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Abstract

■ The dorsal striatum plays a key role in the learning and ex-
pression of instrumental reward associations that are acquired
through direct experience. However, not all learning about in-
strumental actions require direct experience. Instead, humans
and other animals are also capable of acquiring instrumental
actions by observing the experiences of others. In this study,
we investigated the extent to which human dorsal striatum is
involved in observational as well as experiential instrumental
reward learning. Human participants were scanned with fMRI

while they observed a confederate over a live video performing
an instrumental conditioning task to obtain liquid juice rewards.
Participants also performed a similar instrumental task for their
own rewards. Using a computational model-based analysis, we
found reward prediction errors in the dorsal striatum not only
during the experiential learning condition but also during obser-
vational learning. These results suggest a key role for the dorsal
striatum in learning instrumental associations, even when those
associations are acquired purely by observing others. ■

INTRODUCTION

Much is known about the neural underpinnings of how
associations between stimuli, actions, and rewards are
learned through experience and about how those asso-
ciations guide choices (Montague, King-Casas, & Cohen,
2006; Dayan & Balleine, 2002). Humans and other animals
can learn not only by direct experience but also through
observing othersʼ experiences (Heyes & Dawson, 1990;
Bandura, 1977; Myers, 1970). In spite of the ubiquitous
nature of observational learning, its neural substrates re-
main poorly understood.

Considerable progress has been made in elucidating
candidate neural substrates for experiential reward learn-
ing. The finding that phasic activity in dopamine neurons
resembles a reward prediction error signal from compu-
tational models of reinforcement learning (RL) has led to
the proposal that these neurons underlie experiential re-
ward learning in dopamine target regions, particularly the
striatum (Daw & Doya, 2006; OʼDoherty, 2004; Schultz,
Dayan, & Montague, 1997). Consistent with this proposal,
many human neuroimaging studies have reported activity
in the striatum during learning, likely reflecting (at least in
part) dopaminergic input (Pessiglione, Seymour, Flandin,
Dolan, & Frith, 2006; McClure, Berns, & Montague, 2003;
OʼDoherty, Dayan, Friston, Critchley, & Dolan, 2003). More-
over, different regions of striatum are differentially cor-
related with reward prediction errors, depending on the
nature of the learned association. Although ventral striatum

appears to correlate with prediction errors during both
Pavlovian and instrumental learning, the dorsal striatum
appears to be specifically engaged when participants must
learn associations between instrumental actions and rewards
(Delgado, 2007; OʼDoherty et al., 2004; Tricomi, Delgado, &
Fiez, 2004). These findings have been interpreted in the
context of actor/criticmodels of RL, whereby a ventral striatal
“critic” is hypothesized to mediate learning of stimulus–
reward associations, whereas a dorsal striatal “actor” is
hypothesized to support learning of instrumental action
values (Suri & Schultz, 1999; Sutton & Barto, 1998).
In spite of the large body of research on the dorsal stria-

tum in experiential instrumental reward learning, very little
is known about this regionʼs function in observational re-
ward learning. One recent study reported activity in ven-
tral striatum and ventromedial pFC during observational
learning (Burke, Tobler, Baddeley, & Schultz, 2010) but
did not find dorsal striatal activation. The goal of the pres-
ent study was to address the role of the dorsal striatum in
mediating learning of associations between instrumental
actions and rewards when those associations are acquired
through observation and to compare and contrast predic-
tion error activity in the dorsal striatum during observa-
tional and experiential instrumental learning.
To investigate these questions, we scanned participants

using fMRI while they underwent both observational and
experiential instrumental conditioning for liquid juice re-
wards. We used a computational model-based analysis to
test for brain regions correlating with reward prediction
errors in both observational and experiential cases. To iso-
late prediction errors specifically related to action learning,1Trinity College Dublin, 2California Institute of Technology
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we included matched noninstrumental control conditions
in which the participant faced reward cues that did not
require action selection. We hypothesized that dorsal
striatal activity would be correlated with prediction errors
during both observational and experiential instrumental
conditioning and that the dorsal striatum would be more
engaged during observational instrumental conditioning
than during noninstrumental conditioning.

METHODS

Participants

Nineteen healthy volunteers from the Trinity College
Dublin student population participated; one was excluded
for excessive head motion (>6 mm in one run), and two
were excluded for showing no evidence of learning, leav-
ing 16 participants for analysis (10 women, 6 men; M =
22.19 years). One participantʼs postexperiment ratings
were lost because of technical error, and a different par-
ticipantʼs RT data were excluded for being more than
3 SD below the grand mean. All were free of current psy-
chiatric diagnoses. Participants were asked to refrain from
eating or drinking anything but water for 6 hr before the
scan to ensure that they were motivated by the liquid

rewards. All participants gave informed consent, and the
study was approved by the research ethics committee of
the Trinity College School of Psychology.

Task Overview

On each trial, participants encountered a single two-armed
slot machine cue, with the trial condition signaled by color
and position. There were six randomly intermixed re-
ward cue conditions: two Experienced (instrumental
and noninstrumental), two Observed (instrumental and
noninstrumental), and two Test (instrumental and non-
instrumental). Briefly, on Experienced trials, participants
made their own responses and received their own rewards,
whereas on Observed trials, participants observed a con-
federate outside the scanner performing an identical task.
On Test trials, participants made responses for the con-
federateʼs cues without receiving any outcomes. To en-
hance the salience of the confederateʼs live presence and
the visual similarity between trials, all trials were shown on
a single monitor in the control room outside the scanner,
at which the confederate was seated and to which both
the participantʼs and confederateʼs response boxes were
connected (see Figure 1A for schematic). The participant

Figure 1. Experiment setup and
trial structure. (A) Schematic of
experimental setup. Participants
lay in the MRI scanner while a
confederate partner sat at the
experiment computer outside
(shown as hand with buttons,
not to scale; confederate button
presses were obscured from
view). Participants viewed the
entire experiment via a live
video camera feed aimed at the
outside monitor. Responses
from inside the scanner were
connected to the experiment
computer, and liquid outcomes
were delivered by pumps
controlled by the experiment
computer. (B) Trial structure
and schematic of participant
view. Two trial types are
shown, as viewed on participant
screen. Participant screen
showed experiment computer
and confederate hand (with
button presses obscured). In
Experienced trials, participants
saw a slot machine cue on their
half of the screen (e.g., top)
and made their response. After
a variable delay, the cue was
followed by a liquid reward or neutral outcome, as well as a colored indicator (reward shown). In Observed trials, participants saw the slot machine
cue on the confederateʼs half of the screen and observed her response; the liquid outcome was then nominally delivered to the confederate instead
of the participant, whereas the visual indicator was identical to Experienced trials (neutral outcome shown). On instrumental trials, the participant
or confederate selected between two arms; on noninstrumental trials, the computer chose one side or the other (left indicator shown) and the
participant or confederate responded to the chosen side with a button press. (C) Representative reward probability curves for two conditions.
Each line indicates the probability of reward for one arm or side of a given conditionʼs slot machine over the experiment for a single participant.
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viewed this monitor and part of the confederateʼs re-
sponse box over a live video feed (see Figure 1B for
schematic) and was instructed that he or she would be
playing on the same computer and responding to the same
monitor as the confederate.

Experienced Trials

On Experienced trials, participants were shown a slot
machine cue on “their” half of the screen (either top
or bottom, counterbalanced by participant), indicating
that they were to make a response and receive an out-
come on that trial. Two kinds of Experienced trials were
presented (see Figure 1B for trial time course). On Ex-
perienced instrumental trials, the slot machine was shown
with two arms, and participants had 2 sec to select either
the left or right arm. Selection was shown on-screen by
depressing the selected arm. Following a variable length
delay (1 sec followed by a delay randomly drawn from a
truncated Poisson distribution; total delay mean = 2.5 sec,
range = 1–7 sec) intended to allow separate estimation
of the neural response to cues and outcomes, a liquid
reward or neutral outcome was delivered by plastic tubing
controlled by electronic syringe pump into the partic-
ipantʼs mouth during the outcome phase (2 sec). Re-
wards were 1 ml of a sweet blackcurrant juice (Ribena;
GlaxoSmithKline, London, United Kingdom). Neutral
outcomes were 1 ml of an affectively neutral tasteless
solution consisting of the main ionic components of saliva
(25 mM KCl and 2.5 mM NaHCO3), delivered by a separate
tube. The two arms had independent probabilities of
being rewarded on each trial, each of which varied over
the experiment to ensure learning continued throughout
the task (see Figure 1C for sample curves). Each armʼs
reward probability was a sine curve set to drift between 0
and 100% reward probability (with random starting point
and half-period randomly set between 0.87 and 1.67 times
the number of trials per condition and the machineʼs
arms constrained to be correlated with each other at less
than r = 0.02) plus a small amount of Gaussian noise on
each trial (M = 0, SD = 6%; noise was added before
scaling sines to have a range of 0–100%). Outcome de-
livery was also immediately followed by a visual signal for
reward (green square) or neutral outcomes (gray square).
These signals ensured visual equivalence with Observed
trials, where visual cues were required to enable obser-
vational learning (see below). The outcome phase was
followed by a variable-length intertrial interval (1 sec fol-
lowed by a delay randomly drawn from a truncated Pois-
son distribution, total delay mean = 2.5 sec, range = 1–
7 sec), for a mean total trial length of 9 sec. Failure to
respond resulted in a neutral outcome; missed responses
(2.7% of trials) were omitted from analysis.

On Experienced noninstrumental trials, which con-
trolled for reward learning without action selection, a
differently colored slot machine cue was presented with-
out arms. After 500 msec, a single indicator was shown on

either the left or right sides, and participants had 1.5 sec
to indicate, with a button press, which side was selected.
Participants, thus, did not select an action but instead
passively followed an action selection made by the com-
puter. Trials afterwards followed an identical structure
to instrumental trials, including separate independent re-
ward probabilities for each side of the noninstrumental
machine, constructed with an identical algorithm. The
computer selected the side with higher probability of re-
ward 70% of the time (randomly distributed across trials).
BothExperienced instrumental andnoninstrumental trials

also had a “neutral” control machine intended to control for
visuomotor confounds. Both neutral control machines were
identical to their respective reward cue machine but were
gray in color, and each was always followed by a neutral out-
come regardless of the arm or side selected.

Observed Trials

Observed trials were designed to mirror Experienced trials
in every way, except instead of the participant making
choices and/or responses, the participant observed a con-
federate outside the scanner perform similar trials. On
Observed trials, participants were shown a slot machine
on the other half of the screen from the Experienced trials
(top or bottom), with a different set of colors from the
Experienced machines. Participants never received an
outcome themselves on Observed trials. Instead, partici-
pants were instructed that the confederate would make
responses and receive outcomes on the Observed trials.
This single-monitor split-screen design provided an im-
portant control by ensuring that Observed trials and Ex-
perienced trials were visually as similar as possible.
Two kinds of Observed trials were shown, instrumental

and noninstrumental. Both were identical to the respec-
tive Experienced trials in their timing, contingencies, and
reward probabilities (with independently constructed re-
ward probability curves for each arm of each machine).
Participants could thus observe on-screen which arm was
chosen or which side was selected and could see whether
a reward or neutral outcome was given by the visual sig-
nals presented at outcome delivery. Unknown to the par-
ticipant, the confederateʼs button box and outcome tubes
were actually not connected; instead, the confederateʼs
choices were made by selecting the arm with higher re-
ward probability 70% of the time to approximate average
participant likelihood of selecting the arm with higher re-
ward probability in Experienced instrumental trials (based
on pilot data). The camera angle was set to obscure the
confederateʼs physical button presses. Participants were
instructed to observe the confederateʼs choices and do
their best to learn which arm and which side were re-
warded most often.
As with Experienced trials, two Observed neutral control

machines were also presented (instrumental and non-
instrumental); both were identical to their respective
reward cue machine but gray in color (and displayed on
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the confederateʼs half of the screen), and both were
always followed by a neutral outcome for the confederate
regardless of which arm or side was selected.

Test Trials

Test trials gave participants an opportunity to demonstrate
their learning for the Observed trials. Two kinds of Test
trials were presented, instrumental and noninstrumental.
On Test instrumental trials, participants were shown the
confederateʼs Observed instrumental slot machine on
their own half of the screen and had 2 sec to select either
the left or right arm. Similarly, on Test noninstrumental
trials, participants were shown the confederateʼs Ob-
served noninstrumental slot machine on their own half
of the screen, then had a side indicated after 500 msec,
and had 1.5 sec to indicate which side was selected. The
purpose of these trials was to gain a behavioral measure
of the participantʼs observational learning and provide an
incentive for the participant to pay attention to Observed
trials. If participants successfully learned through obser-
vation, they should have favored arms most recently asso-
ciated with reinforcement for the confederate. To prevent
participants learning about Observed trials through direct
experience on Test trials, no outcomes were presented on
these trials during the experiment, and Test trials ended
after the response (followed by intertrial interval). Instead,
participants were told rewarded outcomes on these trials
would be put in a “bank,” and that “banked” rewards would
be multiplied in volume by 10 and given to participants
after the scan. Neutral control machines were never shown
on Test trials.

Task Procedure

There were 72 trials each of the Experienced instrumen-
tal, Experienced noninstrumental, Observed instrumental,
and Observed noninstrumental conditions. Within each
condition, 48 trials were with reward cue machines and
24 were with neutral control machines. In addition, there
were 24 trials of each of the Test instrumental and Test
noninstrumental conditions. Each conditionʼs trials were
divided equally between four scanner runs (so that each
run had 18 Experienced instrumental trials, 6 Test instru-
mental trials, etc.), and trial types were intermixed ran-
domly throughout each run. Participant screen halves (top
or bottom) and machine colors were counterbalanced
across participants.
Before the task, participants underwent 10 min of

training outside the scanner with no outcomes to ensure
they understood each slot machine and the outcomes,
including the Test-trial “bank.” They also met the confed-
erate and observed the pumps and camera setup before
entering the scanner room. After the task, participants
made a series of ratings of each machine outside the
scanner on 9-point Likert scales, including how much
they liked each machine and each outcome.

Scanning

Participants were scanned with a Phillips 3 T MRI scanner
using the standard head coil, padded to minimize head
motion. Functional images covered the whole brain with
38 contiguous 3.2-mm thick axial slices with gradient-
echo T2*-weighted echoplanar imaging (repetition time =
2 sec, echo time = 28 msec, in-plane voxel size = 3 ×
3 mm, matrix = 80 × 80). The acquisition plane was tilted
about 30° to the anterior–posterior commissure plane
to optimize sensitivity in the ventral pFC (Deichmann,
Gottfried, Hutton, & Turner, 2003). Each participantʼs scan
consisted of four functional runs of 363 images each; the
first four of each run were discarded to account for mag-
netic equilibration. A high-resolution structural image was
also acquired before the task (3-D acquisition; T1-weighted
spoiled gradient sequence; voxel size= 0.9× 0.9× 0.9mm,
matrix = 256 × 256 × 180).

Stimuli were presented using Cogent 2000 (Wellcome
Trust Centre for Neuroimaging, London). To account for
swallowing-related motion, pressure data from a sensor
attached to the throat was recorded with BioPac hard-
ware and AcqKnowledge software (MP-150 system and
TSD160A transducer; BioPac Systems, Inc., Goleta, CA).

Statistical Analysis

fMRI images were analyzed with SPM8 (Wellcome Depart-
ment of Imaging Neuroscience, London) and MATLAB (The
Mathworks, Inc., Natick, MA). Functional images were pre-
processed with standard parameters, including slice timing
correction (to the center slice), realignment (to each partici-
pantʼs first image), coregistration of the in-plane anatomical
image, normalization (to the International Consortium for
Brain Mapping (ICBM)/MNI152 template with parameters
estimated from each participantʼs coregistered in-plane
image, using SPM8 default normalization parameters), and
spatial smoothing (with a 4-mm FWHM Gaussian kernel).

Prediction errors were estimated with a hybrid RL model.
Instrumental trials used a SARSA learning model (Sutton
& Barto, 1998). The value of the chosen action was
updated on each trial according to the rule:

V tþ1
a ¼ V t

a þ αδt

δt ¼ Ot − V t
a

� �

where δt is that trialʼs prediction error, Ot is that trialʼs
outcome (set to 1 for reward and 0 for neutral ), and
Va is the value for the chosen action. The probability of
selecting left or right on each trial was given by a softmax
function of the difference between Vleft and Vright. For
Observed cues, values, and prediction errors were based
on the observed confederate outcomes. Initial values
were set to 0 for all actions. A single pooled learning rate
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for the group on Experienced instrumental trials was es-
timated by fitting the parameters α and β (the logistic
slope or stochasticity parameter) to participant choices
with maximum likelihood estimation; estimating a fixed
rate tends to produce better estimates of neural activity
due to increased regularization (Daw, OʼDoherty, Dayan,
Seymour, & Dolan, 2006). A separate learning rate for
Observed instrumental trials was estimated by fitting the
model to participant choices on Test trials, using values
based on the observed outcomes. Fitted learning rates are
comparable with earlier studies using similar designs (Ex-
perienced learning rate = 0.38, Observed learning rate =
0.26; Gläscher, Daw, Dayan, & OʼDoherty, 2010; Schönberg
et al., 2010; Valentin & OʼDoherty, 2009); these param-
eters are, however, likely to be highly task and domain
dependent.

For noninstrumental trials, we used a Rescorla–Wagner
learning model (Rescorla & Wagner, 1972), which has
an identical learning rule to that used in the RL model de-
scribed above, but without an action selection component.
The model was fit using trial-by-trial RTs (log-transformed)
as a measure of conditioning (Bray & OʼDoherty, 2007),
minimizing the difference between the chosen sideʼs value
on each trial and that trialʼs RT (inverted so that high value
corresponded to low RT). This model, therefore, captured
within-condition variation in RT, predicting faster RTs for
trials when that conditionʼs value was higher. Values and
prediction errors for Observed trials again reflected the
observed confederate outcomes. As in instrumental trials,
learning rates for the group were estimated separately for
Experienced and Observed trials, using Experienced and
Test RTs. Learning rates were again comparable to earlier
studies (Experienced = 0.18, Observed = 0.53); however,
because the model fit to Observed noninstrumental trials
was nonsignificant (see Results), that conditionʼs rate should
be interpreted with caution. Higher learning rates also imply
faster forgetting, and thus, the high Observed noninstru-
mental learning rate may reflect a greater reliance on the
recent past for these trials (full RT distributions are provided
in Supplementary Figure S1, available at www.odohertylab.
org/supplementary/Cooperetal_FigureS1.html.)

A general linear model was created for each participant to
estimate experimental effects. The model included delta
function regressors for the cue period (3-sec duration)
and outcome period (0-sec duration) for each of the four
key conditions: Observed/Experienced × Instrumental/
Noninstrumental. Both reward cue and neutral control
trials were included in each regressor. Two delta function
regressors also modeled the Test instrumental and Test
noninstrumental cues. Each cue regressor had a para-
metric modulator for the trial-specific chosen value, set to
0 for neutral control trials; as our focus was on learning
from outcomes, cues were not analyzed here. Each out-
come regressor had a parametric modulator for the trial-
specific estimated prediction error, set to 0 for neutral
control trials. Because neutral control machines were
visually similar and had identical motor requirements but

led to no learning, this provided an implicit baseline for
the prediction error regressors. All regressors of interest
were convolved with the SPM8 canonical hemodynamic
response function. Regressors of no interest included
six for estimated head motion parameters, one indicating
scans with greater than 2-mm head motion in any direc-
tion, one for throat pressure to account for swallowing,
and a constant term for each session.
General linear models included an AR(1) model for tem-

poral autocorrelation and were estimated using maximum
likelihood (with autocorrelation hyperparameter estima-
tion restricted to voxels passing a global F-threshold using
SPM8 defaults). A high-pass filter (cutoff, 128 sec) removed
low-frequency noise. Beta-weight images for each regres-
sor were combined to form appropriate contrasts within
participants, and contrast images were carried forward to
group level analyses. Significant effects were tested with
one-sample t tests across the group.
We examined activations within separate, a priori,

dorsal, and ventral ROIs in the striatum. First, an overall
striatal region was hand-drawn on the average group
anatomical; next, it was divided at the Montreal Neuro-
logical Institute (MNI) coordinate z = 0 into a bilateral
dorsal region encompassing dorsal caudate and putamen
and a bilateral ventral region encompassing ventral puta-
men, ventral anterior caudate, and nucleus accumbens.
Activations were thresholded voxelwise at p < .005,
and significant clusters were identified in each ROI using
an extent threshold estimated by Gaussian random field
theory to correct for multiple comparisons within each
ROIʼs volume (Worsley et al., 1996). To examine whole-
brain activations, we used a voxelwise threshold of p <
.001 and extent threshold estimated by Gaussian ran-
dom field theory for each contrast to correct for multiple
comparisons across the whole brain. Peaks are reported
in ICBM/MNI coordinates.
To examine beta weights across specific clusters, we

used leave-one-out extraction to provide an indepen-
dent criterion for voxel selection (Kriegeskorte, Simmons,
Bellgowan, & Baker, 2009): for each participant, beta
weights were extracted from significant voxels for that
cluster in a group model excluding that participant. For
Bayesian model comparison in a cluster, we used SPM8ʼs
Bayesian model selection algorithm with beta weights
across participants as input (Stephan, Penny, Daunizeau,
Moran, & Friston, 2009). We again used a leave-one-out
procedure to extract beta weights for the prediction error
regressor from the main general linear model (averaged
across the cluster within participant). We compared these
to beta weights from the same voxels and same regressor
in a baseline general linear model that was identical, ex-
cept every chosen value was set to 0.5 (or 0 for neutral
control trials) and every prediction error was set to (out-
come − 0.5) (or 0 for neutral control trials). This baseline
model provided a conservative test that the signals we
observed fit better to an RL model prediction error than
any signal related to the outcome itself.
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RESULTS

Behavior

Participants rated how much they liked the reward and
neutral outcomes following the scan to confirm the moti-
vational value of the rewards. Participants rated the reward
outcomes significantly higher than the neutral outcomes,
with a mean rating of 6.93 (SEM = 0.32) compared with
3.80 for the neutral (SEM = 0.55; t(14) = 5.29, p < .001).
The ratings suggest participants still found the reward out-
comes valuable through the end of the experiment.
To assess how participants learned from their re-

wards over time, we examined whether their instrumen-
tal choices could be described accurately by a RL model
(see Methods for model details and Figure 2B for exam-
ple of model fits). We fit the model separately to Ex-
perienced and Test choices and tested it against several

alternatives (Figure 2A). For both Experienced and Test
choices, the model fit better than either a baseline model
that predicted equal action probabilities on every trial (RL
model: Experienced-trial Bayesian Information Criterion
(BIC) = 968.26, Test-trial BIC = 508.58; baseline model:
Experienced-trial BIC = 1039.72, Test-trial BIC = 512.93)
or a saturated model that assigned a separate parameter to
every choice (saturated model: Experienced-trial BIC =
4965.06, Test-trial BIC = 2188.0).

For Test trials only, we also compared the RL model to
two simple alternatives that would require no learning: one
in which participants simply imitated the confederateʼs
last action (“last-action”), and one in which participants
remembered only the confederateʼs last action–outcome
pairing, choosing the same action if the confederate won
or the other action if the confederate lost (“last-outcome”).
Both alternatives used one fewer parameter than the RL

Figure 2. Conditioning for experienced and observed outcomes. (A) Model fit for RL model of instrumental learning compared with alternative
models. Fit is measured by BIC (smaller indicates better fit). See Results for model details. Saturated model not shown for clarity. (B) Time course
of instrumental choices and RL model predictions for single representative participant. Top: Experienced trials. Circles indicate choice of left or
right action (top or bottom of y axis); color indicates reward or neutral outcome. Dashed line indicates average choice probability over previous
four trials at each time point (a smoothed measure of behavior). Solid line indicates model-predicted choice probability at each time point.
Bottom: Observed and Test trials. Colored circles indicate Observed confederate choices; color indicates reward or neutral outcome for confederate.
Dark circles indicate participant Test-trial choices, which were performed in extinction (without any outcome during scan). Lines indicate average
Test-trial choice probability and model predictions. (C) Average self-reported liking for cues after experiment. Exp = Experienced, Obs = Observed,
Ins = instrumental, Nonins = Noninstrumental, Rew = reward cue, Neut = neutral control. Error bars indicate SEM across participants. Only
significant differences between reward cue and neutral control machines within condition are shown. ***p < .001, *p < .05.
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model (eliminating the learning rate while retaining a
fitted choice stochasticity). Even after adjusting for the
number of free parameters in the models, the RL model
fit better than either alternative (last-action model: Test-
trial BIC = 513.11; last-outcome model: Test-trial BIC =
511.07). The model fits confirmed that the RL model ac-
counted for instrumental learning whether the outcomes
were delivered to the participant or to the confederate
and suggested that participants learned about the confed-
erateʼs outcomes over time rather than adopting a simple
imitation strategy.

For noninstrumental trials, we evaluated the RL model
fit by examining whether the model explained a signifi-
cant amount of variance in RTs (after log-transforming
RTs to account for their skew); this is equivalent to
testing the RL model against a baseline model predicting
equal values on every trial (as the baseline would only
predict the mean RT). For Experienced noninstrumen-
tal trials, the RL model fit was significant (F(1, 678) =
9.1814, p < .005), confirming that participants learned
conditioned responses to the Experienced cues. For Test
noninstrumental trials, the model fit was not significant
(F(1, 321) = 0.18, ns), suggesting that participants did
not develop strong conditioned responses for Observed
noninstrumental cues.

Finally, participants also rated how much they liked
each cue, as a self-reported measure of conditioned prefer-
ence (Figure 2C). Repeated measures ANOVA confirmed
that liking differed significantly across cue categories (F(7,
98) = 15.25, p< .001). In particular, planned comparisons
between each reward cue machine and its corresponding
neutral control machine found that participants rated the
reward cue machine higher for Experienced instrumen-
tal (t(14) = 5.56, p < .001), Experienced noninstrumen-
tal (t(14) = 6.61, p < .001), and Observed instrumental
trials (t(14) = 2.88, p = .012). The comparison for Ob-
served noninstrumental trials was not significant (t(14) =
0.12, ns). The ratings suggest that for Observed instru-
mental trials, participants developed conditioned prefer-
ences for the Observed cues, although they were never
rewarded on them.

Average RTs differed across cue categories (Table 1
and Supplementary Figure S1; F(5, 2655) = 140.40, p <
.001); the key difference was between instrumental and
noninstrumental trials, with all noninstrumental trial aver-
ages significantly faster than all instrumental trial averages.
Experienced instrumental reward cue trials were also sig-
nificantly faster than Test instrumental trials or Experi-
enced instrumental neutral control trials.

Imaging

Observational Instrumental Prediction Errors

To identify regions underlying prediction errors for ob-
servational instrumental learning, we examined activa-
tion correlating with the prediction error regressor for

Observed instrumental trials (Figure 3A). In the dorsal
striatum, a significant cluster in right dorsal caudate was
positively correlated with prediction errors (x, y, z = 21,
17, 7; Z = 3.94; extent = 20 voxels, p < .05 corrected for
dorsal striatal volume; see also Figure 3C). A smaller cluster
in the left dorsal caudate was also detected, although this
did not reach the extent threshold for significance (x, y,
z = −15, 14, 7; Z = 2.93; extent = 5 voxels). By contrast,
no significant positive clusters were present in the ventral
striatum. No significant clusters in either dorsal or ventral
striatum were negatively correlated with prediction errors.
At the whole-brain threshold, no significant regions were
positively or negatively correlated with prediction errors.
In a post hoc analysis, to directly examine the selectiv-

ity of the dorsal caudate for observational instrumental
prediction errors, we extracted average beta weights
for each trial type from the significant right caudate
cluster (using a leave-one-out extraction procedure
to avoid nonindependence issues [Kriegeskorte et al.,
2009]; see Methods). A 2 × 2 repeated measures ANOVA
revealed a main effect for instrumental trials greater than
noninstrumental trials (F(1, 63) = 12.65, p < .005), but
no other main effect or interaction (Figure 3B). This
cluster was significantly more active for prediction errors
in Observed instrumental trials than baseline (t(15) =
3.29, p < .01); no other conditionʼs activation, however
(including Experienced instrumental trials), was significantly
different from baseline (all ts < 1.71, ns). This region of
dorsal caudate, then, was selectively active for instrumental
as compared with noninstrumental Observed prediction
errors but relatively similarly active for Experienced and
Observed instrumental prediction errors.
To examine whether activation in this cluster truly re-

flected reinforcement learning prediction errors, we used

Table 1. Average Reaction Time

Condition
Mean Reaction Time,

msec (SEM)

Experienced instrumental
reward cue

973.93a (39.87)

Experienced instrumental
neutral control

1039.64b (44.28)

Test instrumental 1041.13b (41.18)

Experienced noninstrumental
reward cue

613.89c (23.94)

Experienced noninstrumental
neutral control

606.39c (29.55)

Test noninstrumental 637.68c (24.99)

n = 15 (one participantʼs data excluded as an outlier). Entries that do
not share subscripts differ at p < .05 by Tukeyʼs honestly significant
difference; entries that share subscripts do not significantly differ. Dif-
ferences were calculated on log-transformed RTs; original data are
shown for clarity. SEMs are calculated across participants within condi-
tion. Only reward cues were shown in Test trials. See Supplementary
Figure S1 for full distributions.
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Bayesian model comparison within the significant right
caudate cluster to compare whether its activation in each
condition was better fit by prediction errors or by a base-
line model that responded to outcome valence but did
not learn over time (see Methods). For instrumental Ob-
served trials, the exceedance probability of the predic-
tion error model compared with baseline was 99.67%;
that is, activation in this region was 99.67% likely to have
been produced by prediction errors from the RL model
as opposed to a static response to instrumental Observed
outcomes over time.
To examine whether learning performance related to

dorsal caudate activation, we examined learning perfor-
mance (i.e., RL model fit, indexed by each participantʼs

model log-likelihood for Test instrumental trials) in a sim-
ple Condition × Performance ANCOVA; this analysis re-
vealed no main effect of Learning Performance (F(1, 56) =
0.1, ns) and no interaction with Condition (F(3, 56) = 1.51,
ns). This finding, however, should be qualified by the
relatively low variation in learning performance (after
screening out nonlearners).

Experiential Instrumental Prediction Errors

For comparison, we next examined activation for pre-
diction errors in the Experienced instrumental trials (Fig-
ure 4A). In the ventral striatum, a significant cluster in
right nucleus accumbens was positively correlated with

Figure 3. Dorsal caudate activation for Observed instrumental prediction errors. (A) Activation for Observed instrumental prediction error
regressor. Maps are thresholded at p < .005 voxelwise with 5 voxel extent threshold for display; cluster in right dorsal caudate meets extent
threshold corrected for multiple comparisons across dorsal striatum. Coordinates are in ICBM/MNI space. Color bar indicates t statistic. R indicates
right. (B) Average beta weights (calculated with leave-one-out extraction; see Methods) in significant dorsal caudate cluster. Error bars indicate
SEMs across participants. Only significant differences from baseline shown; between-condition tests show only main effect of instrumental versus
noninstrumental conditions (F(1, 63) = 12.65, p < .005). **p < .01. (C) Dorsal caudate activation by prediction error size. Bars indicate estimated
effect size (in percent signal change) in significant dorsal caudate cluster (calculated with leave-one-out extraction) for outcomes on instrumental
Observed trials by prediction error size and valence. Effect sizes estimated as canonical hemodynamic response peak, adjusted for all other
conditions (Gläscher, 2009). Neg = prediction error < −0.33. Med = prediction error ≥ −0.33 and < 0.33. Pos = prediction error ≥ 0.33.
Significant differences are not shown. Error bars are SEM across participants.

Figure 4. Dorsal and ventral striatum activation for Experienced instrumental prediction errors. (A) Activation for Experienced instrumental
prediction error regressor. Ventral striatal cluster (right) meets extent threshold corrected for multiple comparisons across ventral striatum. Maps
are thresholded at p < .005 voxelwise with 5 voxel extent threshold for display. Coordinates are in ICBM/MNI space. Color bar indicates t statistic.
R indicates right. (B) Average beta weights (calculated with leave-one-out extraction; see Methods) in significant dorsal putamen cluster. Error
bars indicate standard errors of the mean across participants. Only significant differences from baseline shown; between-condition tests show
only main effect of Experienced vs. Observed conditions (F(1, 63) = 11.64, p < .005). *p < .05.
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prediction errors (x, y, z = 9, 11, −4; Z = 3.19; extent =
16 voxels, p < .05 corrected for striatal volume). In the
dorsal striatum, a cluster near the corrected threshold in
left dorsal putamen was also positively correlated with pre-
diction errors (x, y, z = −24, −1, 10; Z = 3.87; extent =
14 voxels, p = .055 corrected for striatal volume). This
clusterʼs location was similar to that in a recent study of
instrumental prediction error activation (Schönberg et al.,
2010) and met a small-volume corrected cluster threshold
centered on that studyʼs coordinates (extent = 8 voxels
within 8-mm-radius sphere centered at −27, 6, 9, p < .05
corrected for small volume). By contrast to the dorsal cau-
date cluster from the Observed instrumental trials, a 2 × 2
ANOVA on the leave-one-out extracted beta weights from
the dorsal putamen cluster revealed a main effect of Ex-
perienced greater than Observed trials (Figure 4B; F(1,
63) = 11.64, p < .005), but no other main effect or inter-
action. This clusterʼs activation for prediction errors in
Experienced instrumental trials was significantly greater
than baseline (t(15) = 2.92, p < .05); no other conditionʼs
activation (including Experienced noninstrumental trials)
was significant different from baseline (all ts < 1.77, ns).
Together, the dorsal and ventral clusters are consistent
with earlier studies that find prediction error activation in
both dorsal and ventral striatum for experiential prediction
errors (OʼDoherty et al., 2004).

No significant clusters in dorsal or ventral striatum were
negatively correlated with prediction errors. At the whole-
brain threshold, no significant regions were positively or
negatively correlated with prediction errors; in addition,
in direct whole-brain t tests between Experienced and
Observed instrumental prediction error regressors, no
clusters were significantly different between conditions.
Finally, a conjunction analysis over prediction error ac-
tivations for Experienced and Observed instrumental trials
revealed no significant overlap between activated regions
for the two trial types.

Noninstrumental Prediction Errors

To examine whether prediction error activations were
specific to instrumental learning, we also examined ac-
tivation for prediction errors in Observed and Experienced
noninstrumental trials. For Observed noninstrumental
trials, no significant clusters were positively or negatively
correlated with prediction errors in either dorsal or ven-
tral striatum or at the whole-brain threshold. For Expe-
rienced noninstrumental prediction errors, by contrast,
a significant cluster in left ventral putamen was positively
correlated with prediction errors (Figure 5; x, y, z = −21,
5, −4; Z = 3.24; extent = 13 voxels, p < .05 corrected for
ventral striatal volume). No significant clusters were pres-
ent in dorsal striatum, and no significant clusters were nega-
tively correlated in either striatal ROI. At the whole-brain
threshold, no regions were positively or negatively cor-
related nor were any significantly different in direct tests

between Experienced and Observed noninstrumental
prediction errors.

DISCUSSION

Prediction error signals have been reported throughout
the human striatum during experiential reward learning,
with the dorsal striatum playing a specific role during
instrumental experiential learning. In the present study,
we extend these findings by showing that activation in
parts of the human dorsal striatum correlates with reward
prediction errors even when those error signals are com-
puted while observing another person perform an in-
strumental learning task. A Bayesian model comparison
suggested these signals were better explained by predic-
tion errors than merely observed outcomes. The dorsal
striatum is, thus, involved in encoding prediction errors
during learning of instrumental associations whether those
associations are acquired through experience or purely
through observation. This involvement is selective for
prediction errors during instrumental learning, as shown
by comparison with a noninstrumental reward learning
control. Observed instrumental and noninstrumental trials
both required only passive observation by the participant,
yet only the instrumental condition recruited the dorsal
striatum.
These findings provide new insights into the functions of

dorsal striatum in instrumental reward learning. The selec-
tivity for instrumental prediction errors fits with theories
that propose a role for this region in updating action val-
ues, as opposed to updating stimulus-specific cue values
(Balleine, Delgado, & Hikosaka, 2007; Samejima, Ueda,
Doya, & Kimura, 2005; Haruno et al., 2004; OʼDoherty
et al., 2004). This study extends that role to updating
even observed action values but also advances our under-
standing of how action values are represented in the dor-
sal striatum. Participants made no motor responses on

Figure 5. Ventral striatum activation for Experienced noninstrumental
prediction errors. Left cluster meets extent threshold corrected for
multiple comparisons across ventral striatum. Map is thresholded at
p < .005 voxelwise with 5 voxel extent threshold for display. Coordinates
are in ICBM/MNI space. Color bar indicates t statistic. R indicates right.
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Observed trials and did not receive any outcomes. The
updating process in this region cannot therefore operate
on an action representation as simple as a reflexive link-
age between an instrumental cue and a personal motor
response. Instead, it must operate on a more abstract rep-
resentation that can be affected by how an individual in-
terprets an observed outcome and that can be translated
at the proper moment (when that instrumental response
can be performed by the individual herself ) into a specific
personal motor action.
By contrast, observational reward prediction errors did

not activate the ventral striatum in either instrumental
or noninstrumental trials. Reward prediction errors were
found for both instrumental and noninstrumental experi-
enced outcomes in ventral and posterior striatum, replicat-
ing earlier findings (Schultz, 2006; McClure et al., 2003;
OʼDoherty et al., 2003). As the experienced rewards in-
volved greater sensory involvement, as well as higher sub-
jective rewards (as measured by the liking ratings), one
possibility is that the ventral striatum is more sensitive than
the dorsal striatum to these sensory and subjective factors.
Prior evidence suggests ventral striatum is critical for en-
coding subjective reward value per se in stimulus–outcome
associations (Cardinal, Parkinson, Hall, & Everitt, 2002).
This possibility is consistent with the ideas suggested by
actor/critic accounts of ventral striatum: namely, that ven-
tral striatum is selectively involved in updating stimulus- or
state-based subjective values, which are used in both in-
strumental and noninstrumental conditioning, as opposed
to the action values updated by dorsal striatum, which are
used only during instrumental conditioning. Observing
another personʼs reward after she selects a given action
might increase the odds that you will produce that action
given the chance; this increase corresponds to an increased
action value. The same observation, though, may not
improve your estimation of how rewarded you will feel
for the next observed reward; this corresponds to an un-
changed stimulus value for the observed cues.
One caveat to the interpretation that dorsal striatum is

selective for instrumental versus noninstrumental obser-
vational learning (as it is in experiential learning) is that
participants did not exhibit strong behavioral evidence of
learning in the noninstrumental Observed condition (as
measured by the nonsignificant model fit to RTs and the
liking ratings compared with neutral cues). It may simply
be the case that passive observation of cues predicting
reward in others is an insufficiently salient event to drive
learning. Perhaps including the affective responses gener-
ated by the observed partner in response to the cues or
outcomes in the observational paradigm could enhance
behavioral learning in the noninstrumental condition; this
is an important direction for future research on observa-
tional conditioning. Because learning was not clearly es-
tablished in this noninstrumental observational condition
we cannot conclude anything about the representation
of noninstrumental observational prediction errors in the
present study. However, including the noninstrumental

observational condition in our analysis does allow us to
exclude the contribution of stimulus- or motor-related
confounds in the instrumental observational condition,
as these features were similar between instrumental and
noninstrumental conditions. Thus, the noninstrumental
condition still acts as a useful control condition in the
present task.

These findings are consistent with a growing literature
that suggests processing other peopleʼs outcomes involves
some, but not all, of the same neural systems as process-
ing the same outcome when it happens to oneself (Singer
& Lamm, 2009; Keysers & Gazzola, 2006). Observing
others in pain, for example, activates some of the regions
involved in experiencing pain (like the anterior insula and
anterior cingulate), but other regions are not necessarily
activated by that observation—specifically those thought
to encode the primary sensory experience of pain (like sen-
sorimotor cortex and posterior insula; Decety & Lamm,
2009; Singer et al., 2004). Observing errors in others can
activate both regions involved in personal errors (such as
cingulate cortex) and those involved in personal rewards
(such as ventral striatum), depending on context (de Bruijn,
de Lange, von Cramon, & Ullsperger, 2009). Observed
rewards can also activate regions that process personal
rewards, like the ventral striatum or ventromedial pFC
(Burke et al., 2010), but these regions tend to be more
active for personal than observed rewards (Mobbs et al.,
2009). The current work extends these findings into the
dorsal striatum and not only highlights that the regions
involved can be consistent between experience and ob-
servation but also identifies their specific computational
roles.

These results differ somewhat from a recent study of
observational learning, which found that the ventromedial
pFC encoded a positive reward prediction error and the
ventral striatum encoded a negative reward prediction
error for othersʼ outcomes during an instrumental learn-
ing task that also included experienced rewards (Burke
et al., 2010). Social context plays an especially important
role in the response to othersʼ outcomes (Cooper, Kreps,
Wiebe, Pirkl, & Knutson, 2010; Mobbs et al., 2009; Singer
et al., 2006; Delgado, Frank, & Phelps, 2005), and varia-
tions between the tasks may help explain the differences.
Burke et al. suggest their findings in the ventral striatum
may have been driven by comparison effects between
the observed outcomes and the participantsʼ own; our
experiment used liquid instead of monetary outcomes,
which may lend themselves less to social comparisons.
In addition, in their task, participants received experi-
enced outcomes for choices between the same stimuli
as the observed partners, immediately following the ob-
served outcomes. Regions like the ventromedial pFC and
ventral striatum are more engaged in updating stimulus-
based values, which were likely more relevant in their
task. In our task, by contrast, participants never received
experienced outcomes following the Observed cues, and
so updating subjective stimulus values for those cues was
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likely less salient in our study. Finally, although their study
did not find dorsal striatal activation, it had participants
choose between stimuli, whereas ours had participants
make instrumental choices with an explicitly action-based
cue (a slot machine arm); this may have made encoding
action values more salient. Future studies should test how
these task variations affect the computations supporting
observational learning.

Although this study focused on dorsal striatal func-
tion, another important question for future research is
how dorsomedial pFC (including anterior cingulate) may
be involved in observational learning. These regions
are thought to be involved both in representing othersʼ
mental states (Amodio & Frith, 2006; Mitchell, Macrae, &
Banaji, 2005) and in personal action-based decision-making
( Jocham, Neumann, Klein, Danielmeier, & Ullsperger,
2009; Rushworth, Mars, & Summerfield, 2009). The current
study did not find prediction error activation in this region,
perhaps because of the incentive domain (liquid rewards
compared with symbolic or monetary rewards), task design
(comparing rewards to neutral instead of to punishments),
or task demands (e.g., ACC response to prediction errors
is thought in part to encode uncertainty or volatility in ex-
pected rewards, which changed only slowly in this study).
These regions may also be promising targets for study
with more complex computational models than the sim-
ple RL model employed here, such as models explicitly
modeling beliefs about othersʼ mental states (Behrens,
Hunt, Woolrich, & Rushworth, 2008; Hampton, Bossaerts,
& OʼDoherty, 2008).

Another important direction for future study will be to
understand the contributions of different subregions of
the dorsal striatum to different learning processes. In
this study, Experienced prediction errors (instrumental
and noninstrumental) were found in a lateral, posterior
region of dorsal putamen, whereas instrumental prediction
errors (Observed and Experienced) were found in an ante-
rior region of dorsal caudate. These findings might relate
to accumulating evidence that suggests neuroanatomical
and functional differentiation within the dorsal striatum
in both rodents and humans, with dorsomedial stria-
tum being closely connected to dorsal prefrontal regions
and supporting goal-directed behavior and dorsolateral
putamen being more closely connected to ventral and
motor cortex and supporting habitual behavior (Balleine &
OʼDoherty, 2010; Haber & Knutson, 2010; Tricomi, Balleine,
& OʼDoherty, 2009; Tanaka, Balleine, & OʼDoherty, 2008;
Yin, Ostlund, & Balleine, 2008; Yin, Ostlund, Knowlton, &
Balleine, 2005). In the current findings, the more anterior
medial activation may thus be more related to more ab-
stract goal-directed processes within reward learning, which
may be relatively more important without primary reward
(as in Observed learning). The more posterior activation
may be more related to more habitual or sensory processes
within reward learning, which would be more important for
Experienced than Observed trials and present to some ex-
tent on noninstrumental trials. More research in humans

is needed, however, to clearly distinguish the functions of
these distinct areas of dorsal striatum.
The finding of observational reward prediction error

signals in the dorsal striatum may also relate to previous
findings reporting prediction error signals in the dorsal stria-
tum during learning about counterfactual events (Lohrenz,
McCabe, Camerer, & Montague, 2007). As in the observa-
tional case, counterfactual prediction errors are elicited in
relation to an outcome that is not directly experienced;
instead, these errors correspond to what would have been
obtained had an alternative action been selected. The find-
ing that counterfactual prediction errors and observational
prediction errors both recruit dorsal striatum could suggest
that these two signals may depend on similar underlying
computational processes, although future work will be
necessary to directly compare and contrast these two types
of learning signal.
In summary, we found that a region of dorsal caudate

was activated by instrumental reward prediction errors
during observational learning, indicating that this region
may update an abstract representation of action values
even when the actions and outcomes are observed. These
results extend our understanding of the functions of the
dorsal striatum in instrumental reward learning and in RL
by showing that this region can be engaged during learning
of instrumental actions without either direct experience of
the outcomes or requiring the actions to be personally
performed.
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