f is frequency, �̂ is sky location, �c is the critical
density of the Universe and H0 is Hubble’s constant. We

further assume that P ðf; �̂Þ can be factored (in our analy-

sis band) into an angular power spectrum, P ð�̂Þ, and a
spectral shape, �HðfÞ � ðf=f0Þ�, parameterized by the
spectral index � and reference frequency f0. We set f0 ¼
100 Hz to be in the sensitive range of the LIGO
interferometers.

We measure P ð�̂Þ for two power-law signal models. In
the cosmological model, � ¼ �3 (�GWðfÞ ¼ const),
which is predicted, e.g., for the amplification of vacuum
fluctuations following inflation [15]. In the astrophysical
model, � ¼ 0 ( �HðfÞ ¼ const), which emphasizes the
strain sensitivity of the LIGO detectors.

We estimate P ð�̂Þ two ways. The radiometer algorithm
[13,16,17] assumes the signal is a point source character-

ized by a single direction �̂0 and amplitude, �ð�̂0Þ:
P ð�̂Þ � �ð�̂0Þ�2ð�̂; �̂0Þ: (2)

It is applicable to a GW sky dominated by a limited number
of widely separated point sources. As the number of point
sources is increased, however, the beam pattern will cause

the signals to interfere and partly cancel. Thus, radiometer
maps do not apply to extended sources. Since pointlike
signals are expected to arise from astrophysical sources,
we use � ¼ 0 for the radiometer analysis.
The spherical-harmonic decomposition algorithm is

used for both� ¼ �3 and� ¼ 0. It allows for an extended
source with an arbitrary angular distribution, characterized
by spherical-harmonic coefficients P lm such that

P ð�̂Þ � X
lm

P lmYlmð�̂Þ: (3)

The series is cut off at lmax, allowing for angular scale
�2�=lmax. The flexibility of the spherical-harmonic algo-
rithm comes at the price of somewhat diminished sensitiv-
ity to point sources, and thus the algorithms are
complementary.

We choose lmax to minimize �ð�̂Þ �A where �ð�̂Þ is the
uncertainty associated with P ð�̂Þ and �A is the typical
angular area of a resolved patch of sky [18]. I.e., we max-
imize the sensitivity obtained by integrating over the typi-
cal search aperture. We thereby obtain lmax ¼ 7 and 12 for
� ¼ �3 and � ¼ 0, respectively.
Both algorithms can be framed in terms of a ‘‘dirty

map’’, X�, which represents the signal convolved with
the Fisher matrix, ��� [14]:

X� ¼ X
ft

	?
�ðf; tÞ

�HðfÞ
P1ðf; tÞP2ðf; tÞCðf; tÞ (4)

��� ¼ X
ft

	?
�ðf; tÞ

�H2ðfÞ
P1ðf; tÞP2ðf; tÞ	�ðf; tÞ: (5)

Here both Greek indices � and � take on values of lm for

the SHD algorithm and �̂ for the radiometer algorithm.
Cðf; tÞ is the cross spectral density generated for each
interferometer pair. P1ðf; tÞ and P2ðf; tÞ are the individual
power spectral densities, and 	�ðf; tÞ is the angular de-

composition of the overlap reduction function 	ð�̂; f; tÞ,
which characterizes the orientations and frequency re-
sponse of the detectors [14]:

	�ðf; tÞ �
Z
S2
d�̂	ð�̂; f; tÞe�ð�̂Þ (6)

	ð�̂; f; tÞ ¼ 1

2
FA
1 ð�̂; tÞFA

2 ð�̂; tÞei2�f�̂�ð� ~x12ðtÞÞ=c: (7)

FA
I ð�̂; tÞ characterizes the detector response of detector I

to a GWwith polarization A, e�ð�̂Þ is a basis function, c is
the speed of light and � ~x12 � ~x1 � ~x2 is the difference
vector between the interferometer locations [14].
In [14] it was shown that the maximum-likelihood esti-

mators of GW power are given by P̂ ¼ ��1X. The inver-
sion of � is complicated by singular eigenvalues associated
with modes to which the Hanford-Livingston (HL) detector
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network is insensitive. This singularity can be handled two
ways. The radiometer algorithm assumes the signal is
pointlike, implying that correlations between neighboring
pixels can be ignored. Consequently, we can replace ��1

with ð��̂ �̂Þ�1 to estimate the point source amplitude

�ð�̂Þ.
The SHD algorithm targets extended sources, so the full

Fisher matrix must be taken into account. We regularize �
by removing a fraction F of the modes associated with the
smallest eigenvalues, to which the HL network is relatively
insensitive. By removing some modes from the Fisher
matrix, we obtain a regularized inverse Fisher matrix,
��1
R , thereby introducing a bias discussed below.
We thereby obtain estimators

�̂�̂ ¼ ð��̂�̂Þ�1X�̂ (8)

P̂ lm ¼ X
l0m0

ð��1
R Þlm;l0m0Xl0m0 ; (9)

with uncertainties

�rad
�̂

¼ ð��̂�̂Þ�1=2 (10)

�
sph
lm ¼ ½ð��1

R Þlm;lm�1=2: (11)

We refer to P̂ �̂ � P
lmP̂ lmYlmð�̂Þ as the ‘‘clean map’’ and

�̂�̂ as the ‘‘radiometer map.’’ P̂ �̂ has units of

strain2 Hz�1 sr�1 whereas �̂�̂ has units of strain2 Hz�1.

In choosing F , we balance the sensitivity to the kept
modes with the bias associated with the removed modes. In
practice, we do not know the bias associated withF , which

depends on the unknown signal distribution P ð�̂Þ.
Therefore, we choose F to produce reliably reconstructed
maps with minimal bias for simulated signals. Following
[14], we use F ¼ 1=3, which was shown to be a robust
choice for simulated signals including maps characterized
by one or more point sources, dipoles, monopoles and an
extended source clustered in the galactic plane.

The likelihood function for P ð�̂Þ at each point in the
sky can be described as a normal distribution with mean

P̂ �̂ and width �
sph

�̂
. Regularization introduces a signal-

dependent bias. Without knowing the true distribution of

P ð�̂Þ, it is impossible to know the bias exactly, but it is
possible to set a conservative upper limit by assuming that
on average the removed modes contain no more GW power

than the kept modes. Thus, we calculate P̂ lm setting ei-

genvalues of removed modes to zero, whereas �sph
lm is

conservatively calculated setting eigenvalues of removed
modes to the average eigenvalue of the kept modes. These
upper limits are � 25% greater than they would be if we

used the same regularization scheme for �sph
lm and P̂ lm.

In the case of the SHD algorithm, we also calculate [14],

Ĉl � 1

2lþ 1

X
m

½jP̂ lmj2 � ð��1
R Þlm;lm�; (12)

which describe the angular scale of the clean map. The
subtracted second term makes the estimator unbiased so

that hĈli ¼ 0 when no signal is present. The noise distri-

bution of Ĉl is highly non-Gaussian for small values of l,
and so the upper limits presented below are calculated

numerically. The Ĉl are analogous to similar quantities
defined in the context of temperature fluctuations of the
cosmic microwave background [19].
The analysis was performed blindly using the S5 sto-

chastic analysis pipeline. This pipeline has been tested with
hardware and software injections, and the successful re-
covery of isotropic hardware injections is documented in
[12]. The recovery of anisotropic software injections is
demonstrated in [14]. We parse time series into 60 s,
Hann-windowed, 50%-overlapping segments, coarse-
grained to achieve 0.25 Hz resolution. We apply a statio-
narity cut described in [13], which rejects �3% of the
segments. We also mask frequency bins associated with
instrumental lines (e.g., harmonics of the 60 Hz power,
calibration lines and suspension-wire resonances) as well
as injected, simulated pulsar signals. For � ¼ �3, 0 we

include frequency bins up to 200, 500 Hz, so that �ð�̂Þ is
within & 2% of the minimum possible value. Thirty-three
frequency bins are masked, corresponding to 2% of the
frequency bins between 40–500 Hz used in the broadband
analyses.
In order to determine if there is a statistically significant

GW signature, we consider the highest signal-to-noise ratio
(SNR) frequency bin or sky-map pixel. We calculate the
expected noise probability distribution of the maximum
SNR given many independent trials (in a spectral band) and
given many dependent trials (for a sky map).
For N independent frequency bins, the probability den-

sity function, �ð�maxÞ, of maximum SNR, �max, is

�ð�maxÞ / ½1þ erfð�max=
ffiffiffi
2

p Þ�N�1e��2
max=2: (13)

The Gaussianity of P̂ �̂ and �̂�̂, calculated by summing

over manyOð500 KÞ independent segments, is expected to
arise due to the central limit theorem [20]. Additionally, we
find the Gaussian-noise hypothesis to be consistent with
time-slide studies, wherein we perform the cross-
correlation analysis with unphysical time shifts in order
to wash out astrophysical signals and thereby obtain differ-
ent realizations of detector noise.
The distribution of maximum SNR for a sky map is more

subtle due to the nonzero covariances between estimators
for different patches on the sky. For this case, we calculate
�ð�maxÞ numerically by simulating many realizations
of dirty maps with covariances described by the Fisher
matrix �.
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Following [12], we marginalize over the H1, H2, and L1
calibration uncertainties [12], which were measured to be
10%, 10%, and 13%, respectively [21]. Using a prior, taken

to be flat above P ð�̂Þ ¼ 0, we obtain Bayesian upper
limits at 90% C.L. [22].

Results.—Figure 1 shows sky maps for SHD � ¼ �3
(left), SHD � ¼ 0 (center), and the radiometer � ¼ 0
(right). The top row contains SNR maps. The maximum
SNR values are 3.1 (with significance p ¼ 25%), 3.1 (p ¼
56%), and 3.2 (p ¼ 53%), respectively. These p values
take into account the number of search directions and
covariances between different sky patches. Observing no
evidence of GWs, we set upper limits on GW power. The
90% confidence level (C.L.) upper-limit maps are given in
the bottom row. For SHD � ¼ �3, the limits are between
5� 31� 10�49 strain2 Hz�1 sr�1; for SHD � ¼ 0, the
limits are between 6� 35� 10�49 strain2 Hz�1 sr�1;
and for the radiometer � ¼ 0, the limits are between 2�
20� 10�50 strain2 Hz�1. Since the radiometer and SHD
maps have different units—strain2 Hz�1 and
strain2 Hz�1 sr�1 respectively—one must scale the SHD
map by the typical diffraction limited resolution �A �
0:1 sr to perform an approximate comparison.

The strain power limits can also be expressed in terms of
energy flux per unit frequency [13]:

F̂ðf; �̂Þ ¼
�
3:18� 1042

erg

cm2 s

��
f

100 Hz

�
�þ2

P̂ �̂: (14)

(Radiometer energy flux is obtained by replacing P̂ �̂ with

�̂�̂.) The corresponding values are 2�10�10�6

ðf=100HzÞ�1 ergcm�2 s�1Hz�1 sr�1 and 2�11�10�6

ðf=100HzÞ2 ergcm�2 s�1Hz�1 sr�1 for the SHD method,
and 6� 60� 10�8ðf=100 HzÞ2 erg cm�2 s�1 Hz�1 for the
radiometer. The radiometer limits constitutes a factor of
�30 improvement over the previous best [13].
Figure 2 shows 90% C.L. upper limits on the Cl. Since

the P̂ lm have units of strain2 Hz�1 sr�1, the Cl have the
somewhat unusual units of strain4 Hz�2 sr�2.
Sco X-1 is a nearby (2.8 kpc) low-mass x-ray binary

likely to include a neutron-star spun up through accretion.
Its spin frequency is unknown. It has been suggested that
the accretion torque is balanced by GWemission [23]. The
Doppler line broadening due to the orbital motion is
smaller than the chosen �f ¼ 0:25 Hz bin width for fre-
quencies below � 930 Hz [24]. At higher frequencies, the
signal is certain to span two bins. We determine the maxi-
mum value of SNR in the direction of Sco X-1 to be 3.6
(p ¼ 73% given Oð7000Þ independent frequency bins) at
f ¼ 1770:50 Hz. Thus in Fig. 3 (first panel) we present

limits on root-mean-square (RMS) strain, hRMSðf; �̂Þ, as a
function of frequency in the direction of Sco X-1
ðRA; decÞ ¼ ð16:3 hr; 15:6�Þ. These limits improve on the
previous best by a factor of �5 [13]. RMS strain is related
to narrow-band GW power via

hRMSðf; �̂Þ ¼ ½�ðf; �̂Þ�f�1=2; (15)

FIG. 1 (color online). Top row: SNR maps for the three different analyses: SHD clean map � ¼ �3 (left), SHD clean map � ¼ 0
(center), and radiometer � ¼ 0 (right). All three SNR maps are consistent with detector noise. The p values associated with each
map’s maximum SNR are (from left to right) p ¼ 25%, p ¼ 56%, p ¼ 53%. Bottom row: The corresponding 90% C.L. upper-limit
maps on strain power in units of strain 2Hz�1 sr�1 for the SHD algorithm, and units of strain 2Hz�1 for the radiometer algorithm.
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FIG. 2 (color online). Upper limits on Cl at 90% CL vs l for the SHD analyses for � ¼ �3 (left) and � ¼ 0 (right). The Ĉl are
consistent with detector noise.
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and is better suited for comparison with searches for peri-
odic GWs [25] (see also [26]). These limits apply to a
circularly polarized signal from a pulsar whose spin axis is
aligned with the line of sight. The limits constrain the RMS
strain in each bin as opposed to the total RMS strain from
Sco X-1, which might span two bins.

We also look for statistically significant signals associ-
ated with the Galactic cCenter ðRA;decÞ¼ ð17:8 hr;�29�Þ
and SN 1987A ðRA; decÞ ¼ ð5:6 hr;�69�Þ.The maximum
SNR values are 3.5 (p ¼ 85%) at f ¼ 203:25 Hz and 4.3
at (p ¼ 7%) 1367.25 Hz, respectively. Limits on RMS
strain are given in Fig. 3.

In summary, no evidence was found to support the
detection of either extended or pointlike GW sources.
However, the clean maps in Fig. 1 represent the first effort
to look for anisotropic extended sources of GWs. With the
ongoing construction of second-generation GW interfer-
ometers [27–30], we expect to achieve strain sensitivities
that will test plausible astrophysical and cosmological
models. The new framework presented here is expected
to serve as the paradigm for future stochastic analyses.
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FIG. 3 (color online). Radiometer 90% upper limits on RMS strain in each 0.25 Hz wide bin as a function of frequency for Sco X-1
(top-left), the Galactic center (top-right) and SN 1987A (bottom). The large spikes correspond to harmonics of the 60 Hz power mains,
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