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Zero-dimensional singular continuous spectrum
for smooth differential equations on the torus
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Abstract. We study spectral properties of the flowẋ = 1/F (x, y), ẏ = 1/λF(x, y) on the
2-torus. We show that, in general, the speed of approximation in cyclic approximation
gives an upper bound on the Hausdorff dimension of the supports of spectral measures.
We use this to prove that for generic pairs(F, λ) the spectrum of the flow on the torus
is singular continuous with all spectral measures supported on sets of zero Hausdorff
dimension.

1. Introduction
On the torusT2 := R

2/Z2 consider the flowTt defined by

dx

dt
= 1

F(x, y)
,

dy

dt
= 1

λF(x, y)
. (1)

It is known that for ‘most’ real analyticF > 0 there existλ such that the flow has purely
singular continuous spectrum (see Chapter 16 in [1]; the presentation there is based on
results of Kolmogorov [13], Shklover [20] and Katok [9]). It is also known that for
Lebesgue almost allλ the spectrum is discrete ifF ∈ C5. Thus small perturbations inλ
can render the spectrum of the flow either continuous or discrete.

This raises two questions. How exceptional is singular continuous spectrum for these
flows? What can be said about the Hausdorff dimension of the supports of the spectral
measures when the spectrum is singular continuous?

These questions are motivated in part by analogous questions in the theory of
Schr̈odinger operators [21, 2]. There exist one-parameter familiesHλ of Schr̈odinger
operators that have purely discrete spectrum for almost allλ and purely singular
continuous spectrum for genericλ (i.e. for λ in a denseGδ). But this spectral instability
is not as dramatic as it first seems, because for allλ all spectral measures are supported
on sets of Hausdorff dimension zero [2, Theorem 7.4].
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In §2 we show that singular continuous spectrum is in fact common: it occurs for
generic pairs(F, λ). The proof is based on Simon’s wonderland theorem [21] and a small
change to the proof presented in [1]. In §4 we show that the spectrum is generically zero
dimensional. The proof uses a result of Strichartz in Fourier theory [23], new spectral
decompositions of self-adjoint operators [16], and elements of the theory of periodic
approximations [10, 1]. These two results show that the spectrum is generically singular
continuous and zero dimensional. We do not know if the spectral measures are supported
on sets of Hausdorff dimension zero for allλ.

As an intermediate result we show in§3 that, in full generality, the speed of
approximation of a flow in a cyclic approximation provides an upperbound on the
Hausdorff dimension of the support of spectral measures. The discrete time analogue
gives a weak version of a recent result of Iwanik [8].

Dimensional properties of spectral measures of dynamical systems are of interest for
a number of reasons. First, it is natural to study them. Next, in particular examples, as
in the flows on the torus we study here, the fact that spectral measures are supported
on sets of zero Hausdorff dimension sheds new light on the transition from discrete to
singular continuous spectrum. Finally, those dimensional properties are related to rates
of decay of (averaged) correlation functions [12] and to critical exponents of generalized
random walks [7].

Flows defined by differential equations of the form (1) are not as special as they may
seem. IfA,B ∈ C5(T2) and the flow defined by

dx/dt = A(x, y), dy/dt = B(x, y) (2)

has no fixed points and has an invariant measure that is absolutely continuous with
respect to Lebesgue measure with a density that can be chosen to beC5, then (2) reduces
to (1) by a change of coordinates ([22], or §16.1 in [1]).

If F is not smooth then the flows defined by (1) can be strongly mixing [14]. The
flow can also have mixed continuous–discrete spectrum, for continuousF [15] and even
for analyticF [3].

2. Singular continuous spectrum is generic
There are four main steps in the proof in [1] that there exist real analytic functionsF for
which there areλ such thatTt has purely singular continuous spectrum. First, the flowTt

can be represented as a flowSf,λt under a functionf > 0 over the rotationRλu = u+ λ
on T, where

f (u) = λ

∫ 1

0
F(u+ λξ, ξ) dξ (3)

[1, p. 435]. Second, iff is C5 (which is the case ifF ∈ C5(T2)), thenSf,λt has purely
discrete spectrum for Lebesgue almost allλ [1, Theorem 16.2.1] and for allλ ∈ T, the
spectrum is singular with respect to Lebesgue measure [1, Theorems 16.3.1 and 15.4.3].
Third, for every real analyticf > 0 which is not a trigonometric polynomial there exist
β ∈ T such that the flowSf,βt is weakly mixing [1, §16.4]. That means that the spectrum
of Sf,βt is continuous; by the second statement it is then purely singular continuous.
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Fourth, if f (u) = ∑
k∈Z

fke
2πiku is the Fourier series of the real analytic functionf on

T then for allλ ∈ R (3) has a real analytic solutionF > 0 if

f0 >
π

2

∑
k 6=0

|fk| (4)

[1, Lemma 16.4.1]. Thus there exist real analyticF for which the flowTt has purely
singular continuous spectrum for someλ.

It is also clear now that for ‘most’ real analyticF > 0, there areλ for which Tt has
purely singular continuous spectrum. For ifF > 0 is real analytic then so isf > 0;
‘most’ real analyticF have infinitely many non-zero Fourier coefficients and ‘typically’
those will not be such thatf is a polynomial. In any reasonable topology ‘most’ will
certainly encompass a dense set.

The small change to a proof in [1] is in the third step.

LEMMA 2.1. If a real analyticf > 0 is not a trigonometric polynomial then there is a
dense setB ⊂ T such that forβ ∈ B the flowSf,βt is weakly mixing.

Proof. It is easy to see that in Lemma 16.4.3 of [1] one can impose the condition that the
rational numbersβn → β are all contained in any given interval. This gives thatT

f,β
t is

weakly mixing for a dense set ofβ. �
The wonderland theorem [21] can be formulated as follows. LetX be a complete

metric space of self-adjoint operators on a separable Hilbert space for which convergence
in the metric implies strong resolvent convergence. Suppose the sets of operators inX
that have purely continuous spectrum and purely discrete spectrum are dense inX . Then
there is a generic set inX (i.e. a denseGδ) of operators that have purely singular
continuous spectrum. It is straightforward to apply the wonderland theorem to a flow
under a function over a rotation of the circle [6].

PROPOSITION2.2. If a real analyticf > 0 is not a trigonometric polynomial then the flow
S
f,α
t has purely singular continuous spectrum for genericα.

Proof. Let Mf := {(x, y) | x ∈ T, 0 ≤ y < f (x)}. Denote the normalized Lebesgue
measure onMf by µ; it is invariant underSf,αt for everyα. LetH⊥ := {φ ∈ L2(Mf , µ) |∫
φ dµ = 0}; this is a separable Hilbert space with inner product(φ, ψ) = ∫

φψ dµ.
Let Uα

t be the group of unitary operators onH⊥ defined byUα
t φ := φ ◦ Sf,αt . By

Stone’s theorem there exists for eachα a self-adjoint operatorLα on H⊥ such that
Uα
t = exp(2πitLα). The spectral measuresναφ of Lα, defined by

∫
e2πiλt dναφ (λ) =

(e2πitLαφ, φ) (see, for example, [18, p. 263]) coincide with the spectral measures ofUα
t .

Let X := {Lα | α ∈ T} with the metric ofT. If αn → α in T, thenUαn
t → Uα

t

strongly in H⊥ for each t (as can be seen by looking at characteristic functions of
rectangles). This implies thatLαn → Lα in the strong resolvent sense (see, for example,
[18, Theorem VII.21]).

By Lemma 2.1, the spectrum ofCα is continuous forα in a dense set. As mentioned
in the second of the four main steps, it is purely discrete for Lebesgue almost every
α. Every set of full Lebesgue measure is dense inT. Thus the wonderland theorem
gives thatLα (and hence the flowSf,αt ) has purely singular continuous spectrum for
genericα. �
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It follows that for every real analyticF on T
2 for which the functionf defined in (3)

is not a trigonometric polynomial the flowTt has purely singular continuous spectrum
for genericλ. The set of genericλ depends onF . This should be contrasted with the
fact that for every real analyticF the flowTt has purely discrete spectrum for Lebesgue
almost allλ in a set that is independent ofF . (For F ∈ C5 the flow has purely discrete
spectrum for allλ such that|λ − p/q| > C/q4 for some constantC and all relatively
prime integersp, q [1, §16.2].) It is nota priori obvious that the flowTt has purely
singular continuous spectrum for generic pairs(F, λ). Such a statement does follow from
the wonderland theorem. Forc > 0 let ‖F‖c := ∑

n,m∈Z
|Fnm|ec(|n|+|m|), where theFnm

are the Fourier coefficients ofF and letAc be the Banach space obtained by completing
the trigonometric polynomials in the norm‖ · ‖c. ThenAc is a complete metric space of
real analytic functions.

PROPOSITION2.3. For generic pairs(F, λ) in Ac × R (with normmax(‖ · ‖c, | · |)), the
flow Tt has purely singular continuous spectrum.

Proof. Write T
F,λ
t to stress the dependence of the flow onF and λ. The measure

F(x, y) dx dy is invariant underT F,λt [1, p. 435]. LetHF := L2(T2, F dx dy) and
H := L2(T2, dx dy). ConsiderUF,λ

t , acting onHF by UF,λ
t φ = φ ◦ T F,λt . Its spectral

measuresνF,λφ are purely singular continuous onR\{0} for a dense set of(F, λ) (if∫
φF dx dy 6= 0 they have a point mass at 0). They are also purely discrete onR\{0}

for a dense set of(F, λ). The operatorVF :HF → H defined byVFφ := φ
√
F is unitary.

Let WF,λ
t := VFU

F,λ
t V −1

F act onH, and denote its generator byLF,λ. Then the spectral
measure ofVFφ for WF,λ

t is alsoνF,λφ .
Let X := {LF,λ | F ∈ Ac, λ ∈ R} with the metric induced by the norm onAc × R.

This is a complete metric space of self-adjoint operators on the separable Hilbert space
H. Convergence in metric implies strong resolvent convergence (by the argument in the
proof of Proposition 2.2). There are dense sets inAc × R for which the spectrum is,
respectively, purely singular continuous and purely discrete onR\{0}. The wonderland
theorem (in the form of Theorem 2.1 of [21]) gives that the spectrum ofLF,λ is purely
singular continuous onR\{0} for generic(F, λ). For generic pairs(F, λ), therefore, the
flow T

F,λ
t has purely singular continuous spectrum on the orthogonal complement of the

constant functions inHF . �
Unfortunately, Proposition 2.3 does not lead to a genericity result of purely singular

continuous spectrum for the systems of the form (2). Changing eitherA or B can result
in a system that has no absolutely continuous invariant measure. Thus there seems to be
no way in which a set of systems of the form (2) can be made into a complete metric
space to which our results extend.

To conclude this section, let us comment on a difference between genericity of purely
singular continuous spectrum for flows and for automorphisms (invertible measure-
preserving transformations).

Consider the Lebesgue space([0,1], dx) and the setB of all automorphisms that
leavedx invariant, with the weak topology. Halmos [4] has shown that a genericT ∈ B
is weakly mixing. Katok and Stepin have shown by cyclic approximation that a generic
T ∈ B has purely singular spectrum (which can have a discrete part) [10, Theorem 1.1
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and Corollary 3.1]. Together, these results give that a genericT ∈ B has purely singular
continuous spectrum. (Knill [11, 12] has recently pointed out that genericity of purely
singular continuous spectrum inB can be obtained from Halmos [4] and the wonderland
theorem, without invoking the theory of cyclic approximation.)

To prove the denseness of theGδ for which the spectrum is singular, Katok and Stepin
rely in their Theorem 1.1 on the conjugacy lemma [5, p. 77]. The conjugacy lemma
seems to have no analogue for flows. Thus, for flows, the wonderland theorem is the
natural tool to prove genericity of purely singular continuous spectrum.

3. Cyclic approximation and the dimension of spectral measures
This section shows that the theory of periodic approximation gives upper bounds on the
Hausdorff dimension of spectral measures. The emphasis is on flows. Analogous results
for automorphisms are stated and briefly discussed at the end of the section. We start
with some definitions.

A flow Tt on a Lebesgue space(X,m) allows a cyclic approximation with speed
g(u) → 0 if there exists a sequence of partitions{C(n)j }Qn−1

j=0 , times tn ∈ R
+ and

automorphismsSn : C(n)k → C
(n)

k+1 such that
∑Qn

j=1m(TtnC
(n)
j 1SnC

(n)
j ) < g(Qn) and

Qntn → ∞. (The partitions also have to become arbitrarily fine asn → ∞. This will
play no explicit role here. For details, see [1].)

Let 0 ≤ β ≤ 1. A measure onR (or on T) is called uniformlyβ-(Hölder) continuous
if there exists a constantC such thatµ(I) < C|I |β for all intervalsI of length |I | < 1.
The decomposition of a measureµ = µac+µs into an absolutely continuous partµac and
a singular partµs can be generalized. For everyβ there is a decompositionµ = µβc+µβs

into aβ-continuous partµβc and aβ-singular partµβs. A measureµ is β-continuous if
µ(S) = 0 for every Borel set of zeroβ-Hausdorff measure andµ is β-singular if it is
supported on a setS of zeroβ-Hausdorff measure. For details, see [19, §3.3] or [16].

If µ is β-singular for allβ > 0, thenµ is called zero dimensional. This is equivalent
to the statement thatµ is supported on a Borel setS of zero Hausdorff dimension. We
say that a flowTt has zero-dimensional spectrum if all its spectral measures are zero
dimensional.

LEMMA 3.1. Let Tt be a measure-preserving flow on a compact Borel probability space
(�,µ). If Tt does not have zero-dimensional spectrum, then there exist aφ ∈ H = L2(�)

and aβ > 0 such thatt 7→ φ ◦ Tt is smooth and such that the spectral measureµφ is
uniformlyβ-continuous.

Proof. If Tt is not zero dimensional, there exists aβ > 0 such thatHβc 6= ∅ in the
orthogonal decomposition [16] H = Hβs ⊕ Hβc of H into β-singular andβ-continuous
vectors. Because uniformlyβ-continuous vectors are dense inHβc [16, Theorem 5.2],
there exist aφ ∈ H and aβ > 0 such thatµφ is uniformly β-continuous. Take
a smooth mollifier functionψ > 0 with support in (−1,1). Define φ̃ ∈ H by
φ̃(ω) := ∫ 1

−1ψ(s)φ(T−sω) ds. Then t 7→ φ̃ ◦ Tt = (ψ ∗ (φ ◦ Tt ))(·) is smooth. Since

µ̂φ̃(t) = (φ̃, Ut φ̃) = (ψ̌ ∗ψ ∗ µ̂φ)(t), whereψ̌(x) := ψ(−x), we haveµφ̃ = |ψ̂ |2µφ , so
µφ̃ is uniformly β-continuous. �



884 A. Hof and O. Knill

The next proposition generalises a result of Katok and Stepin [1, Theorem 15.4.1].

PROPOSITION3.2. Let r ≥ 1. Let Tt be a flow that allows a cyclic approximation with
speedg(u) = o(u−r ) using timestn and partitions{C(n)j }Qn−1

j=0 . Then for every spectral
measureµφ

max
k=1,...,[Q(r−1)/2

n ]
|µ̂φ(kQntn)− ‖φ‖2

2| → 0 asn → ∞. (5)

Proof. Theorem 15.4.1 in [1] covers the caser = 1. The proposition is proved by
modifying the proof of Theorem 15.4.1 in [1] as follows. (Note that̂µφ(s) = (φ, Usφ)

so thatµ̂φ(s) → ‖φ‖2
2 if ‖Usφ − φ‖2 → 0.)

The first displayed equation in the proof of Theorem 15.4.1 becomes

‖UkQntnφ − φ‖2 ≤ ‖φ(TkQntn )− φn(TkQntn )‖2 + ‖φn(TkQntn )− φn‖2

+‖φn − φ‖2 =: 61 +6
(k)

2 +63.

Now

6
(k)

2 = ‖φn(TkQntn )− φn‖2

≤ ‖φn(TkQntn )− φn(T(k−1)Qntn )‖2 + · · · + ‖φn(TQntn )− φn‖2

= k · ‖φn(TQntn )− φn‖2 = k ·62,

where 62 is as in the proof of Theorem 15.4.1. There it is shown that62 ≤
2C

√
Qng(Qn) (without using any specific form forg). Therefore6(k)

2 ≤ 2Ck
√
Qng(Qn)

which goes to zero uniformly ink ≤ Q
(r−1)/2
n because of the assumption on the speed

of approximation. �

Let µ be a bounded measure onR. A theorem of Strichartz [23] states that ifµ is
uniformly β-continuous, then there is a constantC such that

L−1
∫ L

0
|µ̂(t)|2 dt ≤ CL−β.

We say that a countable setA ⊂ R
+ (or ⊂ N) has positiveβ density if there is a constant

C such that|{a ∈ A | a < n}| ≥ Cnβ for infinitely manyn → ∞.

THEOREM 3.3. Suppose a flowTt admits a cyclic approximation with speedg(u) =
o(u−r ), times tn ≤ M and partitions of sizeQn. Then every spectral measure of the
flow is supported on a set of Hausdorff dimension≤ 2/(r + 1).

Proof. (i) Assume there exists a spectral measure supported on a set of Hausdorff
dimension(1 − β + ε) > (1 − β) = 2/(r + 1) and not on any set of smaller Hausdorff
dimension. Then that spectral measure has non-zero(1−β + ε)-continuous part. Hence
H(1−β+ε)c 6= ∅ in the decompositionH = H(1−β+ε)c ⊕H(1−β+ε)s. By the argument in the
proof of Lemma 3.1 there exists aφ ∈ H with a spectral measureµφ that is uniformly
(1 − β + ε)-continuous. By Strichartz’ theorem [23]

L−1
∫ L

0
|(µ̂φ)(t)|2 dt ≤ CL−(1−β+ε) (6)
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for some constantC.
(ii) The union (overn) of the sets{kQntn | k = 1, . . . , [Q(r−1)/2

n ]} has positive
β-density if

Q
(r−1)/2
n

(QntnQ
(r−1)/2
n )β

≥ M−βQ(r−1)/2−β(r+1)/2
n

does not go to zero asn → ∞. This is the case if(r − 1)/2 ≥ β(r + 1)/2 and in
particular if (1 − β) = 2/(r + 1).

(iii) By Proposition 3.2, µ̂φ(t) is close to ‖φ‖2
2 at the points kQntn (k =

1, . . . , [Q(r−1)/2
n ]) if n is large. LetUt = eiAt , whereA is the possibly unbounded

self-adjoint generator ofUt . By the definition ofφ in the proof of Lemma 3.1,φ is in
the domain ofA (as can, for example, be seen from the proof of Stone’s theorem in [18,
p. 266]). Therefore the derivative of̂µφ(t) is bounded onR:

∣∣∣∣ ddt (Utφ, φ)
∣∣∣∣ = |(Lφ(t), φ)| = |(φ(t), Lφ)| ≤ M ′.

It follows that there is a constantC ′ such that
∫ L

0
|µ̂(t)|2 dt > C ′Lβ

for infinitely manyL → ∞. This contradicts (6). �

Note in step (ii) that information about the speed with whichtn → 0 as a function of
Qn would allow a sharper bound on the Hausdorff dimension.

The discrete time analogues of Proposition 3.2 and Theorem 3.3 can be formulated
as follows.

PROPOSITION3.4. If an automorphismT admits a cyclic approximation with speedg(u) =
o(u−r ), using partitions of sizeQn, then every spectral measureµφ satisfies

max
k=1,...,[Q(r−1)/2

n ]
|µ̂φ(kQn)− ‖φ‖2

2| → 0 asn → ∞. (7)

THEOREM 3.5. If an automorphismT admits a cyclic approximation with speedg(u) =
o(u−r ) then every spectral measure ofT is supported on a set of Hausdorff dimension
≤ 2/(r + 1).

The proofs of Proposition 3.4 and Theorem 3.5 are analogous to those of
Proposition 3.2 and Theorem 3.3. One has to settn = 1. A proof of the Fourier
series version of Stricharz’ theorem is given in [12]. The discrete time version of
Theorem 15.4.1 in [1] can be found as Theorem 3.3 in [10].

Iwanik [8] has a result that is stronger than Theorem 3.5. Under a hypothesis that is
implied by the hypothesis of Theorem 3.5 he obtains the sharper bound≤1/r. His proof
is completely different from ours and uses simultaneous Diophantine approximations.
He does not discuss flows. Note that Iwanik gives an example of an automorphism with
zero-dimensional continuous spectrum to show that his bound 1/r is not optimal.
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4. Zero-dimensional spectrum is generic
We return now to the flowsSf,αt andT F,λt . The following theorem generalises a result
of Katok [9] (see [1, Theorem 16.3.1, p. 426]).

THEOREM 4.1. Let τ ≥ 0. Suppose thatf ∈ C5+τ (T) and that there exists a sequence
pn/qn of irreducible fractions such that

rn := q4
n |α − pn/qn| = o(q−τ

n ) asn → ∞. (8)

Then the flowSf,αt admits a cyclic approximation with speedg(u) = o(u−(2+τ)), partitions
of lengthQn = qnmn and timestn = γ /mn, wheremn → ∞ are integers andγ is a
constant depending only onf .

Proof. Theorem 16.3.1 in [1] covers the caseτ = 0 (note that thereF is a function on
T, not on T

2, as in this paper). There are two things one has to change in the proof
of Theorem 16.3.1 in [1]: the choice of themn ∈ N, and the statement of Lemma 1
(p. 427). (Ourγ is theβ in [1].)

The modified Lemma 1 reads: supposef ∈ C5+τ (T) and |λ− p/q| ≤ 1/10q2. Then

∣∣∣∣
q−1∑
k=0

f (x + kα)− qγ

∣∣∣∣ < C1q
2|α − p/q| + C2q

−(3+τ) =: 6(p, q) (9)

for certain constantsC1, C2. The proof is a straightforward generalization of the proof
of Lemma 1 on pp. 431–432 of [1]. Note that6n := 6n(pn, qn) = o(q−(2+τ)

n ). The
right-hand side of the first displayed equation on p. 430 (which is the expression forg)
now becomes(c/γ q2

n)(rn + q−(1+τ)
n ).

In the proof in [1] the sequence of reciprocal timesmn → ∞ has to satisfy three
conditions, specified on p. 427 and p. 430.

Condition (i) (p. 427) ismn < q2
nγ (the ‘/’ is a typo). This now becomesmn < q2+τ

n γ .
Condition (ii) (p. 430) isrn/q2

n = o(Q−2
n ). This becomesrn/q2

n = o(Q−(2+τ)
n ), or

rnq
τ
nm

2+τ
n → 0.

Condition (iii) (p. 430) is 1/q3
n = o(Q−2

n ). This becomes 1/q3+τ
n = o(Q−(2+τ)

n ), or
q−1
n m2+τ

n → 0.
Because of (8) these three conditions can be satisfied by an integer sequence

mn → ∞. �

COROLLARY 4.2. Under the hypotheses of Theorem 4.1 all spectral measures of the flow
S
f,α
t are supported on sets of Hausdorff measure≤ 2/(τ + 1).

Proof. By Theorem 3.3. �

COROLLARY 4.3. If f is real analytic andα is a Liouville number then the flowSf,αt has
zero-dimensional spectrum.

Proof. Recall thatλ is Liouville if there exists for everyl a sequencepn/qn of irreducible
fractions such thatqln · |λ− pn/qn| → 0. �
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We have not shown that the spectrum ofSf,αt is continuous ifλ is Liouville. Recall
that the set of Liouville numbers is a denseGδ (e.g. [17, §2]). Because the intersection
of two generic sets is generic, we have the following.

COROLLARY 4.4. If f is real analytic, but not a trigonometric polynomial, then the flow
S
f,α
t has zero-dimensional continuous spectrum for genericλ.

The corresponding result for the differential equations (1) justifies the title of our
paper.

COROLLARY 4.5. For generic pairs(F, λ) in Ac × R the flowT F,λt has purely singular
continuous and zero-dimensional spectrum.

As far as we know this provides the first examples of smooth flows with zero-
dimensional continuous spectrum.

It would be interesting to know whether the spectrum ofT
F,λ
t can fail to be zero

dimensional.
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