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Abstract We study spectral properties of the flaw= 1/F (x, y), y = 1/AF(x, y) on the
2-torus. We show that, in general, the speed of approximation in cyclic approximation
gives an upper bound on the Hausdorff dimension of the supports of spectral measures.
We use this to prove that for generic paiis, 1) the spectrum of the flow on the torus

is singular continuous with all spectral measures supported on sets of zero Hausdorff
dimension.

1. Introduction
On the torusT? := R?/Z? consider the flowr;, defined by

dx 1 dy 1

& T FGy) di aFGy) @)
(x,y) dt AF(x,y)

It is known that for ‘most’ real analyti¢’ > 0 there exist. such that the flow has purely
singular continuous spectrum (see Chapter 16l]nthe presentation there is based on
results of Kolmogorov 13], Shklover R0] and Katok P]). It is also known that for
Lebesgue almost all the spectrum is discrete i € C°. Thus small perturbations in
can render the spectrum of the flow either continuous or discrete.

This raises two questions. How exceptional is singular continuous spectrum for these
flows? What can be said about the Hausdorff dimension of the supports of the spectral
measures when the spectrum is singular continuous?

These questions are motivated in part by analogous questions in the theory of
Schibdinger operators2[l, 2]. There exist one-parameter familigg, of Schibdinger
operators that have purely discrete spectrum for almostialind purely singular
continuous spectrum for genetic(i.e. for A in a denseG;). But this spectral instability
is not as dramatic as it first seems, because fok all spectral measures are supported
on sets of Hausdorff dimension zera [Theorem 7.4].

1 Current address: NCM, PO Box 473, 1000 AL Amsterdam, The Netherlands.
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In §2 we show that singular continuous spectrum is in fact common: it occurs for
generic pairgF, 1). The proof is based on Simon’s wonderland theor2th fnd a small
change to the proof presented @j.[In §4 we show that the spectrum is generically zero
dimensional. The proof uses a result of Strichartz in Fourier the28ly hew spectral
decompositions of self-adjoint operatorsg], and elements of the theory of periodic
approximations 10, 1. These two results show that the spectrum is generically singular
continuous and zero dimensional. We do not know if the spectral measures are supported
on sets of Hausdorff dimension zero for all

As an intermediate result we show 8 that, in full generality, the speed of
approximation of a flow in a cyclic approximation provides an upperbound on the
Hausdorff dimension of the support of spectral measures. The discrete time analogue
gives a weak version of a recent result of lwarg [

Dimensional properties of spectral measures of dynamical systems are of interest for
a number of reasons. First, it is natural to study them. Next, in particular examples, as
in the flows on the torus we study here, the fact that spectral measures are supported
on sets of zero Hausdorff dimension sheds new light on the transition from discrete to
singular continuous spectrum. Finally, those dimensional properties are related to rates
of decay of (averaged) correlation functiod€] and to critical exponents of generalized
random walks T].

Flows defined by differential equations of the form (1) are not as special as they may
seem. IfA, B € C°(T?) and the flow defined by

dx/dt = A(x,y), dy/dt = B(x,y) (2)

has no fixed points and has an invariant measure that is absolutely continuous with
respect to Lebesgue measure with a density that can be chose@tpthen (2) reduces
to (1) by a change of coordinate®¥, or §16.1 in [1]).
If F is not smooth then the flows defined by (1) can be strongly mixi. [The
flow can also have mixed continuous—discrete spectrum, for contintid@$§] and even
for analytic F [3].

2. Singular continuous spectrum is generic

There are four main steps in the proof i fhat there exist real analytic functior for
which there are. such that7; has purely singular continuous spectrum. First, the flow
can be represented as a flcsv(/’\ under a functionf > O over the rotatiomR,u = u + A
on T, where

1
f(u)=)»f0 F(u+ 1§, 8)dg ®3)

[1, p. 435]. Second, iff is C® (which is the case ifF e C5(T?)), thens/” has purely
discrete spectrum for Lebesgue almostia[ll, Theorem 16.2.1] and for all € T, the
spectrum is singular with respect to Lebesgue meadyréHeorems 16.3.1 and 15.4.3].
Third, for every real analytif > 0 which is not a trigonometric polynomial there exist

B € T such that the flows;"” is weakly mixing [L, §16.4]. That means that the spectrum

of S[f'ﬁ is continuous; by the second statement it is then purely singular continuous.
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Fourth, if f(u) = Y, fie** is the Fourier series of the real analytic functigron
T then for allx € R (3) has a real analytic solutiofA > O if

> T 4
fo= 7 ; | il (4)
[1, Lemma 16.4.1]. Thus there exist real analykicfor which the flow7; has purely
singular continuous spectrum for sorhe
It is also clear now that for ‘most’ real analytie > 0, there are. for which 7, has
purely singular continuous spectrum. ForAf > O is real analytic then so ig > 0;
‘most’ real analyticF have infinitely many non-zero Fourier coefficients and ‘typically
those will not be such thaf is a polynomial. In any reasonable topology ‘most’ will
certainly encompass a dense set.
The small change to a proof id][is in the third step.

LEMMA 2.1. If a real analytic f > 0 is not a trigopnometric polynomial then there is a
dense seB c T such that forg € B the flows;” is weakly mixing.

Proof. It is easy to see that in Lemma 16.4.3 &f fne can impose the condition that the
rational numberg, — B are all contained in any given interval. This gives tlirétﬂ is
weakly mixing for a dense set ¢f. O

The wonderland theoren2]] can be formulated as follows. Let be a complete
metric space of self-adjoint operators on a separable Hilbert space for which convergence
in the metric implies strong resolvent convergence. Suppose the sets of operators in
that have purely continuous spectrum and purely discrete spectrum are dénséliren
there is a generic set i’ (i.e. a denseGs) of operators that have purely singular
continuous spectrum. It is straightforward to apply the wonderland theorem to a flow
under a function over a rotation of the circlg).[

PROPOSITION2.2. If a real analytic f > Qis not a trigonometric polynomial then the flow
S,f’“ has purely singular continuous spectrum for generic

Proof. Let My := {(x,y) | x € T, 0 < y < f(x)}. Denote the normalized Lebesgue
measure oy by p; it is invariant undeG,f’“ for everya. LetHt = {¢ € L2(M_,-, W) |
[ ¢du = 0}; this is a separable Hilbert space with inner prodygty) = [ ¢y du.

Let U* be the group of unitary operators G- defined byUf¢ := ¢ o S,f’“. By
Stone’s theorem there exists for eagha self-adjoint operatof., on -+ such that
U = exp(2ritL,). The spectral measureg of L,, defined by [ ezm'“dvg()\) =
(e*mitLag ¢) (see, for example 1B, p. 263]) coincide with the spectral measuredsf
Let X := {L, | « € T} with the metric of T. If o, — « in T, thenU — U/
strongly in H* for eacht (as can be seen by looking at characteristic functions of
rectangles). This implies thdt,, — L, in the strong resolvent sense (see, for example,
[18, Theorem VII.21]).

By Lemma 2.1, the spectrum @f* is continuous fokr in a dense set. As mentioned
in the second of the four main steps, it is purely discrete for Lebesgue almost every
«. Every set of full Lebesgue measure is densélin Thus the wonderland theorem
gives thatL, (and hence the fIOV\S,f’“) has purely singular continuous spectrum for
generica. O
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It follows that for every real analyti& on T? for which the functionf defined in (3)
is not a trigonometric polynomial the flow, has purely singular continuous spectrum
for generici. The set of generié. depends orF. This should be contrasted with the
fact that for every real analyti¢’ the flow 7, has purely discrete spectrum for Lebesgue
almost allx in a set that is independent &. (For F e C® the flow has purely discrete
spectrum for allx such thatjx — p/gq| > C/q* for some constan€ and all relatively
prime integersp, ¢ [1, §16.2].) It is nota priori obvious that the flowl; has purely
singular continuous spectrum for generic p&iFs ). Such a statement does follow from
the wonderland theorem. For> 0 let |F|lc := Y, ,.cz | Fum|e" "D, where theF,,,
are the Fourier coefficients df and letA, be the Banach space obtained by completing
the trigonometric polynomials in the norin ||.. Then A, is a complete metric space of
real analytic functions.

ProPosITION2.3. For generic pairs(F, 1) in A, x R (with normmax(|| - ||, | - |)), the
flow T, has purely singular continuous spectrum.

Proof. Write 7,/** to stress the dependence of the flow Bnand A. The measure
F(x,y)dxdy is invariant underZ,”* [1, p. 435]. LetHy := L2(T2, Fdxdy) and
H = L%(T2,dxdy). ConsiderU/*, acting onHy by U/"¢ = ¢ o T,"*. Its spectral
measureSJj* are purely singular continuous dR\{0} for a dense set ofF, 1) (if
[ ¢Fdxdy # 0 they have a point mass at 0). They are also purely discref®@\¢o}
for a dense set afF, A). The operatoW: Hy — H defined byVy¢ := $~/F is unitary.
Let W/ := VyU/* v act on’H, and denote its generator liy-,. Then the spectral
measure ofVy¢ for W/* is alsov, .

Let X :={Lp, | F € A, A € R} with the metric induced by the norm oA, x R.
This is a complete metric space of self-adjoint operators on the separable Hilbert space
‘H. Convergence in metric implies strong resolvent convergence (by the argument in the
proof of Proposition 2.2). There are dense setsdinx R for which the spectrum is,
respectively, purely singular continuous and purely discret®ofd}. The wonderland
theorem (in the form of Theorem 2.1 d21]) gives that the spectrum dfr; is purely
singular continuous ofR\{0} for generic(F, A). For generic pairgF, i), therefore, the
flow 7,** has purely singular continuous spectrum on the orthogonal complement of the
constant functions ifH . O

Unfortunately, Proposition 2.3 does not lead to a genericity result of purely singular
continuous spectrum for the systems of the form (2). Changing eithear B can result
in a system that has no absolutely continuous invariant measure. Thus there seems to be
no way in which a set of systems of the form (2) can be made into a complete metric
space to which our results extend.

To conclude this section, let us comment on a difference between genericity of purely
singular continuous spectrum for flows and for automorphisms (invertible measure-
preserving transformations).

Consider the Lebesgue spad®, 1], dx) and the set3 of all automorphisms that
leavedx invariant, with the weak topology. Halmod][has shown that a generit € B
is weakly mixing. Katok and Stepin have shown by cyclic approximation that a generic
T € B has purely singular spectrum (which can have a discrete ft)Theorem 1.1
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and Corollary 3.1]. Together, these results give that a gefiedc3 has purely singular
continuous spectrum. (Knillll1, 13 has recently pointed out that genericity of purely
singular continuous spectrum Ifican be obtained from Halmod][and the wonderland
theorem, without invoking the theory of cyclic approximation.)

To prove the denseness of tGg for which the spectrum is singular, Katok and Stepin
rely in their Theorem 1.1 on the conjugacy lemnfg p. 77]. The conjugacy lemma
seems to have no analogue for flows. Thus, for flows, the wonderland theorem is the
natural tool to prove genericity of purely singular continuous spectrum.

3. Cyclic approximation and the dimension of spectral measures

This section shows that the theory of periodic approximation gives upper bounds on the
Hausdorff dimension of spectral measures. The emphasis is on flows. Analogous results
for automorphisms are stated and briefly discussed at the end of the section. We start
with some definitions.

A flow T, on a Lebesgue spaa&X, m) allows a cyclic approximation with speed
g(u) — 0 if there exists a sequence of partitio(@}”)}fz”‘l, times:, € R* and
automorphismss, : ¢,V — €/, such thatZJtQ:“lm(T,”C}”)ASan”)) < g(0,) and
0.1, — oo. (The partitions also have to become arbitrarily finenas> oo. This will
play no explicit role here. For details, seg.]

Let0< B < 1. A measure ofR (or onT) is called uniformlys-(Hoélder) continuous

if there exists a constard such thatw (1) < C|I|? for all intervalsI of length|I| < 1.
The decomposition of a measute= w4+ s into an absolutely continuous part. and
a singular parfts can be generalized. For evegythere is a decomposition = g+ gs
into a B-continuous parftg: and apg-singular partugs. A measureu is g-continuous if
w(S) = 0 for every Borel set of zer@-Hausdorff measure and is g-singular if it is
supported on a se&f of zero g-Hausdorff measure. For details, sé®,[§3.3] or [16)].

If uis B-singular for allg > 0, thenu is called zero dimensional. This is equivalent
to the statement that is supported on a Borel sét of zero Hausdorff dimension. We
say that a flowT, has zero-dimensional spectrum if all its spectral measures are zero
dimensional.

LEMMA 3.1. Let 7; be a measure-preserving flow on a compact Borel probability space
(2, w). If T, does not have zero-dimensional spectrum, then there epist & = L?(Q)

and apg > 0 such thattr — ¢ o T; is smooth and such that the spectral measugeis
uniformly 8-continuous.

Proof. If T; is not zero dimensional, there existspa> 0 such thatHg. # ¢ in the
orthogonal decompositiorlf] H = Hgs @ Hg, Of H into B-singular ands-continuous
vectors. Because uniformlg-continuous vectors are denseitp. [16, Theorem 5.2],
there exist ap € H and ap > 0 such thatu, is uniformly g-continuous. Take
a smooth mollifier functionyy > 0 with support in(—1,1). Define¢ e H by
$@) = [* Y ()¢(T_yw)ds. Theni — ¢oT, = ( * (¢ o T,))(-) is smooth. Since
A5(1) = @, Uid) = (f %V * f15) (1), whereys (x) = ¥ (—x), we havep; = | [*ug, SO
14 is uniformly g-continuous. O
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The next proposition generalises a result of Katok and Stelpifiieorem 15.4.1].

PrROPOSITION3.2. Let r > 1. Let T, be a flow that allows a cyclic approximation with
speedg(u) = o(u™") using times, and partitions{C{"'}',*. Then for every spectral
measurew,

max |ip (kQut) — 15 — O asn — oo. 5)

Proof. Theorem 15.4.1 in1] covers the case = 1. The proposition is proved by
modifying the proof of Theorem 15.4.1 id][as follows. (Note thafi,(s) = (¢, Us¢)
so thatfiys(s) — llgll3 if |Us¢ — ¢ll2 — 0.)

The first displayed equation in the proof of Theorem 15.4.1 becomes

1Ukg,,® — @l = N (Trg,1,) — GuTko, i) 2 + 00 (Tko,s,) — Pull2
+lgn — pllz = D1 + = + .

Now

=9 = Npu(Tig,n) — ¢all2
lpn(Tk0,1,) — Gn(Tk-v0,6) l12 + -+ - + lPpu(To,1,) — Pull2
k- ¢n(Tg,) — dullz =k - T,

where 3, is as in the proof of Theorem 15.4.1. There it is shown that <
2C./0,8(0,) (without using any specific form fay). Thereforezy" < 2Ck+/0,g(Q,)

which goes to zero uniformly ik < Qﬁ,’_l)/z because of the assumption on the speed

of approximation. O

IA

Let u be a bounded measure & A theorem of Strichartz43] states that ifu is
uniformly B-continuous, then there is a consta@hsuch that

L
L’lf lL@))?dr < CL™P.
0

We say that a countable sétc R* (or C N) has positive8 density if there is a constant
C such thatl{a € A | a < n}| > Cn® for infinitely manyn — oc.

THEOREM 3.3. Suppose a flowr, admits a cyclic approximation with speedu) =
o(u™"), timess, < M and partitions of sizeQ,. Then every spectral measure of the
flow is supported on a set of Hausdorff dimensio2/(r + 1).

Proof. (i) Assume there exists a spectral measure supported on a set of Hausdorff
dimension(1— 8 +¢) > (1 — B) = 2/(r + 1) and not on any set of smaller Hausdorff
dimension. Then that spectral measure has non{Zero8 + ¢)-continuous part. Hence
Ha—p+ec # 9 in the decompositiot! = H—pg+e)c ® Ha—pg+e)s- By the argument in the
proof of Lemma 3.1 there exists¢gae H with a spectral measure, that is uniformly

(1 — B + e)-continuous. By Strichartz’ theoren23)

L
Lilfo [(fip) ()12 dt < CL=AF+) ©)
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for some constan€.
(i) The union (overn) of the sets{kQ,t, | k = 1,...,[0Y Y/} has positive
B-density if
Slr—l)/z

(r=1/2 =
(Qntn Qn )P

does not go to zero as — oo. This is the case ifr — 1)/2 > B(r + 1)/2 and in
particular if (1 — 8) = 2/(r + 1).

(i) By Proposition 3.2, fi,(t) is close to [¢[5 at the pointskQ,t, (k =
1,...,[0YY2) if nis large. LetU, = ¢i4’, where A is the possibly unbounded
self-adjoint generator of/,. By the definition of¢ in the proof of Lemma 3.1¢ is in
the domain ofA (as can, for example, be seen from the proof of Stone’s theore@8jn [
p. 266]). Therefore the derivative @f,(¢) is bounded orR:

M—ﬂ Qﬁlr—l)/Z—,B(r-&—l)/Z

d
’E(Uﬂimﬁ)‘ = |(Lo(t), d)| = |(¢(1), Lo)| < M.
It follows that there is a constaidt’ such that
L
/ |L()?dt > C'LP
0

for infinitely many L — oo. This contradicts (6). O

Note in step (ii) that information about the speed with which-~ 0 as a function of
0, would allow a sharper bound on the Hausdorff dimension.

The discrete time analogues of Proposition 3.2 and Theorem 3.3 can be formulated
as follows.

ProPOSITION3.4. If an automorphisnT admits a cyclic approximation with spee¢) =
o(u™"), using partitions of siz2,, then every spectral measusg, satisfies

max ,, Re(kQn - I$l51 — 0 asn — oo. (7)

THEOREM 3.5. If an automorphisn admits a cyclic approximation with speedu) =
o(u™") then every spectral measure Bfis supported on a set of Hausdorff dimension
<2/(r +1).

The proofs of Proposition 3.4 and Theorem 3.5 are analogous to those of
Proposition 3.2 and Theorem 3.3. One has torset 1. A proof of the Fourier
series version of Stricharz’ theorem is given 2]l The discrete time version of
Theorem 15.4.1 in]]] can be found as Theorem 3.3 ifh(].

Iwanik [8] has a result that is stronger than Theorem 3.5. Under a hypothesis that is
implied by the hypothesis of Theorem 3.5 he obtains the sharper bolivd His proof
is completely different from ours and uses simultaneous Diophantine approximations.
He does not discuss flows. Note that Iwanik gives an example of an automorphism with
zero-dimensional continuous spectrum to show that his boyndslnot optimal.
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4. Zero-dimensional spectrum is generic
We return now to the flows/* and 7;"*. The following theorem generalises a result
of Katok [9] (see [L, Theorem 16.3.1, p. 426]).

THEOREM 4.1. Let t > 0. Suppose thaf e C>*(T) and that there exists a sequence
Pn/qn Of irreducible fractions such that

o= qple — pu/qul = 0(q, ") asn — oo. €)

Then the rovxSlf'“ admits a cyclic approximation with spegt) = o(u~?*?), partitions
of lengthQ,, = ¢g,m, and timest, = y/m,, wherem, — oo are integers and is a
constant depending only of.

Proof. Theorem 16.3.1 inl]] covers the case = 0 (note that therg is a function on
T, not onT?, as in this paper). There are two things one has to change in the proof
of Theorem 16.3.1 in1]: the choice of then, € N, and the statement of Lemma 1
(p. 427). (Oury is theg in [1].)

The modified Lemma 1 reads: suppoges C>**(T) and|x — p/q| < 1/104%. Then

g—1

> fx+ka) —qy

k=0

< C1g%la — p/ql+ C2g™ % = 2(p, q) 9)

for certain constant€’y, C,. The proof is a straightforward generalization of the proof
of Lemma 1 on pp. 431-432 ofi]. Note thatX, = =,(p,, q.) = o(g, **”). The
right-hand side of the first displayed equation on p. 430 (which is the expressigi for
now becomegc/yq?)(r, + q; ).

In the proof in ] the sequence of reciprocal times, — oo has to satisfy three
conditions, specified on p. 427 and p. 430.

Condition (i) (p. 427) isn, < g2y (the ‘/’is a typo). This now becomes, < ¢2*7y.

Condition (i) (p. 430) isr,/q? = 0o(Q;?). This becomes,/q? = o(Q;?), or
raqim?t — 0.

Condition (iii) (p. 430) is ¥g> = 0(Q;?). This becomes J>t* = o(Q; ), or
g tm?*T — 0.

Because of (8) these three conditions can be satisfied by an integer sequence
m, — oQ. O

COROLLARY 4.2. Under the hypotheses of Theorem 4.1 all spectral measures of the flow
S,f’“ are supported on sets of Hausdorff measgrg/(r + 1).

Proof. By Theorem 3.3. O

COROLLARY 4.3.If f is real analytic andx is a Liouville number then the ﬂox&f’“ has
zero-dimensional spectrum.

Proof. Recall thath is Liouville if there exists for every a sequence, /g, of irreducible
fractions such thag! - |A» — p,/q.| — O. O
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We have not shown that the spectrumS;ff" is continuous ifA is Liouville. Recall
that the set of Liouville numbers is a denGg (e.g. [L7, §2]). Because the intersection
of two generic sets is generic, we have the following.

COROLLARY 4.4. If f is real analytic, but not a trigonometric polynomial, then the flow
S,f"’ has zero-dimensional continuous spectrum for generic

The corresponding result for the differential equations (1) justifies the title of our
paper.

COROLLARY 4.5. For generic pairs(F, 1) in A; x R the flowT,”* has purely singular
continuous and zero-dimensional spectrum.

As far as we know this provides the first examples of smooth flows with zero-
dimensional continuous spectrum.

It would be interesting to know whether the spectrum7gf* can fail to be zero
dimensional.
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