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Abstract 

This thesis studies photogrammetric techniques applied to the ATSR instruments for the extraction of 

atmospheric parameters with the objective of generating new scientific datasets.  The atmospheric 

parameters under observation are cloud top height, smoke plume injection height, and tropospheric wind 

components.  All have important applications in various tasks, including the initialisation and validation 

of climate models. 

To generate accurate stereo measurements from the ATSR imagery the forward and nadir views need to 

be accurately co-registered.  Currently this is not the case, with differences of up to 2 pixels in both axes 

recorded.  In this thesis an automated image tie-pointing and image warping algorithm that improves 

ATSR co-registration to ≤1 pixel is presented.  This thesis also identifies the census stereo matching 

algorithm for application to the ATSR instruments.  When compared against a collocated DEM, census 

outperforms the previous stereo matching algorithm applied to the ATSR instrument, known as M4, 

significantly: RMSE ~700m vs. ~1200m; bias ~60m vs ~600m; R
2
 ~0.9 vs ~0.7.  Furthermore, this thesis 

reviews the M6 algorithm developed for application within the ESA ALANIS Smoke Plume project.        

Using census a climatological cloud fraction by altitude dataset over Greenland is generated and 

demonstrated to agree well with current observational datasets from MISR, MODIS and AATSR.  The 

11µm channel stereo output provides insights into high cloud characteristics over Greenland and appears 

to be, in comparison with CALIOP, practically unbiased.  The ALANIS Smoke plume project is 

introduced and the inter-comparison of the M6 algorithm against MISR and CALIOP is presented.  M6 

demonstrates some ability for determining smoke plumes injection heights above 1km in elevation. 

However, the smoke plume masking approach currently employed is demonstrated to be lacking in 

quality.  Finally, this thesis presents the determination of cloud tracked tropospheric winds from the 

ATSR2-AATSR tandem operation using the Farneback optical flow algorithm.  This algorithm offers 

accuracy on the order of 0.5 ms
-1

 at full image resolution, which is unprecedented in comparison to 

similarly derived datasets.  
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1 INTRODUCTION  

1.1  Mot ivat ion  

The ATSR instruments have been exploited variously throughout their period of operation from the 

launch of ATSR-1 on ERS-1 in 1991 through to the demise of AATSR on Envisat in 2012.  The science 

applications have ranged from the determination of sea surface temperature at an unprecedented degree of 

accuracy (Handoll et al., 1991) to the mapping of wildfire occurrences (Arino et al., 2001).  One area 

where potential has been demonstrated (Lorenz, 1985; Prata and Turner, 1997; Cawkwell et al., 2001; 

Muller et al., 2007), but left somewhat unfulfilled, is in the application of stereo-photogrammetric 

techniques to the ATSR imaging systems to determine cloud top height.  Stereo-photogrammetry is the 

art of determining the 3D location of a feature within an image.  The specific requirements are few: two 

or more observations of the feature (e.g. a cloud) from differing positions, an approach to locate and 

measure the distance between the feature across the images, and a model of the observing system which 

enables conversion of the observed distance into some real-world measurement (in the case of the 

previous ATSR studies, the height of the cloud above an Earth ellipsoid).  Despite the relative simplicity 

of the approach and demonstrations of its potential for application to ATSR and the generation of 

important long-term climatological datasets in other instruments (e.g. Moroney et al., 2002 and Di 

Girolamo et al., 2010, generating stereo derived cloud top height climatologies from MISR), as of yet, no 

long-term stereo derived cloud top height datasets obtained from ATSR exist in the scientific domain.  

The motivation behind this thesis is to rectify this current situation, generating the first long-term stereo 

cloud parameter climatology from the ATSR instruments, and also to demonstrate other potential 

applications of the stereo-photogrammetric approach in combination with the ATSR instruments.  

1.2  Research  Objec t ives  

The overall aim of the thesis is to evaluate the use of stereo image matching algorithms in combination 

with the ATSR instruments for various science dataset generation tasks for application within the 

atmospheric sciences.  The work undertaken can be divided into two main areas: one focusing on the 

algorithms and the other on the applications.  The aim of the first area is to identify or develop stereo 

image matching algorithms which perform effectively on the ATSR instruments for the retrieval of 

atmospheric features.  As mentioned, there has been some previous work on the development of stereo 
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matching algorithms for application to ATSR-1 and ATSR-2 (Lorenz, 1985; Prata and Turner, 1997; 

Cawkwell et al., 2001; Muller et al., 2007), however the justifications behind the algorithm selected in 

these studies are mostly limited.  This may in part have been due to a lack of available research on 

assessing the application of stereo image matching algorithms to real-world image matching tasks, 

perhaps caused by the inherent computational cost of stereo matching and the limited computational 

facilities available in the 1990s and early 2000s.  These limitations were (and continue to be) further 

compounded by the predisposition of the imaging science community to focus on controlled, laboratory 

evaluations, of stereo matching algorithms (Scharstein and Szeliski, 2002).  Such assessments do not give 

the necessary insights into real-world algorithm performance, and as such do not allow for effective and 

justifiable algorithm selection for application to real-world stereo image matching tasks.  Fortunately, 

recent research undertaken by Hirschmuller and Scharstein (2009) has filled in this missing link between 

the laboratory and the real-world, providing extensive and in-depth evaluations of number of widely 

employed stereo image matching algorithms on imagery with the radiometric distortions commonly 

introduced during imaging in uncontrolled real-world environments.  This important research enables 

informed and justifiable decisions to be made on algorithm selection.  One of the research aims of this 

thesis therefore, is to apply the findings of Hirschmuller and Scharstein (2008) to the ATSR instruments 

in order to identify an improved image stereo matching algorithm or to justify the use of the techniques 

applied previously. 

Following the identification of an improved stereo-matching algorithm or justification of the selection of 

an algorithm previously employed on the ATSR instruments the second aim of the thesis is both to build 

on existing, and to generate new atmospheric datasets from the ATSR instruments through application of 

stereo-photogrammetric techniques.  Previously identified avenues for atmospheric datasets derived using 

stereo-photogrammetric approaches applied to the ATSR instruments include: the determination of cloud 

top height and wind from ATSR-1 (Lorenz, 1985; Prata and Turner, 1997); the determination of cloud top 

height from ATSR-2 (Muller et al., 2007); multi-layer cloud detection with ATSR-2 (Naud et al., 2007); 

and the potential for effective cloud top height and amount determination in polar regions (Cawkwell et 

al., 2001).  The evident focus on clouds is in part due to the specific ATSR instrument characteristics, 

which, in combination with stereo-photogrammetric approaches, give excellent cloud elevation 

assignment ability, and also in part due to the significant role of clouds in influencing the Earth’s 

radiation budget and the difficulty in their quantification and characterisation, leading to significant 

uncertainties in their overall impacts on the Earth’s climate.  The most recent report from the international 

panel on climate change (IPCC), assessment report five (AR5), predicts with a high level of confidence 

that a warming of between 1.5K and 4.5K would be required to restore the Earth to a state of climatic 

equilibrium (so that the amount of energy entering the Earth’s climate system is the same as that leaving) 

in response to doubling of atmospheric CO2 (Stocker et al., 2013).  The prediction uncertainty primarily 

arises in the feedback processes, the internal processes of the climate system that either amplify or 

dampen the effect of a climate forcing (Webb et al., 2006; Randall et al., 2007).  Of the climate feedback 

processes, the greatest uncertainty is associated with those of clouds.  In the 4
th

 IPCC report (Solomon et 

al., 2007) it was demonstrated that in the presence of three of the most critical feedback processes, that of 

water vapour, lapse rate and surface albedo feedbacks, the general circulation models analysed predicted 
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warming in the range of 1.9 K ± 0.15 K to restore climate equilibrium following a doubling of 

atmospheric CO2. When cloud feedbacks were incorporated into the same models the mean warming 

increased significantly as did the standard deviation to 3.2 K and 0.7 K respectively. This indicates a 

strong disagreement on the radiative impact of clouds on the Earth’s climate system.  Reducing this 

uncertainty has been identified by the IPCC as the key requirement for improving consensus between 

climate projections and therefore, gaining a better understanding of the future state of the climate 

(Randall et al., 2007). This topic is explored in far greater detail in chapter 4. 

Despite the cloud detection and height assignment capabilities of the ATSR instruments and the critical 

importance of improving understanding about the role of clouds in the climate system, none of the stereo-

photogrammetric studies undertaken with the ATSR instruments have been translated into the 

development of long-term cloud climatological datasets.  This lack of progression may be due to other, 

typically radiometric (whereas stereo-image matching is geometric), approaches for the retrieval of cloud 

properties generally experiencing greater favour within the scientific community (e.g. Fischer and Grassl, 

1991; Rossow and Gardner, 1993; Watts 1998; Wylie and Menzel, 1999; Menzel et al., 2008; Minnis et 

al., 2011; Poulsen et al., 2012).  However, stereo image matching derived cloud datasets from the ATSR 

instruments have much potential to contribute to the current understanding, by providing new and 

valuable insights into cloud characteristics.  This then leads to another research aim of this thesis, to 

generate the first long-term macrophysical (cloud and height and amount) cloud dataset from the ATSR 

instruments and to define the potential contributions which such a dataset may provide to the current suite 

of cloud climatologies. 

This final research objective of this thesis is to exploit ATSR data for the generation of new scientific 

datasets.  One such dataset (Fisher et al., 2013), conceived externally to this thesis, is the generation of 

stereo-derived smoke plume injection height observations from AATSR.  This new dataset was created as 

part of the ESA Atmosphere Land Interaction Study (ALANIS) Smoke plumes project.  This project 

aimed to improve the prediction accuracy of the TM5 CTM (Krol et al., 2005), through assimilation of a 

number of novel observational datasets, which included stereo derived smoke plume injection height 

(SPIH) estimates, over the Eurasian boreal regions from the Advanced-ATSR instrument.  The author’s 

main undertaking within the ALANIS project was the validation of the stereo-derived injection heights, 

and as such, that work forms the major part of the report given in this thesis.  Another avenue for the 

exploitation of ATSR data is offered by the tandem operation of ATSR-2 and AATSR, where the two 

satellites flew in a shared orbit separated by approximately 30 minutes.  This tandem operation offers the 

potential to extract wind motion and elevation to a high degree of accuracy through the tracking of cloud 

features across the ATSR imagery. Such observations of tropospheric winds are of significant importance 

in defining the current and predicting the future state of the atmosphere in modelling processes (e.g. 

Bormann and Thépaut, 2004). 
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1.3  Out l ine  

There are a total of seven chapters in this thesis, which are divided into two sections.  The first section, 

comprising Chapter 2 and 3, describes the ATSR instruments and the evaluation of stereo-

photogrammetric algorithms for application to them.  Chapter 2 in addition to describing each ATSR 

instrument also introduces a technique to correct for a co-registration problem between the nadir and 

forward views which is common to all three sensors.  Correction for co-registration errors is vital for 

effective stereo image matching, the basic principles of which are described in Chapter 3.  Furthermore, 

Chapter 3 also describes the particular challenges present in real world stereo matching scenarios, and the 

particular techniques and approaches which are employed to overcome these challenges.  This discussion, 

along with the finding from Hirschmuller and Scharstein (2009), is used to identify a robust stereo 

matching algorithm suitable for application to the ATSR instruments.  

Chapter 4, 5 and 6, which comprise the second section, document the exploitation of the work undertaken 

in Chapters 2 and 3 for the generation of new atmospheric datasets.  Chapter 4 focuses on the 

development and validation of a stereo derived cloud climatology over Greenland from the entire AATSR 

time-series.  This chapter describes the importance of observational cloud climatologies and includes 

extensive validation of the derived L2 AATSR stereo products against collocated, higher accuracy, CTH 

observations obtained from the stereo capable MISR instrument and the CALIOP lidar.  The L2 products 

are formed into stratified cloud fraction by altitude products, which are inter-compared against other 

observational cloud climatologies derived from various passive imaging systems.  Chapter 5 documents 

the validation effort of the smoke plume injection heights derived from AATSR for the ALANIS Smoke 

plume project.  As with Chapter 4, the validation is undertaken against higher resolution injection height 

observations from MISR and CALIOP.  In Chapter 6 the ATSR-2 AATSR tandem winds assessment is 

presented.  Various algorithms are evaluated for cloud feature tracking, and an optical flow algorithm 

which is capable of providing pixel resolution wind estimates is identified.  Assessment of the identified 

algorithm in terms of zero wind retrieval ability (i.e. ground shift analysis), and inter-comparisons of the 

outputs against reanalysis wind profiles are undertaken.  Finally, Chapter 7 reviews the major findings of 

the thesis and presents some recommendations for future work.                 
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2 ATSR 

2.1  In t roduc t ion  

The ATSR instruments, with the original mission goal of obtaining measurements of sea surface 

temperature to an unprecedented degree of accuracy (Handoll et al., 1991), have been applied to 

numerous additional scientific tasks throughout their period of operation.  Examples of such tasks 

include, but are not limited to: fire event mapping (Arino et al., 2001), aerosol retrieval (Thomas et al., 

2010), land surface temperature measurement (Ghent and Remedios, 2013), and, as is the focus of this 

thesis, applications of a stereo-photogrammetric nature (Lorenz 1985; Prata and Turner 1997; Denis et al. 

2007; Muller et al. 2007; Fisher et al., 2013).  The ATSR instruments have a time-series which extends 

from 1991 through to 2012, giving more than 20 years of observational data, which makes them an 

excellent platform for climatological observations.  Furthermore, a future mission based on ATSR, the 

Sea and Land Surface Temperature Radiometer (SLSTR), due for launch in 2014, will build upon the 

already extensive dataset.  Given their varied application and soon to be continued period of operation, 

the scientific importance of these instruments is evident.   

FIGURE REMOVED DUE TO THIRD PARTY CONFLICTS 

Figure 2-1.  ATSR instrument image and cutaway. Adapted from  Llewellyn-Jones et al. (2001) 
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In this chapter, the general and specific characteristics of the ATSR instruments will be introduced.  

Following this introduction, the other main focus of this chapter, improving the co-registration between 

the forward and nadir views of the ATSR instruments will be addressed.  Poor co-registration between the 

ATSR views is one of the main limitations of the instrument series for stereo-photogrammetric and other 

full resolution dual view scientific applications.  Therefore, whilst this work is carried out under the 

premise of providing more accurate stereo observations, it ultimately has consequences for any study 

which necessitates full resolution dual view imaging capabilities.  The ATSR co-registration methods and 

results presented in this chapter are also presented in a more concise fashion in Fisher and Muller (2013). 

2.2  The A long  Track  Scann ing Rad iometer  

The ATSR instruments (see Figure 2-1) acquired, near continuously, remotely sensed data of the Earth 

from the launch of ATSR-1 (Edwards et al., 1990; Mutlow et al., 1999) in 1991 on-board the ESA Earth 

Remote Sensing Satellite (ERS-1), through to 2012 when the Advanced-ATSR (Llewellyn-Jones et al., 

2001, AATSR) stopped sending data due to the failure of the Envisat satellite.  Amid ATSR-1 (1991-

2000) and AATSR (2002-2012), ATSR-2 (Mutlow et al., 1999) provided data from its launch in 1995 

through to 2008, and was carried on-board the ERS-2 satellite.  The ATSR time-series therefore covers 

more than 20 years of observations, and represents one of the longest-term observational satellite datasets.  

The three instruments share a common imaging geometry, comprised of a dual-view conical scanning set 

up (see Figure 2-2), with an initial observation in the forward direction along the satellite track at a 55° 

viewing zenith angle (decreasing to 47° viewing zenith angle at the edges of the forward scan).  Then, 

FIGURE REMOVED DUE TO THIRD PARTY CONFLICTS 

Figure 2-2. The ATSR viewing geometry.  Note that due to the conical scanning mechanism the 

resolution varies across the image cone angle. Adapted from Llewellyn-Jones et al. (2001).   
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approximately 120 seconds later (for the sub-satellite pixel), a second observation is at nadir at a viewing 

zenith angle of 2° (increasing to 22° viewing zenith angle at the edges of the nadir scan).  The raw 

scanned data comprise a 500km swath sampled across 371 overlapping pixels in the forward direction 

and 555 pixels in the nadir direction.  Both scans are resampled into the regularly gridded Envisat N1 

geo-referenced swath format, which has a final product nominal pixel resolution of 1km across a 512-

pixel swath for both views.  It must be noted however, that whilst the resultant swaths cover the same 

geographical extent, the observations from each view comprise different image resolutions across the 

field of view (FoV) as can be seen in Figure 2-3.   

The radiometric configuration of ATSR-1 comprises four channels at 1.6µm, 3.7µm, 11µm and 12µm.   

For ATSR-2 and AATSR, three additional visible/NIR channels at 0.55µm, 0.67µm and 0.87µm are 

available.  On-board calibration of the thermal channels is achieved using twin blackbodies at known 

temperatures, which are observed during each scan cycle giving brightness temperatures correct to 0.05˚K 

(Smith et al. 2001). The instruments also provide on-board visible channel calibration (Smith et al. 2002) 

and the visible channels are reported to be calibrated to an accuracy of better than 4% (Smith and Poulsen 

2008). This gives the ATSR instruments excellent long-term stability in terms of radiometric calibration.   

The ERS and Envisat satellites which housed the ATSR instruments were maintained in sun synchronous 

polar orbits, with a period of 100 minutes, a mean orbital altitude of ~800km, and a descending node with 

an equatorial overpass of 10:30 a.m. local solar time.    The repeat cycle for ERS-1 was dependent on the 

operational mode of the satellite and comprised of either 3, 35, of 168 day repeat cycles, and thereafter 

the general operational cycle became 35 days.       

   

Figure 2-3.  The left image is a histogram equalised false colour composite derived from an AATSR 

nadir view of the North African coast with the following channel combination, R: 0.87µm, G: 

0.67µm, B: 0.55µm. The right image is a histogram equalised false colour composite derived from 

the forward view of the same location using the same channel combination.  Note the differing 

resolutions of the two images, evidenced by an apparent blurring in the forward imagery.  (Taken 

from AATSR orbit: 32768, 6
th

 June 2008) 
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Absolute and relative geo-referencing accuracies are not well documented for all three instruments.  For 

ATSR-2, an absolute geo-location accuracy (i.e. relative to the Earth) of 2km is reported (Merchant, 

2003; Seiz, 2003), and similar accuracy is assumed for ATSR-1 and AATSR.  Relative geo-location 

accuracy, the accuracy of the registration between the forward and nadir views, is a known weakness of 

the ATSR instruments, with differences of greater than 2 pixels in some instances as shown in Figure 2-4 

(Seiz, 2003).  As will become clear in Chapter 3, accurate co-registration between the views is of critical 

importance for accurate stereo-photogrammetric measurements; the remainder of this chapter is therefore 

devoted to describing a technique which has been developed (also documented in Fisher and Muller, 

2013) to correct this short-coming of the ATSR instrument series.       

2.3  Forward  to  Nad i r  Co - reg is t ra t ion  

2 . 3 . 1  A T S R  C o - r e g i s t r a t i o n  P r o b l e m  

The ATSR co-registration problem was not identified for the first 13 years of the ATSR mission.  This 

lack of detection was probably due to the fact that most applications did not make use of the forward 

channel and those that did were mostly focused on low resolution, high accuracy SST applications (25km 

and lower) which did not necessitate accurate co-registration of the views (e.g. Handoll et al., 1991). 

The problem was first uncovered during analysis of oceanic eddy structures, where spurious edge effects 

were observed when differencing AATSR full resolution forward and nadir 3.7 µm observations 

(Embury, 2004 in Corlett et al., 2009).  Correction for these errors was achieved by shifting the forward 

view in both the across and along track directions by two pixels.  Whilst this led to a significant reduction 

in edge effects no analysis was performed to determine either the quality of the correction applied, or the 

suitability of the correction for application across the entire AATSR time-series.  Further histogram 

analysis on similar AATSR scenes attributed the co-registration error to an incorrect definition of the 

measured scan angle (Corlett et al., 2009).  The conclusion drawn was that this would lead to a roughly 

consistent offset of two pixels along track and two pixels across track between the forward and nadir 

 

Figure 2-4.  A colour composite from the North African coast comprised of R: AATSR nadir 

0.55µm, G: Null values, B: AATSR forward 0.55µm.  The apparent pink edges along the coast line 

are due to poor co-registration between the nadir and forward views.  (Taken from AATSR orbit: 

32768, 6
th

 June 2008)  
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views.  Again, no analysis of the accuracy of the proposed corrections or assessment of general 

applicability was provided. 

More recently a concerted effort to better understand the characteristics of the ATSR co-registration 

errors and provide a more rigorous assessment of their behaviour was undertaken by Casadio (2010).  

This study attempted to characterise the errors for all three ATSR instruments by cross correlation 

matching of six globally distributed islets with asymmetry relative to the instrument viewing geometry 

(i.e. circular in form).  A number of important findings were presented.  Firstly the along and across-track 

co-registration errors were found to have a high dependence on across-track position for all instruments 

and, in the case of ATSR-2 and AATSR, also on time.  Secondly, the co-registration error dependency 

was shown to be linear with time for all three instruments.  For ATSR-1, the change in error through time 

was shown to be less than a pixel.  For ATSR-2 and AATSR the error was found to vary by 

approximately a pixel through both mission time-series.  Thirdly, a parabolic across track error, 

dependent upon across-track position, was demonstrated for the AATSR instrument.  The magnitude of 

this error was shown to be around a pixel.  Lastly, the findings also presented slight channel dependent 

error variations, though the magnitudes never exceeded a fraction of a pixel.   

This most recent study has demonstrated that co-registration errors affect all three ATSR instruments, 

albeit presenting with different characteristics.  The following sections provide a description of a suitable 

method for obtaining globally (i.e. irrespective of location) applicable corrections for these errors and also 

a detailed statistical assessment of the improvements gained in co-registration following application of 

corrections.     

2 . 3 . 2  C o - r e g i s t r a t i o n  C o r r e c t i o n  M e t h o d o l o g y  

As ATSR data are resampled onto a regular rectangular grid the most appropriate method for correcting 

the errors in co-registration is through application of a raster based warp.  The standard approach for this 

technique is to locate corresponding image locations between the images to be co-registered. The 

correspondences are then used to derive a transfer function, which relates the raster coordinates in one 

image to those in another.  The approach can be split into a three-stage process:  the first step is to 

generate correspondence between the images to be warped - this is hereafter referred to as tie-pointing; 

following tie-pointing, the matched points can be used in a least squares minimisation to generate a set of 

polynomial warping coefficients - the transfer function; finally, the transfer function used with an 

appropriate interpolation method maps one image onto the raster grid of the other. 

2 . 3 . 2 . 1  A u t o m a t e d  t i e - p o i n t i n g  

Previous work, which provided improved ATSR-1 forward to nadir co-registration through such a three 

stage process as outlined above, employed dynamic programming to detect coastlines for use as a 

surrogate for tie-points (Shin et al. 1997).  Once detected, the coastlines were used to derive polynomial 

transfer functions for raster based warping of pre-corrected SADIST (Synthesis of ATSR Data Into Sea 

Surface Temperature; Bailey, 1994) imagery.  Whilst this method was shown to achieve pixel level 

accuracy, the coastline method employed does not provide a well-distributed set of tie-points throughout  
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Figure 2-5. This figure shows a diagrammatical representation of the feature detection and description 

process employed by the scale invariant feature transform (SIFT).  Similar processes are employed by 

the speeded up robust features algorithm (SURF), but they are highly optimised so are less intuitive 

when visualized.  The first stage in the process (a), involves detection of maxima through scale and 

space, this is represented in (b) through a feature centred inside the red circle.  The local 

neighbourhood around the feature is depicted in (c), and (d) demonstrates the type of information that 

is used to generate the feature descriptors used in the matching process. 
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the scenes to be co-registered.  This is essential for effective polynomial-based warping as it ensures 

accurate co-registration across the raster.   

In order to provide a better tie-point distribution, a state-of-the-art automated feature detection algorithm, 

Speeded Up Robust Features (SURF; Bay et al., 2008), is used in this thesis.  Image features are defined 

as highly characteristic pixels within the image.  In the case of SURF a feature pixel is defined as the 

maximum valued pixel within a local neighbourhood, and persists as a maximum within this 

neighbourhood through varying image scales
1
, where image scale is varied through application of box 

filters of differing dimensions.  A diagrammatical representation of this process for the scale invariant 

feature transform (SIFT; Lowe, 2004) which influenced SURF and many other similar algorithms is 

shown in Figure 2-5.  The first 1000 maxima detected by SURF when applied to AATSR imagery are 

shown in Figure 2-6. 

Once a feature pixel has been detected in the image and its raster coordinates recorded, its local 

neighbourhood is used to generate a scale and illumination invariant descriptive feature vector of 64 bits 

in length, referred to hereafter as a descriptor.  Scale and illumination invariance are important 

algorithmic qualities, as the ATSR instruments, due to the conical scanning geometry, have varying pixel 

resolution and viewing angles which lead to differing scale and illumination effects respectively.   

Matching of the SURF descriptors leads to the generation of a tie-point set between the forward and nadir 

views.  The matching is performed by first normalising the descriptors from each view to unit vectors.  

Once normalised the inverse cosine of the dot product is used as the distance measure.  For each 

                                                           
1 Scale can be thought of as being analogous to resolution 

 

Figure 2-6.  The first 1000 features detected by SURF from the nadir 0.55µm channel from the 

image presented in Figure 2-3. 
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descriptor from the forward view a comparison is made to every descriptor from the nadir view in order 

to evaluate potential matches, which can be written as follows, 

          ̂   ̂   Eq. 2.1  

Where  ̂  is the i
th

 descriptor in unit vector form from the forward view and  ̂ is a matrix of descriptors in 

unit vector form for every feature detected in the nadir view.  The vector    contains the costs between 

the i
th

 descriptor from the forward descriptor set and all nadir descriptors.    

Once the costs for the i
th

 descriptor have been computed, two straightforward quality control checks are 

performed.  This first check involves analysing the ratio of the two smallest costs contained within   .  If 

this ratio is above a certain threshold then the match is rejected, as the minimum descriptive vector is 

deemed insufficiently unique enough to provide a reliable match.  This process can be written as, 

 

Figure 2-7.  The effect of the matching threshold   and the good and bad SURF match probability 

distribution functions. This analysis was obtained from the scene presented in Figure 2-3.  This plot 

indicates that a threshold of 0.8 retains around 80% of the good matches, whilst rejecting around 85% 

of the bad matches. 
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Eq. 2.2 

Where the superscripts   and   denote indexes to the minimum and next smallest cost contained in    

respectively,   is a threshold which in this study is set to 0.8, and   is either 1 or 0 depending on the 

outcome of the test.  If   is 1 then the forward descriptor under evaluation is deemed to have suitable 

discriminability and the index   denotes the location of the matching descriptor contained within  ̂.    

This screening process, with   set to 0.8, has been shown to be very reliable removing up to 90% of 

erroneous matches, whilst retaining 95% of those which are correct (Lowe, 2004).  An analysis of the 

suitability of t=0.8 for the 0.67µm channel for the scene shown in Figure 2-3 is presented in Figure 2-7.  

The scene is of very low elevation terrain (<< 1km) and has been corrected using the derived co-

registration coefficients.  Given these conditions correctly matched SURF features should have disparities 

in both axes of less than 1 pixel.   This allows for the detection of incorrectly matched features (they will 

exhibit disparities of >1 pixel). The plot in Figure 2-7 demonstrates that a threshold of 0.8 excludes ~85% 

of bad matches (disparities of > 1 pixel), whilst retaining ~80% of good matches (disparities of < 1 pixel).  

The second check involves performing a left-right assessment, where the matching is repeated with the 

nadir and forward descriptors switched, i.e. the nadir descriptors are defined by  ̂  and the forward 

descriptors by  ̂.  If the same vector pairing is found matching in both directions then the match is 

deemed reliable and the raster coordinates associated with the descriptor are included as tie-points.  The 

 

Figure 2-8.  The first 100 matched tie-points between the forward and nadir AATSR views derived by 

SURF from the 0.55µm channels from the images presented in Figure 2-3.  Incorrect matches are 

generally indicated by those tie-point pairings that do not conform to the general consensus (i.e. lines 

which are not parallel).  It is evident from the above example that there no incorrect matches, i.e. all 

lines are parallel. 
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end result of the feature detection and matching processes is a set of tie-points which can be used to 

derive a warp between the forward and nadir views to provide improved co-registration.  An example 

output of this tie-point matching process is shown in Figure 2-8. 

2 . 3 . 2 . 2  T r a n s f e r  F u n c t i o n  

The tie-points are used to generate a warping function which maps the forward tie-point locations onto 

those in the nadir image using a least squares minimisation.  The first step in this process is to scale all 

tie-point coordinates to the range [-1, 1] in order to reduce the introduction of errors (NIMA, 2000).  The 

next step in the process involves determination of the number of trials required to obtain an optimal warp.  

Within a typical set of tie-points there are a very large number of potential tie-point combinations.  Some 

tie-point combinations will provide a better co-registration result than others; location of such 

combinations is therefore of great importance in ensuring the quality of the end result.  Testing all 

potential combinations is unfeasible; therefore the binning method from Tao and Hu (2001) is employed, 

where the image is divided up into bins, or neighbourhoods.  The number of tie-point combinations tested 

is dependent on the number of bins and the ratio of bins with tie-points to those without, it can be defined 

as,      

  
        

      
 
  

 
 Eq. 2.3 

Where,   is the number of trials/tests,   is the desired probability
2
 of the optimal tie-point subset being 

selected, here 0.99,   is the total number of bins containing tie-point populations, and   is the total 

number of bins.  Tie-point distribution is of critical importance, and this in turn is affected by the number 

of bins: too many bins and a poor tie-point distribution may lead to an infinite number of trials; too few 

bins may not effectively capture enough tie-point location variability to find the optimum warp.  

Therefore the number of trials is calculated for varying bin sizes (16
2
, 32

2
, 64

2
, 128

2
 and 256

2
 pixels), 

which in turn varies   and  .  The smallest bin size which leads to       is used. 

Once the number of trials has been determined, a pseudo-random subset of tie-points is selected, one tie-

point from each bin with a tie-point population.  Bins with a greater number of tie-points will have more 

likelihood of being selected, leading to non-random behaviour in the trialling process. Therefore the 

random bucketing technique of Zhang (1995) is employed.  This method ensures random selection 

through a weighting process where tie-points from more densely populated bins are assigned a lesser 

weight and therefore are less likely to be selected.  An example tie-point selection is shown in Figure 2-9. 

Once selected, the tie-points are used to determine a simple geometric relationship between the forward 

and nadir views in the form of a least squares derived polynomial transfer function.  The order of the 

polynomials used to derive the transfer functions for all three instruments are determined from the results 

given in Casadio (2010).  Linear behaviour in error was demonstrated in all cases in the study for ATSR-

1 and ATSR-2. Therefore, first order polynomials of the form, 

                                                           
2 For the effects of varying the probability see Table 1 in Tao and Hu (2001)     
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 Eq. 2.4 

are used, where   and   with a subscripted   are the nadir raster coordinates, and with a subscripted   the 

forward raster coordinates.  The coefficients   and   define the warp coefficients which relates any given 

nadir view pixel coordinate to its corresponding pixel coordinate in the forward view.  For AATSR, 

across track errors were shown to vary non-linearly depending upon across track pixel position (Casadio 

2010).  The non-linear behaviour is corrected for using polynomials of the form,   

                     
 

                      
  Eq. 2.5 

where the extra term corrects for such behaviour in the across track axis. The coefficients are determined 

by way of least squares minimisation,   

             Eq. 2.6 

where   contains the nadir view tie-point raster coordinates, and   is a vector of the corresponding tie-

point coordinates from the forward view raster.  The warping coefficients are contained in  . 

 

Figure 2-9.  An output from the random tie-pointing process.  The red dots are those features 

selected by the binning process as tie-points.  The blue points are those left unselected, and they are 

used as check-points to assess the quality of the warp. 
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To improve the quality of the end result   is computed twice.  In both iterations the coefficients in   are 

applied to both the nadir tie-points and the check-points (the unused tie-points in each bin) and compared 

to their respective locations in the forward image to assess the quality of the derived warp.  The first 

iteration is for screening purposes and the mean and standard deviation of the Euclidean distances 

between the warped nadir tie-point raster coordinates and their corresponding forward raster coordinates 

are calculated.  Any tie-point pair with a Euclidean distance of greater than 3 standard deviations from the 

mean is excluded from the tie-point set for the second iteration.  In the second iteration the tie- and check-

point RMSEs are calculated from the Euclidean distances and summed.  The   associated with the trial 

which minimises the summed RMSEs is the retained warp. 

Once the warp has been derived it can be used to transform the imagery from the forward view onto that 

of the nadir view.  This is achieved by using a nearest neighbour interpolation routine, 

 ̇      
    

   Eq. 2.7 

where  ̇ is the warped ATSR forward image,   is the original forward image and   
  and   

  are the nadir 

image   and   raster coordinates which have been warped by the appropriate parameters contained within 

 .     

2 . 3 . 3  T r a n s f o r m a t i o n  C o e f f i c i e n t s  

In this section the application of the automated tie-pointing and warping algorithm described above is 

discussed, the main consideration being selection of suitable scenes for deriving the transfer functions.  

Furthermore, once derived, an independent evaluation of the transfer functions is carried out using a 

pyramidal version of the Gotcha algorithm (Day and Muller 1989) which in various tests (Heipke et al., 

2007) has been shown to produce excellent, albeit very slow results. 

2 . 3 . 3 . 1  T h e  c o e f f i c i e n t s  

Due to the temporal variability (increasing along and across track errors through time) in the AATSR and 

ATSR-2 co-registration errors, yearly transformation functions, whilst not strictly necessary, are derived.  

For ATSR-1, the temporal variability is insignificant; therefore only one scene of forward and nadir views 

is required for the calculation of transformation parameters.   

To test its efficacy over different land surfaces, the SURF algorithm was applied to numerous scenes of 

differing land cover at low topographic elevations in the 0.55µm channel for AATSR and ATSR-2 and 

the 1.6µm channel for ATSR-1.  Low elevation (<800m) scenes with limited terrain variability were used 

to avoid the introduction of parallax
3
 effects during the transfer function derivation.  This led to a number 

of specific target regions being tested, namely the Pampas region in South America, the East European 

Plain, the West Siberian Plain and the coastlines of Libya and Egypt.  From this evaluation, scenes of 

Libya and Egypt provided both the greatest density and the best distribution of features amid all the 

scenes analysed. Scenes from these areas were therefore employed for the calculation of the 

                                                           
3 The proximity dependent shift in a feature when viewed from different viewing angles. See Chapter 3. 
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transformation parameters, and the scene used for the derivation of the 2008 coefficients is shown in 

Figure 2-3. 

Following scene selection, the method outlined in section 2.3.2 was applied to 512
2
 pixel images to obtain 

transformation parameters for each defined correction epoch.  This provided 20 sets of warping 

parameters for the correction of the co-registration errors present in the ATSR instruments, which are 

given in Table A1, contained in appendix A.  The subset size of 512
2
 pixels was chosen due to the 

processing requirements of other applications developed within this thesis – the stereo processing 

algorithm for example subsets each orbit into 512
2
 pixel chunks prior to processing. 

2 . 3 . 3 . 2  I n d e p e n d e n t  E v a l u a t i o n  

To provide an independent and automated method for measuring the quality of each transformation a 

pyramidal version of Gotcha algorithm, due to its excellent potential for sub-pixel accuracy measurement 

is employed.  Following application of the derived warp, pyramidal Gotcha, due to the underlying 

adaptive least squares correlation (ALSC) stereo matching algorithm (Gruen 1985), can be used to 

measure the co-registration quality in both axes at potentially every image pixel.  Images, which are 

perfectly co-registered and have had potential terrain elevation induced parallax effects removed, will 

exhibit a shift of zero pixels in both axes.    

For the 512
2
 pixel ATSR images, four image pyramid levels are used with the smallest resampled image 

being 64
2
 pixels.  Initial tie-point locations are then automatically selected at regular intervals (every 8 

pixels in this instance) across the image and matched using ALSC.  The ALSC algorithm has an effective 

convergence radius of ±3 pixels, i.e. if the shift is greater than 3 pixels then ALSC will not be able to 

measure it reliably.  The image pyramiding has the effect of reducing the disparity, e.g. a disparity of 16 

pixels at full ATSR resolution will be two pixels at the fourth pyramid level, allowing ALSC to converge 

to a solution effectively and with greater speed.  In order to evaluate every image pixel from the initial set 

of ALSC matched tie-points, a seed-growing algorithm is employed.  The seed-growing method supplies 

a priori disparity estimates to the ALSC algorithm from matched points in close proximity (typically 

distances of 1 pixel) to the pixel being matched.  These processes are iterated down the pyramid until the 

shifts are measured at full image resolution.   

Gotcha is slow, but due to ALSC provides sub-pixel accuracy (reportedly 0.01 pixels with well signalised 

points) and achieves good coverage.  It potentially provides an assessment of the co-registration quality 

across the entire scene, and not just at sparse feature locations (Otto and Chau 1989).  The results of the 

quality assessment for the warping parameters are given in Table 2-1and Table 2-2. 
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Table 2-1 - This table presents the results from the application of the P-Gotcha for each instrument and 

year for images of size 512 x 512 (262,144 pixels).  The images have had no correction applied. The X 

values are the statistics for the across track displacements between the nadir and the corrected forward 

view, all units are in pixels.  The Y values are the statistics for the along track displacements, again units 

are in pixels.  

    

 

X 

     

 

Y 

  

 RMSE Mean Std Bias Npts RMSE Mean Std Bias Npts 

AATSR           

2011 2.06 -1.65 0.93 -1.95 221729 1.86 -1.51 0.74 -1.70  221729 

2010 1.95 -1.61 0.82 -1.88 224812 1.85 -1.53 0.77 -1.80  224812 

2009 2.21 -1.63 1.19 -1.94 220426 1.83 -1.45 0.84 -1.73  220426 

2008 1.91 -1.56 0.85 -1.82 224864 1.77 -1.47 0.77 -1.71  224864 

2007 1.68 -1.25 0.86 -1.52 215678 1.71 -1.37 0.73 -1.66  215678 

2006 1.63 -1.16 0.86 -1.48 206915 1.74 -1.33 0.79 -1.68  206915 

2005 1.89 -1.20 1.17 -1.54 205172 1.69 -1.28 0.75 -1.64  205172 

2004 1.52 -1.11 0.83 -1.33 218915 1.59 -1.29 0.68 -1.54  218915 

2003 1.23 -0.94 0.64 -1.09 225420 1.72 -1.42 0.72 -1.66  225420 

2002 1.27 -0.68 0.87 -0.89 198683 1.69 -1.25 0.76 -1.65  198683 

ATSR2           

2003 2.77 -1.99 1.37 -2.61 200179 1.39 -1.00 0.68 -1.31  200179 

2002 4.45 -3.66 1.84 -4.34 220998 2.36 -1.96 0.92 -2.33  220998 

2001 3.66 -2.35 1.87 -3.48 176884 2.79 -1.81 1.41 -2.69 176884 

2000 2.43 1.78 1.40 2.10 226771 3.76 -3.1 1.68 -3.55  226771 

1999 0.80 -0.32 0.66 -0.38 226112 1.10 -0.81 0.57 -0.93  226112 

1998 1.24 0.85 0.7 0.99 225656 0.96 -0.7 0.55 -0.82  225656 

1997 0.65 0.47 0.38 -0.54 229246 1.19 -0.97 0.53 -1.11  229249 

1996 0.43 0.21 0.32 0.25 209749 1.26 -0.99 0.57 -1.25  209749 

1995 0.41 0.18 0.33 0.21 229941 1.43 -1.23 0.52 -1.40  229942 

ATSR1           

1994 2.31 1.86 0.99 2.24 218021   0.86 -0.27 0.74 -0.34 218020 
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Table 2-2- This table presents the results from the independent warping coefficient evaluation for each 

instrument and year for images of size 512 x 512 (262,144 pixels).  For the evaluation each warp is 

applied to the scene from which it is derived, the statistics being generated using the P-Gotcha stereo 

matching algorithm.  The X values are the statistics for the across track displacements between the nadir 

and the corrected forward view, all units are in pixels.  The Y values are the statistics for the along track 

displacements, again units are in pixels.  

    

 

X 

 

 

 

    

 

Y 

  

 RMSE Mean Std Bias Npts RMSE Mean Std Bias Npts 

AATSR           

2011 0.63 -0.08 0.38 -0.21 98039 0.6 -0.13 0.35 -0.34  98040 

2010 0.62 -0.09 0.38 -0.23 103330 0.5 -0.05 0.31 -0.15  103327 

2009 0.51 -0.11 0.33 -0.22 123132 0.40 -0.05 0.27 -0.12  123131 

2008 0.53 -0.07 0.34 -0.15 118889 0.37  0.02 0.24 0.04  118889 

2007 0.52 -0.60 0.31 -0.17 98763 0.42 -0.06 0.25 -0.15  98765 

2006 0.56 -0.10 0.35 -0.23 108316 0.45 -0.07 0.28 -0.17  108312 

2005 0.35 -0.08 0.31 -0.09 224378 0.25 -0.12 0.19 -0.14  224378 

2004 0.49 -0.12 0.32 -0.25 126365 0.38 -0.05 0.26 -0.11  126363 

2003 0.44 -0.09 0.31 -0.17 142942 0.36 -0.03 0.26 -0.06  142944 

2002 0.51 -0.08 0.33 -0.18 118135 0.37 -0.01 0.25 0.02  118135 

ATSR2           

2003 0.65 -0.22 0.51 -0.30 194874 0.45 -0.03 0.38 -0.04  194869 

2002 0.68 -0.22 0.54 -0.29 191935 0.30  0.01 0.26 0.01  191932 

2001 0.59 -0.24 0.46 -0.32 198802 0.41 -0.05 0.35 -0.07 198799 

2000 0.49 -0.11 0.39 -0.17 176679 0.37 -0.17 0.24 -0.27  176678 

1999 0.45 -0.09 0.32 -0.17 143475 0.37 -0.03 0.27 -0.05  143474 

1998 0.34 -0.07 0.27 -0.11 169619 0.22    0.01 0.18 0.01  169617 

1997 0.47 -0.22 0.32 -0.32 179194 0.40 -0.19 0.28 -0.28  179191 

1996 0.48 -0.09 0.32 -0.19 121422 0.38 -0.03 0.25 -0.06  121420 

1995 0.42 -0.09 0.31 -0.15 156896 0.36 -0.04 0.27 -0.07  156895 

ATSR1           

1994 0.38 -0.03 0.35 -0.03 215558 0.29 -0.09 0.25 -0.11 215560 



33 

 

2 . 3 . 3 . 3  D i s c u s s i o n  

The statistical analysis presented in Table 2-2 in demonstrates that when the warping parameters are 

applied to the scene from which they are derived, the co-registration error (RMSE) in both image axes is 

improved to pixel level of better.  This is a significant improvement in most cases over the co-registration 

quality in the uncorrected images as shown in Table 2-1. The evaluations are performed on at least 37% 

of the pixels within the 512x512 scenes used to derive the coefficients, giving good overall coverage and 

significantly more points than the tens of points used during the warping coefficient derivation.  The 

analyses show biases in both axes that are far less than the RMSE.  The cause of the biases is not fully 

understood, the along track bias is most likely due to the effects of terrain parallax, the cause of the across 

track bias is more challenging to determine.  This independent analysis of the warping parameters 

demonstrates that a suitable improvement in the co-registration between the forward and nadir images of 

the ATSR instruments to pixel level accuracy can be achieved using this automated correction approach.  

Further analysis of the warping coefficients is required to determine whether each of the derived warping 

parameters is able to provide a universal correction for the co-registration problem, and not just on the 

scene from which it is derived. 

2 . 3 . 4  G l o b a l  E v a l u a t i o n  

In order to provide an assessment of the global applicability, the transformation coefficients are evaluated 

at numerous sites distributed globally to determine whether the improvement in the co-registration is 

consistent at disparate locations.  Whilst complete global evaluation is unachievable due to the need for 

detectable features (e.g. the sea surface provides no features) to generate tie-points for evaluation, a 

number of orbits with a suitable spread of coverage in terms of longitude and with significant percentages 

of land mass are evaluated to assess the universality of the transformations.  To ensure suitable coverage 

complete days’ worth of orbits are selected giving up to 14 orbits of data per day, with good distribution 

globally.  To further improve coverage and to account for the effects of cloud cover reducing observable 

landmass, four days’ worth of orbits in each test year were selected.  With two days from Northern 

hemisphere summer and two from Southern, giving up to 56 orbits in total for each assessment.  The 

orbits were selected to give a good temporal distribution throughout each parameterisation period to 

check whether any decrease in the efficacy of a particular warp occurs through time and also to ensure 

that a suitable number of features are detectable (typically more features will be detected in Summer (i.e. 

snow free scenes). 

2 . 3 . 4 . 1  P r o c e s s i n g  C h a i n  

The global evaluation processing chain, implemented in IDL, processed the 4 days’ worth of orbits 

selected from each year of operation for each instrument to assess the performance of the associated 

transformation coefficients, the analysis being performed across all instrument channels.  

The first step in the processing chain involves segmenting each orbit into 512x512 pixel subsets for each 

channel.  Then, using the built in ATSR cloud flagging, the clear land percentage for each scene is then 

estimated; if at least 20% of the scene is clear land, processing is begun upon the scene.  The main 
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computational effort involves the application of the automated tie pointing.  Prior to the application of the 

tie-pointing, the forward image for each channel within the subset is warped using the appropriate 

transformation coefficients.  Following detection of tie-points, a number of screening steps, described in 

the following sections, are employed to ensure the removal of tie-points associated with cloud features 

and to account for the poor geo-location accuracy of the ATSR instruments. Following screening, the 

nadir and forward raster coordinates of each retained tie point pair are stored in addition to the spectral 

channel, the shift in pixels, and the latitudes and longitudes for further analysis.  A sample distribution of 

these points can be seen in Figure 2-10. 

2 . 3 . 4 . 2  C l o u d  S c r e e n i n g  

Cloud screening is vital to effectively assess the quality of the transformation in the direction of parallax 

(in the along track direction for ATSR).  Any cloud features, which are not screened lead to an 

overestimation of parallax and therefore introduce errors during statistical analysis of the improvement in 

co-registration.  The effects of clouds in the across track direction are dependent on the local winds 

(Denis et al. 2007) and again, can be a source of error during statistical evaluation.  To screen clouds the 

ATSR forward cloud-flag products are used.  To ensure as many cloud tie-points are removed as possible 

a smoothing filter is applied to the ATSR cloud mask to provide a buffering effect and remove features on 

the edges of clouds, which are generally problematic.  It was found that even after these cloud screening 

steps, clouds still contaminated some scenes leading to errors in the statistical analysis.  Therefore a 

further screening step is carried out through elevation normalisation of the along track results.  Once 

elevation normalised, any feature, which is more than 2 km above the surface, is discarded as cloud.  

2 . 3 . 4 . 3  E l e v a t i o n  N o r m a l i s a t i o n  

To effectively evaluate the improvement in along track co-registration the parallax effects introduced by 

terrain need to be removed.  This is achieved by converting a digital elevation model (here GETASSE30) 

 

Figure 2-10.  Example assessment locations, where a black point indicates an assessments, for the 

2008 AATSR global applicability assessment.  The tie-point distribution provides reasonable 

coverage over all major landmasses with the exception of Antarctica 
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height for each matched feature into a disparity using an inverse ATSR camera model
4
 (Denis et al., 

2007).  This value is then subtracted from the matched features’ along track disparity, leading to an 

elevation normalised result. 

Unfortunately, for the ATSR instruments, regions with rapidly and significantly varying terrain elevations 

lead to ambiguities in the elevation normalisation process. This is due to the quality of the instrument’s 

geo-referencing (here assumed ±2 pixels).  Therefore, an approach is adopted which excludes from 

further evaluation all tie-points located on terrain that varies above a pre-set threshold.  The threshold 

limit is defined as any pixel whose terrain gradient rate of change is outside the range ±0.5 km.  The 

gradient is determined by calculating the second derivatives of a GETASSE30 1km resolution digital 

elevation model (DEM) which has been geographically collocated with the image.   The DEM image 

second derivatives in the x-axis are found using, 

                                    Eq. 2.8 

and similarly for the y-axis using, 

                                    Eq. 2.9 

where   is the DEM and       are the DEM pixel coordinates.  A gradient outside ±1 is deemed 

unacceptable, as it indicates a rate of gradient change over the pixel that would lead to a greater than 1 

pixel displacement due to the effects of elevation parallax. This is greater than the given accuracy 

requirement of the transformation (<=1 pixel), and would introduce errors into the statistical analysis.  

Hence ±0.5 was chosen as an acceptable limit, as it does not remove too many regions from the 

transformation parameter quality assessment and maintains confidence in the analysis.  As the geo-

                                                           
4 A camera model defines the instrument viewing geometry.  See Chapter 3. 

 

Figure 2-11.  This figure shows the elevation screening process.  The left most image is the input 

DEM scene of the Himalayas and Tibetan Plateau.  The central image contains the y derivatives 

computed using Eq. 2.9.  The right image is the buffered mask generated from both the x and y 

derivatives, where any pixel with a rate of change of greater than 0.5km in either axis is screened 

off (here represented as a black pixel)    
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location accuracy of the ATSR instruments is ±2 pixels, a buffer of the same dimension is applied around 

those pixels that demonstrate a gradient greater than the threshold.  This ensures the robustness of the 

elevation normalisation process and hence, of the statistical evaluation.  The masking process is presented 

visually in Figure 2-11. 

2 . 3 . 5  R e s u l t s  a n d  A n a l y s i s  

The results output from the global evaluation for each warping coefficient provide a large number, in the 

hundreds of thousands, of worldwide distributed tie-points between the nadir and warped forward views, 

along with associated latitudes, longitudes, elevation and the channel from which the tie point is obtained.  

To analyse such a large number of data points, it is preferable to combine the results where possible to 

provide single statistical measures of the overall quality of the warp.  The appropriate statistical measure 

for the task is the RMSE along with a measure of bias to check for introduction of potential trends into 

the warped data. 

To generate a more manageable dataset, the channels are first analysed separately for each instrument and 

its year of operation to check for any large differences in the quality of the co-registration across bands.  

Assuming no large variations in co-registration quality and behaviour occur between each channel then 

the channels for each instrument and year of operation are combined for further analysis.  Searching for 

trends in the errors as a function of longitude or latitude is the next step.  The warping coefficients must 

be applicable with similar quality to all latitudes and longitudes.  Therefore in this analysis, divisions of 

the points along lines of latitude and longitude are made to search for any behaviour which would 

indicate that the warping parameters are not applicable globally.  The analysis could have been further 

split to assess the individual days, which make up each yearly test epoch, to check for higher resolution 

temporal variability in the co-registration quality.  However, this is deemed unnecessary here as if one 

day’s worth of orbits within the assessment are significantly different then the outlying points would have 

a strong impact on the overall RMSE leading to their detection 

2 . 3 . 5 . 1  A n a l y s i s  b y  C h a n n e l  

Firstly, analysis by channel was performed for each instrument and year. This was done to check for any 

significantly different behaviour in the errors between channels for the corrected scenes.  An RMSE and 

bias value is derived from all measurements for each epoch for each instrument.  The results from this are 

presented in Figure 2-12.  Looking first at the outputs from the AATSR analysis, the RMSE values for all 

channels and years are below 0.8 pixels and all biases are within the range -0.5 to 0.0 pixels for the along 

track (Y) error and within the range -0.5 to 0.5 pixels for the across track (X) error.  The RMSE and bias 

for each year for AATSR tend to be clustered within 0.2 pixels, showing that there is limited variation in 

error across channels.  This permits combined channel analysis for assessing the behaviour of the error 

with varying latitude and longitude.   
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Figure 2-12.  These six plots show the across (X) and along (Y) track co-registration errors by 

channel for each of the ATSR instruments as determined by the global assessment.  The left column 

contains the across track errors and the right column the along track.  The top two plots are for 

AATSR, the middle two for ATSR-2 and the bottom two for ATSR-1. 
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The middle two plots in Figure 2-12 present the channel results from ATSR-2.  Looking firstly at the 

along track error it is evident that from 2000 the RMSE is greater than 1 pixel and the bias is approaching 

-1 pixels.  This increase in RMSE and bias from 2000 is also evident at even greater magnitudes in the 

across track analysis, with the 2002 results presenting RMSE and bias values of around 3 pixels.  

However, the channel results are again generally well clustered in terms of the behaviour of the error for 

each year.  Therefore combining the channels for analysis is permissible. 

The bottom two plots are for ATSR-1 as only two years of analysis are presented due to the limited 

variability of the error through time.  For the analysis, the first year of operation, 1992, and a later year, 

1996, are assessed following application of warping parameters derived for scenes from 1994.  The along 

track assessment shows RMSE values of less than 1 in both instruments and bias values between -0.5 to 

0.5 pixels.  For across track errors, similar results are presented.  The clustering of the results for each 

year for ATSR-1 is not as apparent as for the other two instruments. However, the error does not vary by 

more than a fraction of a pixel so the channels were combined for further analysis. 

2 . 3 . 5 . 2  A n a l y s i s  b y  L a t i t u d e  

For latitudinal analysis the channel results for each instrument and its year of operation were combined 

into 15˚ intervals from 90˚ S through 90˚ N.  The results from this output are given in Figure 2-13; again 

with RMSE on the y-axis and bias on the x-axis, colour denotes latitudinal group and symbol the year of 

operation.  The AATSR along track plot shows that in general the RMSE is below 1 pixel and the bias 

varies between ±0.5 pixels.  The main digression occurs at higher latitudes denoted by darker colours.  

The RMSE at higher latitudes approaches closer to, and in some cases exceeds 1 pixel.  Whilst the bias 

tends to be positive, at lower latitudes, negative biases are exhibited.  The across track error presents 

similar behaviour, with the biases having a more equal distribution with no noticeable latitudinal effect. 

The ATSR-2 results show much more complex behaviour with a large proportion of the results having 

RMSE and bias values greater than 1 pixel.  The along track RMSE and bias values do not show much 

latitudinal dependence, rather those points with more significant errors come from the instrument years 

post 2000.  Prior to 2000, the darker coloured points indicating matches from higher latitudes do show 

larger deviations from zero in terms of RMSE and bias, as is also shown for AATSR.  The across track 

errors show much more extreme behaviour with RMSE and bias approaching deviations from zero of ±5 

pixels for the instrument post 2000.  Prior to 2000 the results are more clustered within the range ±1 

pixels for RMSE and bias.  However, outputs from 1995 and 1999 do present some points with RMSE 

scores and biases of greater than ±1 pixels with some of the points indicating origination from lower 

latitudes.   

For ATSR-1 the results are more consistent with AATSR, with the majority of scores from lower 

latitudes for both across and along track analysis showing values within the range ±1 pixels for both 

RMSE and bias.  

2 . 3 . 5 . 3  A n a l y s i s  b y  L o n g i t u d e  

For longitudinal analysis the channel results for each instrument and its year of operation were combined 

into 30˚ intervals from 180˚ E through 180˚ W.  The results from this analysis are plotted in Figure 2-14 
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Figure 2-13.  These six plots show the combined channel across (X) and along (Y) track co-

registration errors by latitude for each of the ATSR instruments as determined by the global 

assessment.  The left column contains the across track errors and the right column the along track.  

The top two plots are for AATSR, the middle two for ATSR-2 and the bottom two for ATSR-1. 
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with the same setup as for the latitudinal analysis but the colours represent longitude rather than latitude.  

Looking firstly at AATSR along track co-registration, the results are well distributed with no apparent 

longitudinally dependent trends exhibited.  The RMSE is below 1 pixel for all measurements and the bias 

is generally in the range -0.5 to 0.0 pixels.  For the across track co-registration, again all scores are below 

1 pixel for the RMSE and the bias is distributed through the range ±0.5 pixels.  

ATSR-2 exhibits similar behaviour in its along track RMSE and bias scores as presented in the latitudinal 

along track analysis with the post 2000 scores being generally greater than 1 pixel in terms of RMSE.  

The same can be said for the across track analysis, with large deviations from zero being present in the 

score post 2000 and some results from 1995 and 1999 showing co-registration quality outside of that 

specified for sub-pixel accuracies.  

For ATSR-1 the along track longitudinal results have bias scores which are typically less than 1 pixel and 

biases in the range ±0.5 pixels.  One score from 1996 for matched points located in the longitude range 

150-180˚ W shows slightly greater RMSE and bias than the other longitudes/years.  The across track 

RMSE and bias scores are generally below 1 pixel and in the range 0.5 to 0.0 pixels respectively. 

2 . 3 . 6  D i s c u s s i o n  

The results of the global analysis present a number of interesting findings with significant implications 

for the application of the warping coefficients globally.  Overall, the AATSR warping coefficients 

perform very well for correcting the co-registration errors between the nadir and forward views in both 

the along and across track directions.  The combined channel analysis shows limited variation between 

channels with each year clustered with similar bias values.  The RMSE scores are quite consistent across 

years with values in the range 0.8 pixels (±0.15 pixels) for the corrected scenes.  The longitudinal analysis 

demonstrates an apparent drop in performance in the ability of the warping coefficients to improve the co-

registration at higher latitudes, most notably in the southern hemisphere below 60˚.  The drop in 

performance can be attributed to a number of other factors rather than a decline in the quality of the co-

registration.  The most significant of these factors is the limited amount of landmass in the southern 

hemisphere below 60˚.  This leads to fewer points being matched allowing outliers to affect the statistical 

analysis to a greater degree.  Further, the land mass is relatively spectrally homogenous especially in 

southern hemisphere winter.  As the matching algorithm is based on image texture, homogenous regions 

lead to an increase in the number of mismatched points and points with low texture are challenging to 

remove through the ALSC quality assessment algorithms.  Thus more mismatched points are likely to be 

present at these latitudes.  Lastly, poor AATSR cloud masking in these regions further exacerbates the 

problem.  However, considering, these challenges the overall quality of the matched points at these 

latitudes is not significantly greater than 1 pixel indicating that the majority of the points are likely to be 

good matches. This demonstrates that the algorithm correction is still performing well in these regions.   

The biases for high quality sets of measured locations (i.e. at latitudes below ±60° of latitude) in the 

across track direction is below ±0.3 pixels for AATSR indicating high confidence in the quality of the 

results.  The biases for the along track are shifted with the high quality measured locations in the range - 
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Figure 2-14.  These six plots show the combined channel across (X) and along (Y) track co-

registration errors by longitude for each of the ATSR instruments as determined by the global 

assessment.  The left column contains the across track errors and the right column the along track.  

The top two plots are for AATSR, the middle two for ATSR-2 and the bottom two for ATSR-1. 
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0.1 to -0.7 pixels.  These biases are attributable to the elevation normalisation process and the algorithms 

and parameters it employs.  The main cause is likely to be the Mannstein camera model, which is used to 

convert the DEM height for each feature location in the nadir image into a disparity to provide the 

elevation normalisation.  This camera model in another study (Denis et al. 2007) was shown to provide 

differing elevation values from a reference DEM, with a tendency to underestimate the disparity value 

that the elevation corresponds to, particularly for lower heights (< 3km).  This leads to the slight 

underestimation of the elevation disparities used in the elevation normalisation process and hence leads to 

the introduction of the negative bias.  In the independent study performed on low lying terrain (where no 

camera model was applied) presented in section 2.3.3.2, the biases were more in line with a suitable range 

of deviations from zero to -0.2 pixels.  The larger negative biases in the along track direction can be 

attributed to the normalisation process and not any defect in the warping coefficients. 

The improvement in co-registration for ATSR-2 is more variable, with certain years performing very 

poorly both across and along track.  Focusing firstly on the years when the warping coefficients perform 

adequately, similar conclusions on quality can be made to those given for AATSR.  Though the only 

years where the co-registration is improved to acceptable levels are 1996, 1997 and 1998.  The across 

track individual channel results for 1995 and 1999 have an RMSE value of just greater than 1 pixel. 

However, the bias is also around -1 pixel the cause of this is not currently understood.  For the years from 

2000 onwards, there is a distinct drop in performance of the warping coefficients.  This is not entirely 

unexpected and can be explained by ERS-2 operating in mono- gyro mode from January 2000 (Accica 

and Goryl, 2002).  Seiz (2003) also showed that this has a significant effect on the co-registration 

between the nadir and forward views, although very few scenes were assessed.  Here, we have shown that 

the co-registration for ATSR-2 for years following 2000 is not correctable using a single set of warping 

coefficients and corrections will have be undertaken on an orbit by orbit basis. 

For ATSR-1, an incomplete time series analysis was performed, however the years analysed and the 

findings from Casadio (2010) can be used to confirm that the warping coefficients will provide at worst 

pixel-level correction to the co-registration errors both along track and across track for the entire ATSR-1 

data set.  The along track channel analysis found the assessed channels (1.6µm, 11µm and 12µm) co-

registration was improved to sub-pixel level accuracy, with RMSE scores below 0.9 pixels and biases in 

the range ±0.4 pixels.  Similar results were found in the across track analysis.  In the latitudinal analysis 

similar results were found both along and across track as for AATSR, with latitudes below -45˚ exhibiting 

greater errors, leading to the same conclusion as given for AATSR.  One unexplained outlier is present in 

the across track co-registration error for 1992 for the latitudinal range 0-15˚, the cause of which is likely 

to be mismatched points in the global assessment.  For longitudinal analysis, the across track errors have 

RMSE less than or very close to 1 pixel and the biases are in the range -0.5 to 0.0 in the majority of cases.  

For the along track longitudinal analysis, all of the points bar one are sub-pixel in terms of RMSE and the 

bias for these points range between ±0.5.  The outlying point is for the longitudinal range 150-180˚ W for 

1996 and has an RMSE of near 1.2 pixels and a bias of 0.7.  Whilst these values are not exceptional they 

can be used to explain the poor quality of the longitudinal co-registration assessment results in certain 

regions.  Similar to the cause of errors in latitudes below 60˚ S, certain longitudes have limited land-mass 

leading to poorer results in certain geographic regions. 
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2.4  Chapter  Summary  

This chapter has introduced the ATSR instrument series.  Furthermore, driven by the necessity to perform 

accurate stereo-photogrammetric measurements from ATSR, an automated method for correcting the co-

registration errors present in the instrument datasets to, at worst, pixel level accuracy has been described 

(see also Fisher and Muller, 2013).  The approach developed employs an automated tie-pointing 

algorithm based on the SURF algorithm, followed by application of polynomial derived warping 

coefficients.  This technique has been employed to derive yearly warping coefficients from the 0.55µm 

channel for both AATSR and ATSR-2 and a single set of coefficients from the 1.6µm channel for ATSR-

1.  The quality of each warp has been evaluated independently on the scenes used for their derivation to 

provide an initial performance assessment.  In this initial analysis, the automated tie pointing and warping 

methods were shown to perform well, with the imagery being effectively co-registered to pixel level 

accuracies.  A global analysis on a subset of orbits has also been undertaken to assess whether the 

warping coefficients provide suitable corrections universally for each instrument and year or mission 

period.  This analysis shows that for AATSR the derived coefficients work well in all instances and the 

method provides a suitable correction to the co-registration.  For ATSR-2 the corrections work well in 

most cases pre-2000.  For ATSR-1 the derived coefficients work effectively for both test years and 

provide a suitable correction for the co-registration. 
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3 STEREO-PHOTOGRAMMETRY  

3.1  In t roduc t ion  

Stereo-photogrammetry is the art of using stereo overlapping images with known imaging geometry to 

obtain 3D information about the objects contained within the scene under observation (Barnard and 

Fischler, 1982).  It has wide ranging application. Since its inception is has been applied extensively in 

topographic mapping tasks (Panton, 1978; Day and Muller, 1989; Hirano et al., 2003) and more recently, 

with advances in computational power, automated navigation systems in robotics (Murray and Little, 

2000), object recognition (Helmer and Lowe, 2010), and also in the generation of global environmental 

datasets from satellite imagery (Moroney et al., 2002; Muller et al., 2002; Nelson et al., 2008; Martin et 

al., 2010).  It is the latter of these applications which is of interest in this thesis, with Chapters 4 through 6 

examining the application of stereo-photogrammetric techniques to the ATSR instruments for various 

tasks within the field of atmospheric sciences.   

Section 3.2 introduces the critical concepts of stereo-photogrammetry: the imaging system, the stereo 

matching algorithm, and the camera model.  Of these three aspects, in many ways the most important is 

the matching algorithm and this, therefore, is where the majority of research occurs in stereo-

photogrammetry: stereo matching algorithm development.  Section 3.3 reviews the main stereo matching 

challenges encountered in this thesis, covering those caused by the ATSR instruments and those caused 

by the environment, in order to demonstrate why the majority of stereo matching algorithm development 

and assessment studies are often inappropriate in terms of assessing real-world applicability.  A pertinent 

real-world assessment study by Hirschmuller and Scharstein (2009) is then reviewed in order to select an 

algorithm well suited to the stereo matching tasks undertaken in this thesis.  The algorithm chosen, due to 

its excellent robustness to image radiometric variability and reduced propensity to introduce smoothing 

artifacts, is the census algorithm (Zabih and Woodfill, 1994).            

Section 3.4 introduces the three algorithms applied in thesis, M4 (Muller et al., 2007), the census 

algorithm, and M6 (Fisher et al., 2013).  The introductions provide algorithm design considerations and 

mathematical descriptions.  Following their description two assessments are undertaken in section 3.5.  

The first looks at the implications of critical stereo matching parameters on the performance of M4 and 

census.  The second provides a brief inter-comparison study between all three algorithms and a state-of-

the-art DEM in order to provide an initial assessment of their capabilities when applied to AATSR data.        
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3.2  Stereo Photogrammetr ic  Concepts  

3 . 2 . 1  T h e  I m a g i n g  S y s t e m  

The stereo photogrammetric technique relies on the principle of parallax in order to obtain three-

dimensional measurements of an object.  Parallax is the apparent change in relative position of a 

stationary object when viewed from different positions (Lillesand et al., 2004).  Objects which are closer 

to the observation plane demonstrate a larger parallax than those more distant (see Figure 3-1), and it is 

this phenomenon which can be used to determine the distance of an object from the sensor, or conversely, 

above a reference datum such as an Earth ellipsoid.   

 

 

 

FIGURE REMOVED DUE TO THIRD PARTY CONFLICTS 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. This figure, adapted from Lillesand et al. (2004), demonstrates the concept of parallax. 

The two images in the figure are obtained from different locations,   and   . These images overlap 

and both observe features   and  , with   being nearer to the observation plane than  .  Due to 

greater proximity and the parallax effect, the displacement between   and   , the locations of   in 

each image, is greater than that observed between   and   , the locations of     These 

displacements, being elevation dependent in terms of magnitude, can be used to infer 3D location.        
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Satellite imaging systems, such as the ATSR instruments, are located in fixed orbits.  This makes 

obtaining views from differing positions challenging.  There are a number of ways of surmounting this 

problem; the most common approaches being imaging systems either with moveable optics or, 

alternatively, multi-view/multi-angle setups, preferably along-track.  The ATSR instruments employ the 

latter, with a dual view conical scanning arrangement. To demonstrate ATSR’s capability, a stereo image 

pair of the Himalayas from AATSR is provided in Figure 3-2 and the strong parallax effect caused by the 

extreme elevation of the mountains is evident between the forward and nadir views.   

One critical aspect of a stereo capable imaging system is that its design, specifically the instrument base-

to-height ratio, impacts on the potential accuracy with which the measure of parallax can be obtained.  

The base-to-height ratio for a satellite-borne sensor is the distance between the stereo acquisitions, the 

base, divided by the elevation of the satellite above an Earth ellipsoid, the height.  This ratio determines 

the amount of parallax features exhibit in the obtained stereo imagery (Lillesand et al., 2004).  Small 

base-to-height ratios lead to limited parallax induced displacement between the images, reducing the 

potential accuracy with which the distances can be measured.  Large base-to-height ratios will exhibit 

large parallaxes, which in turn may lead to excessive projective distortion of the imagery between 

acquisitions and therefore also lead to an accuracy reduction.  Many stereo photogrammetric imaging 

systems (Hirano et al., 2003; Li and Liu, 2004) have base-to-height ratios of between 0.5 and 1, as this 

provides a suitable trade-off.  The ATSR instruments have a base-to-height ratio which varies between 

0.7 and 1.2.  This variation is due to the conical scanning operation of the instruments which causes the 

base separation to vary between ~560km and ~960km depending on across track position.   

 

Figure 3-2.  The left image is a false colour composite (R: 0.67µm; G: 0.87µm, B: 0.55µm) derived 

from AATSR nadir view for orbit 36473.  The red triangle within the image is Mount Everest.  The 

right image is the same but observed from the forward view.  The first observation that can be made is 

the displacement of the mountainous features in a Southerly direction due to the parallax effect.  

Another observation is the blurred appearance of the AATSR forward view; this is due to the reduced 

resolution of this view.  The final observation is the increased haze in the lower Eastern half of the 

forward view; this is due to an increased atmospheric path length.  The latter two effects can have 

significant impacts on matching accuracy and are considered in depth in this chapter.      
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In combination with the instrument spatial resolution and the accuracy of the stereo matching algorithm, 

the base-to-height ratio can be used to estimate the instruments stereo height retrieval accuracy as 

follows, 

    
 

    ⁄
   Eq. 3.1 

where   is the base distance between acquisitions in metres,   is the height of the instrument in metres,   

is the accuracy of the stereo matching algorithm in pixels,   is the instrument resolution in meters, and    

is the achievable height accuracy also in meters.  For the ATSR instruments    varies between 830m and 

1430m for pixel level stereo matching accuracy (Seiz, 2003).      

3 . 2 . 2  T h e  S t e r e o  M a t c h i n g  A l g o r i t h m  

Given a stereo capable imaging system, an image processing technique is required to obtain measures of 

parallax; this technique is referred to as stereo image matching.  The aim of any stereo matching 

algorithm is to locate corresponding image locations (i.e. pixels) in the stereo imagery.  Once 

correspondences have been found, the pixel-wise distance between them in the parallax direction is the 

measure of parallax.  Assuming the direction of parallax is in   axis, in the along-track direction, as is the 

case for the ATSR instruments, then parallax can be defined as     

      
    

  Eq. 3.2  

where    is the observed parallax at image location  , and is determined by differencing   
 , the  -

coordinate at the location of   in  , the reference stereo image, and   
  the  -coordinate at the location of 

  in  , the comparison stereo image.  The conical scanning geometry of the ATSR instruments, and the 

associated azimuthal angle variation, does not invalidate Eq. 3.2 for the determination of parallax with 

ATSR.   This is due to parallax displacements occurring only parallel to the line of flight (Lillesand et al., 

2004), that is the along-track direction for ATSR.  To assess whether this assertion is accurate for ATSR, 

an inter-comparison has been made with collocated AATSR and CALIOP observations used in an 

accuracy assessment analyses undertaken in Chapter 4.  In the analysis undertaken here the effect of 

AATSR across track pixel number on the stereo CTH retrieval is used as a proxy for assessing azimuth 

angle effects, as pixels nearer the swath edges are observed from greater azimuth angles.  If azimuth 

angle has an effect on the stereo retrieval then it would be expected to result in some form of non-linear, 

parabolic, behaviour as a function of across track pixel when compared against the higher accuracy 

CALIOP observations.  The plot shown in Figure 3-3 demonstrates for the measure of bias that no such 

behaviour occurs, rather there is a linear change in bias of ~100m across the AATSR swath.  Other 

statistical measures (RMSE and standard deviation) assessed also demonstrated linear behaviour as a 

function of across track pixel.   
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The measure of parallax is often referred to as disparity, especially when it relates to imaging arrays 

(Marr, 1982).  The concept of a disparity can be broadened to include displacements not only in the 

direction of parallax, but also in the orthogonal axis.  For ATSR, these  , or across-track, disparities are 

important, as they can be used to measure other atmospheric variables, such as across-track wind speed, 

as demonstrated in Chapter 6.  For ATSR, two distinct disparity maps can therefore be generated, one for 

the along-track direction to measure elevation induced parallax, and another for the across-track direction 

to measure displacement effects, such as wind from cloud tracers. 

Accurately measuring disparity is a challenging and very computationally expensive task, and as such, 

there is a voluminous body of work on the development of stereo matching algorithms that are able to 

achieve this feat effectively and efficiently (http://vision.middlebury.edu/stereo/; Scharstein and Szeliski, 

2002).  Stereo matching algorithms can be split into three main groups: feature based methods (Bolles et 

al., 1993; Hsieh et al., 1992), local (or window based) methods, and global methods (Scharstein and 

Szeliski, 2002).   

Feature based methods locate and match features, such as corners, edges, or other points of “interest”,  

between stereo imagery using algorithms such as SURF introduced in Chapter 2.   The matched features 

are used to generate measures of disparity.  Once measures of disparity have been obtained at feature 

points, interpolation routine such as Delaunay triangulation are employed to fill in unobserved locations.  

Feature based methods do not perform effectively when applied to the atmospheric stereo tasks. This is 

due to the interpolation schemes employed assuming the presence of continuous surfaces, which is 

commonly not the case.  For example, assume the simple situation of an along-track disparity observed 

for a cloud feature, and another for a nearby land feature.  Assuming a linear interpolation routine is 

employed to generate the unobserved disparities between the two features, the disparities from the cloud 

 

Figure 3-3. This plot shows the biases observed between collocated AATSR 11 micron channel stereo 

cloud top heights and CALIOP cloud top layer observations across the AATSR swath. The number of 

samples is the total AATSR to CALIOP collocations for the given across track pixel (on average 60 

collocated observations per AATSR pixel). The behaviour of the bias between the AATSR and CALIOP 

observations is linear as a function of across track pixel, as demonstrated by the best fit line.   The data 

employed comes from the AATSR inter-comparisons undertaken against CALIOP in chapter 4.     

http://vision.middlebury.edu/stereo/
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to the land feature would decrease linearly, which is unlikely to be an accurate physical representation.  In 

order to generate an accurate interpolation result, a feature would be required on each side of the 

land/cloud boundary.  This requirement may not always be fulfilled leading to poor interpolation results. 

For this reason feature based stereo algorithms are not considered for the atmospheric applications 

undertaken in this thesis.   

The local methods which encompass the second group of algorithms, are able to more effectively 

represent the piecewise smooth (smooth, but not continuous) surfaces typically found in atmospheric 

stereo tasks, as they attempt to generate a disparity observation for every pixel, thus avoiding 

interpolation errors.  To generate correspondences, local methods generally employ three distinct 

computational stages: cost computation, cost aggregation, and disparity assignment (Scharstein and 

Szeliski, 2002).  Cost computation involves assessing some metric computed between a patch of pixel 

values taken from the reference image,    against a patch of pixel values from the comparison image,   .  

The most commonly employed metrics include the sum of absolute differences, ∑|     |, and the sum 

of the squared differences, ∑        .  The chosen metric is computed at varying disparities, the range 

of which is defined by a search window (either in one or both axes) in the comparison image.  For each 

disparity assessment a cost aggregation step is typically performed.  This generally involves a summing 

or averaging of the costs over a finite window, effectively applying a smoothness constraint to the costs 

and therefore, the disparities (Scharstein and Szeliski, 2002).  This smoothing helps reduce noise in the 

resultant disparity maps.  The final step, disparity assignment, involves assessing all the disparities and 

associated aggregated cost results for a given pixel and defining the disparity with the optimal cost.  

There are numerous methods employed to achieve this, the most basic is winner takes all (WTA) where 

the disparity associated with the minimum cost is selected, based on the assumption that the minimum 

cost indicates the best match.  More complex techniques can be employed to find sub-pixel disparity 

estimates using interpolation between cost values.       

Global stereo algorithms, the final group, attempt to minimise some cost function over the entire image 

rather than for windowed subsets as with local algorithms.  The cost function is generally comprised of 

two separate terms, one associated with the data and another associated with smoothness (Scharstein and 

Szeliski, 2002).  The data cost term is computed using methods similar to those employed by local 

algorithms.  The smoothness cost term is typically determined by comparing the gradients of either the 

disparities or pixel intensities within the local neighbourhood of each pixel.  The challenge of global 

methods arises in finding a global solution which minimises both the data and smoothness cost terms in 

the cost function.  There are a large number of techniques which can be employed to locate this solution, 

examples include: dynamic programming (Ohta and Kanade, 1985), belief propagation (Sun et al., 2003), 

and perhaps the most commonly employed, graph cuts (Boykov et al., 2001).  The final disparity set is 

the result of the minimisation process.       

There is no single best stereo matching algorithm.  Rather, both global and local methods have their 

particular benefits and drawbacks.  Global algorithms have the greatest potential for accuracy (fewest 

erroneous disparity measurements) as shown by their prevalence near the top of the rankings in the one 

hundred plus inter-comparison studies contained in the Middlebury stereo algorithm evaluation database 
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(http://vision.middlebury.edu/stereo/; Scharstein and Szeliski, 2002).  Local algorithms achieve lesser 

accuracy as they make the assumption that the disparities within the cost computation and aggregation 

windows are constant.  This is not the case at discontinuities
5
 and leads to the occurrence of blurring 

artifacts at such interfaces (Hirschmüller et al., 2002).  The pixel-wise techniques of global algorithms are 

able to avoid these artifacts as they do not employ local smoothness assumptions.  However, whilst local 

algorithms tend to be less accurate, they have a number of potential benefits over global algorithms, 

including:  ease of implementation; low processing overheads; and effective operation without epipolar 

geometric constraints.   

Now examining these three benefits in detail, firstly it is the case that local algorithms are generally easy 

to implement, and can be written to perform efficiently in high-level programming languages such as 

Python or IDL.  Most global algorithms necessitate development in C or similar low-level languages to 

perform efficiently, which increases their complexity and therefore development time.  The second 

aspect, low processing overheads, is a significant issue, as even when written in a low-level language, the 

majority of global algorithms tend to exhibit significant memory consumption and require a large number 

of computational clock cycles to complete processing (Mei et al., 2011).  Recent advancements have been 

made on porting global algorithms to graphics processing units (GPU) and excellent performance has 

been demonstrated (Mei et al., 2011).  However, GPU porting is complex, and the computational facilities 

available at MSSL, in general, are CPU based.  Local methods can perform quickly on CPU based 

systems (see section 3.5) and this is important when processing large quantities of images, as is 

necessitated in this thesis (see Chapter 4).  The third aspect is that of epipolar constraints, which nearly all 

stereo processing systems make extensive use of.  Epipolar constraints employ knowledge of the epipolar 

geometry of the stereo imaging system.  If the relative translation and rotation of the sensors used to 

generate the stereo pair are known, then it is possible to reduce the search for a corresponding pixel pair 

from one of a 2D problem to that of a 1D problem, where the disparity search is performed along an 

epipolar line (see Figure 3-4).  This constraint cannot be employed in atmospheric stereo tasks as clouds 

and other atmospheric features are often in motion, making such constraints invalid.  Furthermore there 

has been no work undertaken on understanding the application of epipolar constraints to conical scanning 

instruments such as ATSR and epipolar assumptions are made based on a conventional 2D frame camera 

system, and are therefore not applicable to conical scanners (D. Shin pers. comm.).  Not being able to 

apply epipolar constraints generates a number of problems: it generally precludes application of open-

source global stereo matching algorithms, such as the openCV semi-global matcher (Hirschmuller, 2005), 

which rely on such constraints; and it also significantly increases processing time, for example, given a 

disparity range of 50, with epipolar constraints 50 evaluations would have to be carried out, without 

epipolar constraints this potentially increases to 50
2
.  CPU-based global algorithms are already slow, 

squaring the number of clock cycles and also, potentially, the memory overhead is unacceptable for the 

science tasks carried out in this thesis.  Lastly, in real-world applications, it has been shown that local 

algorithms are not substantially less accurate (~5%, depending on the algorithm) than global algorithms 

(Hirschmüller and Scharstein, 2009).  For these reasons local stereo matching algorithms are employed 

over global algorithms to obtain measures of disparity from the ATSR instruments in this thesis. 

                                                           
5 A discontinuity is a change in scene depth, e.g. moving from a cloud feature to the Earth’s surface 

http://vision.middlebury.edu/stereo/
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3 . 2 . 3  T h e  C a m e r a  M o d e l  

Following determination of the parallax disparity set by the stereo matching algorithm, the measured 

parallaxes must be related to a 3D coordinate system in order to obtain meaningful results.  This is 

achieved with a camera model that replicates the geometry of the imaging system.  For the ATSR 

instruments two separate camera models have been proposed, one by Prata and Turner (1997) for ATSR-

1, and another more recently by Denis et al. (2007) for ATSR-2.  These two camera models are referred 

to as the Prata camera model and the Mannstein camera model respectively.  Both models have a similar 

form to calculate height, 

   
 

   (  )          
 Eq. 3.3  

where   are the returned elevation in meters,   is the ATSR parallax disparity set in pixels,    is the set 

of ATSR forward viewing zenith angles and    is the set of ATSR nadir viewing zenith angles.  The two 

algorithms differ in the viewing zenith angle terms, and an inter-comparison study comparing the two 

separate models is made in the paper which introduces the Mannstein model (Denis et al., 2007).  The 

inter-comparison assessments presented show that the Mannstein model is on average closer to ground 

FIGURE REMOVED DUE TO THIRD PARTY CONFLICTS 

Figure 3-4.  This figure demonstrates epipolar lines which can be used to improve stereo algorithm 

processing performance given a suitable imaging system.  The epipolar processing allows the search 

for matching stereo pixels to be reduced from a 2D problem to that of a 1D problem – where the 

search is only performed along the epipolar line: the line running between points   and  .  Taken 

from 

http://librairie.immateriel.fr/baw/9780596516130/httpatomoreillycomsourceoreillyimages213352.png 

(last accessed 10
th

 August 2013) 

http://librairie.immateriel.fr/baw/9780596516130/httpatomoreillycomsourceoreillyimages213352.png
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truth measurements (taken from the GLOBE DTED-0 DEM (Hastings and Dunbar, 1998)) than the Prata 

model, with mean differences of 1.13 km and 1.35 km respectively, when assessed over seventeen 512 by 

512 pixel cloud free scenes from the ATSR-2 11µm channel.  Both camera models share similar standard 

deviations of around 1.2 km.  From this analysis, both camera models are close to the achievable ATSR 

accuracy determined by the base-to-height ratio, as reported in section 3.2.1, which ranges from 0.8 to 1.2 

km.         

The reasons for the slightly improved accuracy of the Mannstein camera model is an improved 

representation of the nadir scan angles, leading to a parabolic curve similar to the instrument geometry.  

The Prata model on the other hand, has poor nadir scan angle representation, and represents the scan arc 

as two linear features centred on the nadir sub-satellite pixel (See Figure 3-5).  This significantly 

underestimates the baseline,  , particularly toward the edges of the ATSR swath.  Due to its improved 

accuracy, the Mannstein camera model
6
 is applied to convert disparities to elevations in all cases in this 

thesis.            

                                                           
6 Whilst the Mannstein camera model is applied in this thesis to compute the ATSR viewing angles, it should be noted that this is no 
longer necessary – the viewing angles are now contained within the Envisat products.  Eq. 3.3 can be used with the provided angles 

to calculate heights. 

 

Figure 3-5.  This figure show the zenith angles for the Prata and Mannstein camera models.  The Prata 

model is represented by the dashed line, note the poor representation of the nadir view scan angles.  

The Mannstien model, represented by the solid line, has a much better representation of the ATSR 

conical scanning geometry leading to more accurate heights.  
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3.3  Stereo Match ing  Cha l lenges  

The majority of studies undertaken in the field of stereo matching algorithm development tend to focus on 

achieving optimal performance on controlled laboratory generated stereo datasets such as the Middlebury 

dataset (http://vision.middlebury.edu/stereo/; Scharstein and Szeliski, 2002).  The stereo images which 

comprise datasets such as this are controlled in a number of ways: the illumination conditions are 

regulated and consistent; the scenes observed tend to have the good spatial heterogeneity required for 

effective stereo matching; the cameras used generate consistent images and are well calibrated; and the 

images are post-processed with rectification algorithms, allowing application of epipolar constraints.  

Such conditions allow for excellent algorithmic evaluation, however, there is an inherent drawback.  

When selecting an algorithm for application to real-world tasks, such as those encountered in this thesis, 

these controlled algorithm assessments, due to their unrealistic assessment characteristics, do not provide 

reliable quantification of real-world algorithm performance.     

Fortunately a recent study by Hirshmüller and Scharstein (2009) has provided a robust analysis on the 

performance of algorithms under real-world conditions, allowing justifiable algorithm selection for real-

world stereo matching tasks.  This section, before reviewing this assessment study, firstly outlines the 

main challenges encountered in real-world stereo matching, focusing on the environmental and ATSR 

specific instrumental factors that need to be accounted for in order to generate reliable stereo matching 

outcomes.        

3 . 3 . 1  S t e r e o  I m a g e  D i s s i m i l a r i t y  

One of the main challenges to real-world stereo matching performance is that of stereo image 

dissimilarity, which can be defined as any radiometric (in the case of ATSR, brightness temperature or 

reflectance values) difference between observed pixels values for corresponding stereo pixels.  Such 

radiometric differences, without some form of correction, lead to ambiguous stereo cost evaluations, as an 

incorrect disparity may correspond to the optimal cost.  There are various causes of radiometric 

differences, stemming from either the sensing system or the feature being observed.  Some are present 

both in the laboratory environment and the real-world, such as the non-Lambertian qualities of the feature 

being observed.  Others that are present in the real-world are eradicated from the laboratory environment 

through the regulation of the illumination conditions and the camera setup and calibration.  Of the 

radiometric differences encountered in this thesis, three separate causes can be identified: those caused by 

Lambertian effects; those caused specifically by the ATSR sensing system; and those caused specifically 

by clouds and/or smoke plumes.  Each cause is dealt with separately in sections 3.3.1.1, 3.3.1.2 and 

3.3.1.3.               

Furthermore, it should also be noted that stereo matching ambiguity can also be introduced from sources 

other than image radiometric differences, the prime example being that of occlusion, where a pixel is 

visible in one stereo image but not in the other(s). This leads to ambiguous results in the stereo outcome 

http://vision.middlebury.edu/stereo/
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as there are no true matching pixel pairs between the stereo imagery in occluded regions, so any match 

found is erroneous.  Another important example is that of image homogeneity, i.e. image regions where 

there is no discernible structure.  In such instances, local stereo matching, depending on the size of the 

 

Figure 3-6.  The left image is a histogram stretched false colour composite (R: 0.87µm; G:0.67µm ; B: 

0.55µm) from the AATSR nadir view (Orbit: 36473).  The right image is the same from the forward 

view.  Firstly, note the brightening effect associated with the sun glint on the Eastern edge of the nadir 

image.  This effect is not apparent in the forward view, demonstrating non-Lambertian behaviour.  

Also, the differing atmospheric path lengths lead to differing cloud characteristics between the forward 

and nadir views.      

 

Figure 3-7.  The left image is from the AATSR 11µm nadir view for the same scene presented in Figure 

3-6.  The right image is that of the forward view.  Note the lack of scattering artifacts due to the long 

wavelength of observation.   Also, note the darker appearance of cloud features in the forward view; 

this is due to reduced brightness temperature, which in turn is due to increased atmospheric path 

length.        
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cost window, is ambiguous, as without identifiable image structures the local stereo matching algorithms 

fail to locate correct correspondences.  Contrary to stereo image dissimilarity, which can be improved 

through image pre-processing steps, the errors introduced by occlusion and homogeneity can be dealt 

with effectively through application of post processing algorithms (Hirschmuller, 2008; Chapter 4) and 

are considered in this thesis on a task by task basis. 

3 . 3 . 1 . 1  L a m b e r t i a n  R e l a t e d  D i f f e r e n c e s   

Lambertian surfaces are those which scatter radiation equally in all directions.  Due to this characteristic 

they look the same irrespective of viewing angle, and can be considered isotropic.  There are no real-

world surfaces that are truly Lambertian (Schaub et al., 2011), and therefore all surfaces look different to 

a certain degree when viewed from different viewing angles.  Observing a feature from differing viewing 

angles is a key requirement of stereo photogrammetry for satellite imaging platforms, therefore the 

anisotropic surfaces of nature lead to radiometric differences between the stereo imagery and need to be 

accounted for.  An example of anisotropy seen in ATSR imagery is presented in Figure 3-6.      

Additionally, it must be understood that scattering effects predominate in the visible and near-infrared 

regions of the electromagnetic spectrum (c.f. the thermal region for example).  For the ATSR thermal 

channels, which observe terrestrial emissions, scattering effects are of secondary importance to absorption 

and emissions effects and so, Lambertian image dissimilarities are limited to the visible channels (this is 

demonstrated in Figure 3-7).     

3 . 3 . 1 . 2  A T S R  R e l a t e d  D i f f e r e n c e s  

The ATSR instruments introduce a specific challenge to the stereo matching task due to variable 

resolution between looks.  As described in Chapter 2, the ATSR nadir view is comprised of 555 pixels 

resampled to 512 one kilometre pixels; the forward views is comprised of 371 overlapping pixels 

interpolated to the same size using nearest neighbour interpolation.  This difference in sampling results in 

a significant reduction in the forward image resolution when compared to that of the nadir, as 

demonstrated in Figure 3-2.  The different image resolution means that there are no direct 

correspondences (and in the context of this section, radiometric matches) between any of the forward and 

nadir pixels.   

3 . 3 . 1 . 3  C l o u d  a n d  S m o k e  P l u m e  R e l a t e d  D i f f e r e n c e s  

The forward view path length of the ATSR instruments can be up to 74% (800km vs. 1395km) longer 

than that of nadir depending upon scan position.  Such differences in atmospheric path length can greatly 

vary the radiometric qualities of cloud and smoke plume features in the stereo imagery.  These 

differences occur primarily due to changes in the apparent optical depth, where optical depth is the 

negative natural logarithm of the amount of radiation that is not scattered along a given path.  Clouds 

(stratiform) and smoke plumes tend to have a greater horizontal extent than vertical; and as such, when 

viewed in the ATSR visible/NIR channels the amount of radiation scattered back to the forward looking 

view will be greater than that of the nadir view (see Figure 3-2 & Figure 3-6).  Such path length effects 

are also present in the thermal channels (see Figure 3-7).  It should be noted that these effects 
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predominate for optically thin clouds, as over a certain optical depth the scattering or radiance 

contribution is similar irrespective of the view.   

Another factor which needs to be considered is that clouds and smoke plumes are often in motion. This 

may lead to changes in their structure over the two minutes time difference between the two ATSR views, 

and also lead to errors in the parallax measurements due to displacement effects.  Errors in parallax are 

not considered here, as they do not impact on the stereo matching in terms of radiometric dissimilarity 

and performance.  Instead the effects of such errors are considered in the specific science tasks 

undertaken in Chapters 4 and 5.  Structural changes caused by motion can be problematic, as they likely 

result in changes in Lambertian properties and therefore introduce radiometric dissimilarity.         

3 . 3 . 2  R e a l - w o r l d  A l g o r i t h m  A s s e s s m e n t s  

Quantitatively judging the performance of a stereo algorithm and its ability to deal with the radiometric 

distortions present in real-world imagery is problematic, as the ground truth comparison data may not be 

of suitable accuracy.  This is another factor behind the appeal of laboratory testing with well validated 

data; high quality disparity maps are available for assessment purposes.  One solution to this problem is 

taking a laboratory generated dataset and applying synthesised radiometric dissimilarities to the imagery.  

This approach has been applied with success by Hirschmuller and Scharstien (2009), where 15 different 

stereo matching metrics were assessed with three different stereo algorithms (local, semi-global, and 

global) in the presence of a number of radiometric distortions, including Gaussian noise, gain changes
7
 

and gamma changes
8
 at varying degrees of severity.  Whilst such distortions may not give an identical 

replication of the radiometric image differences outlined in Section 3.3.1, they do provide analysis of an 

algorithms ability to deal with radiometric variability. 

The matching metrics evaluated in the Hirschmuller and Scahrstien (2009) study followed a number of 

different approaches for dealing with radiometric variability.  The commonest approach analysed 

involves applying some form of parametric transformation to the image prior to cost computation.  In 

such transformations, the radiometric distortions between the stereo images are reduced through use of 

parametric statistical measures such as the mean and standard deviation.  A prime example, encountered 

in Section 3.4 is NCC, where each image pixel is normalised by subtracting the mean and dividing by the 

standard deviation, both derived from the local neighbourhood.  Following normalisation, a correlation 

function is used to determine costs between the images.  The normalisation process applied by NCC, at 

least empirically, deals with any gain changes between the imagery reducing dissimilarity prior to cost 

computation.                       

An alternative approach analysed comes in the form of non-parametric transforms.  Again, these 

transformations replace each pixel with a new value or set of values, the difference being that the 

statistical measures are derived from the ordering of the pixel values rather than the actual pixel values.  

Examples include the rank transform (Zabih and Woodfill, 1994), which replaces each pixel with the sum 

of the number of pixels within a local neighbourhood which are of a lesser value than the pixel of interest, 

                                                           
7 A multiplicative change between stereo images. 
8 A non-linear change between stereo images. 
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and the census transform (Section 3.4, Zabih and Woodfill, 1994) which replaces each pixel with a bit 

vector encoding the pixel ordering and the structure of the local neighbourhood.  Once transformed, cost 

computation is performed using SAD in the case of rank and the Hamming distance in the case of census.  

These transformations are very powerful, as they are robust to all radiometric distortions which preserve 

the ordering of the pixels within the transformation window.     

Of the cost metrics analysed in the Hirshmuller and Scharstein (2009) study, the census transform was 

found to be best able to deal with all the radiometric distortions encountered for all stereo algorithm 

types.  Previous real-world studies, whilst not specifically assessing robustness to radiometric distortions, 

also identified non-parametric transforms, particularly the census transform, as being more effective than 

parametric stereo matching techniques.  It is therefore proposed that the census transform is likely to 

provide the most effective stereo matching technique in the presence of the radiometric differences 

described in Section 3.3.1 and as such the algorithm is described in Section 3.4 and compared against 

other stereo algorithms applied to the ATSR instruments in Section 3.5.  

3.4  ATSR Stereo Match ing A lgor i thms  

The potential for stereo-derived products from the ATSR instruments was first proposed prior to the 

launch of ATSR-1 by Lorenz (1985), who suggested its potential for the stereo determination of cloud top 

height (CTH).  After many years, this idea was first implemented on ATSR-1 by Shin and Pollard (1996) 

followed in quick succession by Prata and Turner (1997).  More recently, Seiz (2003) applied stereo 

matching techniques to the ATSR-2 instrument and Muller et al., (2007) developed M4, an advanced 

stereo processing scheme for the same instrument based on previous work undertaken for MISR stereo 

processing tasks (Muller et al., 2002).  This section, after describing M4 in detail, builds upon this history 

of stereo matching with ATSR by describing two algorithms new to the instruments.  The first being the 

census algorithm, its selection justified in section 3.3.2.  The second algorithm to be described is M6, 

developed ‘in house’ at MSSL for application within the ESA ALANIS project.           

3 . 4 . 1  M 4  A l g o r i t h m  

3 . 4 . 1 . 1  D e v e l o p m e n t  

The M4 stereo matching algorithm (Muller et al., 2007) was developed for application to ATSR-2 data 

under the CloudMap2 project (Muller and Fischer, 2007) and built upon previous algorithms developed 

for MISR (Muller et al., 2002).  M4 exhibits a substantial reduction in processing time compared to its 

predecessors, as it pre-calculates the disparity set using phase correlation and employs image convolution 

extensively.  The matching metric employed in M4 is Normalised Cross Correlation (NCC), which is 

statistically the optimal method for dealing with Gaussian noise and is also able to account for gain 

differences between the stereo matching windows (Hirschmuller and Scharstein, 2009).  The cost 

evaluation metric employed by M4 is winner takes all (WTA).  The algorithm operates at pixel level 

accuracy, that is, integer disparities are the output from its application.  M4 has been shown to be accurate 
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(Naud et al., 2007) to the accuracy limit defined by the ATSR geometric configuration as presented in 

Section 3.2.     

However, M4 is not without its limitations.  The underlying NCC metric has a tendency to blur depth 

discontinuities more than other matching costs, as extreme pixel values within the NCC cost computation 

window lead to high errors in its calculation (Hirshmuller et al., 2002).  An example of this effect is 

shown in Figure 3-8, where there is a distinct loss of texture around smoke plume features in the 

normalised image.  This effect occurs as the mean and standard deviation used in the image normalisation 

process in NCC (see section 3.4.1) assume the intensity values observed within the normalisation window 

have a unimodal distribution.  In the image shown in Figure 3-8 this is regularly not the case, as the 

smoke plume and land intensity values form two distinct probability distributions.  When the 

normalisation window straddles the two separate distributions, the calculated mean and standard 

deviation are unrepresentative of either distribution (Zabih and Woodfill, 1994), leading to ineffective 

normalisation and the loss of image texture.  When the matching algorithm within NCC is applied to the 

normalised images, matching in the textureless regions is ambiguous which leads to the occurrence of 

blurring artifacts in the resultant disparity maps.        

Another issue associated with M4 are non-local disparity errors introduced by its application of phase 

correlation to determine the disparity set for assessment (L. Brinkmann, Pers. Comm.).  The cause of this 

error is unknown, however, they are substantial and therefore an M4 variant, referred to as M5, which 

does not use a phase correlation derived disparity subset, is employed in this thesis and is described in the 

following section.     

 

Figure 3-8.  This figure demonstrates the loss of image texture caused by the parametric 

normalisation employed in the M4 stereo matching algorithm.  The left image is an AATSR 0.55µm 

nadir view from orbit 43986 of wildfire events and associated smoke plumes in the Eurasian boreal 

region, the right image is the outcome from the M4 normalisation process.  Note the loss of image 

detail at the interfaces between features of differing intensity.     
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3 . 4 . 1 . 2  M 5  D e s c r i p t i o n  

In its image normalisation stage, which accounts for radiometric variability between the stereo imagery, 

the M5 algorithm makes extensive use of a Gaussian kernel,  , with the size       and the standard 

deviation,   set to        9 and   

 
 respectively.  The kernel is defined as follows, 
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Eq. 3.4  

where   [    
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].  Following definition of   it is possible to normalise the 

reference image,  , and the comparison image,  , using locally computed means and standard deviations 

derived through its application.  For every pixel   in   there is an associated line coordinate   and sample 

coordinate  .  The local mean  ̅    for each pixel     is computed as follows,     

 ̅    ∑ ∑  (     

 
      

 
)        

   
   

   
   . Eq. 3.5  

The local standard deviation,     
 , is defined by the formula,  
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   . Eq. 3.6  

After using equations 3.5 and 3.6 to obtain the local mean and standard deviation for every pixel   in  , 

giving the means of the reference image,   ̅ , and the standard deviations of the reference image,    , the 

normalisation of the reference image can be performed, 

      
    ̅

    
  Eq. 3.7  

The small positive number   is set here to avoid zero divisions and to limit the amplification of image 

noise. Its default size is set equal to 10
-3

.  The same methods are also applied to normalize the comparison 

image, 

      
    ̅

    
  Eq. 3.8  

The last step in the normalisation process is to reject from further consideration the edges of the 

normalised images.  Edge artefacts occur in the normalisation process due to image padding required for 

convolution of the image with the Gaussian filter.  Any pixels which are within  

 
 pixels of the image 

boundary are set to null values, and not considered in the matching process.     

Following image normalisation, the correlation metric can be computed for   different across track 

displacements,  , and along track displacements,  .  For each displacement, the matching cost at each 

                                                           
9 As assessment of the normalization and aggregation window sizes is provided for M5 and Census in section 3.5.1. 
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pixel is aggregated from the local neighbourhood using a smaller Gaussian kernel,   , derived from 

equation 3.4 with the size       and the standard deviation,  , set to         and   

 
 respectively.  The 

M5 cost is computed as follows, 
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Eq. 3.9  

The M5 correlation costs are stored at each pixel      for all displacements in the range defined by    and 

   giving a total of       different costs.  The across track and along track disparities for a given pixel 

are the    and    displacement pair which minimise the    cost.  

3 . 4 . 2  C e n s u s  A l g o r i t h m  

3 . 4 . 2 . 1  D e v e l o p m e n t  

The main weakness of M5 and other such parametric algorithms is their poor performance in the presence 

of multi-modal intensity distributions common at discontinuities, such as the cloud/land boundary 

example given in Section 3.2.2.  The motivation behind the development of the census (Zabih and 

Woodfill, 1994) and other such non-parametric algorithms (Banks et al., 1997; Bhat and Nayar, 1998) is 

to provide improved stereo matching performance in such regions and a reduction in the smoothing 

artifacts associated with parametric transforms.  The census algorithm achieves this through application 

of the census transform, which encodes local image information into informative bit vectors.  A bit is set 

in the vector if the corresponding pixel in the local neighbourhood is of a lesser intensity than the pixel of 

interest.  This transformation replaces the image normalisation stages employed in parametric transform 

such as NCC.   

The strength of the transformation lies in the fact that the use of bits effectively limits the influence of 

statistically outlying pixels (pixels from a different probability distribution) on the pixel of interest during 

correction for radiometric dissimilarity prior to stereo cost computation.  To illustrate this limiting effect, 

an example from Zabih and Woodfill (1994) is employed: assume a 3 by 3 region of pixels taken from an 

8 bit image with values of                                     and a value of   that ranges from 

       .  Firstly looking at the case of a parametric transform, such as NCC, which employs the 

mean and the standard deviation to account for radiometric variability prior to cost computation,  as   

varies through its range of values, the mean changes from     to     and the variance from   to     , 

indicating the substantial susceptibility of the normalisation outcome on the value of  .  The census 

transform, on the other hand, is far more stable in its reaction to variability in  .  The central value of the 

3 by 3 region is    , therefore the bit which represents   in the bit vector is   when       and   when 

     .  If   is an outlying value then the effect in the cost computation stage is minimised by the 

census transform to the size of the minority, in this instance, at most one bit.     

From the above demonstration it is apparent that census transform is more robust to outliers within the 

local image neighbourhood than parametric transforms.  Furthermore, as mentioned in Section 3.3.2, it is 

unaffected by all radiometric distortions as long as they do not alter the pixel ordering.  The main 
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weakness of the census algorithm is that it is susceptible to mismatches in regions with repetitive image 

structures, though in the natural environment such occurrences are limited.           

3 . 4 . 2 . 2  A l g o r i t h m  D e s c r i p t i o n  

For any pixel   we can define the census transformation as, 

             Eq. 3.10  

where   is a concatenation operator which concatenates the results of the comparison function,  , to the 

bit vector,  .  The comparison function returns a   if     and a   if    , where    , the local 

neighbourhood centred on  .  For the tasks undertaken in this thesis   is set to a radius of   pixels as this 

provides suitable discriminative power, see section 3.5.1, whilst not increasing computational cost 

significantly.  

Applying Eq. 3.10 to every pixel in both the reference and comparison images yields two 3D arrays of 

bits vectors.  In order to locate the correspondences the Hamming distance metric is used to compare the 

bit vectors as follows, 

 (          )  ∑    
            

  Eq. 3.11  

where, the cost   for a given pixel   at the reference image location     is determined for   different 

across and along track displacements,   and  . This is achieved by summing the exclusive or 

comparisons, as determined by the exclusive or operator  , between the reference bit vector,   , at 

location     and comparison image bit vector,   , at the displaced location          .  The costs for 

all disparity assessments are aggregated by a 7 pixel radius mean filter to reduce noise.  Following cost 

aggregation a simple spline interpolation routine is employed to estimate sub-pixel disparities in the 

along-track direction from the along-track disparities associated with the five smallest costs. Across track 

disparities are returned at integer level accuracy. 

3 . 4 . 3  M 6  A l g o r i t h m  

3 . 4 . 3 . 1  D e v e l o p m e n t  

The M6 stereo matching algorithm (Fisher et al., 2013) was developed by Vladimir Yershov at MSSL to 

effectively determine smoke plumes injection heights for the ESA ALANIS smoke plumes project which 

is presented in Chapter 5.  Although named after the other M-series algorithms (M2-M5) and employing 

local based stereo matching techniques, M6 approaches the stereo matching task with a number of 

significant modifications.  These modifications occur in the image normalisation (see Figure 3-9) and cost 

aggregation stages, where, instead of using the entire normalisation or cost computation window, only 

those neighbourhood pixels with radiometric similarity to the pixel of interest are employed.  The 

rationale being that the pixels employed in the normalisation or cost aggregation stages then come from 

similar intensity distributions (and likely therefore disparities), meaning firstly that the statistical 

measures used in the normalisation are more robust leading to a reduction in smoothing artifacts at 



62 

 

discontinuities, and secondly that the pixels used in the cost aggregation come from similar disparities 

leading to a reduction in potential projective distortion errors.  This need for a reduction of smoothing 

artifacts in the ALANIS project is due to the fact that the smoke plume features under observation are 

often small, encompassing tens of pixels.  With M5 many of the smaller smoke plume features are 

significantly eroded (see Chapter 5) leading to a reduced detection rate.  

3 . 4 . 3 . 2  A l g o r i t h m  D e s c r i p t i o n  

Surrounding each pixel   in the reference image   is a local neighbourhood  .  From   a subset of pixels 

  is defined by similarity to  , giving a reduced neighbourhood   .  This is achieved through, 

   |   |     Eq. 3.12  

where   is a threshold.  Once    has been defined it is possible to use it to normalise   in place of the 

Gaussian filter employed by M5.  Similar to M5, the size of   is         pixels.  The threshold   is set 

dynamically to retain those pixels   whose absolute differences from   are within the 25% percentile
10

.      

Letting   define the subset of pixels which comprises   , i.e.     , and assuming that these pixels are 

sorted by value so that              where   is the total number of pixels in   , it is possible to 

calculate the median of the subset as follows, 

                                                           
10 According to V. Yershov this threshold appeared to give the best result for the determination of smoke plume elevation across a 

number of scenes evaluated by hand measurement of the retrieved disparities. 

 

Figure 3-9.  This figure demonstrates the alternative normalisation achieved by the M6 algorithm.  

The left image is the M6 normalisation output of the AATSR nadir view presented in Figure 3-8.  

The right view is the M5 normalisation output from the same figure.  Note the significant reduction 

in low texture artifacts in the M6 normalisation output.   
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  Eq. 3.13  

With the median defined it is possible to compute the standard deviation of the subset    relative to the 

median, 
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Eq. 3.14  

Eqs. 3.12, 3.13 and 3.14 can be used define the subset medians and standard deviations for every pixel for 

the reference image  , giving the median reference image   ̃ and the standard deviation reference image 

  .  These can be used to normalise the reference image as, 

      
    ̃

    
  Eq. 3.15  

where, like M5 the small positive number   is set to 0.001 to avoid division by zero errors and to limit the 

amplification of image noise, an example of the M6 normalisation is shown in Figure 3-9.  The same 

methods can also be employed to normalise the comparison image,  , 

      
    ̃

    
  Eq. 3.16  

Once the reference and comparison images are normalised it is possible to carry out the along track stereo 

cost computations.  For M6 a modified sum of the absolute difference (SAD) metric is employed and 

only along track disparity estimates are made.   Across track assessments were found to add only 

increased computational cost whilst not improving the along-track disparity estimates substantially 

(Vladimir Yershov Pers. Comm.).  The SAD modification is that the sum is computed using only a subset 

of pixels from the cost aggregation window, similar to variable window size algorithms (Veksler, 2003).  

In order to determine the pixel subset Eq. 3.12 is applied to each pixel in      .  Here, however, the 

indices of the pixels      are used to define the size   neighbourhood,  , over which the cost 

aggregation is performed, that is,       , and all indices that are not of the set   , are set to  , that is, 

        Following determination of the pattern kernels it is possible to evaluate the matching costs.  

Letting   and   define the line and sample coordinates for all pixels   in the normalised reference and 

comparison images       and      , then the SAD metric for   different along track displacements    

can be computed as follows.       
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Eq. 3.17  

Where   is the number of samples and   is the number of lines in  .  While working through the list of 

along track displacement vectors   ,  the value of the metric and the associated displacement are stored 
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for     .  Then, to determine the final disparity, a spline interpolation routine is applied to the set of costs 

to find a sub-pixel disparity value.    

3.5  Algor i thm Assessment  

Two assessments are undertaken in this section.  The first evaluates the impact of window size, for both 

normalisation and cost aggregation windows, on the performance of the Census and M5 stereo matching 

algorithms.  The second assesses the three stereo algorithms introduced in Section 3.4 in terms of their 

ability to replicate a collocated digital elevation model (DEM) from a region of the Himalayas taken from 

the GMTED 2010 DEM (Danielson and Gesch, 2010) and shown in Figure 3-10.   

3 . 5 . 1  W i n d o w  S i z e  A s s e s s m e n t   

Window size plays a critical role in the performance of local stereo matching algorithms in two key areas: 

accounting for radiometric dissimilarities during the normalisation phase; and defining the number of 

local costs to take into account when assigning a disparity estimate.  Here an evaluation on the effect of 

window size is undertaken for both M5 and census, enabling justification of the window sizes defined for 

each algorithm in the mathematical descriptions given in the previous section.   

The evaluation assesses three different normalisation window radii (5, 10 and 15 pixels) and five different 

cost aggregation window radii (1, 3, 5, 7 and 9 pixel), giving a total of 15 window combinations, for both 

M5 and census.  A cloud-free 512 by 512 pixel 11µm AATSR stereo pair (taken from orbit: 36473) 

collocated with the GMTED 2010 DEM shown in Figure 3-10 is used to generate the stereo derived 

terrain heights. A disparity search radius of 12 pixels is used in the direction of parallax, and the co-

 

Figure 3-10.  The left image is the GMTED2010 DEM subset of the AATSR image shown on the 

right.  The AATSR image is taken from the 0.55µm channel which has been histogram equalised.  

The image comes from the same AATSR orbit as used in Figure 3-2.     
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registration correction coefficients defined in Chapter 2 are applied to the derived disparities prior to 

conversion into heights.  For each normalisation-aggregation window combination the 11µm stereo 

derived terrain heights are differenced with the collocated DEM and summary statistics (mean absolute 

difference and root mean square error) are calculated.  All image edges are excluded from the analyses, 

with exclusion extent determined by the largest of the normalisation or aggregation window size. The 

results from this analysis are presented in Figure 3-11.            

3 . 5 . 1 . 1  W i n d o w  S i z e  R e s u l t s  

3 . 5 . 1 . 2  W i n d o w  S i z e  D i s c u s s i o n        

The statistical measures employed in this window size analysis are the mean absolute difference (MAD) 

and the root mean square error (RMSE).  The first of these measures provides the measure of average 

height difference between the stereo retrievals and the collocated DEM over the given sample.  The 

second measure returns the average magnitude of the height difference, giving more weight to larger 

height differences due to the squaring term.  In combination the two measures enable better insight into 

 

Figure 3-11.  This plot summarises the effects of window size on the census and M5 stereo matching 

algorithms.  The x-axis presents various normalisation and aggregation window size radii, ranging from 

a 5 pixel normalisation window and a 1 pixel aggregation window, through to a 15 pixel normalisation 

window and a 9 pixel aggregation window.  The black diamonds show the census MAD from the 

collocated reference DEM.  The black circles show the census RMSE.  The red diamonds show the M5 

MAD, the red circles the M5 RMSE.  
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the height difference variations observed between the stereo terrain elevation retrievals and the DEM – 

the lesser the difference between the two measures the lesser the variance in the individual height 

differences across the set of collocated observations and the more precise the matching algorithm. 

Looking at the results shown in the plot in Figure 3-11, census outperforms M5 for every window size 

combination. The optimal outcome is achieved by the census stereo algorithm when the normalisation 

window radius is set to 10 pixels (giving bit strings of length 441) and the aggregation window radius is 

set to 9 pixels.  With these settings an average height error of ~400m between the stereo retrievals and the 

DEM is returned.  The variance in the height differences across the inter-comparison is also small when 

using this combination of window sizes, as shown by the RMSE of ~500m.  The one drawback using 

large normalisation and aggregation window sizes is that there is a significant smoothing of the output 

disparities.  This is problematic when stereo matching cloud and smoke plume features as their extent is 

exaggerated.  By using a smaller normalisation and aggregation windows set to 5 and 7 pixel radii 

respectively the smoothing effects are reduced, and as seen from the plot, the change in retrieval accuracy 

is ~100m across both measures.  The processing time is also reduced by using the smaller aggregation 

window.  These results provide justification for the normalisation and aggregation window radii of 5 and 

7 pixels respectively as defined in the previous section and applied in the census stereo processing 

throughout this thesis.       

For M5 the optimal performance in the analysis is achieved through application of the 15 pixel radius 

normalisation window in combination with the 3 pixel radius aggregation window, with a MAD of 

~600m and an RMSE of ~700m.  The difference between the best window combination outcome for M5 

in this analysis and the window combination employed in the paper which introduces the M5 algorithm 

(Muller at al., 2007), 10 pixel normalisation window radius and 5 pixel cost aggregation window radius, 

is minimal. The retrieved statistics for both window size combinations show differences of <50m, yet the 

processing time is more than doubled with the larger normalisation window.  For this reason, the window 

radii defined in the paper that introduced M5 are employed in all cases throughout this thesis.    

3 . 5 . 2  D E M  I n t e r - c o m p a r i s o n  

To provide an initial assessment on the quality of the outputs from the three different stereo matching 

algorithms the technique in Muller et al. (2002) is employed, where the retrieved terrain heights are 

compared against elevations from an independent ground surface terrain model.  To perform this 

assessment, the first requirement is to obtain cloud free imagery so that the retrieved heights represent the 

terrain.  In this assessment a cloud free 512 by 512 pixel image of a region in the Himalayas from 

AATSR orbit 36473 is employed and is show in Figure 3-10.  The Himalayan region makes for good 

comparison datasets due to the close proximity of extremely high and also low terrain features ranging 

from 0km to more than 8km, enabling evaluation of stereo matching performance over a wide range of 

elevations.  The inter-comparison data employed is from the GMTED 2010 DEM (Danielson and Gesch, 

2010) and is also shown in Figure 3-10.  This DEM is comprised of the best current available global 

elevation data, and has RMSE values than range between 25 and 42 metres when compared against a 

global set of stereo derived height observation from high resolution stereo imagery.  This accuracy is 

significantly better than that achievable by the ATSR instruments, so provides a valid inter-comparison 
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test dataset.  The same evaluation process employed in section 3.5.1 is employed here.  However, in this 

instance all channels are processed rather than just the 11µm channel and the coefficient of determination 

statistic is calculated in addition.     

3 . 5 . 2 . 1  S t e r e o  A s s e s s m e n t  R e s u l t s  

 RMSE MAD R**2 

12µm 754, 1133, 473 610, 842, 351 0.94, 0.77, 0.95 

11µm 768, 1150, 471 630, 860, 347 0.94, 0.76, 0.96 

3.7µm 1784, 3510, 564 946, 2857, 362 0.58, 0.04, 0.93 

1.6µm 918, 972, 748 644, 744, 398 0.88, 0.82, 0.89 

0.87µm 820, 1276, 563 649, 1035, 375 0.93, 0.67, 0.93 

0.67µm 815, 1063, 494 660, 849, 366 0.93, 0.78, 0.95 

0.55µm 820, 1276, 563 649, 1035, 375 0.93, 0.67, 0.94 

 

 

Table 3-1.  The statistical analysis of the three stereo matching algorithms applied to the AATSR 

scene in Figure 3-10 and differenced from the DEM in the same figure. The M5 results are in plain 

text, the M6 results in italic text, and the census results in bold text.  The number of points analysed 

for each channel and matcher is >200,000.   RMSE and MAD units are in metres.         

 

Figure 3-12.  The top three plots show the differences between the stereo outputs from the 11µm 

channel for M5, M6 and census respectively and the collocated GTMED 2010 digital elevation 

model. Beneath each spatial plot is the associated histogram of the absolute differences (250 bins). 

red dashed line in each histogram shows the location of the MAD.           
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Figure 3-13.   The top three plots show the differences between the stereo outputs from the 1.6µm 

channel for M5, M6 and census respectively and the collocated GTMED 2010 digital elevation model. 

Beneath each spatial plot is the associated histogram of the absolute differences (250 bins). The red 

dashed line in each histogram shows the location of the MAD. 

 

Figure 3-14.  The top three plots show the differences between the stereo outputs from the 0.55µm 

channel for M5, M6 and census respectively and the collocated GTMED 2010 digital elevation model. 

Beneath each spatial plot is the associated histogram of the absolute differences (250 bins). The red 

dashed line in each histogram shows the location of the MAD. 
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3 . 5 . 2 . 2  M 5  D i s c u s s i o n  

Table 3-1 shows that for the M5 algorithm the AATSR channel with the best performance is 11µm with 

an RMSE 754m, a MAD of 610m, and a coefficient of determination of 0.94.  The RMSE is within the 

achievable accuracy of the ATSR instruments.  The difference between the RMSE and MAD results is 

small demonstrating little variance across the sample.  The coefficient of determination value indicates 

that there is good agreement between the stereo results and the DEM across the more than 200,000 

individual points evaluated.   

The statistical performance is similar across all AATSR channels, with a slight decline in quality at 

shorter wavelengths.  This is likely due to the fact that at shorter wavelengths there is increased 

atmospheric scattering by aerosols, leading to increased noise in the imagery, and therefore poorer stereo 

outcomes.  Looking at visible channels assessed in this analysis, which are shown in the false colour 

composite in Figure 3-2, large amounts of what appear to be aerosols are apparent.  It should also be 

noted that the poor ATSR instrument geo-referencing is likely leading to a slight decline in the quality of 

the returned statistics.  However, this error is common for all three assessments, so does not significantly 

impact on the inter-comparison outcome.   

Looking at the M5 11µm DEM difference map presented in Figure 3-12, there are a significant number of 

pixels with differences of greater than ±1km in regions of rapidly varying terrain.  These errors are likely 

due to the increased smoothing caused by the parametric normalisation measures and the large size 

requirement of the cost aggregation window to generate robust matches.        

In terms of processing time, a Python version of the M5 algorithm is able to process the 512 by 512 pixel 

scene in less than 20 seconds (~30 minutes an orbit) on an Intel based i5 processer running at 2.66 GHz.  

This is entirely acceptable for processing large quantities of EO data.  

3 . 5 . 2 . 3  M 6  D i s c u s s i o n  

The M6 algorithm is the worst performing out of the three algorithms in this analysis.  Looking at Table 

3-1 the best performing channel is 1.6µm with an RMSE 972m, a MAD of 744m, and a coefficient of 

determination of 0.82.  The substantial decline in performance in the 3.7µm channel is currently 

undetermined (V. Yershov, pers. comm.).  

Looking at the DEM difference maps presented in Figure 3-12 through Figure 3-14 it is apparent that M6 

performs well in regions of low and also rapidly varying terrain.  However, for terrain above 5km the 

performance declines substantially.  The cause of this decline is also unknown (V. Yershov pers. comm.).  

However, for the smoke plumes the algorithm is designed to measure this is not entirely problematic, as 

fire events are rarely intense enough to inject smoke into the atmosphere at elevations of more than 5km 

(see Chapter 5).   

The M6 algorithm is written in Java to facilitate incorporation in BEAM and to provide suitable 

processing speed for the intensive window computations.  Despite this the algorithm is still slower than 

M5 or census, taking approximately 3 minutes to process the 512 by 512 pixel scene on the same 

computing system.                          
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3 . 5 . 2 . 4  C e n s u s  D i s c u s s i o n  

The census algorithm outperforms both M5 and M6 in this assessment.  The optimal channel is 11µm, 

with an RMSE of 471m, a MAD of 347m, and a coefficient of determination of 0.96.   The RMSE and 

MAD have a difference of 124m indicating little variance across the inter-comparison sample and that the 

algorithm is precise.  There is a slight decline in the quality of the RMSE statistic with wavelength; again 

this is likely due to atmospheric aerosols confusing the algorithm.  

Looking at the DEM difference maps presented in Figure 3-12 through Figure 3-14 it is apparent that the 

census algorithm performs well in regions of rapidly varying terrain.  The improvement in performance is 

due to the non-parametric nature of the transform and the reduction in disparity smoothing effect in this 

class of algorithm.  In terms of processing performance, a Python implementation of the census algorithm 

is slower than M5, taking approximately 1 minute (90 minutes per orbit) to process the 512 by 512 pixel 

scene on the same computer system.  This time could however be reduced, through application of multi-

threading techniques, to approximately 45 seconds.     

3.6  Chapter  Summary  

To summarise, this chapter has introduced the main concepts of stereo-photogrammetry: the imaging 

system, the stereo matching algorithm, and the camera model.  The imaging system, comprised of two or 

more cameras separated by a distance referred to as the baseline, obtains the stereo imagery.  The stereo 

matching algorithm determines, typically through a cost minimisation process, the displacements of 

objects within the imagery caused by the parallax effect.  The measured displacements are converted into 

real-world measures of distance through application of the camera model, which attempts to replicate the 

imaging systems geometry.  Following definition of these key concepts, the stereo image matching 

process has been identified as the most important consideration, in terms of ease of manipulation and 

impact on the final outcome quality, in the ATSR stereo-photogrammetric processing chain.  To that end 

the main stereo photogrammetric challenges encountered in real-world stereo image matching tasks, 

arising from both the environment and the sensing system, in this instance AATSR, have been described.  

An algorithm well suited to coping with radiometric distortions common in the AATSR imagery, the 

census algorithm, has been identified, described, and evaluated using AATSR data against two other 

stereo matching techniques, M4 and M6.  The M4 and M6 algorithms, also recently applied to the 

AATSR instrument, have been described in detail.  In the evaluation the heights retrieved by the census 

stereo matching algorithm when compared with a collocated DEM taken from the GMTED2010 digital 

elevation model demonstrate for the 11µm channel an RMSE of 471m, a MAD of 347m and a coefficient 

of determination of 0.96.  M4 in comparison returns an RMSE of 768m, a MAD of 630m and a 

coefficient of determination of 0.94 for the 11µm channel.  M6 returns an RMSE of 972m, a MAD of 

744m and a coefficient of determination of 0.82 for the 1.6µm the channel, the channel on which it 

performs best. 
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4 GREENLAND CLOUD STUDY  

4.1  In t roduc t ion  

4 . 1 . 1  C l o u d s  a n d  t h e  E a r t h ’ s  C l i m a t e  S y s t e m  

4 . 1 . 1 . 1  E a r t h ' s  C h a n g i n g  C l i m a t e  

According to observational records, the Earth's climate is experiencing unprecedented and accelerating 

warming (Solomon et al., 2007; Stocker et al., 2013).  The effects of this warming manifest in numerous 

different climate variables, in particular: rapid sea-level rise, increasing sea and land surface 

temperatures, changing precipitation patterns, and reductions in sea-ice extent (Solomon et al., 2007; 

Stocker et al., 2013).  The root cause of these changes is generally regarded as being an anthropogenic 

forcing of the climate, linked to industrialisation processes and the associated emissions of greenhouse 

gases (Solomon et al., 2007; Stocker et al., 2013).  Significant effort is being undertaken to determine and 

understand the future implications of such a forcing on the climate system by projecting its future state 

using global models of the Earth's climate system, General Circulation Models (GCMs).  This task, due to 

the complexity of the climate system and its internal processes known as feedbacks is inherently 

challenging.  There is consensus between GCMs that the Earth will continue to warm, however, 

agreement on the magnitude of this warming is some way from realisation (Solomon et al., 2007; Stocker 

et al., 2013).  This section discusses the processes of climate forcing and feedback and defines where the 

main challenges in determining the future state of the climate exist.       

4 . 1 . 1 . 2  C l i m a t e  F o r c i n g  –  T h e  E a r t h ' s  R a d i a t i o n  B a l a n c e  

Prior to discussing how the climate system is forced and how feedbacks affect this process, it is necessary 

to review the Earth's radiation balance. To begin with, it must be understood that the climate system is 

comprised of a highly complex set of interactions between the atmosphere, the ocean and the land surface 

(see Figure 4-1), and that the system maintains radiative equilibrium – the energy output from the system 

is the same as the amount input.  Annually there is an approximate global top of the atmosphere (TOA) 

average of 340
 
W m

-2
 of incident radiation,  , originating from the Sun, and this comprises the vast 

majority (99.7%) of the energy input into the climate system.  Of this incident radiation, around 100 Wm
-

2
 is reflected directly back into space due to the Earth's albedo

11
,  , which is approximately 0.3 (Wielicki 

et al., 1995).  The remaining 240 W m
-2 

is absorbed into the climate system, and, to maintain radiative 

                                                           
11 Albedo is the ratio of reflected radiation from the surface to the incident radiation upon it. 

 



72 

 

equilibrium, is output to space through longwave (LW) emission,  . (Wielicki et al., 1995).  This process 

can be defined as,   

          . Eq.  4.1 

When the climate is in a state of equilibrium, the net radiance at the TOA,  , is equal to zero, however, as 

the climate system is dynamic, there is continual variation in the equilibrium as it strives to maintain 

radiative balance.  From this definition it is possible to introduce the concept of a climate forcing as any 

process by which the equilibrium is disturbed, or in the terminology of climate studies, perturbed.    

4 . 1 . 1 . 3  C l i m a t e  F o r c i n g  –  R a d i a t i v e  F o r c i n g  

As implied above, radiative forcing of the climate is caused by changes in the net irradiance/exitance 

balance of the climate radiative system.  That is to say, perturbations in  ,  , and/or  , cause a state of 

radiative imbalance and, therefore, the equilibrium requirement is no longer fulfilled, i.e.    .  

Radiative forcing processes are considered to be external processes, in that they are independent from the 

climate system. This can be illustrated by looking at typical forcing agents, which can be either natural or 

anthropogenic.  Natural agents include changes in the behaviour of the sun (e.g. Lean and Rind, 1998), 

reducing or increasing  , or extreme volcanic events (e.g. Minnis et al., 1993) that tend to significantly 

increase  . Anthropogenic agents are primarily atmospheric in nature (see Figure 4-2) and generally 

relate to increased emission of aerosols and radiatively active gases.  These gases, mainly CO2 and CH4, 

strongly absorb in the infrared part of the electromagnetic spectrum (see Figure 4-3), reducing  .  

Following a forcing on the climate, there must be a follow on response by the climate system to restore 

radiative equilibrium.  There are many techniques to measure this response, but one of the most 

commonly applied is that of climate sensitivity. 

FIGURE REMOVED DUE TO THIRD PARTY CONFLICTS 

 

 

 

 

 

 

 

 

Figure 4-1.  Radiative interactions between the atmosphere, the ocean and the land surface.  

Adapted from http://spacefellowship.com/wp-content/uploads/2009/12/412218main_radiation-

budget2923.jpg (Last accessed 1
st
 September 2013).  

http://spacefellowship.com/wp-content/uploads/2009/12/412218main_radiation-budget2923.jpg
http://spacefellowship.com/wp-content/uploads/2009/12/412218main_radiation-budget2923.jpg
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4 . 1 . 1 . 4  C l i m a t e  F o r c i n g  –  C l i m a t e  S e n s i t i v i t y  

Following the terminology from Andrews et al. (2012), regard   (W m
-2

) as the forcing on the climate, 

caused by variation in the aforementioned parameters on the right hand side of Eq. 4.1, that cause a 

change in   of    (W m
-2

).  The magnitude of    is approximately linearly dependent on the global-

mean surface air temperature change    (K), 

        , Eq.  4.2 

where –   (W m
-2

 K
-1

) is the climate feedback parameter.  If   and   are constant then    is a linear 

function of   , with a slope of   and an intercept of  ; and from this it is possible to obtain both the 

forcing and the feedback parameters by way of linear regression.  The    required to restore the climate 

to a state of equilibrium,      , is the measure of climate sensitivity, and can be estimated through 

extrapolation of Eq. 4.2 to a state of equilibrium, i.e.      and      ⁄ .  

Climate sensitivity assessments have been applied extensively in the IPCC climate projection analyses 

(Houghton et al., 2001; Solomon et al., 2007; Stocker et al., 2013).  In the IPCC studies, a standardised 

climate sensitivity measure referred to as the equilibrium climate sensitivity is employed.  The 

standardisation occurs in the forcing, which is set as a doubling of atmospheric CO2, a particularly 

pertinent forcing agent given the currently understood causes of climate change.  In a climate system only 

perturbed by a doubling of CO2 the       required to restore equilibrium is estimated to be around 1 K.  

However, in the most recent IPCC analysis (at time of writing, Stocker et al., 2013)       was found to 

range (at a high level of confidence) from 1.5 K to 4.5 K across GCMs, demonstrating greatly increased 

 

 

 

 

FIGURE REMOVED DUE TO THIRD PARTY CONFLICTS 

 

 

 

 

 

 

 

Figure 4-2. Climate radiative forcing agents (adapted from IPCC AR5,  Stocker et al., 2013) 
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and strongly disagreeing magnitudes of warming required to restore radiative equilibrium in the climate 

system.  The majority of this uncertainty arises in the climate feedback parameter  , which contains the 

internal processes of the climate system that either amplify or dampen the effect of the external forcing 

(Randall et al., 2007).  Indeed, it has been shown that differences in feedbacks contribute almost three 

times more to the range in ECS estimates than differences in the radiative forcings applied in GCMs 

(Webb et al., 2006). Improved understanding of climate feedback processes contained in the feedback 

parameter is therefore of critical importance in gaining better agreement on the future state of the Earth's 

climate and in turn better quantification of anthropogenic forcing impacts. 

4 . 1 . 1 . 5  C l i m a t e  F e e d b a c k s  –  I n t r o d u c t i o n  t o  F e e d b a c k s  

As temperature changes within a forced climate other climate variables internal to the climate system, and 

intrinsically linked to temperature, also change. Examples include atmospheric water vapour content, 

cloud characteristics, sea-ice extent, and so on (Bony et al., 2006).  These internal climate system 

processes, if they amplify or dampen the effect of a forcing agent, are referred to as feedbacks.  In the 

 

 

FIGURE REMOVED DUE TO THIRD PARTY CONFLICTS 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3. Radiation and its transmission through the atmosphere.  Note the strong absorption 

features over many wavelengths by water vapour – the strongest greenhouse gas.  Also note the 

strong absorption bands for CO2 and CH4 in the thermal regions of the spectrum.  Lastly note the 

atmospheric window around 10µm which is employed in the IR-window CTH assignment approach.  

Figure adapted from www.researchgate.net (last accessed 2
nd

 September 2013). Originally 

prepared by Robert A. Rhode for the Global Warming Art Project. 

http://www.researchgate.net/
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IPCC assessments (Houghton et al., 2001; Solomon et al., 2007; Stocker et al., 2013) a feedback is 

deemed to occur when an initial process (such as a forcing) triggers a change in a second process (a 

feedback) that in turn influences the initial one.  The uncertainty associated with the feedback processes 

at work within the Earth's climate system stems from their complex interlinked and internal nature which 

leads to great difficulty in their detection and quantification. 

The four most important physical feedback process, given their potential radiative impacts following a 

doubling of CO2 are: the water vapour feedback, the most important positive feedback within the climate 

system; the lapse rate feedback, a strong negative feedback which offsets the water vapour feedback; the 

albedo feedback, which goes some way to explaining why Polar Regions are more sensitive to climate 

change; and cloud feedbacks, which lead to the greatest uncertainty in GCM projections.     

4 . 1 . 1 . 6  C l i m a t e  F e e d b a c k s  –  K e y  F e e d b a c k  M e c h a n i s m s  

Water Vapour Feedback - The most important positive feedback process within the climate system is 

thought to be that of water vapour, the gaseous phase of water (Randall et al., 2007).  Water vapour, due 

to its total atmospheric mass (~4% of the atmosphere), is the most prevalent of the greenhouse gases, and 

as such contributes a warming effect approximately eight times greater than that of CO2 (Hartmann 

1994).  Furthermore, as defined by the Clausius-Clapeyron equation, there is a near exponential increase 

in the moisture holding capacity of the atmosphere with temperature (Randall et al., 2007).  Therefore, 

climate warming leads to an increase in the amount of water vapour in the atmosphere and increased 

water vapour leads to increased warming - constituting a feedback effect.   Recent studies have estimated 

a water vapour related increase of 1.80 ± 0.18 W m
-2 

K
-1 

in the climate feedback parameter (Soden and 

Held, 2006). 

Lapse Rate Feedback - Heterogeneous changes in column atmospheric temperature profiles cause the 

lapse rate feedback.  The sign of the lapse rate feedback (i.e. whether it is positive or negative) is 

dependent upon where in the atmospheric column the warming occurs.  In the tropics, GCMs generally 

predict enhanced warming in the upper troposphere due to increased concentration of greenhouse gases.  

Enhanced warming at higher altitudes leads to greater LW emission to space, leading to a negative 

feedback.  In middle and high latitudes greater warming tends to occur in the lower troposphere due to 

radiative heating, and this has the reverse effect leading to a positive feedback.  Overall the effect in the 

tropics dominates, leading to a strong negative feedback, reducing the climate feedback parameter by -

0.84 ± 0.26 W m
-2

 K
-1

 (Soden and Held, 2006).   

The water vapour and lapse rate feedbacks are inherently linked - as temperature changes in the 

atmosphere so does water vapour content.  Due to this close link between the two processes, they are 

typically considered together in GCMs.  The main benefit of considering the two processes together is a 

reduction in the overall uncertainty when compared to a separate consideration.  The global mean 

combined water vapour-lapse rate feedback has been estimated to have a positive effect on the climate 

feedback parameter of 0.97 ± 0.11 W m
-2

 K
-1

 (Soden and Held, 2006).  

Albedo Feedback - Polar Regions are generally ascribed to be both extremely sensitive to changes in 

global climate, and also, to present the greatest potential to change global climate (Solomon et al., 2007; 
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Stocker et al., 2013).  Numerous recent studies have continued to add strength to the sensitivity argument, 

demonstrating various effects resulting from changes in the Polar climate regimes.  Observed phenomena 

include: decreasing ice-sheet mass balance (Shepherd et al., 2012); rapidly decreasing North Pole sea-ice 

extent (Comiso et al., 2008; Parkinson and Comiso, 2013); loss of permafrost (Grosse et al., 2011); and 

increasing glacier velocities (Moon et al., 2012).  The observed changes in Polar Regions are thought to 

be mainly caused by declining surface albedo, due to declining high albedo sea/terrestrial ice and 

increasing low albedo open water/rock extents, leading to further warming and melt.  Reduced albedo 

leads to increased absorption of insolation, increasing local temperatures.  This process, referred to as the 

ice-albedo feedback mechanism (Curry et al., 1993), is generally considered to be one of the key 

feedback mechanisms behind the above average (1.5 to 4.5 times above the global average) warming 

trend observed in the Arctic in recent decades (Holland and Bitz, 2003).  When looking at global albedo 

feedbacks on forcing agents the estimated amplification of the climate feedback parameter is on the order 

of 0.26 ± 0.08 W m
-2

 K
-1 

(Soden and Held, 2006), and three quarters of this feedback is thought to arise in 

the Northern Hemisphere from changes in the cryosphere (Winton, 2006).  

Cloud Feedbacks - Clouds strongly modulate the incoming SW and outgoing LW radiation, as shown in 

Figure 4-1.  Global fractional cloud occurrence is on the order of 0.6 to 0.7 (Stubenrauch et al., 2013), 

leading to a doubling of the Earth’s average albedo from 0.15 to 0.3 (Cess, 1976). Furthermore clouds 

also have a greenhouse effect and trap outgoing LW radiation.  Clouds are therefore of great importance 

to the radiation balance, and any changes in cloud properties may constitute feedbacks that could have 

significant impacts on the future state of the climate.  The specific details of cloud radiative and feedback 

processes that may affect the climate system are omitted here as they are discussed in the following 

section.  The point to be made is that the physical feedback processes introduced above are all relatively 

well constrained, with small uncertainties in comparison to overall magnitude, and that this is in stark 

contrast to the uncertainty associated with cloud feedbacks.  Cloud feedback processes have an estimated 

amplification effect on the climate feedback parameter that ranges from 0.31 to 1.07 W m
-2

 K
-1

 across 

GCMs (Soden and Held, 2006).  In the 4
th

 IPCC analysis (Solomon et al., 2007) it was demonstrated that 

in the presence of water vapour, lapse rate and surface albedo feedbacks, but excluding cloud feedbacks, 

the GCMs analysed predict a       of 1.9 K ± 0.15 K. When cloud feedbacks are incorporated into the 

same models the mean and standard deviation of       significantly increase to 3.2 K ± 0.7 K indicating 

strong disagreement on the magnitude of the cloud feedback effect.  Reducing this uncertainty has been 

identified by the IPCC as the key requirement for improving consensus between climate projections and 

therefore, gaining a better understanding of the future state of the climate (Randall et al., 2007).   

4 . 1 . 1 . 7  C l i m a t e  F o r c i n g  a n d  F e e d b a c k  O v e r v i e w  

The above sections have introduced the external and internal climate change concepts of radiative forcing 

and feedback.  In the case of climate forcing, the Earth's radiation balance and the concept of radiative 

equilibrium have been introduced.  Some of the natural and anthropogenic forcing agents that can perturb 

the climate equilibrium have been briefly addressed.  GCMs, one of the main tools applied to understand 

climate change processes, have been introduced, as has the measure of climate sensitivity, which is used 

to highlight disagreements between GCM projections.  The cause of these disagreements has been 
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attributed to internal climate feedback processes, the most significant of which have been reviewed.  Of 

the feedback processes discussed, clouds, due to significant uncertainties in their radiative effects, have 

been identified as the most important for furthering understanding on the condition of the Earth's future 

climate.  Given their importance, cloud radiative effects are discussed along with a more in-depth review 

of the uncertainty they cause in models in the following sections to highlight why clouds are radiatively 

complex and why this leads to uncertainty in models.     

4 . 1 . 1 . 8  C l o u d  R a d i a t i v e  I n t e r a c t i o n s  

The radiative effect of clouds is typically determined by differencing clear-sky and all-sky radiances at 

the TOA, and is referred to as cloud radiative forcing (   ; Ramanathan et al., 1989).  The net     can 

be defined as  

                       Eq.  4.3 

The fractional cloud cover (referred to hereafter as CF) of the scene is, in this instance, defined by   and 

modulates the clear and cloudy sky top of atmosphere fluxes,      and     , respectively.  The        can 

be further reduced into SW and LW components, as follows, 

                    Eq.  4.4 

and, 

                         

 

Eq.  4.5 

Looking at the       component, the amount of reflected radiation is dependent on the cloud fraction  , 

the insolation  , and the albedo of the cloud,     , and the surface,     .  The size and state of the cloud 

particles, the thickness of the cloud and the solar zenith angle determine the cloud albedo.  The       

effect is one of cooling, with the largest effect occurring in the presence of high albedo clouds over dark 

surfaces, such as bodies of water, and the smallest in the case of low albedo clouds over bright surfaces, 

such as snow or deserts (Bony et al., 2006; Stephens, 2005).      

The       component is dependent on the cloud fraction, and the surface and cloud emittances.  Cloud 

emittance is a function its temperature   , which for clouds is height dependent, and emissivity
12

  , which 

is dependent on cloud thickness, and particle size and state. The       effect is one of warming, with the 

greatest magnitudes in the presence of cold clouds over warm surfaces and the smallest in the case of 

warm clouds over cold surfaces (Bony et al., 2006; Stephens, 2005). 

The main assessments of      ,      , and        are from the Earth Radiation Budget Experiment 

(ERBE, Ramanathan et al., 1989) and its follow on, the Clouds and Earth's Radiant Energy System 

(CERES, Wielicki et al., 1996) experiment.  From the CERES analysis, shown in Figure 4-4, it can be 

seen that, in accordance with the reasoning above, the strongest       effects generally occur over 

tropical oceanic regions, where there is low surface albedo, high cloud albedo, and generally substantial  

                                                           
12 Emissivity in this instance is the ratio of the energy emitted by the cloud compared to the amount that would be emitted by a 

blackbody at the same temperature.   
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cloud coverage. The weakest       effects generally occur over high albedo surfaces with low cloud 

cover, such as deserts.  The strongest       effects also occur in the tropics in the presence of the coldest 

cloud tops over the warmest land or ocean surfaces.  The weakest       effects occur at higher latitudes, 

where the surfaces are cooler, and therefore the difference with the cloud top temperature is reduced.   

The CERES CRF results demonstrate the complexity of cloud radiative effects, with the opposing effects 

in the tropics, whilst having a significant impact on the       and       fluxes, nearly negating each 

other.  In the regions pole-ward of 30°,        is found generally to be negative; in particular a very 

strong effect is demonstrated over the Pacific and Atlantic oceans with values approaching -50 W m
-2

.  In 

Polar Regions over high albedo surfaces (i.e. ice sheets) the        is generally positive due to the 

'radiation paradox' (Ambach 1974).  When globally averaged,        demonstrates a cooling effect of 

clouds on the climate, with an estimated value of -18.2 W m
-2

 (Allan, 2011). This finding corroborates 

outcomes from other assessments such as the ERBE with a global mean         of -19 W m
-2

 (Kiehl et 

al., 1994), a Nimbus-7 assessment, with -27 W m
-2 

(Ardanuy et al., 1991), an ERBE re-assessment with -

20 W m
-2

 (Kiehl and Trenberth, 1997), and a CERES re-assessment using additional data sources with -

21 W m
-2 

(Allen, 2011).   

To summarise, cloud radiative behaviour is a complex function of the negative SW and positive LW 

radiative effects.  The magnitudes of the conflicting radiative components are in turn dependent on a 

number of microphysical (particle size, phase) and macrophysical (fraction, elevation) cloud parameters.  

The observational analyses presented demonstrate that when combined, the current overall radiative 

effect of clouds is one of SW cooling, but there is significant spatial heterogeneity.  Due to the conflicting 

radiative effects and strong spatial variability, effective incorporation of cloud radiative behaviour into 

climate models is tremendously challenging and leads to great uncertainty in projecting the future state of 

the climate.   In the next section this uncertainty is further demonstrated through a more detailed review 

of GCM inter-comparison studies where cloud radiative processes (feedbacks) in a forced climate are 

assessed.   

FIGURE REMOVED DUE TO THIRD PARTY CONFLICTS 

 

 

 

 

Figure 4-4. These figures show for the period 2001-2007 the various radiative effects of clouds in 

terms of mean SW, LW and net forcing.  The left image displays the SW forcing, the central the LW 

and the right the net forcing.  Note the complex radiative behaviour associated with clouds. Figure 

adapted from figure 3 in Allan, 2011.   
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4 . 1 . 1 . 9  C l o u d  a n d  M o d e l s  –  G C M  I n t e r - C o m p a r i s o n  S t u d i e s  

One of the first GCM inter-comparison studies to assess the effects of clouds on climate projections was 

undertaken by Cess et al. (1989).  In their analysis 14 GCMs were assessed using an inverse climate 

change approach.  In that, rather than apply a forcing to the system and record the modelled climate 

change response, the GCMs were instead perturbed by a ±2 K change in sea surface temperature as a 

surrogate for climate change, and the forcing leading to such a change recorded.  Using this design, for 

each model the forced clear sky fluxes,     , were globally averaged separately from the all sky fluxes, 

    .  Analysing the climate feedback parameter under     , excellent agreement between models was 

demonstrated, whilst for      a three-fold variation was observed.  The authors argue that since the 

uncertainty is much greater in      (i.e. in the presence of clouds) than in      (i.e. no clouds) then the 

uncertainty must be mainly attributable to cloud feedback processes.  Evaluation of cloud feedback was 

achieved by taking the ratio of the forcing induced change in cloud radiative forcing to the overall 

forcing, that is          , and was found to range between -0.4 W m
-2

 K
-1 

and 1.5 W m
-2

 K
-1

 across 

models.  Other studies led by the same author (Cess et al., 1990; Cess et al., 1996) demonstrated similar 

findings reinforcing the above conclusion. 

A study by Colman (2003) questioned whether the large cloud feedback variability found between models 

in the Cess studies was perhaps attributable to other non-cloud feedback processes contained within 

       (aliasing) and therefore not related to cloud feedbacks at all.  To test this hypothesis 10 climate 

models ranging from full 3D GCMs to more simplistic 2D and 1D radiative convective models were 

assessed using a proscribed forcing of 2 x CO2.  Using the approach first employed by Wetherald and 

Manabe (1988), each model was run in offline mode (i.e. no interaction with other model fields allowed) 

and the TOA flux assessed on a field by field basis to evaluate the associated feedbacks, allowing their 

separation. This approach is completely different to the simplistic one employed in the Cess et al. studies.  

However, despite this dissimilarity, the modelled cloud feedback processes of the offline approach 

produced a range of -0.1 W m
-2

 K
-1

 to 1.4 W m
-2

 K
-1

, similar in terms of the positive range to that found in 

the Cess et al. (1990) study (-0.6 W m
-2

 K
-1

 to 1.5 W m
-2

 K
-1

) but with a much reduced negative feedback.   

A study undertaken by Soden and Held (2006) again expressed doubts regarding certain aspects of the 

Cess analyses, including: the unrealism of globally uniform perturbation in temperature as the climate 

change; the intentional suppression of surface albedo feedbacks; and the use of the      to assess cloud 

feedback, which, as stated above, aliases non-cloud feedback processes, so the feedback variability 

observed may not be due to cloud processes.  In their assessment, 14 GCMs were evaluated under a 

forcing of 2 x CO2, with cloud feedback being calculated by differencing the climate feedback parameter 

(derived from Eq. 4.2, where all parameters excluding the climate feedback parameter are obtained a 

priori or from the model and used for its calculation) with the sum of the water vapour, lapse rate and 

albedo feedbacks (obtained using a field by field analysis).  The findings from this assessment are 

presented in the feedback summary in section 4.1.1.6.  The derived cloud feedback results contained 

within the climate feedback parameter ranged from 0.31 to 1.07 W m
-2

 K
-1

, the largest spread of all the 

main climate feedbacks, and dissimilar to the Cess et al., studies in that no negative cloud feedbacks are 

obtained and the range is reduced.  A more recent study led by Soden (Soden et al., 2008), using the same 
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models applied in the 2006 study, separated out cloud feedbacks from        using radiative kernels.  

This avoids the need to compute cloud feedbacks as a residual term (as in the method applied above) and 

is less sensitive to uncertainties in external radiative forcing.  From this evaluation similar outcomes to 

those presented above were obtained, with neutral to positive cloud feedbacks. 

Under the auspices of the upcoming IPCC 5
th

 report on climate change (due for publication in 2014), 

Andrews et al. (2012) evaluated  ,    and equilibrium climate sensitivity in response to an abrupt 

quadrupling of CO2 across the 15 GCMs employed in the Coupled Model Intercomparison Project Phase 

5 (Taylor et al., 2012).  The first finding, in accordance with previous studies (Webb et al., 2006), 

demonstrated that the climate feedback parameter,   , conferred greater uncertainty to equilibrium 

climate sensitivity (2.3 K to 5.5 K) than forcing,   (2.4 K to 4 K).  Assessment of the feedback processes 

contained within the climate feedback parameter was achieved through its decomposition into LW clear-

sky, SW clear-sky, and the       and       components, which were combined to form       .  For 

the clear-sky components good agreement was found across models, with strongly negative (mainly due 

to temperature negative feedback) LW clear-sky climate feedback parameters ranging from 1.6 W m
-2

 K
-1

 

to 2.0 W m
-2

 K
-1

.  The SW clear-sky feedback parameters were also shown to agree well with a positive 

effect ranging from 0.5 W m
-2

 K
-1

 to 0.9 W m
-2

 K
-1

 (positive mainly due to declining albedo and water 

vapour SW effects).  Greater differences were found in the        analysis, ranging from -0.5 W m
-2

 K
-1

 

to 0.7 W m
-2

 K
-1

, which explains the majority of the range in the climate feedback parameter.  The 

observed        range is similar to that observed by Soden et al., (2008) prior to adjustment for other 

aliased feedback processes, therefore the authors conclude that similar (i.e. neutral or positive) cloud 

feedbacks occur within the models assessed in their study.   

From this chronological summary it appears that more recent GCMs demonstrate greater cloud feedback 

consensus, with a neutral to positive cloud feedback.  Whether this is due to improved model physics, 

improved model analysis, or model convergence is uncertain.  The studies presented do suggest that the 

analysis method employed plays a large role in accurate determination of cloud feedback processes, and 

from this it can be said that analysis by way of       , without correction for various aliased non-cloud 

feedback processes, appears to be an unreliable indicator of cloud feedbacks.  What is definitive is that 

cloud feedbacks remain the greatest source of uncertainty irrespective of model maturity.  In the next 

section, the cause of this continued uncertainty, the cloud parameterisation problem, is introduced along 

with methods that can be applied in order to reduce the uncertainty associated cloud feedbacks in models.              

4 . 1 . 1 . 1 0  C l o u d  a n d  M o d e l s  –  R e d u c i n g  U n c e r t a i n t y  

GCMs, due to computational and other limitations, typically operate on mesoscale (>100km) resolution 

grids.  This operating resolution is suitable for resolving the large-scale atmospheric motions that drive 

the climate system.  However, the majority of the microphysical and macrophysical cloud processes 

relevant to climate feedback occur at sub-grid resolution.  These processes must therefore be represented 

through physical approximations, and these approximations are referred to as the cloud parameterisation 

problem (NRC, 2003; Stephens, 2005).  There are two main types of cloud parameterisation - convective 

and large-scale (Stephens, 2005).  Convective parameterisations represent the effects of convection in 

drying and warming the large-scale atmospheric environment.  Large-scale parameterisations define the 
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cloud properties as functions of the thermodynamic and dynamical processes that are resolved by the 

model.  The parameterisations employed within a GCM (Stephens, 2005) define the modelled cloud 

characteristics and are the primary cause of the inter-model differences seen in the assessments presented 

above (Stephens, 2005).    

In order to improve cloud parameterisations and in turn reduce feedback uncertainty, proposed methods 

include more definitive use of observations and the development of techniques that provide more rigorous 

assessment of models (Stephens 2005).  For the latter of these proposals progress has been made and is 

documented in the previous section.  However, much of the focus on understanding feedback uncertainty 

has been placed on these inter-model comparisons.  Whilst these comparisons have proved useful for 

determining that differences in cloud feedbacks are the primary cause behind the spread in climate 

sensitivity, they do not provide detailed information on how the various model parameterisations lead to 

the observed discrepancies (Stephens 2005).  Furthermore, as suggested above, model-to-model 

comparisons may lead to model convergence, but there is no evidence that this convergence indicates that 

the projections are nearer to the truth (NRC 2003).  A more detailed and informative test of the cloud 

parameterisation employed in a climate model can be achieved through assessing the model’s ability to 

replicate cloudy conditions of the present day, necessitating the use of observational data.   

There are a number of ways in which observational data are employed to evaluate the modelled cloud 

conditions in GCMs, including comparisons of: cloud occurrence (Miller et al., 1999; Hogan et al., 2001); 

cloud regime properties (Jakob and Tselioudis, 2003); cloud-radiation interaction (Webb et al., 2001); and 

the relationship between clouds and atmospheric dynamics (Norris and Weaver, 2001). Of these, cloud 

occurrence evaluation is the most straightforward, and involves quantitatively assessing a model's ability 

in replicating cloud observations, in terms of fraction and elevation (i.e. macrophysical cloud features). If 

the model well replicates the macrophysical cloud characteristics seen in observations, then this denotes 

that the model has good potential for the study of feedback processes as the cloud parameterisation 

schemes within the model lead to realistic outcomes (Stephens, 2005).   

In order to undertake such inter-comparisons, global observational datasets of macrophysical cloud 

parameters are required, and it is the creation of such datasets from AATSR using stereo photogrammetry 

which is this chapter’s primary aim.  There are, however, numerous different techniques and instruments 

which can be employed to derive observations of macrophysical cloud properties, and prior to discussing 

the generation of a novel macrophysical climatological dataset from AATSR, it is useful to review the 

alternative methods of operation and their particular strengths and weaknesses to better place AATSR in 

the context of observational cloud climatologies.  Therefore, in the following section, section 4.1.2, the 

main approaches for the retrieval of macrophysical cloud parameters, and their particular strengths are 

weaknesses, are described.  In Section 4.1.3 the main instruments which employ these techniques are 

outlined through a brief review of the GEWEX Cloud experiment (Stubenrauch et al., 2013), four of 

which, sharing similar orbital characteristics to Envisat, are reviewed in more detail due to their 

application for climatological inter-comparison purposes in Section 4.4.  The need for multiple 

observational cloud climatologies is also defined, as are the potential unique contributions from AATSR.  

Finally, given the current strengths and weaknesses of the majority of the current macrophysical cloud 
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climatology datasets, the decision to generate a cloud climatology over Greenland from AATSR, in the 

first instance, is justified  

4 . 1 . 2  M a c r o p h y s i c a l  C l o u d  P r o p e r t i e s  f r o m  E O  

4 . 1 . 2 . 1  C l o u d  T o p  H e i g h t  D e t e r m i n a t i o n  –  I R  W i n d o w  T e c h n i q u e  

The gases and aerosols that compose the Earth's atmosphere, particularly water vapour, CO2, and ozone, 

limit the regions within the thermal infrared (IR) part of the EMS where observations of terrestrial 

exitance can be made.  This is demonstrated in the atmospheric transmission profile shown in Figure 4-3.  

In this profile, a number of atmospheric windows, regions where the atmospheric constituents have 

limited effect on the outgoing thermal IR radiation (between 3µm and 14µm), are evident.  Of these 

atmospheric windows, the thermal IR window (hereafter referred to as IR-Window), centred on 11µm can 

be used to derive measurements (e.g. Rossow and Schiffer, 1999) of cloud top pressure (CTP), which 

defines a clouds vertical location by the mass of the atmosphere above the cloud.   

To estimate CTP, the cloud top temperature must be estimated by converting at sensor radiance 

observations into brightness temperatures
13

.  If the cloud is suitably opaque, then the measured BT at the 

sensor will be a combined contribution of the cloud radiance and any absorption and emission processes 

by atmospheric constituents along the atmospheric path between the cloud and the sensor.  To enable 

separation of the cloud top temperature (CTT) from extraneous contributions, radiative transfer models, 

which describe the absorption and emission processes along the atmospheric path length, are employed.  

Following atmospheric correction, the CTT is converted into CTP through reference to a temperature-

pressure profile obtained from a numerical weather prediction model.  

The accuracy of the IR-window method is dependent upon a number of factors: primarily the physical 

representativeness of the radiative transfer model used to retrieve the parameters, and the accuracy of the 

NWP derived temperature profile applied to infer pressure.  The radiative transfer model maps from state 

to measurement, where the state contains the retrieved cloud parameters, and the measurement the 

observations. With a single layer cloud radiative transfer model, there is no physically sound solution for 

mapping the state vector onto the measurement vector given a multilayer cloud system.  This shortcoming 

manifests in the presence of optically thin (< 5 optical depths) ice clouds e.g. cirrus, overlying an 

optically thick cloud e.g. cumulus (Poulsen et al., 2012).  The retrieved CTP is an intermediate function 

of the CTT from the upper and lower cloud layers.  This is particularly problematic as a large proportion 

of cloud systems are multi-layered (see Wind et al., 2010 Figure 10).  Recently, a two-layer radiative 

transfer scheme applied to IR measurements has shown some usefulness in detecting multi-layer clouds, 

demonstrating that this limitation is partially surmountable (Watts et al., 2011).  

To effectively minimise the cost between the state vector and observations the radiative transfer model 

also relies on ancillary information that describes the local atmospheric and surface conditions (e.g. water 

vapour, ozone, albedo, etc.).  Errors and shortcomings in these external datasets also lead to degradation 

in the accuracy of the output parameters.  In the case of CTP assignment, a thermal profile is used to 

assign a CTP to the CTT observation.  As an example, the temperature profile in the polar troposphere is 

                                                           
13 BT is the temperature a blackbody would have to be to reproduce the observed at sensor radiance. 
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typically isothermal during summer (Karlsson and Dybbroe, 2010).  In these conditions there are 

potentially many solutions for the CTP, and the retrievals therefore are unreliable (Schweiger and Key, 

1992).      

Other points which need to be considered are that the IR-window method is less effective for the 

detection of low clouds due to a lower signal to noise ratio, leading to inaccuracies in the measurement of 

CTT, and that the method is also susceptible to instrument trending, in particular any degradation in 

radiometric calibration.  Therefore, for IR-window systems, it is necessary to regularly assess the 

calibration of the instruments to ensure that introduction of spurious CTH trends are kept to a minimum.   

4 . 1 . 2 . 2  C l o u d  T o p  H e i g h t  D e t e r m i n a t i o n  –  C O 2  S l i c i n g  

The CO2 slicing technique (Menzel et al., 1983; Wylie and Menzel, 1999), in contrast to IR-window, 

exploits the partial absorption of outgoing LW radiation within the broad 15µm CO2 absorption 

waveband (see Figure 4-3) to infer CTP.  This inference is achieved by calculating the ratio of differences 

between observed cloudy and expected clear sky radiances at two nearby wavelengths from within the 

waveband.  The expected clear sky radiances are obtained from ancillary data sources.  The sensors 

employed often contain multiple bands within the CO2 absorption region, so various CTP estimates can 

be obtained.  To select the most representative CTP, an alternative CTP is estimated using a forward 

radiative transfer model, and the observed CTP closest to that of the model is retained.   

As CO2 slicing also relies upon a radiative transfer model the same problems as discussed for the IR-

window method, that is the single layer cloud assumption and reliance upon ancillary data, apply here.  

Other similarities with the IR window technique, in terms of limitations can be seen in the need for 

accurate instrument calibration.    

Problems specific to CO2 slicing occur in the presence of high-level, optically thin cirrus (<1 optical 

depths) and more generally to lower level clouds. In the case of an optically thin cloud, there will be 

significant transmission through the cloud of surface radiation, and therefore the difference between the 

observed cloud radiance and the expected clear sky radiance will be small, leading to a low signal-to-

noise ratio.  In these instances the cloud may well be missed.  However, for high-level cloud with optical 

depths of greater than 1, the CO2 slicing method is one of the most effective height assignment 

approaches (Naud et al., 2007a; Marchand et al., 2010).  Signal-to-noise considerations also preclude the 

detection of low clouds (> 700 hPA; Menzel et al., 2008).  This is due to lower clouds typically being 

warmer, and therefore emitting a greater proportion of their radiation in shorter wavelengths (i.e. close to 

11µm), as defined by Wien’s displacement law
14

.   

4 . 1 . 2 . 3  C l o u d  T o p  H e i g h t  D e t e r m i n a t i o n  –  O 2 A  B a n d  

The O2A band method (Fischer and Grassl, 1991), similar in some respects to CO2 slicing, relies on 

absorption of radiation, in this case by O2, centred on the O2 absorption band at 761nm.  The strength of 

the signal recorded at the sensor is relative to the mass of atmosphere above the cloud, the CTP.  Lower 

                                                           

14
  The inverse relationship between the wavelength of peak emission of a black body and its temperature. 
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clouds have a greater mass of atmosphere above them leading to a reduction in the transmission of 

scattered insolent radiation in the O2A band, for high clouds the converse is true.  CTP cannot be inferred 

to a high degree of accuracy from O2A band observations without consideration of the multiple scattering 

effects within clouds, which is in turn a function of cloud optical thickness (Preusker and Lindstrot, 

2009).  Multiple scattering is corrected for using a proximal window channel, to estimate optical 

thickness.  By comparing the ratio of the absorption channel and the window channel to radiative transfer 

simulations the CTP can be accurately inferred.   

The O2A band method, as with the IR-window and CO2 slicing methods, employs radiative transfer 

modelling, and as such shares the same radiative transfer specific limitations as those techniques.  The 

most significant unique limitation of this technique is its inability to detect optically thin and even certain 

optically thick clouds over bright surfaces (albedo > 0.6).  To counter this weakness global albedo models 

are required to define the local surface albedo.  The algorithm’s accuracy, is therefore, implicitly 

dependent upon the accuracy of the albedo model.  

4 . 1 . 2 . 4  C l o u d  T o p  H e i g h t  D e t e r m i n a t i o n  –  S t e r e o - P h o t o g r a m m e t r y  

An entirely different approach for the retrieval of cloud elevation from EO imaging systems is offered by 

stereo-photogrammetry.  Refer to Chapter 3 for a detailed review of the techniques involved and accuracy 

limitations.  The stereo approach is able to overcome a number of the more significant problems 

associated with the absolute radiance based techniques discussed previously in this section.  Stereo 

methods perform similarly over all land cover types (assuming sufficient image texture), they can detect 

clouds at all levels within the atmosphere with similar effectiveness, and depending upon the sensor 

channel configuration, can detect multiple cloud layers. Importantly, stereo methods work with relative 

rather than absolute radiances so are not affected by instrument calibration trending.           

4 . 1 . 2 . 5  C l o u d  T o p  H e i g h t  D e t e r m i n a t i o n  –  A c t i v e  T e c h n i q u e s  

The observational methods discussed so far all rely upon passive imaging systems.  That is, the source of 

the observed radiation is, either directly or indirectly, solar in origin.  Active sensors present an 

alternative approach, where the observed radiation is emitted by the imaging system itself.  The most 

prevalent active systems are those that operate in the microwave portion of the EMS, and they are 

referred to as Radio Detection and Ranging systems, or radars.  More recently, systems employing lasers, 

referred to as Light Detection and Ranging systems, or lidars, have been developed for space-borne 

remote sensing application.  The principle of both techniques is to obtain time-of-flight measurements – 

the time between the emission of the radio wave or light and its return to the sensor – to discern an 

objects location.  Cloud observation specific space-borne radar and lidar instruments are limited to 

CloudSat (Stephens et al., 2002) and the CALIOP (Winker et al., 2003) instruments respectively. 

Active methods provide potentially the most accurate tool for the retrieval of CTH, CALIOP for example 

can retrieve CTH to accuracy of 30-60m depending on the altitude of the cloud (Vaughan et al., 2009).  

The main weakness of high vertical resolution cloud radars and lidars are the pencil sampling 

characteristics giving very small spatial coverage.  This is a significant limitation in terms of cloud 

climatology development, as much meteorological variability is missed.       
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4 . 1 . 2 . 6  C l o u d  F r a c t i o n  D e t e r m i n a t i o n  

There are a multitude of different techniques employed in the determination of CF.  The approaches 

employed in the major observational cloud climatology datasets generally revolve around some combined 

temporal and/or spatial radiometric consistency test. ISCCP (see section 4.1.3) for example employs a 

five step process: firstly a spatial contrast test applied to an IR channel, where cloudiness is assessed 

using a single scene by assessing thermal variability over a small image region; the second step looks at 

thermal variability of a given pixel through time, with changes in radiances used to determine the 

presence of clouds; the third step performs a similar task as the first two steps, but over larger spatial and 

temporal domains;  the fourth step combines the information from the first three steps in an attempt to 

define local clear sky conditions for a given pixel; given an estimated clear sky radiance, cloudiness is 

inferred in the final step by setting any pixel to cloudy when it differs from the clear sky radiance by more 

than estimated uncertainty of the clear sky values (Rossow and Gardner 1993a).  Such radiometric cloud 

detection techniques are very commonly employed (e.g. Menzel et al., 2008; Minnis et al., 2011).  More 

modern radiometric techniques apply machine learning algorithms trained over various imaging channels 

in order to provide more robust cloud detection as well as classification (Mazzoni et al., 2007a).  

However in the current major cloud climatology datasets only the more traditional RT approaches are 

employed.     

Alternative CF determination can be achieved through imagers with variable imaging geometry, with 

MISR (see section 4.1.3.3) being the main proponent (Diner et al., 1999; Di Girolamo and Davies, 1994).  

The first geometrical technique is based on the fact that cloudiness increases with viewing obliquity due 

to greater atmospheric path length, and, by employing certain statistical checks the presence of cloud can 

be inferred across the range of viewing angles.  The other geometrical CF determination method is 

provided by stereo-photogrammetry in combination with a local DEM.  The cloud mask is retrieved by 

comparing the stereo retrieved elevation against that of the collocated DEM, any difference which is 

greater than the retrieval accuracy of the employed stereo algorithm, is, assuming a noise free case, a 

cloud feature.  The benefit of the geometric approach over the radiometric is that is that it performs 

effectively irrespective of the underlying surface; this is typically not the case for radiometric cloud 

masking algorithms. 

4 . 1 . 3  E O  M a c r o p h y s i c a l  C l o u d  C l i m a t o l o g i e s  

4 . 1 . 3 . 1  M a c r o p h y s i c a l  C l o u d  P r o p e r t y  D a t a s e t s  –  O v e r v i e w  

The most comprehensive review of cloud climatologies is given by Stubenrauch et al., (2013) under the 

remit of the GEWEX cloud project.  In this study all of the major climatological cloud datasets, in terms 

of macrophysical and microphysical cloud parameters, are reviewed and inter-compared extensively.  The 

climatologies employed in the GEWEX study are as follows: ISCCP (Rossow and Schiffer, 1999), 

PATMOS-x (Heidinger et al. 2012), AATSR-GRAPE (Poulsen et al., 2012), MODIS-Science Team 

(Menzel et al., 2008), MODIS-CERES (Minnis et al., 2011), HIRS-NOAA (Wylie et al. 2005), TOVS 

Path-B (Stubenrauch et al. 2006), AIRS-LMD (Stubenrauch et al. 2010), CALIPSO Science Team 

(Winker et al. 2009), CALIPSO-GOCCP (Chepfer et al. 2010), POLDER (Ferlay et al. 2010), and MISR 
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(Di Girolamo et al. 2010).  The instruments use varying techniques to derive the macrophysical cloud 

parameters, and in terms of CTH or CTP the following divisions can be made: ISCCP, PATMOS-x, 

AATSR-GRAPE, MODIS-CERES use approaches similar to the IR-window method described in section 

4.1.2.1 to assign CTP.  MODIS-Science Team, HIRS-NOAA, TOVS Path-B and AIRS-LMD all employ 

some form of CO2 slicing (in combination with IR-Window to detect low clouds), described in section 

4.1.2.2.  The CALIPSO groups use the active techniques described in section 4.1.2.5.  The POLDER 

team employs the O2A band method described in section 4.1.2.3, and finally the MISR team use the 

stereo-photogrammetric approach outlined in section 4.1.2.4.  Cloud fraction for the climatologies is 

estimated using the various approaches described in section 4.1.2.6, depending upon the particular 

instrument characteristics.  In this chapter only the climatological macrophysical datasets derived from 

MODIS, MISR and AATSR are employed for purposes of comparison due to similar or shared 

observations times (see section 4.4.1), and the techniques they employ to derive macrophysical cloud 

observations are detailed in sections 4.1.3.2 through 4.1.3.4.    

4 . 1 . 3 . 2  M O D I S  M a c r o p h y s i c a l  C l o u d  P r o p e r t y  D e t e r m i n a t i o n  

The NASA MODIS instrument has been operational in sun synchronous orbits since 1999 on Terra 

(10:30 a.m. equatorial overpass) and 2002 on Aqua (1:30 p.m. equatorial overpass).  It is a multi-spectral 

whiskbroom (±67° from nadir) scanning radiometer with 36 channels between 0.415µm and 14.235µm at 

12-bit radiometric sensitivity.  The large scanning angle generates a swath of 2,330km giving near 

complete daily coverage of the globe, with nadir spatial resolution ranging between 250m and 1km 

depending on channel.  MODIS also has excellent geo-referencing, with pixels geo-located to an accuracy 

of 150m.  There are two separate science teams deriving cloud parameters from the MODIS instruments 

and they are referred to in the Stubenrauch et al., (2013) paper as MODIS – Science Team (Menzel et al. 

2008), and MODIS – CERES (Minnis et al. 2011).  In this section the approaches of both teams for CTH 

and CF determination are reviewed. 

MODIS Science Team CTH Determination – The MODIS science team derive CTP by applying either the 

CO2 slicing approach (see section 4.1.2.2) or the IR-window method (see section 4.1.2.1) to the 

appropriate MODIS bands (from channels 31 through 36).  The differences in approach are due to the fact 

that CO2 slicing is more effective for determining the elevation of mid and high level clouds.  As 

mentioned in section 4.1.2.2, the CO2 slicing method begins to perform poorly when the cloud signal is 

similar to the instrument noise levels as tends to occur when either the clouds are lower in the atmosphere 

or when the clouds are optically thin (<1 optical depth).  In the case of low clouds the MODIS science 

team switch to the IR-window method, which, due to its region of operation within the EMS, is more 

sensitive to lower clouds than CO2 slicing.  The MODIS CTP measurements are provided at 5km 

resolution through aggregation of the retrieved CTP values of the cloudy part of a 5 by 5 pixel array.  

This aggregation is performed to reduce radiometric noise levels.  The retrieved CTP is converted into 

CTH through application of the National Centre for Environmental Prediction (NCEP) Global Forecast 

System (Derber et al., 1991).  

MODIS Science Team CF Determination – CF is assigned at 1km resolution using a radiometric 

confidence-based system, with four different classifications (confident clear; probably clear; probably 



87 

 

cloudy; cloudy) derived using up to 20 of the 36 possible bands (Ackerman, 1998).  The cloud masking 

process begins by defining a land type (e.g. desert, ocean, snow, etc.) for the pixel under assessment.  

Following land type assignment, a series of five groups of radiometric thresholds are then applied to 

estimate cloud coverage: The first group is employed to detect thick high clouds using BT thresholds; the 

second group of tests is for determining the presence of thin clouds and uses BT difference tests; the third 

group is used to check for low clouds and employs a reflectance ratio test alongside and a BT difference 

test; Upper tropospheric thin clouds are detected using an additional reflectance threshold test; the final 

test is for detecting thin cirrus clouds using a number of BT difference tests.  Each cloud detection test 

returns a confidence level that the pixel is clear ranging in value from 1(high) to 0 (low).  The minimum 

confidence from all tests within a given group is taken to be representative of that group.   

MODIS CERES CTH Determination – The MODIS CERES team employ two different daytime retrieval 

methods, depending on whether the underlying surface is comprised of snow/ice or not.  As in this 

chapter only daytime CTHs are effectively retrieved with the current AATSR L2 stereo processing 

algorithm (see section 4.3.1.2), and the study is over the Greenland ice sheet, only the Shortwave-infrared 

Infrared Near-infrared height assignment technique, which is employed over snow and ice, is reviewed 

here.  This approach is essentially the IR-window technique and uses MODIS channel 31 to determine a 

CTT, which is then assigned a height using a look up table derived from a NWP model.  As in most 

instances the CTT retrieved corresponds more closely to the centre of the cloud/some depth below the 

cloud top, a further correction is applied to the retrieved cloud temperature to provide better estimate of 

the true CTT, and in turn CTH and CTP, using retrieved optical depth and cloud emissivity values.  The 

CTT values are converted into CTHs using reanalysis data from the GMAO reanalysis (Stubenrauch et 

al., 2013).               

MODIS CERES CF Determination – Cloud detection by the CERES team is again dependent on whether 

the underlying surface is snow/ice or not.  The cloud masking over snow/ice algorithm (Trepte et al., 

2002) employs reflectance and emission RTMs for a modelled snow surface at 0.65, 1.6, 3.75 and 11 

microns.  The modelled radiances are then used to discriminate between clear and cloudy surfaces. 

4 . 1 . 3 . 3  M I S R  M a c r o p h y s i c a l  C l o u d  P r o p e r t y  D e t e r m i n a t i o n  

The Multiangle Imaging SpectroRadiometer instrument, MISR (Diner et al., 1998), has been in operation 

since its launch alongside MODIS on the NASA Terra satellite in 1999 and so shares the same equatorial 

overpass time of 10:30 a.m.  MISR obtains imagery of the Earth from nine pushbroom cameras arranged 

in a bank of different along track viewing angles, covering nadir, 26.1°, 45.6°, 60.0° and 70.5°, both fore 

and aft of nadir.  These cameras are referred to as AN at nadir, AA, BA, CA, and DA for the aft camera 

group, and AF, BF, CF, and DF, for the forward camera group.  It takes approximately seven minutes for 

all nine cameras to view the same point on the Earth.  The swath width of the sensor is 360 km and it has 

a 16 day orbit repeat cycle.  MISR obtains imagery in the visible and near-IR region of the EMS (443, 

555, 670 and 865 nm) and has two different modes of operation – global and local.  The general operation 

mode, Global mode, provides imagery at 275 m resolution across all channels in the nadir view and in the 

red channel across all cameras, all other channels and cameras are resampled to 1.1 km to reduce data 
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load.  In the alternative local mode, no data resampling is performed giving a product resolution of 275 m 

across all channels. 

MISR is the only imaging system that employs stereo methods to derive CTH operationally (Moroney et 

al. 2002) and this data is available in the form of the MISR level 2 TOA Cloud data set (L2TC).  The 

stereo matching algorithm employed for MISR is known as the multi-point matching algorithm. There are 

two versions employed operationally on MISR, the Multi-point Matcher using means, referred to as M2, 

and the Multi-point matcher using Medians, referred to as M3 (Muller et al., 2002).  These algorithms are 

the precursors to M4 as employed on ATSR-2 (Muller et al., 2007), introduced in the form of M5 in 

Chapter 3.  The base-to-height ratio of the MISR instrument is dependent upon the combination of views 

used to derive the stereo observation.  The operational algorithms use the three views centred on nadir 

(AA, AN, AF), giving a base to height ratio of 0.45. This preserves cloud similarity between scenes and 

allow CTH to be resolved to an accuracy of ~560m (Muller et al., 2002).  A significant strength of the 

MISR stereo, due to it having more than three observations of the same cloud feature, is the ability to 

separate wind motion induced parallax from CTH parallax (Horvath and Davies, 2001).  An assessment 

of wind induced parallax was made in Seiz (2003) across a limited number of scenes, and found to lead to 

errors in heights far greater in magnitude than those introduced by the imaging geometry; the ability of 

MISR to inherently correct for these errors is therefore of great benefit.    

For CF determination, MISR employs three separate cloud different masks in its operational product: a 

radiometric camera-by-camera cloud mask (Zhao and Di Girolamo, 2004; Yang et al., 2007); a 

stereoscopically derived cloud mask (Diner et al., 1999); and an angular signature cloud mask (Di 

Girolamo and Davies, 1994; Di Girolamo and Wilson, 2003; Zhao and Di Girolamo, 2004).  The 

radiometric cloud mask generates a per-camera cloud mask using one spectral and one spatial metric 

which differ whether the observation is over land or ocean.  Due to the observational channels available 

with MISR the radiometric cloud mask performs inadequately over snow and ice, and over these land 

surface types the two other cloud masks are employed.  The stereo cloud mask is straight forward and sets 

any pixel to cloudy if it is more than 562m above the underlying terrain.  The angular cloud mask 

operates by looking at the change in value of the difference between the 446nm and 886nm bands across 

the MISR view angles.  If the slope between the differences is large and positive then the feature is cloud.  

Small positive or negative slopes indicate snow, ice, or land, and large negative slopes indicate water 

features.             

4 . 1 . 3 . 4  A T S R  G r a p e  M a c r o p h y s i c a l  C l o u d  P r o p e r t y  D e t e r m i n a t i o n  

The ATSR instruments (see Chapter 2), due to the spectral configuration and viewing geometry, are 

capable of both radiometric CTP and geometric CTH retrieval.  The main radiometric approach currently 

employed on ATSR-2 and AATSR is the ORAC algorithm (Sayer et al. 2011, Poulsen et a. 2012), which 

employs an optimal estimation algorithm originally developed for the Spinning Enhanced Visible and 

InfraRed Imager carried onboard the current Meteosat Second Generation weather satellites (Watts et al., 

1998).  The optimal estimation method, in addition to retrieving microphysical and macrophysical cloud 

parameters, also provides estimates on the quality of the retrieval, which is vital for effective assimilation 

of the data into climate models.  The optimal estimation method employs all ATSR channels in its 
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retrieval algorithm.  However, the main contribution to the observed CTP comes from the 11µm and 

12µm BT channels.  As these channels are within the infrared IR-window waveband, and height 

assignment is achieved in a similar manner to that as the IR-window method, therefore the same benefits 

and limitations apply.  The AATSR CTP values are converted into CTHs using reanalysis information 

from ECMWF (Stubenrauch et al., 2013). 

The ORAC authors state that the CF output from the optimal estimation retrieval is generally of a low 

quality and not reliable and this is reportedly due to the fact that the cloud fraction retrieved states tend to 

change erroneously to compensate for other inadequacies within the retrieval.  So the current ORAC CF 

outputs are not expected to perform well.  

4 . 1 . 3 . 5  T h e  N e e d  f o r  M u l t i p l e  C l o u d  C l i m a t o l o g i e s  

The ATSR, MODIS and MISR instruments introduced above and their respective macrophysical cloud 

property determination algorithms, and indeed all other instrument/algorithm combinations reviewed in 

the GEWEX cloud study, all return differing cloud characteristics.  All radiance based algorithms (IR-

window, CO2 Slicing, O2A band), discussed in section 4.1.1.2, assign CTP or CTH through application of 

ancillary, reanalysis derived, atmospheric temperature, pressure, or geopotential height profiles.  

Differences in the employed ancillary datasets lead to differences in the returned CTP or CTH estimates.  

Furthermore, these techniques tend to experience poor performance in the presence of temperature 

inversions, such as with stratocumulus clouds (Wang et al., 1999; Menzel et al., 2008; Garay et al., 2008; 

Marchand et al., 2010) or in the polar troposphere during summer months (Karlsson and Dybbroe, 2010).  

Such problems are not encountered by active instruments or those which employ geometric approaches 

for height assignment.  MISR for example, can provide reliable CTH estimates, with small biases, in 

isothermal conditions due to the stereo techniques employed (Marchand et al., 2010).  

All passive algorithms generally retrieve a radiometric height which lies some way between the cloud top 

and the cloud base; in some cases a number of kilometres below the true cloud top (Stubenrauch et al. 

2013).  The stereo algorithms employed on MISR and AATSR require sufficient image texture to perform 

effectively.  Therefore, stereo retrievals tend to relate to where the cloud optical depth reaches one to two 

(Naud et al., 2004) rather than the true cloud top identified by lidar or radar.  In the case of MISR, for low 

clouds, which tend to be optically thicker, differences of less than 0.5 km (near to the potential accuracy 

of the MISR product, which is ~560m) are typically found against comparisons with active instruments 

(Naud et al., 2004; Marchand et al. 2007).  In the case of mid- to high- level clouds, which tend to have 

have lower optical thicknesses, larger biases of up to 3km are found, with the retrieved CTH tending to 

correspond to the cloud base (Naud et al., 2004; Marchand et al. 2007).  The CO2 slicing algorithm, 

employed by MODIS Science Team, shares similar characteristics for high cloud retreival to MISR, 

tending to retreive the CTH at an elevation corresponding to a cloud optical depth of one to two (Menzel 

et al., 2008), with biases in the region of 3km (Naud et al., 2004).  In the presence of low or semi-

transperant clouds (optical depth of <1, Naud et al., 2007a) the CO2 slicing method no longer functions 

effectively due to signal to noise considerations (the cloudy-sky signal is very close in magnitude to the 

clear-sky signal) and the algorithm reverts to the IR-Window method, which is also employed by the 

MODIS-CERES, AATSR-GRAPE and a number of other science teams in the GEWEX cloud study.  The 
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outputs from the IR-Window method tend to provide better CTH retrievals for clouds at low-levels than 

mid- to high- levels (Liao et al. 1995; Wang et al. 1999; Naud et al., 2004; Minnis et al. 2008; 

Stubenrauch et al. 2010), however the results are often biased low (i.e. associated with the CBH rather 

than CTH) when the optical depth is less than 3 (Stubenrauch et al, 2013), and can be some way below 

the true CBH when the optical depth is low enough to allow for radiative contributions from the 

underlying surface (Naud et al., 2004; Marchand et al., 2010; Stubenrauch et al., 2013).  Correction for 

these radiative CTH biases can be made with knowledge of cloud emissivity and/or optical depth, 

however in the case of multiple cloud layers such corrections are often underestimated (Jin and Rossow, 

1997). 

Multi-layer cloud systems are a common occurrence (as shown in Wind et al., 2010, Figure 10) and 

present a significant problem to the majority of CTH assignment algorithms.  The algorithm most 

susceptible is the IR-window method, which often exhibits CTH retrievals laying at an intermediary 

height between the true layers (Marchand et al., 2010; Stubenrauch et al., 2013).  This occurs due to both 

the tendency of upper clouds types (e.g. cirrus) to be optically thin (typical cirrus optical depth <5; 

Poulsen et al., 2012) allowing radiative contributions from warmer, underlying cloud features to bias the 

retrievals high (high in terms of radiance/CTP, low in terms of CTH), and the general application of 

single cloud layer RTMs, which have no physically sound solution for multi-layer clouds (Wind et al., 

2010; Watts et al., 2011).  The CO2 slicing method, as long as the cloud has an optical depth of greater 

than one and is at an elevation of more than 700 hPa, detects only the upper cloud layer CTPs (Naud et 

al., 2004; Naud et al., 2007).  However, if the optical depth falls below one, thermal influence from the 

lower cloud layers is observed by the sensor, also leading to an over estimation of CTP (Baum and 

Wielicki, 1994; Rossow et al., 2005).  In the case of MISR, the CTHs tend to relate to the most reflective 

(highest contrast) cloud feature in the field of view, which is typically the lowest cloud feature observed 

(Naud et al., 2004).  Therefore MISR generally “sees through” optically thin high clouds, such as cirrus, 

and effectively retrieves the lower cloud layers (Marchand et al., 2010; Stubenrauch et al., 2013).     

CALIOP, the sole active system employed in the GEWEX study, is the only sensor that can provide 

accurate CTH observations (to within 30-60m of the cloud top) and effective multiple cloud layer 

retrievals (Stubenrauch et al., 2013).  The multi-layer cloud retrieval potential is again limited by the 

optical thickness of the overlying cloud; with clouds of an optical depth of greater than 3 being 

effectively opaque (i.e. no further underlying cloud layers are retrieved due to complete attenuation of the 

lidar signal, Vaughan et al., 2009).  CALIOP also brings to light sampling issues, which, given its pencil 

sampling (see section 4.2.3.4) samples only a small percentage of the Earth atmosphere, leading to noisy 

climatologies (Stubenrauch et al., 2013).  Sampling differences in the form of overpass time can lead to 

differences of a few percent across different datasets obtained using shared approaches (Stubenrauch et 

al., 2013).  Furthermore, the general top down observation approach of the majority of passive EO 

instruments can also lead to differences in the retrieved cloud characteristics.  Low- and mid-level clouds 

tend to only be observable in single layer cloud conditions, i.e. when there are no overlying clouds at high 

altitudes, potentially leading to underestimation of low- and mid- cloud amounts (Stubenrauch et al., 

2013).   
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In terms of CF, retrieval performance depends greatly on instrumental capabilities (e.g.: looks angles; 

channels of observation; imaging resolution).  For example observations from higher resolution 

instruments will provide higher estimates of cloud amount due to increased sensitivity to sub-pixel 

clouds, imagers with channels observing close to 1.6 microns will be better able to discriminate between 

cloud and snow/ice features, and more oblique look angles will tend to increase cloud amount due to 

perspective distortions (Wielicki and Parker, 1992; Di Girolamo and Davies, 1997; Rossow et al, 1993b; 

Cawkwell et al., 2002; Maddux et al. 2010; Stubenrauch et al., 2013).  According to the GEWEX cloud 

study, global mean CF for clouds of an optical depth of greater than 0.1 is ~0.68.  Taking into account 

sub-visible cirrus, only observable by CALIOP, the mean global CF increases to 0.73, clearly indicating 

the importance of approach.       

Observational cloud macrophysical cloud climatologies, due to the various reasons outlined above, tend 

to be complimentary, with more observations allowing for more effective insights to be made about cloud 

characteristics (Marchand et al., 2010).  This is particularly the case in Polar Regions where current 

observational climatologies show substantial disagreement, contrary to all other regions where agreement 

between climatologies is high (see Stubenrauch et al., 2013 Figure 2.).  It is the case that the combination 

of AATSR and stereo photogrammetry has the potential to provide an important contribution to the 

current suite of observational cloud climatologies, providing useful complimentary global observations, 

and much needed observations where a number of the current main algorithm/instrument pairings tend to 

perform poorly (e.g. Polar Regions), and this potential is discussed in the next section.        

4 . 1 . 3 . 6  T h e  P o t e n t i a l  C o n t r i b u t i o n  o f  A A T S R  S t e r e o  

There are two current limitations of the observational climatologies reviewed in GEWEX where AATSR 

in combination with stereo photogrammetry is likely to provide unique or strongly beneficial insights.  

The first is a general inability of all current single instrument/algorithm setups to effectively resolve 

multiple cloud layers at a suitable spatial sampling (whilst CALIOP is capable, its spatial sampling is 

prohibitive).  AATSR has the potential, as shown in previous studies (Naud et al., 2007b), to effectively 

resolve both high and low cloud features through application of stereo photogrammetric algorithms to its 

different channels of observation.  The second is a general lack of consensus between cloud climatologies 

in Polar Regions (particularly the North pole) as demonstrated in Stubenrauch et al., (2013, see Figure 2).  

This lack of consensus probably stems from the general inability of radiometric techniques to effectively 

resolve cloud parameters in Polar Regions due to small thermal gradients (Karlsson and Dybbroe, 2010).  

This, combined with the fact that only two of the twelve datasets studied in GEWEX do not rely on 

radiometric methods and associated thermal gradients, means that there is a gap in the knowledge of 

cloud parameters in Polar Regions (Stubenrauch et al., 2013).  AATSR stereo would provide a much 

needed non-radiometric based contribution to the current observational climatologies for improving polar 

cloud observations.  Furthermore, previous work has demonstrated the potential for employing ATSR in 

combination with stereo for effective CF and CTH determination at high latitudes (Cawkwell et al., 2001; 

Cawkwell et al., 2002; Griggs and Bamber, 2008). 

In terms of general complimentary contributions to the current set of cloud climatologies, the following 

can be identified for an AATSR stereo climatology:  the potential to retrieve CTH to an accuracy of 1km 



92 

 

(Cawkwell et al., 2001; Naud et al., 2007; Muller et al., 2007; see section 4.3.2 for census accuracy); the 

potential for effectively retrieving CF for all clouds at elevations of >1km using a stereo derived cloud 

mask (Cawkwell et al., 2001; Cawkwell et al., 2002); diurnal stereo CTH and CF observations; three 

separate ATSR instruments, with potentially 20+ years of stereo CTH/CF observations available; the 

potential for synergy with the ATSR GRAPE retrievals; and a geometric retrieval method which is 

unaffected by instrument trending.         

4 . 1 . 3 . 7  A  C a s e  S t u d y  –  G r e e n l a n d  

Processing an entire AATSR orbit with the census algorithm introduced in Chapter 3 takes approximately 

1.5 hours.  In parallel across the 160 cores available on the MSSL Imaging Group Linux server, 

processing the ~50000 AATSR orbits would take around 20 days of processor time.  Therefore an initial 

case study over a reduced geographical region is preferred for assessing the potential of the AATSR 

stereo contributions identified in the previous section.  The geographical subset chosen is that which 

comprises Greenland [latitudinal range: 50°N-85°N; longitudinal range: 80°W-5°E], which, due to its 

extensive ice sheets, makes it a particularly challenging region for the majority of current cloud property 

algorithms (Stubenrauch et al., 2013).  

The remainder of this chapter documents the generation of the Greenland cloud climatology from 

AATSR, beginning with the generation of the L2 census stereo CTH and radiometric CF (see section 

4.3.1.2 for justification) products in section 4.3.  Validation of these products is undertaken against higher 

resolution (in terms of CTH) observations from MISR and CALIOP; Section 4.3 also contains the 

algorithm description of the climatological aggregation process for generating the stratified L3 CFbA 

product.  In Section 4.4 the AATSR monthly and yearly L3 CTH and CF climatologies for 2008 derived 

from the stratified products are inter-compared against collocated climatologies from the MODIS, MISR 

and AATSR-GRAPE datasets introduced in Section 4.1.2.  From this inter-comparison the additional 

insights into cloud characteristics over Greenland which AATSR provides are further clarified. Finally 

section 4.5 provides a summary, addresses the scientific objectives and provides recommendations for 

future work.   

4.2  Scien t i f i c  A ims and Ob jec t ives  

 Generate L2 CTH and CF products for the AATSR data time series over Greenland. 

 Determine the accuracy of AATSR stereo CTH retrieval against higher accuracy observations of 

CTH from MISR and CALIOP. 

 Determine any gain in performance achieved through application of the census stereo matching 

algorithm over that of the M4/M5 stereo matching algorithm. 

 Aggregate the L2 AATSR products into height stratified macrophysical cloud climatologies 

containing CF on a by height basis. 
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 Inter-compare the stereo derived AATSR cloud climatology against the GEWEX CTH and CF 

climatologies from MODIS (Science Team and CERES), MISR, and AATSR-GRAPE to 

determine any new data contributions provided by AATSR stereo. 

4.3  Cloud C l imato logy  Deve lopment  

4 . 3 . 1  L 2  P r o c e s s i n g  

The first stage in generating a stereo-derived cloud climatology is to process the L1 geo-rectified AATSR 

radiance and reflectance imagery into meaningful stereo derived CTH and CF observations.  The section 

deals with this process, detailing the AATSR data employed, the stereo processing chain and the 

validation of the output products.    

4 . 3 . 1 . 1  A A T S R  D a t a  a n d  S t e r e o  P r o c e s s i n g     

The entire AATSR time series for the geographical subset [latitudinal range: 50°N-85°N; longitudinal 

range: 80°W-5°E], was made available by the NEODC at RAL.  A Python based stereo processing chain 

incorporating the census transform introduced in Chapter 3 was implemented and used to process the 

AATSR data into CTH on the MSSL Linux server. The processing chain is split into the following stages: 

1. Ingest the AATSR data and select the channel to be processed.  If the channel observes in the 

visible region of the spectrum the SZN angles are assessed to determine those image pixels 

with SZNs of greater than one degree (the census algorithm was found to be robust even to 

very low illumination angles).  Any illuminated regions are then marked for further processing.  

If a mid- or thermal-IR channel is being processed then the SZN check is not employed. 

2. The nadir and forward views of the channel under processing and then subset into overlapping 

    subsets of 512 by 512+overlap pixels in order to reduce memory overhead and improve 

processing performance.  The amount of overlap is determined by the sum of the census 

transform radius and the expected CTH induced displacement in pixels.  The census transform 

radius is set at five pixels, as this provides suitable discriminability for the matching algorithm, 

whilst limiting stereo smoothing effects and processing costs.  The y-search radius for the 

matching algorithm is set to 17 pixels, as in Polar Regions the Tropopause is generally far 

below the ~17km elevation such a search radius will allow for, and therefore all cloud features 

of interest are detectable with this search limit.   

3. The census stereo matching algorithm (see Chapter 3) is applied to each forward and nadir 

subset. Following processing the central 512 by 512 pixel region (i.e. non-overlapping region) 

from each subset is extracted, the along track disparities corrected using the AATSR co-

registration correction coefficients (see Chapter 2) and converted into above ellipsoid heights 

using the Mannstein camera model (see Chapter 3).  The extracted heights and across track 

disparities are then placed into the correct location in output arrays.  Once processing is 
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complete the filled output arrays are written out in geotiff format along with associated geo-

referencing information.              

This processing chain was used in parallel on the MSSL Linux server to process the AATSR 11µm, 

1.6µm and 0.67µm channels for the entire AATSR time-series for the previously given geographic 

region.  These channels are employed as they each give unique information on CTH (Muller et al., 2007, 

Naud et al., 2007b; see Figure 4-5).  The unprocessed channels do not give any new CTH information and 

tend to perform with lesser efficacy in CTH determination (e.g. the 0.67µm and 0.55µm channels tend to 

observe the same cloud features, however, shorter wavelengths more effectively detect atmospheric 

aerosols, this leads to corruption in the CTH signal and a reduction in the stereo matching algorithm 

performance, therefore the 0.55µm channel tends to provide less accurate CTH observations than the 

0.67µm channel).  An example output from the processing chain for each channel is shown in Figure 4-5.    

4 . 3 . 1 . 2  P o s t - P r o c e s s i n g  

Stereo matching algorithms, due to a reliance on suitable image texture to locate distinct matches, fail to 

perform effectively in low texture regions.  In the presence of low texture, matching is ambiguous, 

leading to noisy stereo outputs and, in this instance, erroneous CTH retrievals.  Low texture in EO 

imagery can be caused either by low illumination levels (in the visible channels), or particular terrestrial 

features with extensive homogenous regions, such as ice sheets.  This presents a particular problem over 

Greenland, as the majority of its surface is covered in ice and low illumination angles are common 

throughout polar winter.  The effects of low illumination angles are not particularly problematic for the 

census stereo matching algorithm, as it is robust to even very low SZNs.  Low texture regions are far 

more problematic, and lead to significant errors in the census outputs as shown in Figure 4-5.  The 

previous ATSR study on cloud properties over Greenland by Cawkwell et al. (2002), overcomes this 

problem by applying a radiance threshold to the 1.6µm channel to effectively delineate low texture snow 

and ice features.  This is possible due to the low reflectance of solar radiation of ice and snow in that 

region of the EMS as shown in Figure 4-5.  However, the Cawkwell method is quite simplistic and there 

is no information in the paper on either the value of threshold or how it is derived.   

More recently, Istomina et al (2010) developed an automated technique for the detection of cloud-free 

snow-covered areas using AATSR.  The approach employs all seven AATSR channels across five 

different RTM derived thresholds: (3.7µm - 11µm) / 3.7µm < 3%; (3.7µm - 12µm) / 3.7µm < 3%; 

(0.87µm – 1.6µm) / 0.87µm > 80%; (0.87µm – 0.67µm) / 0.87µm < 10%; |(0.67µm – 0.55µm) / 0.67µm| 

< 40%.  Any check which fulfils all of these thresholds is regarded as being ice or snow. The performance 

of the above threshold combination was assessed against lidar observations over 100 AATSR scenes and 

was found to be 95% accurate in detecting cloud free regions over snow.  The missed cloud detections by 

AATSR tended to be high, optically thin, cirrus clouds.  The approach can therefore be used to screen the 

problematic snow and ice regions and also provide an effective cloud mask over the Greenland ice sheet.  
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Figure 4-5.  These three figures present the stereo outputs from the 11µm (upper plot), 1.6µm (middle 

plot), and 0.67µm (lower plots) channels.  The left column is the input data, the middle column shows the 

raw output stereo heights, and the right column the heights after post-processing with the Istomina cloud 

mask and a 500m height threshold applied.  Note the differing detection abilities, with the 11µm channel 

detecting far more high cloud than the other channels.  Also note the very low reflectance of snow and ice 
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One significant drawback, however, is that the threshold process requires the visible channels in its 

operation; precluding year round screening of low texture features/cloud masking.  Once the low texture 

regions have been screened, effectively generating a cloud mask, a 7x7 median filter is applied to the raw 

CTHs to reduce the effects of stereo matching noise within the detected clouds.  The results of this post-

processing can be seen in Figure 4-5. 

4 . 3 . 1 . 3  W i n d  C o r r e c t i o n  

A further step, which is often needed and applied in other studies using stereo observations for CTH 

determination, is correction for wind induced along track disparities (Horvath and Davies, 2001; Seiz, 

2003).  Along track wind, depending upon the node of the satellite and the prevailing wind direction, can 

lead to an under- or over-estimation of cloud top height.  Correction for such wind displacements can be 

achieved through either the instrument having three or more views of the scene, as with MISR (Horvath 

and Davies, 2001), dual stereo satellite operation (see Chapter 6), or through the use of ancillary data, 

such as wind products from geo-stationary or polar orbiting instruments, or numerical weather prediction 

outputs.  For this study wind corrections are not applied to the AATSR stereo output, as tropospheric 

wind speeds over Greenland tend to be less than ±2ms
-1

 according to both a 10-year analysis of 

latitudinally and longitudinally averaged observationally derived zonal and meridional wind components 

from MISR presented in Figure 4-6.  In order to bias the retrievals the local wind speeds must exceed at 

least 8 ms
-1

, as this equates to approximately a one pixel shift in cloud position between the stereo 

acquisitions.  It can be seen from the MISR analysis, that above 9km the wind speed is on average greater 

than 8ms
-1

, so biases of a few hundred meters may occur for higher clouds. 

in the 1.6µm channels.  Finally observe the poor performance of the stereo matching algorithm of low 

texture ice regions, resulting in negative and erroneous positive stereo outputs, which lead to false 

positive cloud retrievals.     

 

Figure 4-6.  This figure presents the latitudinal 10 year average (2002-2011) wind speeds by 

elevation over Greenland from the MISR L3 AM1_CGCL yearly wind component product.  The left 

plot shows the zonal (positive, west-to-east; negative, east-to-west) wind component averages, the 

right the meridional component averages (positive, south-to-north; negative north-to-south).  The 

contours plot wind components from ±12ms
-1

 at 2ms
-1

 quantisation, with filled lines representing 
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4 . 3 . 2  L e v e l  2  V a l i d a t i o n  

The post-processed census stereo L2 outputs are extensively validated against alternative, higher 

resolution observations of CTH from both the MISR and the CALIOP instruments in this section.  

Furthermore an additional inter-comparison is made using the M5 algorithm applied to the same AATSR 

data in order to provide an insight into any gains in performance granted through the application of the 

census stereo algorithm.     

4 . 3 . 2 . 1  V a l i d a t i o n  a g a i n s t  M I S R   

For the validation against MISR, a search was made using the COVE tool (Chander et al., 2010) for the 

month of July 2008 for all collocated AATSR-MISR overpasses with a time difference of less than 10 

minutes between acquisitions.  With this threshold in place a total of 17 orbits pairs were located.  The 

most recent MISR TC_CLOUD products (Mueller et al., 2013), which provide superior coverage and 

accuracy compared to the previous TC_STEREO products (Moroney et al., 2002), associated with the 

defined orbits were extracted from the MISR data server.  The TC_CLOUD dataset is comprised of a 

number of different variables, the variable selected for this inter-comparison is the 

CloudTopHeight_WithoutWindCorrection product, as this provides a more direct inter-comparison (as no 

wind correction is applied to AATSR).  The AATSR L2 data employed is that derived from the 0.67µm 

channel, chosen for its similarity to the 0.67µm channel which is employed on MISR to derive stereo 

observations of CTH.   

To collocate the datasets the geographic grids associated with each swath are employed to resample both 

datasets to a shared grid defined by the Bamber et al., (2001) Greenland elevation model (which is 

employed in the GMTED2010 DEM dataset (Danielson and Gesch, 2011)).  Non-common areas (i.e. 

regions with no shared AATSR-MISR orbit) are screened from further analysis.  Prior to re-projection to 

the Greenland grid, the MISR data is smoothed with a 5x5 pixel median filter.  This image processing is 

performed due in an attempt to account for the poor geo-referencing of the AATSR data (see Chapter 5 

for more details), which is thought to be good to ±2km.  Further screening is performed using the 

collocated DEM so that only points over Greenland are employed in the analysis (this is done as this 

current study is interested only in those clouds over Greenland).  Lastly, any AATSR or MISR clouds 

which are less than 500m above the terrain are excluded from the analysis.  This threshold is chosen as 

neither the census algorithm nor the MISR instrument (Muller et al., 2002), due to stereo accuracy 

limitations, are able to provide an accurate height assessment on clouds which are within a 500m 

proximity to the surface.  The results of collocation methodology from the 17 collocated orbits are 

presented for the census and M5 stereo algorithm outcomes in scatterplot form in Figure 4-7. 

positive wind components and the dashed lines negative components.  The applied colour look up 

table has been scaled to ±6ms
-1

 to improve the visualization.  The high meridional winds over the 

Southern portion of Greenland blowing in the south-to-north direction above 7km are likely caused 

by the annual variations in the polar jet (see Figure 4-13).      
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4 . 3 . 2 . 2  M I S R  D i s c u s s i o n  

The inter-comparisons between AATSR census, and AATSR M5, CTH estimates and those from MISR 

compare over ~1 million samples of CTH obtained from the 17 orbit pairs.  The statistical analysis (inset 

in the scatterplots in Figure 4-7) for the census algorithm, following an outlier removal process (all points 

greater than 3 sigma from the mean excluded), gives an R
2
 value of 0.79, demonstrating very good 

agreement with MISR, a small bias of -129m, and a RMSE of 887m, which is very near the limit of 

AATSR’s theoretical accuracy for pixel-level accuracy stereo matching, ~830m (Seiz, 2003).  It should 

be made clear that the accuracy of the census stereo output, even with the application of the sub-pixel 

interpolation routine, is still at best (i.e. taking the sub-satellite nadir and forward pixels, that give the 

optimal base to height ratio) ~800 meters.  This is due to that fact that the co-registration correction 

coefficients (Fisher and Muller, 2013) in the along track direction improve co-registration accuracy to 

~0.8 pixel (see Chapter 2).  The M5 inter-comparison with MISR results in an RMSE of 1187m, a bias of 

-538m, and an R
2
 value of 0.7, demonstrating that census retrieves CTH to a greater degree of accuracy 

with reference to MISR.   

Statistics of omission and commission are also generated between the AATSR and MISR observations to 

provide further insights into the census and M5 stereo algorithm characteristics.  If the MISR cloud 

observations are assumed to be the truth, then an error of omission would be an instance where MISR 

detects a cloud feature and AATSR does not, and an error of commission the converse of this.  This form 

of analysis enables determination of errors of representation, i.e. is one instrument or algorithm seeing far 

more cloud than the other?  To calculate the omission statistic the ratio of the number of cloudy pixels 

 

Figure 4-7. This figure presents the inter-comparison of AATSR 0.67µm census stereo outputs against 

collocated MISR stereo observations in the left histogram, and the same inter-comparison but employing 

M5 to process the AATSR data in the right histogram.  There is generally very good agreement between 

AATSR census and MISR, with the majority of height observations within 1km of each other, this 

agreement is represented in the statistics.  The M5 outputs demonstrate less agreement with MISR than 

census and appear to be noisier.      
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that both MISR and AATSR detect to the total number of MISR cloudy pixels is calculated.  The 

commission statistic is the ratio of the number of cloudy pixels that both MISR and AATSR detect to the 

total number of AATSR cloudy pixels.  For census, there is an omission percentage of 8%, that is 

AATSR misses 8% of the clouds that MISR detects.  The commission statistic for census is 9%, 

indicating that MISR misses 9% of the clouds that AATSR observes.  The difference in total cloud 

amount between the datasets is therefore ~1%.  In the case of the M5 algorithm, the omission statistic is 

1%, whilst the commission statistic is 12%, equating to an 11% difference in the amount of cloud 

detected by the two datasets.   

The variability between the census and M5 cloud amounts is due to the cloud mask being comprised of 

two separate components in this instance: one radiometric, the Istomina cloud/ice mask; and one 

geometric, exclusion of all CTHs which are less than 500m above the surface terrain.  The source of the 

differences is the increased smoothing characteristics of the M5 algorithm.  The radiometric cloud mask 

is effective at detecting cloud features below 500m, whilst the MISR and AATSR stereo masks are not.  

Therefore the radiometric mask extent tends to be greater than that of the stereo mask.  Due to the 

smoothing effect of the M5 algorithm (see Chapter 3) the extent of the stereo cloud mask (i.e. regions 

with a CTH elevation of >500m) may be increased, and dilation of stereo cloud features into the 

radiometric mask will occur, leading to the observed bias in the M5 algorithm outputs.  This analysis 

provides further insight into the problems of the M5 algorithm and the distortion of cloud features, as 

whilst the total extent of the cloud mask in the L2 product is defined by the radiometric mask boundaries, 

the smoothing errors of M5 may potentially leading to biasing of cloud amounts at certain elevations.  

Such biases, in this analysis, appear to be reduced through application the census algorithm due to its 

reduced smoothing effects (see Chapter 3). 

This omission-commission analysis also demonstrates that AATSR census geometric masking alone 

provides a similar CF estimate to that of the MISR masks employed over snow and ice (stereo and 

angular masks, see section 4.1.3.3), which is very encouraging, and implies in regions with high-texture 

(i.e. that do not confuse the matcher leading to erroneous heights) a simple height threshold mask may 

well be suitable for AATSR census stereo CF determination.              

4 . 3 . 2 . 3  V a l i d a t i o n  a g a i n s t  C A L I O P  

CALIOP has been making measurements of clouds and aerosols since 2006. The instrument is located in 

the NASA A-Train satellite constellation and therefore has an equatorial overpass time of approximately 

1:30 p.m. and a 16-day orbital repeat cycle.   The lidar has a ground footprint on the ellipsoid of 100m 

and pulses every 333m along track.  It receives backscattered radiation in three channels, two at 532nm 

with sensitivity to the backscattered intensity at orthogonal polarisations and one at 1064nm.  The vertical 

resolution is between 30-60 metres depending on the altitude of the cloud, with 30m resolution achievable 

in the troposphere (Vaughan et al., 2009).  If the uppermost cloud layer has an optical depth of less than 

three (Vaughan et al., 2009), then CALIOP is able to detect the presence of lower cloud layers.   

For the period April to October 2008, all collocated AATSR-CALIPSO orbits over Greenland with less 

than 10 minutes between overpasses (to reduce the effects of clouds being displaced by winds) are 

extracted for this analysis, giving a total of 70 CALIPSO orbits split between the months of April, July, 
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August, September and October (no collocations fulfilling the requirements were found for May or June).  

The CALIOP L1 data is processed into various L2 products, of which the 1km cloud product, 

CAL_LID_L2_01kmCLay-ValStage1-V3-01, is applied for validation here due to its similar resolution to 

the AATSR instrument.  The lower limit for cloud detection for this product is a backscattered signal of 

greater than 1 x 10-3 km
-1

sr
-1

 (equivalent to an optical depth of 0.01 for cirrus clouds; McGill et al, 2007, 

Kahn et al., 2008; Vaughan et al., 2009).  The products are similarly masked as with the MISR analysis, 

with all AATSR and CALIOP cloud features below 500m excluded from the analysis, and the data is 

resampled onto the Bamber Greenland DEM grid for analysis.  To account for poor AATSR geo-

referencing in this analysis the bounding box method applied for AATSR validation against CALIOP in 

the ALANIS study is employed (see Chapter 5).  The results of the inter-comparison over Greenland for 

the 0.67µm, 1.6µm and 11µm channels are presented in Figure 4-8.  A further analysis which assesses 

how often a given AATSR channel detects the uppermost cloud layer detected by CALIOP is presented 

on a monthly basis in Table 4-1.  This table also presents the monthly mean height and optical depth of 

the uppermost cloud layer detected, and the monthly mean height and optical depth of the uppermost 

CALIOP cloud layer when it is missed by AATSR.    

4 . 3 . 2 . 4  C A L I O P  D i s c u s s i o n  

The CALIOP inter-comparison compares over 15000 samples of CTH data, with comparisons against the 

visible, NIR and thermal AATSR channels for stereo outputs from both the census and M5 algorithms.  

Statistics have been generated from the inter-comparison, with, in all cases, points greater than three 

standard deviations from the mean difference being rejected from the analysis.  The best comparison, see 

Figure 4-8, is achieved by the 11µm channel with the census stereo algorithm, with an R
2
 value of 0.78, a 

root mean square error (RMSE) of ~1200m, and a bias of 45m (AATSR heights are on average 45m 

below those of CALIOP).  This small bias value is in contrast to the census results from the NIR and 

visible channels, with AATSR returning heights 348m below those of CALIOP for the 1.6µm channel 

and 678m below CALIOP for the 0.67µm channel.  These biases, whilst large for the NIR and visible 

channels are substantially less than those exhibited when CALIOP is compared to other passive sensing 

techniques.  Studies examining collocated MODIS and ISCCP observations demonstrate 

underestimations typically to the order of 2.5km (Holz et al. 2008; Vaughan et al., 2009). 

The inter-comparison between CALIOP and M5 (also shown in Figure 4-8) demonstrates that census 

performs more effectively for this comparison.  M5’s RMSE values are not as good as those from census, 

ranging from 1400m-1700m for M5, versus 1200m-1500m for census.  So the census CTH estimates 

typically show a tighter distribution, i.e. less noise, than the M5 results.  This assertion of improved 

performance is further backed up by the R
2
 values, which range from 0.70-0.79 for census, and 0.58-0.63 

for M5, showing that census better describes the CALIOP data.  The biases for the thermal and NIR 

channels are larger for M5 than for census, though in both cases, the difference is less than 100m: 45m 

against 177m for the thermal channel, and 375m against 413m for the NIR.  In the visible channel the 

bias for the census retrieval is greater than that of M5: 695m versus 424m.  The cause of this reduced bias 

for M5 in the visible channel is not currently understood. 
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Figure 4-8. The figure contains the histograms of the AATSR census and M5 stereo output inter-

comparisons against CALIOP lidar observations.  The upper row contains the 11µm results, the 

middle row the 1.6µm results, and the bottom row the 0.67µm results.  The left column comprises the 

census inter-comparisons, the right column the M5.  Note, that in general the census results are far 

less noisy than M5 and compare far better with CALIOP, particularly for high cloud observations 

(above 8km) in the 11 and 1.6µm channels. 
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 11µm D 11µm M 1.6µm D 1.6µm M 0.67µm D 0.67µm M 

Apr       

% 96 6 85 15 75 25 

H(m) 6033(±2563) 8368(±1780) 5767(±2469) 8246(±1758) 5779(±2316) 8406(±1716) 

OD 0.39(±0.68) 0.16(±0.27) 0.41(±0.69) 0.16(±0.28) 0.45(±0.76) 0.19(±0.29) 

Jul       

% 90 10 81 19 78 22 

H(m) 5075(±2220) 7169(±2042) 4800(±2079) 6947(±1962) 4448(±2305) 6689(±1769) 

OD 1.43(±1.42) 0.41(±0.42) 1.51(±1.44) 0.54(±0.61) 1.74(±1.49) 0.62(±0.61) 

       
Aug       

% 90 10 85 15 83 17 

H (m) 5710(±2438) 7633(±2235) 5706(±2425) 7364(±2147) 5755(±2407) 6977(±2221) 

OD 1.62(±1.43) 0.43(±0.51) 1.68(±1.43) 0.41(±0.53) 1.69(±1.43) 0.44(±0.55) 

Sep       

% 88 12 83 17 81 19 

H (m) 4837(±2440) 8311(±2214) 4878(±2249) 8230(±2414) 4691(±2163) 8121(±2480) 

OD 1.04(±1.21) 0.31(±0.36) (0.99±1.17) 0.31(±0.18) 1.04(±1.21) 0.32(±0.38) 

Oct       

% 90 10 86 14 83 17 

H (m) 5625(±2783) 6570(±2706) 5446(±2702) 7101(±2802) 5199(±2750) 7334(±2556) 

OD 1.03(±1.32) 0.48(±0.69) 1.08(±1.34) 0.32(±0.43) 1.19(±1.42) 0.38(±0.47) 

 

 

 

      
 

 

Table 4-1. Here the results of the detection efficiencies of the AATSR channels in detecting the 

uppermost cloud layer detected by CALIOP are presented.  Each row in the table represents a 

month from the AATSR CALIOP inter-comparison dataset, and each column an assessed AATSR 

channel.  For each channel a number of statistics are generated for both when the AATSR channel 

observes the uppermost CALIOP cloud layer (denoted by D), and for when the AATSR channel 

misses the uppermost CALIOP cloud layer (denoted by M).  The statistics are the percentage of 

detected and missed upper cloud layers(%), the monthly mean CTH of the detected and missed 

CALIOP cloud top layers along (H), and the monthly mean optical depth of the detected and missed 

CALIOP cloud top layers (OD).  The bracketed values within the table are the associated monthly 

standard deviations.       
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The cause of the different biases across the AATSR channels is difficult to ascertain.  A previous study 

comparing ATSR-2 stereo retrievals against the ground based Chilbolton radar undertaken by Naud et al., 

(2007b) did not demonstrate such significant bias differences between the channels.  With biases of -

0.9km for the 0.67µm channel, -0.8km for the 1.6µm channel, and -1.1km for the 11µm channel.  

However, the study was only comprised of 11 observations (versus ~15000 in the study presented in this 

chapter), and therefore may not be very representative in terms of the actual performance of stereo 

algorithms when applied to the ATSR instruments.  

A possible reason for the biases observed is the requirement of suitable image texture for reliable stereo 

matching.  One potential hypothesis is that the 11µm channel, due to AATSR’s excellent thermal 

sensitivity, reaches sufficient image texture for effective stereo matching at lower cloud optical depths, 

than in the NIR/visible channels.  Regions of the cloud with lower optical depth will tend to be closer to 

the true cloud top, and this would explain the current observed reduction in CTH bias in the thermal 

channel when compared to CALIOP (which can effectively observe the CTH to an accuracy of between 

30m to 60m).  In order to facilitate this assessment, firstly the ability of the 11µm channel to detect the 

top-most CALIOP cloud layer is compared against the ability of the NIR and visible channels.  The 

results of this assessment are presented in Table 4-1. Looking at combined mean results, the 11µm 

channel detects the first CALIOP cloud containing layer 90% of the time, this drop to 84% for the 1.6µm 

channel, and to 81% for the 0.67µm channel.  The second evaluation looks at the mean optical depths (as 

determined by CALIOP
15

) when first layer clouds are detected by each of the AATSR channels.  Again 

the results are presented in Table 4-1. The combined means demonstrate that the 11µm channel can on 

average detect clouds with an optical depth of 1.22 (±1.35), this drops to 1.26(±1.35) for the 1.6µm 

channel, and to 1.34 (±1.39) for the 0.67µm channel.  The same result, albeit with lower optical depths, is 

found when evaluating the medians, with an optical depth of 0.68 for 11µm, 0.75 for 1.6µm, and 0.83 for 

0.67µm.  Though further work is required, this initial finding implies that the thermal channel is more 

sensitive to lower optical depths, meaning firstly that clouds with a lower optical depth can be effectively 

retrieved, and secondly that the retrieved heights are nearer to the cloud top as determined by the 

CALIOP lidar. 

Table 4-1 also offers insights into the detection limits of the AATSR stereo retrieval system.  When 

AATSR misses the first CALIOP layer the elevation of the cloud detected by the lidar is typically above 

7km in elevation (vs. ~5km when AATSR detects the first cloud layer as determined by CALIOP).  

AATSR therefore has a tendency to miss the very high clouds over Greenland, but generally only 10% of 

the time in the thermal channel which has been shown to be the most sensitive.  Of the first layer clouds 

that are missed the optical depths tend to be substantially smaller than those layers than are detected.  

Furthermore, the mean behaviour of all of the missed cloud optical depth is very similar across all 

AATSR channels.  The 11µm channel generally misses clouds with an optical depth of 0.37 (±0.46), the 

1.6µm exhibits the same mean detection limit with a slightly larger standard deviation, 0.37 (±0.48), and 

the 0.67µm has a slightly increased mean and standard deviation 0.39 (±0.49).  The median optical depth 

detection limit is 0.21 across all channels.  This detection behaviour is similar to the detection limits 

                                                           
15 It should be noted that the CALIOP optical depth observations can be biased by  up to 30% (Josset et al., 2012) 
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achievable by ISCCP, MISR and MODIS which range from between about 0.1 and 0.4 (Rossow and 

Schiffer, 1999; Dessler and Yang, 2003; Marchand et al., 2007; Ackerman et al., 2008; Marchand et al., 

2010).  Importantly, these results show that the AATSR 11µm, in combination stereo, likely has better 

potential for retrieving optically thin high cloud than MODIS with the CO2 slicing method, which fails to 

operate effectively at optical depths of less than 1 (Naud et al., 2007a).    

4 . 3 . 3  L 2  S u m m a r y  

The entire AATSR dataset for Greenland has been processed using the census stereo matching algorithm, 

providing ~10 years of CTH data.  Due to problematic low texture regions caused by the Greenland ice 

sheet there is substantial noise within the stereo matching outcomes, this noise is problematic as it leads 

to false positive cloud features.  In order to remove these false positive clouds a RT derived set of 

radiometric thresholds which effectively delineates ice from other spectral features has been employed.  

This threshold application also provides an effective cloud mask, as any non-ice features over the ice 

sheet are typically clouds.  However, it precludes year round and diurnal stereo operation, which is a 

significant drawback.  The census derived CTH observations have been validated against higher 

resolution observations of CTH from both MISR stereo retrievals and CALIOP lidar returns.  In both 

validations the census CTH outputs are shown to agree well, and in almost all cases demonstrate better 

agreement than the M5 algorithm.  Furthermore, the AATSR 11µm stereo results, in comparison against 

CALIOP, have been shown to be more sensitive than the stereo retrievals from both the 1.6µm and the 

0.67µm channels, leading to a greater likelihood of clouds being detected and also a reduction in the bias 

of the retrieved CTH.     

4 . 3 . 4  L 3  P r o c e s s i n g  

The AATSR L3 CFbA climatology is derived from the AATSR L2 data using the same general principles 

as those employed by the MISR science team to derive the MISR CFbA product (Di Girolamo et al., 

2010).  This product is in a stratified format, that is, CF is recorded for multiple height levels.  This 

approach is beneficial as it allows retention of both CF and CTH data in one dataset, and removes the 

ambiguities that occur when attempting to create mean CTH values from bimodal cloud distributions, 

which occur with regularity in the tropics (Stubenrauch et al., 2013).  The CFbA processing chain is as 

follows:   

1. The first step in the process is to establish a climatological grid into which the AATSR data is 

aggregated.  The grid employed is of 0.5° resolution and has 17 vertical levels.  The first sixteen 

levels contain the CFbA data at 1km quantisation above the WGS84 reference ellipsoid, apart 

from the first level (0.5km-1km), and the sixteenth level (which contains all clouds detected by 

the Istomina cloud mask, but having no valid height, i.e. <500m CTH). The final level contains 

the total cloud fraction.  

2. Following generation of the climatological grid, a L2 processed AATSR orbit for a given day is 

ingested into the processing chain and divided into 16 x 16 km
2
 regions.  Within each region the 

CF is computed by calculating the ratio of cloud to non-cloudy pixels and the CTH determined 

by taking the median above ellipsoid height of the cloudy pixels.     
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3. The CF for each region is then projected into the climatological grid.  The horizontal location is 

determined by taking the central latitude and longitude values for the region under consideration 

and selecting the closest 0.5° grid cell within the climatological grid.  The vertical position is 

determined by the median height value.  If the median above ellipsoid CTH value is less than 

500m above the median local terrain height taken from the GMTED2010 DEM data, then the CF 

data is placed into the 16
th

 grid level.  

4. Once all regions from the orbit have been placed into their respective height bins the mean cloud 

fraction at each height bin is calculated.  This is achieved by dividing the summed cloud fraction 

of a given height bin by the number of observations which comprises it.   

5. The next step is to normalise the CF for a given horizontal location so that when summed over 

its vertical extent it is equal to 1.  This is achieved by dividing each bin by the total number of 

samples over its vertical extent (from bins 1 through 16).    

6. Once each orbit grid has been through this normalisation process, it can be combined into a daily 

grid.  This is achieved by summing all orbit grids together and dividing each grid cell by the 

total number of orbits which observe it.  The total CF bin for each climatological grid cell is also 

computed at this point by summing over bins 1 through 16.         

7. Step 6 is then applied to combine the daily data into monthly data.  All daily grids are summed 

together and each grid cell is divided by the number of observation days.  Yearly climatologies 

are similarly constructed by the summing the monthly climatologies and dividing by the number 

of observation months.  This daily, monthly, yearly aggregation approach ensures that the 

resulting CFbA values are unbiased, versus aggregating by orbit where the CFbA would be 

biased towards the observations with the most samples (Di Girolamo et al., 2010). 

This processing chain was used to process the AATSR L2 CTH 11µm, 1.6µm and 0.67µm datasets 

for the entire AATSR time-series for the previously defined geographic region over Greenland.  

Three separate datasets were generated for each channel.  One derived from the AATSR descending 

node (a 10:30 a.m. dataset), one from the ascending node (10:30 p.m. dataset), and combined 

ascending and descending node dataset.  Example climatological outputs from this processing chain 

are shown in Figure 4-9. 

4.4  L3 In ter -Compar ison  Study  

4 . 4 . 1  G E W E X  I n t e r - c o m p a r i s o n  D a t a s e t s  

The climatologies employed for inter-comparison against the new AATSR-stereo L3 CFbA climatology 

are taken from the GEWEX cloud climatology database 

(http://climserv.ipsl.polytechnique.fr/gewexca/index-2.html, last accessed 28
th

 Sep 2013).  The 

climatological products employed from the database are the MODIS-Science Team, MODIS-CERES, 

MISR and AATSR-GRAPE datasets, with the respective methods behind their L2 product derivation 

discussed in section 4.1.3.  The climatological aggregation process differs between the datasets, though 

http://climserv.ipsl.polytechnique.fr/gewexca/index-2.html
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all the GEWEX climatological products are available on a 1° grid, with monthly time stamps.  The MISR 

science team developed and employ the CFbA climatological aggregation approach that is also employed 

for developing the AATSR CFbA product in this chapter.  The only difference between the MISR and the 

AATSR approaches is that the MISR L2 products are averaged onto a 17.6km grid (rather than a 16km 

grid as employed with AATSR) prior to climatological aggregation.  The MISR CFbA product is 

typically available at a 0.5° resolution, however as mentioned, within the GEWEX database, the MISR 

CFbA is available only on a 1° grid.  All of the MODIS monthly climatological products are formed 

through aggregating daily L3 products (aggregated from the L2 products) into a 1° equal angle grid.  In 

the inter-comparisons used in this section only the daytime MODIS Terra products are used (10:30 a.m.) 

for their similarity to the overpass time of Envisat.  The AATSR-GRAPE climatology is aggregated in a 

method similar to that of the MODIS datasets. 

 

Figure 4-9.  This figure displays the latitudinal 2008 descending node mean CFbA for the 0.67µm 

(upper plot), 1.6µm (middle plot), and 11µm (lower plot).  There is a general increase in high cloud 

amount as the wavelength of observation increased, particularly over the southern half of 

Greenland.  The cloud fraction below 2km is limited due to the elevation of Greenland itself, which 

is on average greater than 2km.  The majority of clouds are below 8km, this is to be expected as in 

Polar Regions the troposphere rarely exceeds 8km in elevation.    
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Two different comparisons are made in the section, one evaluating CF, the other CTH.  Both comparisons 

employ data from 2008.  As the GEWEX climatologies are available at 1° resolution they are resampled 

using bilinear interpolation to the 0.5° grid employed by the AATSR stereo (hereafter referred to as 

AATSR-Stereo) CFbA grid.  In the CF analysis, undertaken in section 4.4.2, the total CF layer is taken 

from the 2008 0.67µm descending AATSR CFbA product.  The dataset used from AATSR-Stereo only 

depends on the node, as the total CF is the same across CFbA products due to consistent application of 

the Istomina cloud mask to define CF.  The descending AATSR node climatology is derived from data 

closest in time to the other climatologies used in this comparison, hence its selection.  As the GEWEX CF 

products are available as monthly datasets they are combined into a yearly product by averaging across 

each month.   

The CTH inter-comparison, undertaken in section 4.4.3, requires conversion of the AATSR-Stereo CFbA 

products into mean CTHs.  This is achieved by summing scaled heights over all bins for a given location.  

The heights are scaled by the ratio of CF in a given bin to the total CF across all bins for the given 

location, e.g.  5 * (0.6/0.64) + 4 * (0.04/0.64), where there are CF observations in the bins corresponding 

to 4km and 5km and the total CF across all bins is 64%, 60% of which is at 5km and 4% of which is at 

4km, giving a CTH for the location of 4.94km.  In the CTH inter-comparison two different AATSR-

stereo products are evaluated, the 2008 0.67µm descending AATSR-Stereo CFbA product and the 2008 

11µm descending AATSR-Stereo CFbA product.  The 0.67µm and 11µm products, whilst sharing total 

CF, are expected to exhibit different mean CTHs due to the previously demonstrated differing detection 

capabilities, with the 11µm product expected to return greater heights than that of the 0.67µm.  Two 

comparisons are made for the CTH analysis.  The first, similar to the CF analysis, assesses the general 

large scale CTH variation over Greenland through comparison of the yearly averages.  The second looks 

at the variation of the monthly total mean CTH over Greenland across the datasets.          

4 . 4 . 2  C F  I n t e r - c o m p a r i s o n   

4 . 4 . 2 . 1  Y e a r l y  C o m p a r i s o n  

 

 

Figure 4-10. These plots show the mean CF for 2008 from left to right: AATSR-Stereo, MISR, 
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4 . 4 . 2 . 2  C F :  Y e a r l y  D i s c u s s i o n  

Of the yearly CF climatology plots shown in Figure 4-10 AATSR-Stereo and MISR demonstrate the best 

agreement in terms of large-scale CF organisation.  This is somewhat surprising given the fact that the 

AATSR-Stereo CF is derived using the Istomina radiometric masking method, whilst the MISR CF is 

determined using angular and stereo thresholds.  This demonstration further validates the quality of the 

Istomina snow/ice mask for effective cloud discrimination over snow and ice.  Looking at the mean 2008 

CF for AATSR-Stereo a value of 0.45 (±0.08) is returned, for MISR a value of 0.45 (±0.07) is returned.  

For the other datasets some disagreement is found.  For AATSR-GRAPE the retrieved CF appears to be 

far too low, however, this is not too surprising as the AATSR-GRAPE team states that the CF retrieved 

by the optimal estimation algorithm is generally unreliable (see section 4.1.3.4).  The mean CF for 

AATSR-GRAPE for 2008 is 0.15 ± 0.06.  The two MODIS teams also retrieve quite dissimilar results 

given the fact that the same instrument is used in their derivation; this demonstrates the importance of 

algorithm in defining the final outcome.  The MODIS Science Team product agrees well with MISR and 

AATSR-Stereo over the central region of Greenland, however in the Northern regions it substantially 

underestimates CF.  The MODIS CERES CF climatology for 2008 has a very similar CF organisation to 

MISR and AATSR, but in many locations appears to be detecting slightly more cloud, as evidenced by 

the stronger yellows and oranges.  The MODIS Science Team and CERES return 0.39 ± 0.09 and 0.49 ± 

0.1 as their mean CFs for 2008 respectively.      

4 . 4 . 3  C T H  I n t e r - c o m p a r i s o n  

4 . 4 . 3 . 1  Y e a r l y  C o m p a r i s o n  

MODIS-CERES, MODIS-Science Team, AATSR-GRAPE.  In general there is good agreement across 

the first four datasets for large scale cloud structure.  The MODIS-Science team product 

underestimates CF in the north west of Greenland compared to the other three reliable datasets.  The 

AATSR-GRAPE dataset appears to be ineffective in CF determination.      

 

           

Figure 4-11. These plots show the mean CTH for 2008 from left to right: AATSR-Stereo 0.67µm, 
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4 . 4 . 3 . 3  C T H :  Y e a r l y  D i s c u s s i o n  

The yearly averages of CTH in Figure 4-11 all show quite different large-scale structures.  The AATSR-

Stereo 0.67µm product, MISR and AATSR-GRAPE climatologies show the most similarity but the 

agreement is limited.  The MODIS-CERES CTH climatology appears to lose all spatial heterogeneity 

present in the other datasets, setting the majority of Greenland to heights close to 5km.  The MODIS-

CERES CTHs also appear to be generally higher than the other datasets with the exception of the 

AATSR-Stereo 11µm product.  The thermal AATSR-Stereo climatology returns greater heights than the 

other climatologies, particularly in the Southern half of Greenland, implying the presence of multi-layer 

clouds.  Looking at the statistics for Greenland the mean CTH for the AATSR-Stereo 0.67µm is 

4.5±0.7km, for MISR it is 4.3±0.8km, for AATSR-GRAPE it is 4.2±0.4km, for MODIS-CERES it is 

AATSR-Stereo 11µm, MISR, MODIS-CERES, AATSR-GRAPE.  All of the climatologies demonstrate 

quite different large scale CTH distributions.  Of most interest in this figure is the difference between 

the two AATSR-Stereo plots, demonstrating the effective multilayer cloud detection capabilities of 

AATSR in combination with stereo.  This plot also demonstrates that that the other datasets under 

consideration tend to miss high clouds.       

4 . 4 . 3 . 2  M o n t h l y  C o m p a r i s o n  

       

Figure 4-12. The above figure plots the monthly mean CTHs over Greenland for each month of 2008 for 

the AATSR-Stereo 0.67µm, AATSR-Stereo 11µm, AATSR-GRAPE, MISR and MODIS-CERES 

climatologies.  Only months March through October have complete coverage of Greenland due to 

illumination conditions.  Of most interest in this plot is the high cloud detection of the AATSR-Stereo 

thermal channel, as also demonstrated in Figure 4-11, and also the intermediate CTHs returned by 

AATSR-GRAPE and MODIS-CERES.  The dashed lines in the plot represent ±1 standard deviation.   
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4.9km±0.8km, for AATSR-Stereo 11µm it is 5.3±0.8km.  The MODIS-Science Team have no CTH data 

for 2008 so are not considered.              

4 . 4 . 3 . 4  C T H :  M o n t h l y  D i s c u s s i o n  

Of the monthly mean CTH amounts for Greenland shown in Figure 4-12, only the months of March 

through October have complete coverage of Greenland and are considered here.  The remaining 4 months 

have limited coverage due to polar winter, and the requirement of illumination is present for the MISR, 

AATSR-Stereo and AATSR-Grape climatologies.  Looking firstly at the AATSR-Stereo 0.67µm, in the 

summer months (May-July) is it shown that on average the AATSR-Stereo dataset underestimates the 

MISR observations by ~500m, with a peak of this behaviour June.  The AATSR-Stereo 11µm detects 

CTHs 2-3km above the other datasets for the period March through September.  This result implies firstly 

that there is an increase in high cloud in summer months and that in the spring and autumn it appears that 

the high cloud is reduced as both the assessed AATSR-stereo channels return similar CTH statistics.  

Secondly this result implies that there is a substantial amount of multilayer cloud over Greenland in the 

summer months which is effectively detectable with AATSR-Stereo.  This reconfirms the findings of 

differing cloud layer detection capabilities of the AATSR channels when processed using stereo 

presented in the CALIOP inter-comparison and also in Naud et al., (2007).  The MODIS-CERES and 

AATSR-GRAPE climatologies appear to detect inter-mediate heights between the AATSR-stereo 11µm 

and 0.67µm results in Greenland summer; this result in not unexpected, in multi-layer cloud situations the 

IR-window method employed by these instruments tends to return an intermediary CTH value someway 

between the upper and lower cloud decks (Stubenrauch et al., 2013).  In the Spring and Autumn months, 

with an apparent decline in multilayer cloud conditions, the MODIS-CERES and AATSR-GRAPE mean 

CTH estimates fall more in line with those from MISR and AATSR-Stereo.        

4.5  Summary  

4 . 5 . 1  O b j e c t i v e  R e v i e w  

The scientific objectives outlined in section 4.2 are reviewed here: 

‘Generate L2 CTH and CF products for the AATSR data time series over Greenland.’ 

This objective has been achieved successfully.  The entire AATSR time series over Greenland has been 

processed into above ellipsoid CTHs using the census stereo algorithm in combination with the 

Mannstein camera model. The Istomina snow/ice mask has been implemented to screen low texture snow 

and ice regions which were found to lead to erroneous stereo CTH retrievals.  Furthermore, this method 

provides an effective cloud mask, and therefore CF observations, as any non-snow/ice regions over a 

snow/ice surface generally correspond to cloud features.  One side-effect of the application of the 

Istomina cloud mask is that is requires all AATSR channels to effectively identify snow/ice regions.  This 

precludes the generation of effective and accurate stereo CTH observations over Greenland during non-
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illuminated periods (e.g. night time/polar winter) from the AATSR thermal channels, which is a 

substantial drawback.         

‘Determine the accuracy of AATSR stereo CTH retrieval against higher accuracy observations of CTH 

from MISR and CALIOP.’ 

The L2 AATSR census stereo outputs have been compared extensively against observations from both 

MISR and CALIOP.  Census has been shown to perform very well.  In the 0.67µm comparison against 

MISR an RMSE of ~900m is returned along with a bias of approximately -100m.  These values 

demonstrate that the algorithm leads to performances very close to the optimum accuracy achievable by 

the ATSR instruments, which is ~800m (a limit introduced by the co-registration correction coefficients).  

A further comparison against MISR was undertaken to estimate biases in CF.  This omission-commission 

analysis demonstrated that a ~1% difference exists between the CF detected for MISR and for AATSR 

for CTHs above 500m, demonstrating excellent agreement between the two cloud masks. 

In the comparison against CALIOP all three AATSR channels processed with census have been 

compared.  The 11µm stereo results show the best agreement with an RMSE of 1200m and a bias of only 

45m.  At shorter wavelengths the biases of the AATSR stereo retrievals are shown to increase, from 

375m at 1.6µm to 695m at 0.67µm.  These bias differences have been attributed to differing detection 

efficiencies across the AATSR channels, and the 11µm channel has been shown to be more sensitive to 

cloud features, requiring lower optical depths to effectively perform stereo matching, resulting in heights 

retrieved closer to the true cloud top as detected by the lidar instrument and fewer missed high clouds, 

which tend to be optically thin (Poulsen et al., 2012).   

Additionally, the CTH determination efficacy of the AATSR instrument in combination with stereo has 

been assessed by looking at the typical characteristics of the clouds, in terms of optical depth and 

elevation, which it commonly misses.  This assessment, performed against the CALIOP lidar data, has 

demonstrated that the majority of clouds missed by the AATSR observations over Greenland are above 

7km in elevation and on average have an optical depth of approximately 0.4.  This detection limit of 0.4 is 

in line with other CTH retrieval systems.  One area where AATSR in combination with stereo may 

provide performance benefits over the current passive CTH assignment systems is for the detection of 

high optically thin cirrus clouds.  Currently only the CO2 slicing algorithm employed by the MODIS 

Science Team provides accurate CTH assignment for high optically thin cirrus clouds.  However, this 

algorithm fails on clouds with an optical depth of less than one.  AATSR stereo observations from the 

11µm channel could therefore provide improved coverage of high cirrus clouds over the current passive 

CTH assignment systems.          

 ‘Determine any gain in performance achieved through application of the census stereo matching 

algorithm over that of the M5 stereo matching algorithm.’ 

The M5 algorithm outputs were compared against the same MISR and CALIOP datasets as used for the 

census validation.  In nearly all cases census was shown to outperform M5, indicating that it is more 

effective for the task of CTH determination. 
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‘Aggregate the L2 AATSR products into height stratified macrophysical cloud climatologies containing 

CF on a by height basis.’ 

The AATSR L2 data has been effectively aggregated into a CFbA product almost identical to that 

employed by the MISR Science Team.  The resultant L3 products are available on a daily, monthly and 

yearly basis for the AATSR 11µm, 1.6µm and 0.67µm channels.  The climatological datasets are further 

split into descending, ascending and combined nodes of observation.   

‘Inter-compare the stereo derived AATSR cloud climatology against the GEWEX CTH and CF 

climatologies from MODIS (Science Team and CERES), MISR, and AATSR-GRAPE to determine any 

new data contributions provided by AATSR stereo.’ 

Two separate inter-comparisons have been made against cloud climatologies from the GEWEX cloud 

database.  Firstly a CF inter-comparison was made using the AATSR-Stereo L3 datasets for the 

descending node of 2008 over Greenland against collocated CF climatologies from MODIS-Science 

Team, MODIS-CERES, MISR, and AATSR-GRAPE.  In this comparison the AATSR-Stereo CF 

climatology was demonstrated to agree very well with that of MISR, returning the same overall mean CF 

and have a very similar large scale structure despite differences in the employed masking approach.  The 

MISR instrument does not rely on radiometric CF assignment, so is therefore assumed robust in terms of 

CF assignment over snow and ice covered regions.  This agreement between MISR and AATSR therefore 

provides further encouragement on the performance of the current cloud masking employed in the 

AATSR-Stereo cloud climatology derivation. 

The second comparison involved comparing CTH climatologies derived from the 2008 AATSR-Stereo 

descending node 11µm and 0.67µm CFbA products against collocated CTH climatologies from the 

MODIS-CERES, MISR and AATSR-GRAPE products.  Two separate comparisons were made, one 

employing yearly mean maps of CTH over Greenland, and another looking at the monthly mean CTH 

over Greenland.  In the yearly analysis the general organisation of CTH differs quite substantially 

between the datasets.  The differences between AATSR-Stereo 0.67 µm and MISR are somewhat 

unexpected due to the excellent agreement demonstrated in the validation.  Of the yearly comparisons the 

most important result is the differing cloud detection between the AATSR-Stereo 11µm and 0.67µm 

datasets, which well demonstrates the effective multi-layer cloud detection that is achievable. 

The monthly mean analysis also returns some interesting results.  In terms of monthly Greenland averages 

the MISR and AATSR-Stereo 0.67µm results tend to agree very well, and are more in line with the 

findings in the validation.  Mean differences between the two datasets of up to 500m do occur in the 

summer, with AATSR-Stereo 0.67µm appearing to underestimate CTH compared to MISR.  The 

AATSR-Stereo 11µm 2008 monthly averages again demonstrate a substantial amount of high cloud 

particularly in the summer months.  This increase in high cloud in the summer may be caused by shifting 

patterns in the polar jet.  Assessing the ERA interim monthly mean wind speeds at 300 hPa 

(approximately the pressure of the jet stream, and also the high clouds detected by AATSR-Stereo 11µm 

channels) for March to October 2008 (May through August shown in Figure 4-13), the polar jet appears  
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Figure 4-13. These four plots show the polar jet position for May, June, July and August 2008 at 

300 hPa as defined by the zonal and meridional wind profiles taken from the ERA-Interim 

reanalysis.  In May, June and July, the position of the polar jet is clearly over Southern Greenland, 

and is perhaps the cause of the increased high cloud amount in the summer months.   
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to oscillate over southern Greenland through the summer months, potentially pushing high cirrus clouds 

contained within the jet (Dowling and Radke, 1990) over the ice sheet as a result.  The MODIS-CERES 

and AATSR-GRAPE datasets are shown in the evaluation to return an intermediary height value between 

the upper and lower cloud decks during the summer months – an inherent weakness of the IR-window 

method employed by these instruments.  In summary it appears that when compared to the other 

climatological datasets, AATSR-Stereo has the potential to provide valuable new insights into the high 

cloud characteristics over Greenland and important complimentary low and middle cloud information.              

4 . 5 . 2  F u t u r e  W o r k  

From the objective review a number of areas for future work can be defined.  Firstly an image processing 

technique needs to be located or developed which is able to effectively screen off low texture areas that 

tend to confuse the matching algorithm.  The image processing technique would have to be channel 

independent in its operation (i.e. only requiring the input channel and applicable across all channels).  

This would allow year round retrieval of macrophysical cloud parameters from the AATSR thermal 

channels.  In the case of snow and ice, the masking approach would likely exploit the difference in texture 

between snow/ice and cloud features, as shown in Cawkwell et al., (2001, Figure 3).  Following this 

development the next logical step is to process the complete AATSR stereo time series into the 

climatological CFbA product to provide another complimentary data set for climate studies.  This would 

also require further validation of the stereo products in other regions globally to better quantify the stereo 

CTH and CF errors at disparate locations.  This further validation would likely also lead to greater 

insights into the current biases and detection characteristics exhibited in the AATSR stereo data when 

compared against CALIOP.  Locating triple collocations between the AATSR stereo, MISR and CALIOP 

data would also likely provide very performance insights across the three sensors. 

Another avenue would be to apply the census transform to other stereo capable instruments such as 

MISR. Census has been shown in this chapter to significantly outperform the M4/M5 algorithm, which is 

very similar in approach to the one currently employed operationally by the MISR team.         

4 . 5 . 3  C o n c l u s i o n s  

This chapter has outlined the need for observational cloud climatology datasets within the study of 

climate change for validation efforts.  The principle study which assesses these observational datasets, 

from the GEWEX cloud group, has been outlined, and a number of key climatologies from the 

assessment, namely MODIS-Science Team, MODIS-CERES, MISR, and AATSR-GRAPE, have been 

described in detail, as have the particular benefits of having multiple climatologies.  The main 

undertaking in this chapter has been the development of a new, stereo derived, macrophysical cloud 

climatology from the AATSR instrument over Greenland.  This aim has been successfully achieved 

through application of the census stereo algorithm in combination with the Istomina cloud mask to 

generate L2 CF and CTH products.  These two products have been validated against observations from 

MISR and CALIOP and been shown to perform very well against the higher resolution observations with 

height accuracies in the region of ~1km and detection limits down to a cloud optical depth of 0.4.  The 

derived L2 products have been aggregated into a number of different climatological CFbA products 
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inspired by the MISR product of the same name.  The derived climatologies are split by channel (0.67µm, 

1.6 µm, 11 µm) and orbital node (descending, ascending and total).  The L3 products have been inter-

compared against the aforementioned observational climatologies over Greenland for the year of 2008.  

This inter-comparison has demonstrated the worth of climatological processing of the entire ATSR time 

series with the census stereo algorithm; in particular for the effective determination of CTH in Polar 

Regions; the determination of multi-layer CTHs; and the effective determination of high cloud features 

with an optical depth of less than one.  
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5 ALANIS:  ATMOSPHERE LAND 

INTERACTION STUDY  

5.1  In t roduc t ion  

The environmental and ecological importance of the boreal forest ecosystem is without doubt.  Globally, 

a total of 1.2 billion hectares is classified as boreal forest, with 900 million hectares of this being closed 

forest. (Conard and Davidenko, 1998). These forests, which represent 30% of the world’s forested area 

(Conard and Davidenko, 1998), store billions of tons of carbon, sequestered since the last glacial 

maximum (Adams et al., 1998; Dong et al., 2003; Prentice et al., 1993).  Biomass burning events can 

potentially convert these ecosystems from carbon sinks to net sources (Dong et al., 2003; Turquety et al. 

2007), releasing significant amounts of greenhouse gases, aerosols and also pollutants (Crutzen et al. 

1979; Martin et al. 2010), possibly contributing to the current global warming trend and directly 

impacting on human health (Greenough et al., 2001; Künzli et al., 2006). Biomass burning events are not 

uncommon; one study assessing wildfire events in the Russia Boreal region for the period 1974-93 

returned a mean of 17,000 fires per annum (Nyejlukto, 1994).  Furthermore, due to the boreal region’s 

Northerly latitude, located between 45º and 75º N, it has greater susceptibility to changes in climate 

(Stocks et al., 1998).  With the current warming trend, some authors contend that this will lead to 

increased frequency and extremity of biomass burning events (Gillett et al., 2004; Kasischke et al., 2006; 

Turetsky et al., 2010).  This is significant, as in extreme burning events with large energy outputs or 

under strongly convective atmospheric conditions, the fire emissions can be injected into the free 

troposphere (Martin et al., 2010).  Under such circumstances, the atmospheric lifetime and distribution of 

most of the released trace gases and aerosols are significantly enhanced, potentially leading to greater 

climate and health impacts over increased geographical extents (Colarco et al. 2004). 

In order to quantify the impacts of the emissions from biomass burning events on air quality and climate, 

chemical transport models (CTMs) are the tool of choice, e.g. (Krol et al., 2005).  In order to generate 

effective predictions and better understanding, these CTMs must be initialised with reliable estimates of 

emissions including their vertical extent, and also validated against plume dispersion measurements over 

time. Due to the lack of available in situ or satellite data, particularly at higher latitudes (>60°N), which 

are not visible to geostationary satellites, often rather arbitrary assumptions are used for initialisation,  
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such as fixed vertical injection levels (Turquety et al., 2007).  This simplification is likely to lead to a 

reduction in the accuracy of the emission distribution outputs from such models (Kahn et al., 2008).  

Seeing this limitation, and, given the current, and possibly enhanced future potential of biomass burning 

events in Boreal forest ecosystems to impact both on the climate, in the longer term, and human health, in 

the shorter term, ESA along with the IGBP iLeaps (Marconcini et al., 2010) established a consortium to 

better understand and predict the potential impacts of such events in the Eurasian boreal region (see 

Figure 5-1) through the ALANIS smoke plumes project (Fisher et al., 2013; Krol et al., 2013).   

The project aimed to improve the prediction accuracy of the TM5 CTM (Krol et al., 2005), through 

assimilation of a number of novel observational datasets, including EO derived smoke plume injection 

height (SPIH) estimates, over the Eurasian boreal regions (latitudinal range: 46º-78º, longitudinal range: 

0º-174º) for the study period August 2008 through to August 2011.  As the study region is vast the use of 

EO satellite data is necessitated to provide suitable coverage.  However, currently there are few suitable 

systems for determining SPIH using EO.  The current principle EO SPIH dataset is provided by the MISR 

Smoke Plumes project (Nelson et al., 2008; Nelson et al., 2013).  This project employs the MISR 

instrument and the MISR-MINX visualisation tool (Nelson et al., 2008; Nelson et al., 2013) to generate 

accurate (± 200m) wind corrected stereo observations of SPIH.  This project relies on manual stereo 

digitisation of smoke plumes by trained undergraduate student operators.  This has a number of benefits 

and drawbacks: the main benefit being that smoke plumes can be accurately identified and digitised by 

human operators; the main drawback being that the dataset has limited spatial and temporal coverage, as 

the human cost of digitisation is high.  The CALIOP instrument demonstrates another method; however, 

whilst the lidar SPIH measurements are very accurate (30-60m), its spatial sampling is extremely limited 

due to the employed technology.  Indeed, the MISR instrument is between 40 and a few hundred times 

more likely to observe a smoke plume feature than CALIOP (Kahn et al., 2008).  CALIOP’s main 

strength is its increased sensitivity, being able to sample features to an optical depth of ~0.02, whilst 

MISR is typically a factor of 10 less sensitive (Kahn et al., 2008).  The AATSR instrument presents 

another alternative to measure SPIHs, with potential benefits over both MISR and CALIOP.  In 

comparison to MISR, the main benefit of AATSR is the potential for simple automated determination of 

SPMs through spectral and elevation thresholds (see Section 5.5).  Automated SPM determination with 

MISR can be achieved through machine learning techniques (Mazzoni et al, 2007b), but is not employed 

in the MISR plume height project owing to its high failure rate (>15%).  Against CALIOP, the main 

benefit of AATSR is the similar to that of MISR, vastly improved spatial and temporal sampling 

 

Figure 5-1.  The map of the ALANIS study region (Source: Python Basemap) 
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potential.  The potential detriment of AATSR versus MISR and CALIOP is a reduced SPIH retrieval 

accuracy due to reduced quantisation (1000m vs. 200m and 30-60m respectively).   

This chapter (see also Fisher et al., 2013) examines the potential of AATSR for determining SPIHs and 

SPMs for application within the ALANIS plumes project in detail. Following an outline of the scientific 

objectives in Section 5.2, SPIH extraction from AATSR using the smoke plume tuned M6 algorithm 

which is described in Chapter 3 is presented in Section 5.3. This discussion also covers the processing 

chain employed to process the AATSR ALANIS dataset in detail. In Section 5.4 extensive validation of 

the AATSR SPIHs is undertaken against both MISR and CALIOP in order to evaluate the accuracy 

achieved through combination of M6 and AATSR for the task at hand.  In Section 5.5, the SPM method 

is outlined and compared against manually derived masks from the MISR instrument.  Finally Section 5.6 

provides a summary and recommendations for future work.     

5.2  Scien t i f i c  A ims and Ob jec t ives  

 Assess the performance of the M6 stereo matching algorithm applied to AATSR for 

determination of SPIH against collocated higher resolution observations derived from alternative 

satellite instruments.    

 Develop and apply an automatic method for locating smoke plumes in the AATSR imagery. 

 Inter-compare the AATSR smoke plume masks against collocated observations from other EO 

datasets. 

5.3  SPIH Determina t ion  

5 . 3 . 1  S P I H  P r o d u c t  G e n e r a t i o n  

The SPIH products are generated through application of the M6 stereo matching algorithm, introduced in 

Chapter 3, to the AATSR 0.55µm forward and nadir channels.  The M6 algorithm was developed 

specifically for SPIH determination, with particular modifications to the normalisation and matching 

processes in an attempt to preserve smaller smoke features in the final stereo outputs.  The 0.55µm 

channel was selected for processing due to its increased sensitivity to smoke plume particles as given by 

Rayleigh scattering theory
16

.  Prior to application of M6 to the 0.55µm channels, a cloud mask is pre-

computed using thermal thresholds applied to the 11µm forward channel.  The derived cloud mask is then 

buffered by 2 pixels to ensure removal of all cloudy pixels and then applied to the 0.55µm forward and 

nadir scenes.  Pre-application of the cloud mask is carried out for two reasons, firstly, to reduce the 

computational cost of the M6 stereo matching algorithm, and secondly, to avoid cloud disparities 

contaminating the M6 disparity map.  It was found that with post application of the cloud mask, the 

                                                           
16 The intensity of the scattering varies inversely with the fourth power of the wavelength. 



119 

 

smoothing effects inherent in local stereo matching algorithms cause a bleeding of cloud disparities and 

therefore errors in the final SPIH outcomes.  Following the application of the cloud mask and the stereo 

processing with M6, the resultant disparity map is corrected using the along track co-registration 

correction coefficients presented in Chapter 2 to ensure accurate disparity observations.  Following 

correction, the disparities are converted into heights using the Mannstein camera model.  The resultant 

heights are passed to the smoke plume masking (SPM) algorithm which is defined below in Section 5.5, 

leading to the determination of smoke plume locations and the final SPIH dataset.  The processing chain 

is first summarised in the next section. 

5 . 3 . 2  P r o c e s s i n g  C h a i n   

The SPIH processing chain was implemented in Java to take advantage both of the BEAM API and to 

allow for integration in the BEAM visualisation software for distribution to other users within the 

scientific community.  As indicated in the previous section, the processing chain has two main functions: 

the generation of pixel-level accurate SPIHs (pixel-level accuracy due to the co-registration correction 

coefficients) and, using AATSR’s multispectral imaging capabilities, SPM generation.  The SPIHs are 

generated using the M6 matcher and the Mannstein camera model both described in Chapter 3.  The 

SPMs are then derived from the M6 output through inter-comparison against a local digital elevation 

model taken from the USGS GMTED2010 30 arc-seconds dataset (Danielson and Gesch, 2010).  The key 

stages of the entire processing chain can be summarised as follows: 

1. Ingest the AATSR Envisat style .N1 products and select for further processing observations from 

the two required spectral channels, 0.55µm Forward and Nadir and 11µm Nadir, as well as the 

relevant geo-referencing information, camera model, digital elevation model and co-registration 

correction coefficients.   

2. Using the 11µm channel pre-compute the cloud mask using through a thermal thresholding 

process (see Section 5.5).  Once computed, dilate the cloud mask by 2 pixels using a binary 

dilation operation and apply to the to 0.55µm channel prior to stereo processing.  

3. Apply the M6 stereo algorithm to the cloud masked 0.55µm channel stereo pair to generate a set 

of along tracks disparities. Once derived, correct the along track disparities using the co-

registration correction coefficients.      

4. Apply the Mannstein camera model to triangulate the disparities and return elevation estimates 

above a reference ellipsoid.  

5. Generate the SPM by thresholding the elevations against a DEM. Apply the derived mask to 

generate the final masked SPIH product.       

6. The resultant masked SPIH product is written out in geoTIFF format using the geo-referencing 

information and then converted into NetCDFv4.  In addition to the SPIH layer, the following 

additional layers are incorporated into the product: MODIS fire radiative energy pixels of the 

nearest overpass; a false colour composite browse product of the forward 0.55µm, 1.6µm and 

11µm channels; and a red-cyan stereo anaglyph of the 0.55µm (green) channel.  However, these 

other aspects are not considered in this chapter. 
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The above processing chain was applied to the entire ALANIS dataset to locate and describe smoke 

plumes and smoke cloud features for ingestion into the TM5 CTM (see Krol et al., 2012).  The results of 

the processing chain are available in the ALANIS smoke plumes database at http://alanis.noveltis.com/. 

5.4  SPIH In ter -compar ison  

An initial evaluation of the M6 algorithm was provided in Chapter 3 through inter-comparison of the 

output stereo heights against a collocated DEM from the GMTED2010 model.  This evaluation, whilst 

providing some insights into the particular performance characteristics of the M6 algorithm, is in many 

ways incomplete, as it does not provide an evaluation for the task for which it was developed, SPIH 

determination.  In this section, this shortcoming is addressed through extensive inter-comparison of M6 

SPIH outputs against collocated SPIH observations from both the CALIOP and the MISR instruments.  

Both of these instruments are able to generate SPIH measurements at an improved accuracy (30-60m for 

CALIOP; 560m for MISR) than compared to AATSR (~1km), so provide excellent comparison datasets.  

The section firstly describes the CALIOP inter-comparison approach and results, before moving on to 

that of MISR.  Both inter-comparison efforts share a number of similarities in their approach, so there is 

significant overlap in the methods employed.  In addition, a brief inter-comparison is made in this section 

between the performance of M6 and of M5 to determine whether or not M6 leads to improved SPIH 

estimates.       

5 . 4 . 1  C A L I O P  I n t e r - c o m p a r i s o n  A p p r o a c h  

5 . 4 . 1 . 1  C A L I O P  C h a r a c t e r i s t i c s  a n d  D a t a s e t  

The CALIOP instrument, introduced in Chapter 4, provides an excellent SPIH comparison dataset.  Here, 

the 1km CAL_LID_L2_01kmCLay-ValStage1-V3-01 product is employed due to its similar resolution to 

the ATSR instrument, and its excellent detection capability (down to optical depths of 0.02).  As 

mentioned previously, the vertical resolution of the lidar is between 30-60 metres, with the accuracy 

depending on the altitude of the backscattering surface, with features at lower elevations retrieved with 

greater accuracy.  This excellent vertical resolution makes for an ideal inter-comparison data set against 

which to compare the AATSR retrievals that, considering the analysis performed in Chapter 3, are 

expected to be accurate to around 1km for M6.    

As the CALIOP instrument is on-board the CALIPSO satellite in the NASA A-Train satellite 

constellation it has an equatorial overpass local time of approximately 13:30, is in an ascending node, and 

has a 16 day repeat cycle.  There are 233 fixed orbits over this 16-day repeat. This is in contrast to 

Envisat, which has an equatorial overpass time of 10:00 a.m., is in a descending node, and has a 35 day 

repeat cycle.  Due to the different orbital cycles, nodes and equatorial overpass times, temporally 

collocated measurements between AATSR and CALIOP only occur with regularity at Polar latitudes 

(above 60°).  As scene acquisitions descend towards the equator, the likelihood of finding co-located 

measurements decreases; furthermore, the time difference between any possible co-locations increases.  

http://alanis.noveltis.com/
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Due to its relatively high latitude, the ALANIS study region enables the location of collocated orbits.  

However, due to the different orbital configurations, there is still an approximate temporal dislocation of 

some two hours at the latitudes over the majority of the ALANIS study region.  Furthermore, the ATSR 

instruments have a swath width of 512km, whereas CALIOP has a pencil sampling of ≤100m, therefore 

even if the orbits are coincident and AATSR observes a smoke plume feature, CALIOP may still not 

observe the same feature.    

To generate the inter-comparison dataset, firstly all AATSR observations of the study region for the 2010 

study period were screened using the NEODC AATSR browse dataset.  For any AATSR scenes that were 

found to contain smoke plumes a second search was undertaken using the COVE tool (Chander et al., 

2010), which plots various instrument swaths, including AATSR and CALIOP, for a given time period 

onto the Google Earth globe.  This tool enabled checking for coincidences between the instruments, and, 

through its application a total of three scenes with collocated observations were identified.  These scenes 

are shown in Figure 5-2. 

5 . 4 . 1 . 2  A c c o u n t i n g  f o r  W i n d  D i s p l a c e m e n t s          

Given the ~2 hour time delay between the instrument overpasses, a technique was developed to try to 

correct for any potential wind induced displacement of smoke plume features between observations in 

order to determine whether it would lead to improved collocations for the inter-comparison.   

The method firstly involved locating the geographically closest AATSR pixel to each CALIOP smoke 

plume measurement using the associated geographical grids.  The nearest geographically matched 

AATSR pixel was then used as an a priori estimate for an updated pixel position in a temporally 

consistent location.  The updated pixel location was determined using the closest in time MERRA zonal 

and meridional surface wind profiles (Rienecker et al., 2011), by back projecting from the a priori 

location to the pixel location in the AATSR scene, which provides the most likely match to the CALIPSO 

    

Figure 5-2.  This figure presents the three AATSR scenes containing smoke plumes and collocated 

CALIOP observations of the plumes.  The leftmost figure is from the 0.55 µm forward channel from 

AATSR orbit 43976 (29
th

 July 2010), the CALIOP path is the white line which tracks across the 

AATSR image.  The central image is from the same channel/view from AATSR orbit 44015 (1
st
 

August 2010) and the rightmost image is again from the 0.55µm channel/view from AATSR 44033 

(2
nd

 August 2010).  Again the white lines track out the collocated CALIOP observations.          
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Figure 5-3. This figure shows the AATSR and CALIOP heights extracted along the CALIOP profile 

for each of the images presented in Figure 5-2.  The filled blocks represent smoke plumes features, 

with blue representing the first (i.e. lowest) CALIOP layer detected, green representing the second 

CALIOP layer, and red representing the AATSR retrievals.  The unfilled blocks represent non 

smoke retrievals, in this case clouds. Please rotate the page 90° in a clockwise fashion to view. 
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overpass when considering the wind speed. The method is straightforward and determines the shift in 

pixels using the following formula for both wind profile directions, 

      
    

 
 Eq. 5.1 

Where    is the wind corrected   pixel location,    is the a priori   pixel location,    is the across track 

wind component in the sensor coordinate system determined through a rotation of the meridional and 

zonal wind components by the satellite heading,   is the time between observations and   is a unit 

conversion factor.  The   pixel locations can also be corrected for in a similar manner using the 

meridional wind components. 

5 . 4 . 1 . 3  A c c o u n t i n g  f o r  C o l l o c a t i o n  E r r o r s        

Another issue is associated with the geo-location accuracy of the AATSR instrument.  ATSR-2 has geo-

location accuracy in the region of ±2 km (Seiz, 2003), and similar accuracy is assumed for AATSR.  Due 

to this poor geo-location accuracy the assumption that the AATSR and CALIOP observations are 

measuring the same point is unlikely to be true.  To account for this a ±2 pixel bounding box is used in 

the evaluation, and the AATSR pixel that has the closest SPIH observations to that of CALIOP (i.e. 

minimum distance) is returned as the AATSR pixel that is correctly collocated with CALIOP.  The effect 

of using the minimum distance to define the collocated measurement is further assessed in the MISR 

inter-comparison and is shown not to significantly influence the outcome of the results.  

5 . 4 . 1 . 4  A c c o u n t i n g  f o r  M u l t i p l e  C A L I O P  L a y e r s    

A further issue occurs due to CALIOP’s ability to retrieve multiple layers of cloud and aerosols.  From 

the SPIH analysis shown in Figure 5-3, it can be seen that the top layer detected by CALIOP does not 

always correspond to the uppermost layer observed by AATSR. This is most likely due to the increased 

sensitivity of the lidar instrument compared to the passive imaging system. To account for this all layers 

detected by CALIOP are compared to the SPIH elevations within the AATSR bounding box and the 

closest height retained. 

5 . 4 . 1 . 5  C A L I O P  I n t e r - c o m p a r i s o n  S u m m a r y  

The issues outlined above, with the exception of the wind correction, are corrected for in the inter-

comparisons shown in Figure 5-3, which show profiles, and Figure 5-4 which shows the scatter plot.  The 

statistics generated from this analysis (presented in Section 1.4.2) are derived from all SPIH pixels 

detected by AATSR and CALIOP as defined by the AATSR SPM (see section 5.5), along with an outlier 

removal process. Here, outliers are defined as being two standard deviations from the mean difference.  

The outlier removal process applied to CALIOP in some instances observes wildly different SPIH values 

than AATSR (see Figure 5-4), likely due to the differences in spatial resolution and sensitivity in the 

AATSR SPM masking process.  Furthermore, the wind induced shift correction to improve collocation 

was not applied in the analysis as it led to a decline in the quality of the comparison.  The reasoning for 

this is thought to be that wildfires events generally have a point source and that smoke is being generated 

continuously from the fire event.  Therefore under the assumption of near consistent wind speed/direction 
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and fire intensity between the AATSR and CALIOP observations the plume characteristics at the point of 

collocation are likely to be similar despite the temporal dislocation.  Application of the wind induced shift 

correction likely introduces errors caused by further plume rise between observations as is typical of 

buoyant smoke plumes.          

5 . 4 . 2  C A L I O P  I n t e r - c o m p a r i s o n  R e s u l t s  

The inter-comparison results for the profiles shown in Figure 5-3 are presented in Figure 5-4.  The 

statistical outcomes of this statistical analysis, following the outlier removal process described in the 

previous section give a RMSE of 480m with a bias of 240m and a coefficient of determination of 0.5.  

For a discussion of these outcomes please refer to Section 5.4.5. 

5 . 4 . 3  M I S R  I n t e r - c o m p a r i s o n  A p p r o a c h  

5 . 4 . 3 . 1  M I S R  C h a r a c t e r i s t i c s  a n d  D a t a s e t  

The AATSR and CALIOP inter-comparison does not provide convincing results (see Section 5.4.5), and 

the number of points inter-compared is very limited, necessitating further validation.  This shortcoming is 

overcome, through a second analysis using the MISR instrument, also introduced in Chapter 4.  Among 

    

Figure 5-4.  The inter-comparison scatter plot of the SPIH inter-comparison observations as shown 

for the three dates with collocations in Figure 5-3.  Outliers are defined as unfilled triangles, of 

which a number are outside the plot axes and are instances of where CALIOP detects a cloud 

feature but AATSR detects smoke.               
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the important instrument characteristics are that the Terra satellite (on which MISR is carried) is in a 

descending node and has an equatorial overpass time of 10:30am, hence being much closer in time to 

Envisat (10:00am). This allows for a more direct inter-comparison when coincidences occur and therefore 

improved validation reliability. It also means that the effects of advective winds are similar in both 

datasets, and that the plumes are in similar locations. 

The MISR instrument has been used to generate manually measured, stereo derived, SPIH datasets for a 

number of regions globally within the MISR Plume Height Project using the MINX toolkit.  The MISR-

MINX tool, is an IDL based visualisation and digitising toolkit for making manual stereo measurements 

of clouds, smoke/volcanic plumes, dust clouds, etc., from MISR imagery. There are a number of 

algorithms within MINX; however of most importance is the stereo matching algorithm. This algorithm 

uses Pearson’s correlation coefficient to match an image patch extracted from the nadir camera to five 

other views (CF, BF, AF, AA, BA, CA) at 275 metre resolution. Once the patch has been matched in all 

    

 

Figure 5-5.  The upper plot shows the latitudinal average meridional (N-S) northward wind speeds 

over the ALANIS study regions for the period August 2008 through August 2011 as returned by the 

MERRA reanalysis.  The lower plot shows latitudinal average zonal (E-W) eastward wind speeds 

for the same region and period.    
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five views, a minimum curvature surface is fitted to the correlation matrix and this is used to interpolate 

the disparity to a sub-pixel location.  Following matching, a wind induced disparity correction algorithm 

(based on Horvath and Davies, 2001; Davies et al., 2007) is applied leading to an assumed final height 

accuracy of approximately ±200 (Davies et al., 2007) metres. In some cases wind correction is not 

applied due to failed wind retrieval.  It should be noted that the AATSR disparities are not corrected for 

wind induced parallaxes in either the CALIOP of MISR inter-comparisons, or in the final ALANIS stereo 

SPIH product, and such wind induced disparity errors can, in some instances, be significant (Seiz, 2003).  

The justification for not applying wind induced disparity correction is reached through analysing the 

latitudinal average zonal and meridional mean wind speeds for the ALANIS study period and region from 

MERRA reanalyses as shown in Figure 5-5.  Assuming the reanalyses are accurate (see Chapter 6 for 

observation/reanalysis inter-comparison), the wind speeds over the ALANIS study on average region do 

not exceed ±8 ms
-1

, the minimum wind speed required in order to produce a 1 pixel disparity (and in turn 

~1km) error in the AATSR stereo outputs.  This is particularly the case for the meridional winds which 

have the greatest potential impact, when mean wind speeds below 250 hPa rarely exceed 2 ms
-1

.   Given 

the above analysis, and the fact that the M6 algorithm is accurate to ~1km, points which failed in the 

MISR-MINX wind correction algorithm (i.e. no wind correction applied) are still employed in the 

analysis.       

Of the numerous datasets generated with the MISR-MINX tool for the MISR plume height project one 

has been generated over Siberia for the 2008 fire seasons and an overview is shown in Figure 5-6.  In this 

dataset, all MISR orbits from March through August were assessed for smoke plumes.  Again a 

collocation assessment was performed using the COVE tool; this time however, the MISR Plume Height 

dataset was used as a reference rather than AATSR (as with the CALIOP analysis).  From this analysis 

nine AATSR orbits were collocated with the MISR smoke plume measurements with overpass times 

differing by <30 minutes. 

    

 Figure 5-6. This image, taken from the MISR plume height project webpage ( http://www-

misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/, last accessed 4
th

 August 2013), shows all 

digitised MISR plumes for the 2008 MISR study over Siberia.     

http://www-misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/
http://www-misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/
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5 . 4 . 3 . 2  M I S R  I n t e r - c o m p a r i s o n  S u m m a r y    

For the analysis, the bounding-box method (see Section 5.4.1.3) was again applied to account for the poor 

AATSR geo-referencing accuracy, with the closest heights between the AATSR M6 and MISR MINX 

SPIH observations being retained for the analysis.  SPM masking was achieved by using the manually 

digitised MISR-MINX SPIH observations as the mask. In addition to the minimum, the mean, median 

and maximum differences from the bounding box are also analysed to get a better idea of the effects of 

choosing the minimum on the output statistics and also to better assess the overall quality. In total, 23,882 

SPIH comparisons between AATSR and MISR-MINX SPIH observations were made across the 9 orbits, 

a significant increase over the tens of observation available in the CALIOP analysis.  

5 . 4 . 4  M I S R  I n t e r - c o m p a r i s o n  R e s u l t s  

 

 

Figure 5-7. The plots in this figure show the AATSR inter-comparisons against MISR.  The top left 

plot shows the results when using the minimum difference from within the bounding box, the top 

right the maximum difference from within the bounding box, the bottom left the mean difference 

with the bounding box, and the bottom right the median difference with bounding box.  Note the 

similar outcomes with the minimum, mean and median.  Outliers are plotted as crosses.      
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5 . 4 . 5  I n t e r - c o m p a r i s o n  D i s c u s s i o n  

The CALIOP inter-comparison comprises a relatively small number of data points. This is due to the 

limited number of collocated measurements found, as would be expected at the study region’s latitude 

range given the instrument characteristics.  Following outlier removal, where an outlier is here defined as 

being more than two standard deviations from the mean, the inter-compared points result in an R
2
 value 

of 0.5, which was found to be statistically significant to the 95% level using the Student t-test.   The 

AATSR observations are biased low compared to CALIOP by 240m.  This is probably due to increased 

lidar sensitivity to aerosol particles, causing CALIOP to retrieve heights nearer to the top of the plume. 

AATSR retrieves the SPIH at the point where the plume reaches a suitably high optical thickness to 

provide enough texture to be detected in the passive sensor array.    

The MISR analysis provides a far more comprehensive inter-comparison of SPIH, with the number of 

individual pixels inter-compared numbering in the tens of thousands.  Focusing solely on the results 

generated using the minimum difference shown in Figure 5-7 it is found that the initial correlation 

statistics computed for all points result in an R
2
 of ~0.3 following outlier removal, with anything ≥2 

standard deviations from the mean is classed as an outlier.  Looking at the minimum plot in Figure 5-7, 

this appears to be due to the MISR data being used as the SPM and the fact that MISR detects many more 

low elevation smoke plumes which AATSR detects as the land surface, i.e. < 1km.   This is due to 

MISR’s higher resolution and therefore higher stereo accuracy, giving the ability to resolve smaller 

smoke plumes at lower elevations.  AATSR due to its lower resolution, especially in the forward channel, 

fails to detect these plumes, leading to the poor R
2
 result.  Those pixels that AATSR detects that are 

potentially the land surface, when excluded as outliers, lead to a better evaluation of the quality of the M6 

measurements, as the evaluation is constrained to be within the operational limits of AATSR and M6.  To 

exclude the pixels from the statistical analysis the assumption is made that any AATSR SPIH 

measurement which is less than 1km above a collocated subset of the GMTED2010 DEM is potentially 

the land surface.  With this threshold applied the statistics are greatly improved with an R
2
 score of ~0.69. 

The use of the minimum height difference from the bounding box may be skewing the results and leading 

to an ineffectual and misleading assessment of the quality of M6. Selecting the minimum gives the 

optimum outcome; this best match from within the bounding box may not provide an accurate 

representation due to the noise effects common to stereo matching algorithms. Therefore further 

assessment was undertaken to better assess the effect of choosing the minimum and to determine whether 

this decision creates an unrealistically optimistic quality assessment of M6. This further assessment used 

the mean, median and maximum height differences between the AATSR and MISR observations within 

the bounding box. The results for this can be seen in Figure 5-7.  The median and mean scatterplots show 

very similar distributions and statistics to the minimum plot. This is indicative that the majority of the 

heights within the bounding boxes are similar to the minimum height, leading to good confidence in using 

the minimum as the quality indicator.  The maximum scatterplot shows that in most cases the largest 

height deviation within the bounding box between the AATSR and MISR is around 1km.  Such 

deviations are likely due to boundary crossings within the bounding box, i.e. moving from a plume 

feature to a land feature.  This further assessment using the median, mean and max verifies that the use of 
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the minimum height difference for validation is not skewing the results significantly and adds robustness 

to the evaluation. 

5.5  SPM Determina t ion  

5 . 5 . 1  S P M  T e c h n i q u e  

SPMs are required for the accurate delineation of smoke from other features such as cloud and the land 

surface. Previous attempts at SPM generation have tended to focus upon radiometric threshold 

techniques. The thresholds are typically derived from statistical or machine learning methods (Mazzoni et 

al. 2007b; Xie et al. 2007). Whilst generally effective, these SPMs are often susceptible to 

misclassification due to the lack of a stable reflectance curve for smoke, with large overlaps existing 

between the spectral profile of smoke and non-smoke features (Xie et al. 2007).  Through a combination 

of an elevation and radiometric thresholding, AATSR has a potentially enhanced capacity to effectively 

differentiate smoke for other atmospheric constituents. 

The AATSR SPM is generated in a number of steps as follows.  Firstly, a cloud mask is generated from 

the 11µm channels using one of two radiometric thresholds, 

        {                   ̅                          
                                                                                  

 
Eq. 5.2 

Where    is the cloud mask,   is the forward scene for the subscripted channel,  ̅ is the forward image 

mean and    is the image standard deviation.  The second step is to buffer the cloud mask.  The buffering 

is required to try to remove as many cloudy pixels as possible from the SPM.  As stereo results can vary 

between channels, there is not always a direct cloud correspondence between them, so buffering removes 

the errors associated with this.  The buffering is achieved through application of a boxcar averaging filter 

to the cloud mask.  This effectively dilates the cloud mask leading to the required buffering effect.  Once 

derived, the cloud mask is applied to the forward and nadir scenes 0.55µm scenes prior to stereo matching 

to eliminate these pixels from the matching process.  This is required as area based methods (even M6 

with its specific modifications) have a tendency to smooth features.  Due to these smoothing effects, a 

posteriori application of the cloud mask rarely removes all cloud features. 

The last step is to create the SPM,    .  This is achieved by removing land features by comparing the 

cloud masked 0.55µm stereo results to the GMTED2010 DEM.  Any pixel whose proximity to the DEM 

elevation is within the algorithms height accuracy (≈1km for AATSR and M6), is flagged as land, and set 

to zero (i.e. non smoke), 

         {
                            

                                                         
 Eq. 5.3 

A number of example SPM outputs from this process are shown in Figure 5-8. 
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5 . 5 . 2  S P M  E v a l u a t i o n  A p p r o a c h  a n d  R e s u l t s  

The SPM validation is carried out on three AATSR scenes co-incident with MISR in 2008.  The scenes 

are taken from the same AATSR data set used in the SPIH validation against MISR.  For each scene, the 

SPM is applied and then inter-compared with the MISR-MINX tool hand digitised MISR smoke plumes, 

which are assumed to be the reference “smoke truth” SPMs. The validation is carried out by statistical 

and visual assessment.  The AATSR SPM is overlaid onto the scene of its derivation, as are the human 

operator detected SPMs from MISR that occur within the AATSR scene boundaries (see Figure 5-9 

through Figure 5-14). Statistics are generated using a confusion matrix, typically used in classification 

quality assessment. The two classes here are smoke and non-smoke and the MISR SPMs are set as the 

ground truth to which AATSR is being compared.  Omission and commission percentages are generated 

for the smoke class from the confusion matrix.  When the omission percentage is very high, this 

represents MISR plumes that AATSR has not detected. A high omission percentage indicates a lack of 

 

Figure 5-8.   A selection of scenes showing the capabilities of the algorithm for smoke detection.  

The red points on the scene are fire hot spots (FRP) detected by the MODIS instrument.  The 

yellow/green bounded regions represent where smoke plumes/clouds have been detected.  The 

upper most scene was taken on the 30th July 2010, the bottom left image is from the 14th July 2010 

and the bottom right from the 7th July 2010.  Note in the bottom left scene that same of the smaller 

smoke plume features are being missed. This is due to the fact that they are less than 1km above the 

terrain.      
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common regions between the masks. Commission occurs in the regions where AATSR detects smoke and 

MISR does not. A low commission percentage is ideal as it indicates that AATSR is detecting the same 

smoke as MISR, i.e. few false positives with regard to the MISR data.  All statistics in the following 

sections are computed from smoke plumes above 1km in height (justified through the MISR SPIH 

validation in Section 5.4.4). 

5 . 5 . 2 . 1  S P M  I n t e r - c o m p a r i s o n :  2 3 r d  A p r i l  2 0 1 0  

AATSR detects no smoke in Figure 5-9, all the red MISR plume regions are greater than 1km in height so 

they should be detectable by the mask.  However, the MISR plumes are not substantially greater than 

1km, and it is likely that the inherent noise in the M6 algorithm leads to their non-detection. Detection 

may also be problematic in these smaller plumes due to the averaging effect of the Gaussian window used 

    

Figure 5-9.  The left image is nadir 0.55µm nadir view from AATSR.  The right image is the same 

view with MISR SPMs (Red) and AATSR SPMs (green) overlaid.  Common areas are in yellow.    

    

Figure 5-10.  The left image is nadir 0.55µm nadir view from AATSR.  The right image is the same 

view with MISR SPMs (Red) and AATSR SPMs (green) overlaid.  Common areas are in yellow.    
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for convolution during the stereo matching (which is reduced in M5 but not removed entirely). The land 

regions surrounding the small plumes will tend to dominate leading to suppression of the plume feature, 

especially in a situation where the plume only comprises a very small region within the Gaussian 

window. In this instance the omission errors are 100%, as AATSR detects none of the MISR features. In 

Figure 5-10 larger plumes are present and AATSR and MISR detect plumes in similar locations.  The 

omission statistic is quite poor, at 93.6% indicating that the AATSR plumes only detect 6.4% of the 

MISR plumes.  The commission percentage is 77%, meaning that 77% of the smoke plumes detected by 

AATSR are not seen by MISR 

5 . 5 . 2 . 2  S P M  I n t e r - c o m p a r i s o n :  1 7 t h  M a y  2 0 1 0  

    

Figure 5-11. The left image is nadir 0.55µm nadir view from AATSR.  The right image is the same 

view with MISR SPMs (Red) and AATSR SPMs (green) overlaid.  Common areas are in yellow.       

    

Figure 5-12. The left image is nadir 0.55µm nadir view from AATSR.  The right image is the same 

view with MISR SPMs (Red) and AATSR SPMs (green) overlaid.  Common areas are in yellow.      
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In Figure 5-11 the omission percentage  is 65%, meaning that 35% of the plumes detected are in common. 

The commission percentage is again very high at 96%. In Figure 5-12 there are a significant amount of 

smoke clouds and smoke plumes, AATSR detects a number of the same plumes as MISR and also the 

smoke clouds. However, the smaller plumes are also missed here. The omission percentage for this figure 

70% meaning that AATSR shares 30% similar plume coverage with MISR.  The commission percentage 

is 79%, showing that 79% of the plumes detected by AATSR are not seen by MISR.   

5 . 5 . 2 . 3  S P M  I n t e r - c o m p a r i s o n :  1 7 t h  J u l y  2 0 1 0  

In Figure 5-13 AATSR detects a large number of smoke plumes and significant amounts of smoke 

clouds.  The omission percentage is 67% with 33% of the MISR plume area being detected by AATSR.  

In Figure 5-14 the SPM also the omission percentage is 81% indicating a shared detection of 19%.  In 

both instances high commission percentages of 95% are returned.    

    

Figure 5-13.  The left image is nadir 0.55µm nadir view from AATSR.  The right image is the same 

view with MISR SPMs (Red) and AATSR SPMs (green) overlaid.  Common areas are in yellow.       

    

Figure 5-14. The left image is nadir 0.55µm nadir view from AATSR.  The right image is the same 

view with MISR SPMs (Red) and AATSR SPMs (green) overlaid.  Common areas are in yellow.       
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5 . 5 . 3  S P M  D i s c u s s i o n  

For large smoke plume features, such as those presented in Figure 5-8, the SPM algorithm appears to be 

performing well, effectively delineating the boundaries of the smoke plume features.  However, compared 

to the MISR manually digitised features, the AATSR SPM performs poorly for the detection of smoke 

features (see Figure 5-9 through Figure 5-14), as demonstrated by both the errors of omission and 

commission.  There are a number of reasons for these differences attributable to both to instrumental and 

algorithmic differences.  Looking firstly at instrumental differences, MISR has more looks over a greater 

range of angles at the plume and the stereo matching is performed across looks with a reduced angular 

difference than achievable with AATSR.  This means that there is greater similarity between plumes in 

the stereo imagery and therefore there is a greater likelihood of an effective stereo matching process.  

Furthermore, MISR has a higher resolution that that of AATSR (275m vs 1000m), MISR is therefore 

more able to resolve smaller plume features effectively.  For these two instrumental features MISR is 

better able to detect smaller smoke plume features that AATSR routinely misses.  In terms of algorithmic 

differences, the main benefit of MISR is the human operator, which allows for very reliable plume 

definition.  M6 provides a far less reliable indicator which leads to a large number of false positive smoke 

features being detected (as shown by very high commission percentages), again particularly for lower 

elevation smoke plume features where noise in the M6 algorithm leads to poor SPM classification.  In 

summary, whilst the current AATSR SPM method appears to be effective for large extensive smoke 

plume features (in the hundreds of pixels in area, rather than the tens of pixels), it is very much lacking in 

its ability to effectively detect smaller smoke plumes features.                 

5.6  Summary  and Fu ture  Work  

5 . 6 . 1  O b j e c t i v e  R e v i e w  

As with the previous science chapter, this section addresses the scientific objectives outlined in Section 

5.2 in terms of their successful completion or insights gained.   

‘Assess the performance of the M6 stereo matching algorithm in combination with AATSR for 

determination of SPIH against collocated higher resolution observations derived from alternative 

satellite instruments.’    

The smoke plume tuned M6 stereo matching algorithm has been compared against both CALIOP and 

MISR.  Against a sample of 165 CALIOP observations (following outlier removal with anything greater 

than 2 standard deviations from the mean excluded) an RMSE of ~500m and an R
2
 of 0.5 were obtained.  

Furthermore, biases of ~250m were demonstrated.  The MISR dataset provides a far larger inter-

comparison set with ~20,000 collocated observations being compared. An RMSE of ~660m and bias 

~270m of were returned, along with a coefficient of determination of 0.69 following an outlier removal 

process which excluded all collocated observations greater than 2 standard deviations from the mean and 

less than 1km above the local terrain.   
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 ‘Develop and apply an automatic method for locating smoke plumes in the AATSR imagery.’ 

A simplistic spectral cloud masking and elevation threshold based SPM has been developed to 

automatically detect smoke features in the AATSR imagery.  This approach firstly attempts to exclude all 

cloud features from the imagery through a threshold process applied to the ATSR 11µm channel.  The 

mask derived from this process is applied to the 0.55µm channel prior to stereo processing.  The SPM is 

then generated by comparison the stereo processed 0.55µm channel against a collocated DEM and 

rejecting any stereo height which is less than 1km above the local terrain height.     

‘Inter-compare the AATSR smoke plume masks against collocated observations from other EO 

datasets.’ 

An inter-comparison of the AATSR SPM has been made against collocated SPMs from the MISR plume 

height project.  In this inter-comparison, the AATSR and MISR masks show a mean commission 

percentage of ~90% and a mean omission percentage of ~80%.  This indicates that the current AATSR 

SPM masking method does not perform effectively in the task of smoke plume detection, in particular for 

small plumes.     

5 . 6 . 2  F u t u r e  W o r k  

From the review presented here, it is possible to outline a number of avenues to pursue in future studies.  

Perhaps the most critical improvement required is in the SPM generation.  Whilst it is currently effective 

for large plume features, the noisy nature of M6 (see Chapter 3 Figure 3-12 to Figure 3-14) leads to much 

confusion with smaller smoke plume features, or those features which are not much greater than 1km 

above the land surface.  In general, M6 appears to be accurate to ~1km for smoke plumes above 1km in 

elevation, as shown in the SPIH inter-comparison studies, but is imprecise and suffers from substantial 

matching noise.  The census algorithm tends to be more precise (again see Chapter 3 Figure 3-12 to 

Figure 3-14), with less matching noise, so may provide a more robust SPM output with the elevation 

threshold approach.  In additions census may lead to more accurate SPIH retrievals.  Further 

enhancements are likely to be achieved through application of machine learning techniques which are 

able to take advantage of AATSR multi-spectral imaging capabilities to effectively differentiate between 

smoke and non-smoke plume features, such as that employed previously on MISR (see Mazzoni et al., 

2007b).  AATSR has the distinct advantage over MISR, in that its thermal channels will enable the 

machine learning method employed to more robustly separate cloud features from smoke features.  This 

is likely to be the best direction for improving SPM outputs, and a similar technique has been shown to 

perform well for application with AATSR in other recent studies (e.g. Brockmann et al., 2013).   

Another avenue for future work is to employ some feature recognition technique that can effectively 

differentiate between smoke plume and smoke cloud features.  This task would be challenging as smoke 

plumes and smoke clouds rarely occur with regular structures.  However, differentiating between smoke 

plumes and smoke clouds is of critical importance in order to effectively and automatically define new 

and old smoke features.  This differentiation is important, as smoke plume features (i.e. new smoke) are 

important in model initialisation stages, whereas smoke clouds (i.e. old smoke) are only useful for model 
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validation.  Effective separation is therefore critical, as employing smoke clouds for model initialisation 

will not result in reliable model distribution predictions.       

5 . 6 . 3  C h a p t e r  S u m m a r y  

This chapter has presented the application of AATSR for the determination of SPIH and SPMs for use 

within the ESA ALANIS project.  The M6 algorithm, introduced in Chapter 3, is employed here for the 

determination of SPIH.  In a statistical assessment against higher accuracy collocated SPIH observations 

from CALIOP and MISR, the AATSR M6 retrievals return an RMSE of ~500m and an R
2
 of 0.5 against 

CALIOP and an RMSE of ~660m and an R
2
 of 0.69 against MISR .  The current SPM method has 

described and evaluated against SPMs from MISR.  For large plumes the SPM masking method appears 

to perform effectively, however it has been shown to be ineffective in a comparison against MISR (mean 

commission percentage of ~90%; a mean omission percentage of ~80%), with particular difficulties in 

extracting smaller smoke plume features. 
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6 ATSR  TANDEM ATMOSPHERIC 

MOTION VECTORS  

6.1  In t roduc t ion  

Observations of tropospheric winds are of critical importance in defining the current and predicting the 

future state of the atmosphere.  Surface observation networks, whilst able to provide adequate mesoscale 

descriptions of atmospheric motion over continental regions (mainly in the Northern Hemisphere), fall 

short over the oceans (and over continental regions with low population density and/or low economic 

development), providing only very sparse coverage due to a lack of observing stations.  Remotely sensed 

data from space-borne systems provides a suitable alternative data source, which not only has the 

potential to provide regular global sampling of atmospheric motion, but can also generate observations at 

microscale resolutions (1km or less).  This potential has been developed through various techniques 

applied to both active (Browning and Wexler, 1968; Horstmann et al., 2000; Naderi et al., 1991; Stoffelen 

and Anderson., 1993) and passive remote sensing systems (Davies et al., 2007; Horváth and Davies, 

2001a; Horváth and Davies, 2001b; Key et al., 2003; Moroney et al., 2002; Mueller et al., 2013; Muller et 

al., 2002; Velden et al., 1997; Velden et al., 2005).  Of these approaches, the most popular is the tracking 

of atmospheric features (e.g. clouds) across temporally separated satellite images to infer atmospheric 

motion.  This approach, first employed in the 1960s (Menzel, 2001) on the TIROS polar orbiter, was 

further developed for application to geostationary imaging systems in the 1970s and 1980s using both 

manual and automated techniques and, since 1996, has been employed operationally on the GOES 

geostationary imagers (Key et al., 2003).  The assimilation of the AMVs derived from these initiatives 

into NWP reanalyses began in the 1980s, and is now commonplace across all major NWP systems 

(Kalnay et al., 1996; Rienecker et al., 2011; Simmons et al., 2007).    

The geostationary imaging systems employed, such as those in the GOES program, provide atmospheric 

motion vectors (AMV) from tracking features across imagery in either the mid-infrared (water vapour) or 

thermal regions (clouds) of the EMS and are capable of providing excellent temporal coverage (every 15-

30 minutes) at good spatial resolutions (1-8km, channel dependent).  Furthermore, the tracking algorithms 

employed can achieve AMV accuracies on the order of ~7.5 ms
-1

 (Velden et al., 1997).  However, 

geostationary imaging systems suffer from the substantial drawback of incomplete global coverage.  This 

inherent weakness stems from the curvature of the Earth and geostationary imaging geometry limitations, 
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leading to such imagers having observational footprints covering only latitudinal regions inside the 

bounds of ±60°.  In order to provide AMV observations in those regions outside of geostationary 

footprints, polar orbiting satellite systems can be employed.  Polar orbiting systems, whilst having 

reduced temporal sampling, typically three times per day at best, provide significantly improved spatial 

coverage, including complete polar observation given a suitable swath width.  The importance of AMV 

observations from polar orbiting instruments on improving the robustness of NWP models is now well 

known (Bormann and Thépaut, 2004), with MODIS polar AMVs (Key et al., 2003) being assimilated in a 

number of current generation models and reanalyses (e.g. Rienecker et al., 2011).   

AMVs have been derived operationally from MODIS (for instrument characteristics, see Chapter 4) 

through application of atmospheric feature tracking techniques since July 2002 (Key et al., 2003).  Water 

vapour and cloud features are tracked across overlapping polar stereographic projected image triplets with 

a temporal separation of 100 minutes from the first acquisition to the last.  The tracking algorithms are 

based on those employed on the GOES geostationary systems (Key et al., 2003), where the 11µm channel 

(MODIS band 31) is used to track cloud features and a 6.7 µm channel (MODIS band 27) is used to track 

water vapour features.  Cloud features to be tracked are identified by searching for the coldest BT within 

a 26 by 26 km
2
 region and then computing the local radiance gradients.  Any observed features with 

gradients which exceed a pre-set threshold are employed for tracking.  Water vapour feature 

determination follows a similar gradient/threshold process.  Once the features are identified in the initial 

image they are located in the two subsequent images through use of the sum of the squared difference 

metric and a specified search window based on meteorological constraints derived from a forecast model.  

The two AMVs derived are then inter-compared to ensure consistency between the estimates and screen 

any observations outside empirically defined displacement constraints.  For each defined AMV a wind 

height assignment is performed using one of either of the techniques employed on MODIS as discussed 

in Chapter 4.  The AMVs derived from MODIS have been extensively assessed against ~27 000 

rawinsonde observations, and in statistical analysis demonstrated an RMSD of approximately 8 ms
-1

 and 

a bias of -0.58 ms
-1

.               

In addition to MODIS, AMVs are also derived near operationally from the MISR satellite (for instrument 

characteristics see Chapter 4) based on the initial work undertaken by Horvath and Davies (2001a; 

2001b).  Since then a number of further enhancements have been implemented to improve the AMV 

quality (Davies et al., 2007; Mueller et al., 2013).  The original AMV retrieval algorithm operated using a 

sparse feature based matching algorithm referred to as nested-maxima (Moroney et al., 2002; Muller et 

al., 2002) applied to the nadir, 46° and 70° views separately for both forward and aft camera triplets.  The 

use of camera triplets enables the effective separation of cloud induced parallax and wind induced 

(advective) motion in the stereo axis.  The nested-maxima algorithm operates with excellent efficiency, 

but has a low retrieval percentage, with observations typically generated for only 1-2% of the image data, 

and a low accuracy, with matches good to only ±2 pixels.  These performance characteristics necessitated 

the use of large aggregation regions in order to generate reliable AMV estimates, leading to a retrieval 

domain of 70.4 by 70.4 km
2
.  The current AMV retrieval algorithm (Mueller et al., 2013) has switched to 

an area based stereo matcher for motion tracking which employs a pyramidal scheme and the SAD 

metric.  The dense coverage returned by the area based stereo matcher has enabled a significant 
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improvement in the retrieval resolution, improving from 70.4 to 17.6 km.  The accuracy achieved has 

remained relatively consistent across algorithms, with a slight improvement in the most recent approach 

(Horváth, 2013).  The algorithm evaluation procedure employed (see Horváth, 2013) checks non-cloud 

features (i.e. the ground) for shifts, where a shift of 0 ms
-1 

indicates a perfect retrieval (as the ground 

should demonstrate no motion between retrievals).  The most recent analysis returned RMSD values of 

0.5 ms
-1

 for the meridional wind component and 1.7 ms
-1

 for the zonal wind component.  The meridional 

ground shift observations were found to be practically unbiased, whilst a bias of 0.3 was found for the 

zonal analysis.          

The MISR and MODIS instruments have some inherent drawbacks in their AMV retrieval schemes.  Due 

to instrumental characteristics and the need for overlapping imagery MODIS can only provide AMV 

measurements at latitudes above 70°, it therefore provides incomplete global coverage.  A far more 

critical consequence of the MODIS instrumental characteristics is that in order to obtain AMV estimates 

it must observe the cloud features from differing orbital paths.  Observations from different positions 

have the potential to introduce parallax induced displacements (see Chapter 3).  These parallax effects are 

currently unaccounted for in the operational retrieval (Key et al., 2003) and are likely introducing 

substantial, height dependent, biases into the AMVs.     Another problematic aspect with MODIS is 

ineffectual wind height assignment caused by the RT based CTH algorithms employed, which often 

perform poorly in Polar Regions (Stubenrauch et al., 2013).  This is a significant issue as the MODIS 

AMVs are generated for these regions in particular.  The MISR-derived measurements, whilst far more 

robust and accurate in terms of speed and direction assignment due to the stereo methods employed, are 

only available from visible channels.  This prevents both diurnal observations and the retrieval of winds 

over Polar Regions during winter months.  Some problems with MISR occurred due to aliasing of cloud 

height and cloud motion in the instrument along track direction (direction of parallax), leading to a 

reduction in retrieval accuracy (Marchand et al., 2007; Hinkelman et al., 2009; Lonitz and Horváth, 

2011).  However, these appear to have been resolved in the latest version of the product (Mueller et al., 

2013; Horváth, 2013). 

The ATSR instruments represent an alternative that do not suffer from some or all of the limitations of 

MODIS and MISR.  It is the case that alone (i.e. single operation) the instruments achieve wind 

measurement accuracy in the region of 8-10ms
-1

, and can only observe AMVs in the instrument across 

track direction (see section 6.3).  These limitations occur due to the short time separation between the 

views (~2 minutes) and the dual view stereo arrangement.  However, these confines are surmountable 

through a tandem ATSR sensor configuration, as is demonstrable for the period June 2002 through July 

2003, when the ATSR2 and AATSR instruments shared near coincident following orbits.  The tandem 

configuration enabled observations of the same location with the same viewing geometry at a temporal 

separation of ~30 minutes.  The shared viewing geometry is critical, as any displacements measured 

between acquisitions are caused by motion within the scene, removing any parallax effects (as 

experienced with MODIS) or aliasing between parallaxes from different sources, such as motion and 

elevation (as with MISR).  Furthermore, the height assignment can be achieved using stereo 

photogrammetric methods applied to the stereo pair from one of the imaging systems, enabling effective 

height assignment irrespective of the radiometric conditions under observations.  The ATSR instruments 
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are also able to observe in the thermal region of the EMS, enabling observations of diurnal cycles and 

year round sampling in Polar Regions.  The ATSR tandem operation therefore provides an excellent 

demonstration of the benefits of a tandem stereo capable satellite system for deriving AMVs from cloud 

tracking.               

This chapter explores these benefits in detail.  Following an outline of the scientific objectives in Section 

6.2, AMV extraction from the ATSR tandem system is discussed in Section 6.3.  This discussion includes 

accuracy considerations, cloud tracking algorithm selection, and conversion of the retrieved AMVs into 

meteorological zonal and meridional wind components.  In Section 6.4, a ground based accuracy 

assessment of the derived AMVs is undertaken in order to evaluate the performance potential of the cloud 

tracking algorithm when applied to the ATSR tandem imaging system.  In Section 6.5 an inter-

comparison is made between the ATSR tandem meteorological wind components against collocated 

components from the state of the art MERRA reanalysis.  Finally Section 6.6 provides a summary and 

recommendations for future work.  

6.2  Scien t i f i c  Objec t ives  

The following scientific objectives have been identified for exploration in this chapter: 

 Explore the benefits of the ATSR tandem satellite imaging system for the determination of 

tropospheric AMVs through cloud tracking. 

 Locate an algorithm that can effectively generate AMVs from the tandem imagery, preferably at 

pixel level resolution. 

 Assess the accuracy of the AMV retrieval algorithm when applied to the tandem imagery 

through a ground displacement analysis. 

 Compare the derived ATSR-2 AATSR meteorological wind components against reanalysis 

outputs from a state-of-the-art reanalysis, in the case MERRA, to provide an inter-comparison 

between observational and reanalysis winds. 

6.3  ATSR-2  AATSR AMV Ext rac t ion  

6 . 3 . 1  B e n e f i t s  o f  a  T a n d e m  S y s t e m  

In this section, prior to reviewing the benefits of a tandem satellite AMV retrieval system, the drawbacks 

of a single system will be reviewed.  A single ATSR instrument has a number of weaknesses when it 

comes to determination of AMVs.  The dual view configuration enables displacement determination in 

the instrument across track direction only.  In the along track direction any observed displacements in the 

cloud features between the image acquisitions are a scrambled combination of parallax effects (caused by 

the cloud elevation and the different viewing positions) and atmospheric motion.  Separation of these two 
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Figure 6-1.  These plots present the MERRA zonal and meridional latitudinally averaged wind speeds 

between 1000 and 100 hPa for the period January to December 2002.  Note that is both plots the mean 

wind speeds do not exceed ±40 ms
-1

.  The plots were generated using the Giovanni tool 

(http://disc.sci.gsfc.nasa.gov/giovanni) and are cropped to only the data above 85°S due to missing data 

in MERRA over Antarctica. 

http://disc.sci.gsfc.nasa.gov/giovanni
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components is impossible without prior knowledge of the CTH.  The other main limitation associated 

with a single ATSR instrument is the short time lapse between image acquisitions, which is at most two 

minutes.  Given the imaging resolution, nominally 1km, and the acquisition time lapse, it is possible to 

work out the achievable AMV quantisation with a pixel level cloud tracking algorithm as          , 

where   is the obtainable quantisation,   is the accuracy of the tracking algorithm in pixels,   is the 

resolution of the instrument in metres and   is the time separation between pixels in seconds.  At the sub-

satellite point, which has the longest time separation for ATSR, the hypothetical observational 

quantisation achievable for a single instrument is ~8ms
-1

, towards the edges of the swath, which have a 

reduced time separation between acquisitions, the quantisation declines to ~10ms
-1

.  A study on mean 

global zonal and meridional wind speeds from the MERRA reanalysis, shown in Figure 6-1, demonstrates 

that given the achievable quantisation for across track winds, a single ATSR instrument provides little 

useful information on AMVs.     

The limitations encountered with a single ATSR instrument can be effectively overcome through tandem 

satellite operation, as suggested by Lorenz (1983).  For the ATSR-2 AATSR tandem operation, 

employing either the two nadir or two forward views, the same location is observed from the same 

viewing angles with a time separation of approximately 30 minutes.  As the same viewing angles are 

employed in either acquisition pair, any parallax effects are removed and all observed displacements 

observed are caused solely by the motion of features within the scene (Baker et al., 2011). This enables 

effective determination of both across and along track displacement measurements, and in turn AMVs.  

Furthermore, the increased time separation between the observations and the replication of the imaging 

geometry allows for a significant improvement in measurement quantisation and also leads to consistent 

observation conditions across the swath.  Assuming a pixel level cloud tracking algorithm the 30 minutes 

between acquisitions improves the achievable quantisation to 0.5 ms
-1

, allowing significant potential for 

improvement in accuracy and the usefulness of the AMVs for application in scientific study.   

 

Figure 6-2.  The left image is taken from the AATSR 11µm nadir channel, the right image is the 

same scene obtained from ATSR-2 11µm nadir channel 30 minutes later.  Note the substantial 

changes in the cloud features (dark regions) between acquisitions, particularly in the western 

features.    
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However, the increased time separation between acquisitions is not without drawbacks.  As Figure 6-2 

demonstrates, during the 30 minute time lapse between acquisitions there can be extensive changes to the 

structure of the cloud features within the scene.  Such structural changes can confuse the cloud tracking 

algorithm employed, degrading the quality of the derived AMVs.   Effectively accounting for such 

structural changes is critical for reliable AMV estimation as will become apparent in the next section.  

6 . 3 . 2  T a n d e m  A M V  R e t r i e v a l  M e t h o d  

6 . 3 . 2 . 1  C l o u d  T r a c k i n g  

The ATSR-2 and AATSR 11µm (selected to provide diurnal coverage) nadir views are used to derive the 

AMVs.  The nadir view is chosen for its reduced sensitivity to optically thin cloud features.  In the 

forward view, due to the longer atmospheric path length, these features are more apparent.  This can be 

problematic as such features have a greater tendency to dissipate between observations leading to 

confusion in the applied tracking algorithm and erroneous measurements being returned.  

 

Figure 6-3.   The top left image contains the AMV outputs from the Farneback algorithm applied to 

the ATSR tandem 11 µm nadir views.  The algorithm appears to better capture the atmospheric 

motion in the scene.  In contrast the Census stereo algorithm outputs, the top right image, and the 

SURF algorithm outputs, the bottom image, are doing a very poor job of capturing the atmospheric 

motion within the scene.     
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Three different algorithms were tested for cloud tracking efficacy, the census stereo matcher, introduced 

in Chapter 3, the SIFT algorithm introduced in Chapter 2, and the Farneback optical flow algorithm 

which estimates displacement fields through analysis of polynomial expansion coefficients (Farneback, 

2003) available in the OpenCV computer vision library (Bradski and Kaehler, 2008).  Of the three 

algorithms evaluated the tracking achieved by the Farneback algorithm was found to correspond best both 

in terms of realistic AMV magnitude and direction.  The Census stereo algorithm, whilst effective in 

scenes with limited distortion was unable to deal with the significant changes in cloud structure that 

occurs in the 30 minute delay between the ATSR-2 and AATSR acquisitions (similar outcomes were 

obtained when applying SAD, SSD and rank area based stereo matching algorithms).  The same 

performance issues occurred when applying the SIFT feature detector, it being unable to deal with the 

structural changes and failing to locate matches robustly.  The vector outcomes for all three algorithms 

are shown in Figure 6-3. 

6 . 3 . 2 . 2  C o m p o n e n t  C o n v e r s i o n  

The outputs from the Farneback routine are sub-pixel across and along track displacements.  These 

displacements are in the instrument coordinate system and as such are not representative of meridional 

and zonal wind components; rather each displacement is a mixed function of both meteorological 

components.  This mixing is due to the orbital inclination of the satellite, which for the ERS-2 and 

Envisat satellites was 98.5 degrees (Diekmann et al., 2010).  To transform the observed displacements 

into meteorological wind components the underlying AATSR geographic grid is employed.  The 

latitude/longitude position associated with each AATSR pixel is assumed as the cloud location at the 

initial observation time (i.e. the AATSR observation time).  The across and along track displacements 

output by the optical flow algorithm are used to determine updated latitude / longitude position, with the 

geographic values again being taken from the AATSR geographic grid (any displacement which projects 

to outside the AATSR grid subset is rejected).  The updated latitude / longitude positions represent the 

cloud positions at the second observation time (i.e. the ATSR-2 acquisition time).  This process can be 

described as follows, 

    
               

    
               

 
Eq. 6.1 

where,    and    are the AATSR latitude and longitude grids,   and   are the across and along track 

displacements,   and   are the scene pixel coordinates and    and    are the shifted latitude and longitude 

positions.  Once derived the geographic coordinate pairings can be used to determine distance and bearing 

observations.  The great circle distance between two geographic points is determined using the Haversine 

equation, 
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Eq. 6.2 

where all angular measurements are in radians,   is 6371 km, and   is the distance between the two points 

in kilometres.  The bearing between the two points is determined as follows, 
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Eq. 6.1 

where   is the counter clockwise angle in radians between the heading at the initial location and 

geographic North.  The distance is converted into speed in ms
-1

 by converting the distance between the 

points into metres and then dividing by the approximate time between acquisitions (1800 seconds).  The 

speed and bearing effectively describe the AMV for each pixel.  The AMVs can be converted to the zonal 

and meridional wind components typically output by NWP systems, with the following equations,   

          
          

 Eq. 6.1 

where   is the speed in metres and   and   are the zonal and meridional wind components. 

6 . 3 . 2 . 3  C l o u d  T o p  H e i g h t  D e t e r m i n a t i o n  

In addition to zonal and meridional wind speed estimation, the processing chain also determines the CTH 

from the AATSR 11µm channel using the sub-pixel census algorithm described in Chapter 3.  The 11µm 

AATSR channel is selected as it has been analysed extensively in previous chapters and has been shown 

to provide the best census stereo outcome.  In addition it also provides observations irrespective of the 

illumination conditions.  A search radius of 20 pixels is employed in the along track direction and 5 pixels 

in the across track direction.  The along track radius is selected as the Tropopause in the tropics can often 

reach elevations approaching ~17km (Seidel et al., 2001), and wind speeds rarely exceed 40 ms
-1

 (see 

Figure 6-1).  The along-track disparities are smoothed with a 7 by 7 pixel median filter to reduce noise 

and then converted to above ellipsoid CTH using the Mannstein camera model.   

6 . 3 . 2 . 4  O t h e r  C o n s i d e r a t i o n s  

Other considerations include the poor geo-referencing accuracy of the ATSR-2 instrument post 2000, 

when an on-board gyroscope failed leading to a decline in navigation accuracy (Accica and Goryl, 2002).  

In some instances this can lead to large geo-location errors (Seiz, 2003).  Such errors have to be checked 

for in the outputs, as they may introduce measurement biases into the AMVs.  A suitable checking 

process would be achieved through application of the census stereo cloud mask to the wind components.   

From this masked dataset a histogram of the cloud free wind components with bins of 1 pixel size could 

be created.  It is then a simple process of rejecting any tandem orbit pairs which do not have the majority 

of cloud free wind vectors in the ±1 pixel bins.  Any scenes found to be poorly co-registered could be 

corrected for through application of the SURF algorithm presented in Chapter 2 (see also Fisher and 
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Muller, 2013).  However, due to the single orbit pair processed in this study, the geo-referencing quality 

was assessed manually by visually examining displacements vectors for cloud free regions of all 

processed scenes.  This histogram/SURF method would be employed for more extensive processing.   

6 . 3 . 3  A T S R  T a n d e m  W i n d  D a t a s e t  

To test the AMV extraction algorithm ATSR-2 orbit 38977 and AATSR orbit 3105 from the 4
th

 of 

October 2002 were selected.  In the processing chain the 11µm nadir view for each orbit is extracted and 

separated into a series of 512 by 512 pixel chunks.  Each chunk pairing is processed with the Farneback 

optical flow algorithm.  The resultant displacements are converted into AMVs and then zonal and 

meridional components.  The CTHs are computed from the AATSR nadir and forward view for each 

chunk using the census stereo algorithm.  The  ,   and CTH tiles are then stitched back into a full orbit 

and written out to netCDF along with a collocated DEM subset from GMTED2010. 

6.4  AMV Accuracy  Assessment  

In order to assess the zero wind accuracy achievable by the Farneback algorithm a suitable approach is to 

evaluate the displacements returned for features where the expected displacement value is zero, i.e. the 

ground.  In the 30 minutes between the tandem acquisitions, there should be no appreciable motion in the 

ground features, thereby providing this evaluable limit.  A cloud free region over Antarctica from the 

processed tandem orbits was selected for evaluation and is shown in Figure 6-4.  The histograms in 

Figure 6-5 present the across and along track shifts determined by the Farneback algorithm, in nearly all 

cases the observed shifts are less than a pixel.  Statistical assessment of the displacements converted into 

wind components returns a RMSD of 0.37 ms
-1

 and a bias of 0.24 ms
-1

 for the zonal component.  Similar 

quality is shown for the meridional component with an RMSD of 0.2 ms
-1

 and a bias of -0.14 ms
-1

.  These 

accuracies are below the expected accuracy achievable by the ATSR tandem operation due to the sub-

 

Figure 6-4.  Extracted AMVs for a cloud free scene over Antarctica assessing the zero wind 

accuracy of the Farneback algorithm.     
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pixel displacement estimation capability of the Farneback algorithm.  Furthermore, the algorithm returns 

the wind component estimations at the full instrument spatial resolution.  In summary the performance of 

the Farneback algorithm in terms of accuracy and coverage has been demonstrated to outperform the 

algorithms currently applied operationally to the MISR and MODIS instruments. 

6.5  Reana lys is  In ter -compar ison  

6 . 5 . 1  M E R R A  D a t a s e t  

The MERRA reanalysis (Rienecker et al., 2011), is employed here to provide a suitable comparison 

dataset for the wind components.  The MERRA reanalysis assimilates a large number of conventional and 

satellite based wind observations, including cloud and water vapour tracked winds from both 

geostationary observations and also polar observations from MODIS from 2002 onwards.  For the inter-

comparison the 12 a.m. UTC timestamp dataset from the 4
th

 of October 2002 is used.  This time stamp is 

selected as it is closest to that of the AATSR and ATSR-2 orbits, ~2 a.m. UTC.     

6 . 5 . 2  I n t e r - c o m p a r i s o n  M e t h o d  

6 . 5 . 2 . 1  C o l l o c a t i o n  

The MERRA reanalysis datasets employed in the inter-comparison are the zonal and meridional wind 

components, and the geo-potential heights.  To facilitate inter-comparison the MERRA data is spatially 

collocated with that of the AATSR data using the BEAM tool.  Following spatial collocation, collocation 

of pressure levels is also required.  Making the assumption that the observed wind components are at the 

elevation defined by the stereo matched AATSR CTH output, it is possible to extract the reanalysis wind 

components at the collocated pressure level using the reanalysis geo-potential height data, i.e. the model 

 

Figure 6-5.  The left figure shows the histogram of the across track displacements obtained from the 

Farneback AMVs derived in Figure 6-4.  The right figure shows the histogram of the along track 

displacements for the same figure.  The bin size for both histograms is 0.25 pixels.  Note nearly all 

observed displacements are accurate to less than 1 pixel, indicating an AMV accuracy of better 0.5 

ms
-1

.    
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pressure level which minimises the difference between the CTH and geo-potential height is assumed to be 

collocated, and the reanalysis wind components associated with this pressure level correspond to those 

observed.  Carrying out this process for every pixel provides a MERRA dataset which is collocated with 

AATSR in both spatial and model level terms.   

6 . 5 . 2 . 2  M a s k i n g  

A mask is generated for the evaluation so that only those locations where the ATSR-2 AATSR tandem 

analysis observed winds are employed in the statistical analysis.  The masking process is straightforward 

using wind speed and wind elevation constraints.  The wind speed threshold is set at 0.5 ms
-1

, i.e. any 

observed wind vector which has an absolute value less than this is potentially noise and excluded from 

the statistical analysis.  This threshold was chosen as it is defines the quantisation achievable by the 

ATSR-2 AATSR tandem configuration.  The elevation threshold was determined by differencing the 

AATSR CTH observations with the collocated DEM.  Any CTH feature less than 1km above the terrain 

was excluded, as below this elevation the CTH features may, in fact, be terrain.  The derived mask was 

applied to both the ATSR-2 AATSR and the collocated MERRA wind components.              

6 . 5 . 3  R e s u l t s  

6 . 5 . 3 . 1  V i s u a l  
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6 . 5 . 3 . 2  S t a t i s t i c a l  

Prior to the statistical analyses presented in this section an outlier removal process was carried out to 

improve the robustness of the assessment.  Outliers were classed as any wind component paring where 

the difference between the reanalysis and observational components was more than ±3 standard 

deviations from the mean.  

 

 

 

Figure 6-6.  The left column presents the AMVs returned by the ATSR tandem instrument in 

combination with the Farneback algorithm.  The right column shows the collocated MERRA 

reanalysis outputs 

 

Figure 6-7.  The dual histogram of zonal winds speeds as returned by the ATSR tandem 

observations on the x-axis and the collocated MERRA reanalysis outputs on the y-axis. The left 

plots is for all collocated observations, the right is with outliers excluded.     
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6 . 5 . 4  D i s c u s s i o n  

In the scenes used in the visual assessment, shown in Figure 6-6, the observations and reanalysis show 

good general agreement in terms of magnitude and direction.  The main discrepancies appear to occur in 

the presence of multi-layer cloud situations with differing wind characteristics.  In the statistical analysis 

derived from the entire orbit the reanalysis and observations again show some good agreement.  

Following outlier exclusion the zonal wind speed analysis, shown in Figure 6-7, has an RMSE of 7.7 ms
-

1
, this is similar to the error reported in the tracked AMVs (MODIS, GOES: accuracy of ~8 ms

-1
) 

assimilated into the MERRA reanalysis, which is encouraging.  The bias is only -2.5 ms
-1

, indicating a 

slight westward bias in the reanalysis data.  The coefficient of determination is 0.58, indicating that 58% 

of the variance in the observational data is explained by the reanalysis.  The meridional wind speed 

analysis has a reduced RMSE of 6.6 ms
-1

, again similar to the error reported in the assimilated winds.  

The bias is reduced at -0.5 ms
-1

, indicating a bias within the range of the tandem quantisation, which is 

very encouraging.  The coefficient of determination is reduced at 0.42, indicating that 42% of the 

variance in the observational data is explained by the reanalysis.  In summary, considering the inherent 

differences between the reanalysis and the observations (e.g. operating resolution, operational basis, 

temporal dislocation, etc.) the results are encouraging.        

6.6  Summary  and Fu ture  Work  

6 . 6 . 1  O b j e c t i v e  R e v i e w    

As with the previous scientific results chapters, this section assesses the results against scientific 

objectives outlined in section 6.2 in terms of their successful completion, downsides, and insights gained.   

 

Figure 6-8  The dual histogram of meridional winds speeds as returned by the ATSR tandem 

observations on the x-axis and the collocated MERRA reanalysis outputs on the y-axis.  The left 

plots is for all collocated observations, the right is with outliers excluded.      
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‘Explore the benefits of a tandem satellite imaging system for the determination of tropospheric wind 

speed, direction and elevation through cloud tracking’. 

Two benefits of a tandem ATSR operation over a single satellite system have been identified: the ability 

to derive both across and along track winds effectively through near identical imaging geometry 

removing any parallax effects; and, due to the increased time separation between orbits, the ability to 

observe wind speeds at a significantly improved quantisation (from 8 ms
-1

 to 0.5 ms
-1

).      

‘Locate and apply suitable algorithm to track winds for the ATSR instruments.’ 

The Farneback optical flow algorithm has been shown to be an excellent technique for the derivation of 

AMVs from satellite imagery.  It is far more robust to the extreme cloud deformations which occur during 

the 30 minute time lapse between the ATSR image acquisitions, than either the census algorithm or 

SURF.  Furthermore, the algorithm provides a dense field of observations (estimates are generated for 

every image pixel).  This is currently unprecedented, with other observational satellites requiring 

aggregation in order to generate robust results, therefore providing a wind vector grid at a resolution less 

than native (e.g. MISR wind components are currently returned at on a 17.6 by 17.6 km
2
 grid; MODIS 

wind components are returned on a 26 by 26 km
2
 grid).  This is of importance, as such high resolution 

AMVs can be used to effectively investigate cloud dynamical processes (e.g. Wu et al., 2010) 

‘Asses the accuracy of the AMV retrieval algorithm when applied to the tandem imagery through a 

ground displacement, zero wind, analysis.’ 

The AMVs have been assessed using a cloud free scene, where, under the assumption that the scenes are 

perfectly co-registered, an ideal algorithm would return mean displacements of zero in both axis.  The 

Farneback algorithm, under this evaluation, demonstrates excellent performance, with mean 

displacements and biases of less than the 0.5 ms
-1

 quantisation achievable by the ATSR tandem operation.      

‘Compare the derived ATSR-2 AATSR tandem winds against reanalysis outputs from state-of-the-art 

reanalyses, in this case MERRA, to provide an initial inter-comparison between observational and 

reanalysis winds.’   

In a visual inter-comparison the observational and reanalysis wind components have been shown to return 

similar wind vectors.  A statistical analysis for an entire tandem orbit was also carried out against the 

MERRA data.  This assessment demonstrated that a good degree of agreement exists between the 

observational and reanalysis datasets.  This is to be expected as the reanalysis outputs are formed from an 

observational basis, assimilating wind data from both polar orbiting and geostationary imaging systems.       

6 . 6 . 2  F u t u r e  W o r k  

From the objective review it is possible to outline a number of avenues to pursue in future studies.  

Perhaps the most critical is to extend the ground analysis which assesses the performance of the 

Farneback algorithm.  The current evaluation, whilst very promising, is limited in extent.  Complete 

processing of the ATSR-2 AATSR tandem data would facilitate this extension.  
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Further algorithm developments could also be implemented.  Of most importance is an AMV quality 

control check, something which both the MISR and MODIS products employ.  A quality control could be 

implemented effectively through inter-comparison of the AMVs derived from the nadir image paring 

against those from the forward.  Any AMVs which differ between the pairings by more than some 

predefined threshold could then be rejected.   

Another potential development is the determination of vertical cloud motion through observation of the 

change in CTH between AATSR and ATSR-2 acquisitions, providing a complete description (i.e. 3-axis) 

of cloud motion.       

The last obvious path for future work is to assimilate the validated tandem observational data into a 

current reanalysis to assess whether it leads to improvements in the forecasting ability of the NWP model, 

along similar lines as that undertaken by (Bormann and Thépaut, 2004).  The use of the tandem method is 

likely improve upon the increased forecasting ability in Polar Regions provided by the assimilation of 

MODIS data due to the more robust stereo height assignment achievable by stereo in these challenging 

locations (see Chapter 4). 

6 . 6 . 3  C h a p t e r  S u m m a r y  

This chapter has demonstrated the potential for deriving tropospheric AMVs from the ATSR-2 AATSR 

tandem operation.  A highly suitable optical flow algorithm, developed by Farneback, has been identified 

for generating dense cloud tracked displacements across the ATSR thermal channels.  The outputs from 

the algorithm/instrument combination have been shown, though a limited ground displacement 

assessment, to outperform the MODIS AMVs in terms of accuracy and to be similar to those of MISR.  A 

further, significant, benefit of the Farneback algorithm is that the observed displacements appear to be 

robust at full ATSR instrument resolution, a feat which neither the MODIS or MISR algorithms are 

capable of achieving.  An inter-comparison against the MERRA reanalysis has also been undertaken and 

good agreement between the observational and reanalysis dataset has been demonstrated.       
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7 CONCLUDING REMARKS  

7.1  Thes is  Rev iew  

The overall aim of this thesis has been to apply stereo-photogrammetric techniques to the ATSR 

instruments in order to study their potential for generating various scientific datasets for application 

within the field of the atmospheric sciences.      

The first development to come out of this study has implications not only for stereo-matching but any 

other science tasks undertaken with the ATSR instruments that require the forward and nadir views to be 

accurately co-registered.  The poor co-registration between the ATSR images is present across all three 

instruments, and in terms of stereo matching, leads to significant biases in the returned stereo results (a 1 

pixel error in co-registration results in ~1km error in the retrieved CTH).  The technique presented in this 

thesis to improve the image co-registration employs an automated tie-point detection algorithm based on 

the SURF feature matcher.  This approach has been shown to perform very robustly for the detection and 

matching of features in ATSR imagery.  The tie-points, once defined, are employed to derive polynomial 

warping coefficients which map the forward view onto the nadir. The warping coefficients have been 

evaluated globally and shown to improve the co-registration between the forward and nadir views to less 

than a pixel for all ATSR instruments (excepting ATSR-2 post 2000).  Currently the warping coefficients 

are derived for application to 512 by 512 pixel image subsets (due in part to the sub-setting employed in 

the stereo processing undertaken in the science chapters). 

The second development has been the location of a far more suitable stereo matching approach for the 

determination of CTH from AATSR.  The algorithm located, the census transform, is a non-parametric 

area-based matching algorithm, and this lends it a number of advantages over the more traditional 

parametric area-based approaches.  It is more robust to pixel outliers, that is, pixels with digital values 

which do not conform to the statistical distribution of the image subset being stereo matched (or 

normalised).  Parametric stereo matching techniques experience a degradation of performance in the 

presence of such outliers.  Effects introduced include smoothing of the disparity fields and erroneous 

matches at discontinuities (transitions between different disparity groups; often associated with a change 

in pixel intensity).  Due to the robustness of non-parametric transforms to statistical outliers, the quality 

of the stereo matching outcome is far improved in the presence of discontinuities.  This is very important 

for the stereo matching of cloud features, as they tend to exhibit discontinuities with the underlying land 

surface.  Furthermore non-parametric transforms are very robust to radiometric changes an important 
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aspect for all stereo algorithms employed in the variable imaging conditions common when employing 

EO platforms.  In nearly all analyses presented in the thesis, the census transform has clearly been the 

most effective when compared against the other stereo image matching algorithms employed on ATSR.           

Three different science tasks have been undertaken using stereo-photogrammetric techniques in this 

thesis.  The principle undertaking has been the development of a new stereo derived CTH and CF 

climatology over Greenland from the entire AATSR time series.  This climatology in the form of CFbA 

dataset provides stratified estimates of cloud fraction at various elevations above the Earth ellipsoid.  This 

new dataset provides CTH estimates vertically accurate to ~1km, and detects clouds down to ~0.4 optical 

depths.  Furthermore, the CTH retrievals from AATSR stereo have been shown to exhibit much reduced 

biases (vs. lidar observations) compared to other passive non-geometric CTH assignment approaches.  

This is particularly the case for the CTH outputs from the 11µm channel which have been shown, 

irrespective of the clouds elevation (see Chapter 4, Figure 4-8), to be practically unbiased compared to 

lidar retrievals.  The stereo climatology has been demonstrated to agree well with other observational 

climatologies over Greenland, and to provide valuable new insights into cloud characteristics, particularly 

in the case of high clouds.   

The second science task undertaken involved the development and validation of a new SPIH dataset from 

AATSR for application within the ALANIS Smoke Plumes study.  The author’s main contribution was 

the validation of the M6 algorithm and the smoke plume masking routine developed at MSSL 

(descriptions of both of these processes are given within the thesis).  The validation efforts demonstrate 

that AATSR is effective for retrieving the elevation of large plumes associated with significant forest fire 

events, and also extensive smoke clouds to ~1km accuracy.  Smoke plumes with smaller extents and 

lower injection heights are typically missed by the masking algorithm and the heights retrieved tend to 

relate to the terrain rather than the plume. 

The final science task undertaken involved the determination of wind speed, direction and elevation 

through cloud feature tracking across imagery obtained from the ATSR-2 AATSR tandem operation.  

This study demonstrated the benefits of employing a tandem satellite system, in particular, a substantial 

improvement in the accuracy of the retrieved winds (for 8 ms
-1

 to 0.5 ms
-1

) and also the potential to 

retrieve both across and along track wind components (vs. across-track only wind components in the case 

of a single ATSR sensor).  Furthermore an optical flow algorithm (Farneback, 2003) which enables 

determination of wind fields at full ATSR image resolution has been identified.  This is unprecedented 

with the all current feature tracking algorithms employed on other passive observational wind 

determination systems requiring pixel aggregation (i.e. resolution reduction) in order to obtain reliable 

results. 
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7.2  Cont r ibu t ions and Or ig ina l i t y  

7 . 2 . 1  T h e s i s  C o n t r i b u t i o n s  

 The first major contribution of this thesis is an automated approach to improve the co-

registration between the forward and nadir AATSR views.  A set of globally applicable warping 

coefficients have been derived and evaluated and shown to improve the co-registration between 

the views of the ATSR instruments (excluding ATSR-2 post 2000) to pixel level accuracy 

irrespective of location.  This development is potentially significant for any science task which 

requires the ATSR views to be accurately co-registered, such as stereo matching.     

 The non-parametric census transform (Zabih and Woodfill, 1994) stereo image matching 

algorithm has been applied to the AATSR instrument to retrieve disparity estimates.  This non-

parametric approach has been demonstrated through multiple assessments (against DEM 

elevations, and collocated CTH retrievals from CALIOP and MISR) to provide very robust 

stereo measurements and leads significant accuracy gains over the previous stereo algorithms 

applied to the ATSR instruments.       

 A long-term, stereo derived, macrophysical cloud climatology from AATSR over Greenland has 

been developed.  This unique dataset provides the first reliable estimates of CF for an extended 

time series from an ATSR instrument over any location (AATSR-GRAPE CF observation tend 

to be unreliable; the previous CF dataset generated over Greenland from ATSR-2 using stereo is 

only available for 2007 (Griggs and Bamber, 2008)).  Furthermore, this dataset represents the 

first stereo derived CFBA climatology from AATSR for any location.  The developed 

climatology also offers insights into both high and low clouds characteristics, which is a unique 

feature.     

 For the first time an inter-comparison has been made of AATSR stereo derived CTH retrievals 

against collocated observations from CALIOP.  This inter-comparison, using 5 months’ worth of 

finely collocated samples (~5km spatial separation; <10 minute temporal separation) over 

Greenland demonstrated firstly that the non-parametric census algorithm performs excellently 

for CTH retrieval when combined with AATSR, and secondly that the biases in the retrieved 

stereo results are strongly channel dependent.  The obtained results demonstrate that the 11µm 

channel exhibits far less bias than either the NIR or visible channels and on average retrieves 

results that are within 45m of the cloud top as detected by CALIOP.  This accuracy is 

unprecedented, with the majority of other passive remote sensing system tending to retrieve 

CTHs that are 1km or more below those seen by CALIOP.  Further work is required assessing 

whether this performance is consistent in other regions globally. However, this is potentially a 

very interesting result in terms of the value of stereo-photogrammetric techniques applied to 

thermal imagery.     

 The inter-comparison of the AATSR stereo CTH retrievals with CALIOP has also enabled a 

characterisation of the detection limits of the instrument-algorithm pairing.  AATSR in 
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combination with stereo has been shown on average to fail to detect clouds with an optical depth 

of 0.4.  This finding is very similar to the detection limits achievable by other passive CTH 

determination systems.      

 In addition to the CTH and CF studies this thesis has also demonstrated the potential to retrieve 

smoke plume and smoke cloud heights from AATSR using stereo techniques applied to the 

0.55µm channel.  This undertaking, whilst less successful than the CTH and CF determination 

studies, has demonstrated that there is some potential for determining smoke feature 

characteristics through AATSR and stereo photogrammetry, as long as the features are larger 

than a few tens of pixels and above 1km in elevation.    

 The final major contribution from this thesis has been the demonstration of wind speed, 

elevation and direction retrieval from the tandem ATSR-2 AATSR operation.  This study 

provides the first evaluation of a tandem passive sensing satellite approach for wind retrievals 

and also provides the first retrievals from a passive sensing system at microscale resolution 

(≤1km).      

7 . 2 . 2  P e e r  R e v i e w  J o u r n a l  P a p e r s  

Fisher, D., & Muller, J. P. (2013). Global warping coefficients for improving ATSR co-registration. 

Remote Sensing Letters, 4(2), 151-160. 

Fisher, D., Muller, J. P., & Yershov, V. N. (2013). Automated Stereo Retrieval of Smoke Plume Injection 

Heights and Retrieval of Smoke Plume Masks from AATSR and their Assessment With CALIPSO and 

MISR. IEEE T. Geosci. Remote Sens., in press, 28717,28718 

Krol, M., Peters, W., Hooghiemstra, P., George, M., Clerbaux, C., Hurtmans, D., ... & Muller, J. P. 

(2013). How much CO was emitted by the 2010 fires around Moscow? Atmospheric Chemistry and 

Physics, 13(9), 4737-4747. 

7 . 2 . 3  C o n f e r e n c e  P r o c e e d i n g s  

Muller, J. P., Walton, D. M., Fisher, D. N., & Cole, R. E. (2010). SMVs (Stereo Motion Vectors) from 

ATSR2-AATSR And MISRlite (Multi-Angle Infrared Stereo Radiometer) Constellation. In IWW10-

International Winds Workshop (Vol. 10, p. 8pp). 

Fisher, D., J-P. Muller, (2010). Stereo Motion Vectors from ATSR-2 and AATSR.  ESA Living Planet 

Symposium. Bergen, Norway 28 June-2 July. 

Fisher, D., J-P Muller, (2010). Improved Stereo Retreival of Cloud-Top Heights and Winds from ATSR2 

and AATSR: Techniques and Results.  Remote Sensing and Photogrammetry Society Annual 

Conference. Cork, Ireland 1-3 September. 

Fisher D., J-P Muller, V. Yershov., (2011). The Development of Novel Stereo Derived Smoke Plume 

Products for AATSR and their Application to the 2010 Russian Fire Season. EGU General Assembly. 

Vienna, Austria 3-8 April.    
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Muller J-P., V. Yershov, D. Fisher, 2012. Stereo retrievals of cloud and smoke winds and heights from 

EO platforms: past, present and future prospects. Tenth International National Winds Workshop. 

Auckland, New Zealand 20-24 February. 

Fisher, D., Muller, J. P., & Yershov, V. (2012). The validation and analysis of novel stereo-derived 

smoke plume products from AATSR and their application to fire events from the 2008 Russian fire 

season. EGU General Assembly. Vienna, Austria 22-27 April. 

Fisher, D., & Muller, J. P. (2012, July). Global analysis of the improvements in AATSR nadir-forward 

co-registration following the application of an automated registration algorithm. In Geoscience and 

Remote Sensing Symposium (IGARSS), 2012 IEEE International (pp. 1753-1756). IEEE. 

7.3  Future  Work  

Many of the new contributions presented in section 7.2 can be extended, and in this section the most 

promising avenues for future work are reviewed.  The first obvious direction for future work is to extend 

and improve upon the stereo derived macrophysical cloud climatology presented in this thesis.  The 

primary improvement required is in the effective screening of problematic, low texture regions of the 

Earth’s surface, which are primarily associated with ice sheets.  The current screening method 

implemented requires all seven AATSR and ATSR-2 channels to effectively screen low texture snow and 

ice regions, precluding CTH and CF determination during the night-time, and entirely preventing its 

application to ATSR-1 (which lacks the three visible channels).  If an existing or new technique can be 

implemented to effectively screen problematic low texture regions using only the channel being stereo 

matched then it would be possible to effectively retrieve diurnal cloud cycles and winter cloud 

characteristic over ice sheets and other problematic regions which low texture in the ATSR imagery.  

Once a solution for low texture regions has been located and implemented in the current AATSR-Stereo 

L2 processing chain, the entire AATSR, ATSR-2 and ATSR-1 global time series could be effectively 

processed into L3 climatological datasets. 

The next proposed avenue for future work is reprocessing of the entire ALANIS AATSR dataset with the 

census stereo algorithm.  When inter-comparing the validation outcomes of census against M6, in every 

comparable test undertaken in this thesis census offers better performance by a substantial margin.  The 

census algorithm was determined to be a suitable stereo matching algorithm for AATSR after the 

ALANIS project had been completed; hence it was not evaluated for the task of SPIH determination.  

However in the future, it should definitely be assessed for this task, as the outcomes are likely to be 

significantly better than those achieved through the application of M6.      

Due to its excellent performance when applied to ATSR-2 AATSR tandem data, the final strongly 

recommended avenue for future work is an evaluation of the performance of the Farneback optical flow 

algorithm for cloud tracked wind retrieval with the MISR instrument.  The current algorithm employed on 

MISR is only able to retrieve wind fields at a spatial resolution of 17.6km and an accuracy of 0.5 ms
-1

.  It 

is proposed that application of the Farneback optical flow algorithm to the MISR instrument would likely 
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lead to a significant improvement in the spatial resolution of the retrievals, possibly even down to 250m, 

whilst likely retaining similar or better accuracy levels.  
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Appendix A 

 

Table A1. The ATSR warping coefficients for application within the warps defined in Equations 2.4 

and 2.5.  The coefficients are scaled between -1 and 1 and assume a 512 by 512 pixel image.    
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