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Gravitational-wave searches for the merger of compact binaries use matched filtering as the method of

detecting signals and estimating parameters. Such searches construct a fine mesh of filters covering a

signal parameter space at high density. Previously it has been shown that singular-value decomposition

can reduce the effective number of filters required to search the data. Here we study how the basis

provided by the singular-value decomposition changes dimension as a function of template-bank density.

We will demonstrate that it is sufficient to use the basis provided by the singular-value decomposition of a

low-density bank to accurately reconstruct arbitrary points within the boundaries of the template bank.

Since this technique is purely numerical, it may have applications to interpolating the space of numerical

relativity waveforms.
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I. INTRODUCTION

Several broadband laser interferometer gravitational
wave (GW) detectors are operating at high sensitivities
and will continue to improve over the next decade [1–5].
As detectors improve, it is increasingly likely that GW
astronomers will observe gravitational radiation emitted
from the coalescence of compact binary systems involving
neutron stars and/or stellar mass black holes [6].

Because compact binary coalescence (CBC) waveforms
are well modeled, GW searches for such signals are con-
ducted by matched-filtering the detectors’ data with banks
of template waveforms, chosen to adequately cover a
region of the signal parameter space [7]. For GW signals
from the merger of compact objects with negligible spin,
this parameter space is defined by functions of the masses
of the two objects. To search for signals within this pa-
rameter space, a bank of templates is constructed to sample
the parameter space sufficiently densely such that there is
minimal loss of signal-to-noise ratio (SNR). Traditionally,
template banks used to search this two-dimensional signal
parameter space have been constructed using the ðA2Þ�
lattice [8], referred to as ‘‘hexagonally placed’’ template
banks. This problem becomes more difficult in higher
dimensions, where other types of template placement algo-
rithms have recently been investigated [9–12].

In [13], the singular-value decomposition (SVD) was
applied to CBC waveforms to show how hexagonally
placed template banks with M templates could be imple-
mented with N0 � 2M filters (2M being the nominal

number of filters required for the M 2-phase templates).
This was achieved by truncating the SVD of the matrix
consisting of the time series of the template waveforms.
Here we demonstrate that the bases identified by the SVD
are effective at spanning the space of all CBC waveforms
within the region of parameter space sampled by the origi-
nal bank. We find that the SVD of a low-density bank
provides a basis suitable for constructing all the waveforms
from a higher-density bank, even waveforms at arbitrary
locations within that region of parameter space. Such a
basis could be used to reduce the computational cost
of (1) performing hierarchical searches of parameter space
that minimize waveform-mismatch errors associated with
identifying signals in the data, (2) running parameter-
estimation algorithms that take the inner product between
the data and millions of waveforms, and (3) generating
computationally costly waveforms.
This paper is organized as follows. Section II describes

how we apply the SVD to approximately embed the signal
manifold in a vector space. Section III tests this embedding
by reconstructing various points in the manifold. Finally,
Sec. IVexpands on possible applications of this technique.

II. ENCLOSING THE SIGNAL SPACE WITH
SINGULAR-VALUE DECOMPOSITION

In this section we explore how the number of basis
vectors required to reconstruct a template bank scales
with the initial density of the template bank. We define a
template bank of signal waveforms covering a patch P of
the signal manifold, which is used to test for the presence
and strength of signals from P in the detectors’ data. We
construct a signal matrix in the same manner as [13].
Specifically, we create a real-valued matrix H by
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alternately filling its rows with the real and imaginary parts
(cosine and sine) of the template waveform time series

from a CBC template bank covering P , H ¼ fH�jg ¼
f< ~h1;= ~h1;< ~h2;= ~h2; . . . ;< ~hM;= ~hMgT.

As in [13], we constructed the template matrix with

chirp masses Mc ¼ M�3=5, where M ¼ m1 þm2 is the
total mass and � ¼ m1m2=M

2 is the symmetric mass ratio,
of 1:125M� � Mc < 1:240M� and component masses of
1M� � m1, m2 < 3M�. Template banks covering this re-
gion are created using the template-placement algorithms
of the LSC Algorithm Library [14]. Template placement is
done in the ð�0; �3Þ plane, where �0 and �3 are defined as

�0 ¼ 5

256
ð�f0Þ�8=3M�5=3

c ; (1)

�3 ¼ �

8
ð�f0Þ�5=3M�2=3

c ��3=5; (2)

and where f0 is some fiducial frequency, which we choose
to be f0 ¼ 60 Hz.

The nonspinning waveforms for each template are pro-
duced to 3.5 post-Newtonian order, sampled at 2048 Hz, up
to the Nyquist frequency of 1024 Hz. The last 10 seconds
of each waveform, whitened with the initial LIGO ampli-
tude spectral density, are used to construct H. The SVD is
then applied toH, decomposing the matrix into two unitary
matrices, V and U, and a diagonal matrix �

H ¼ V�UT; (3)

where U is a matrix composed of basis vectors (i.e., unit-
norm time-series vectors), V is a matrix composed of
reconstruction coefficients, and � is a matrix containing
the singular values of H.

In [13], it was demonstrated that truncating the recon-
struction of H to use only the N0-basis vectors with the
largest singular values results in an average fractional SNR
loss h��=�i proportional to the sum of the discarded
singular values squared. In this investigation, we truncate
these reconstruction matrices at h��=�i ¼ 10�7. This cor-
responds roughly to the truncation error of Institute of
Electrical and Electronics Engineers 754 32-bit floating-
point numbers.

We explore how the number of basis vectors changes as
the number of rows in H is increased by generating tem-
plate banks for P with increasing density (i.e., increasing
minimal match). We confirm that the number of basis
vectors required to reconstruct H saturates at a particular
value of minimal match. Figure 1 shows that, as the mini-
mal match of the template bank is increased, resulting in
denser samplings of P , the number of basis vectors needed
to reconstruct H to the required accuracy saturates around
a minimal match of �89:9%. This indicates that P is able
to be embedded—to an accuracy of 1 part in 107—in a
vector space consisting of �150 dimensions.

In the next section, we demonstrate how the basis wave-
forms identified by the coarsely sampled bank can be used
to reconstruct templates at arbitrary points on the signal
manifold.

III. EFFICIENT RECONSTRUCTION OF
WAVEFORMS IN THE MANIFOLD

In order to determine how well these waveforms can be
reconstructed, we compute a quantity called the ‘‘average
fractional SNR loss,’’ ���=��. This quantity can be
thought of as the mismatch between the original waveform
~h� and the reconstructed waveform ~h0�, averaged over the
phase angle. It tells us how far the reconstructed waveform
is from the original waveform. This quantity can be split
into two pieces,

���

��

¼
�
���

��

�
?
þ

�
���

��

�
k
; (4)

where ð���=��Þ? is due to the (in)completeness of the
basis vectors, and ð���=��Þk is due to the truncation of

the SVD reconstruction. The first piece is given in terms of
the SVD quantities by�

���

��

�
?
¼ 1�

�
1

2

XN
�¼1

ðv2
ð2��1Þ� þ v2

ð2�Þ�Þ�2
�

�
1=2

; (5)

where vð2��1Þ� and vð2�Þ� are the reconstruction coeffi-

cients for the real and imaginary parts, respectively, of the
�th waveform associated with the�th basis vector and are
elements of V; �� is the �th element of �; and the sum is

over all of the terms of V and �. The second piece is given
by Eq. (25) of [13] in terms of SVD quantities,�

���

��

�
k
¼ 1

4

XN
�¼N0þ1

ðv2
ð2��1Þ� þ v2

ð2�Þ�Þ�2
�; (6)

where the sum is over the truncated terms of V and �.

FIG. 1. The number of filters as a function of minimal match,
which increases with the density of the template bank. The total
number of filters in the template bank, N, is shown by the dashed
line. The number of filters needed to reconstruct the template
matrix such that h��=�i ¼ 10�7, N0, is shown by the solid line.
We find that the number of filters needed to reconstruct H
saturates when the minimal match reaches �89:9%.
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We test this embedding of the signal manifold to see how
well various points in the manifold can be reconstructed.
The test points that we reconstruct are of two types:
(1) those from the original signal matrix H, and (2) those

absent from H but within P . These two types of tests are
illustrated in Fig. 2.
A test of the first type is shown in Fig. 3. For these points,

since the SVD provides an exact decomposition of H,
ð���=��Þ? should be identically zero, which is what is
observed to numerical precision. We also see that the
average reconstruction accuracy for points from H agrees
with our chosen value of 10�7. This result is expected as it
is an extension of the investigation from Fig. 4 of [13]
applied to a more stringent reconstruction accuracy.
A test of the second type is shown in Fig. 4. To choose

points uniformly from P but absent fromH, we generate a
denser template bank within the same region of parameter
space described in Sec. II. Specifically, we generate this
template bank with a minimal match of 99%. In order to
test the reconstruction accuracy of these waveforms, we
project the real and imaginary parts of the waveforms onto
the basis vectors from the SVD of H,

v0
�� ¼ 1

��

X
j

h�ju�j; (7)

where v0
�� represents a reconstruction coefficient associ-

ated with the�th basis vector for the real or imaginary part
of the �th waveform from the denser template bank; �� is

the�th element of�; h�j is the jth time sample of the real

or imaginary part of the �th waveform from the denser
template bank; and u�j is the jth time sample from the�th

basis vector in U. The real and imaginary parts of the
waveforms from the denser template bank are then recon-
structed using

h0�j ¼
X
�

v0
����u�j: (8)

The distribution of ���=�� for these waveforms,
Fig. 4(a), shows a tail extending to large mismatches.

FIG. 2 (color online). A visual representation showing the
two types of points of P that we can choose to reconstruct.
The left panel shows an example point that is inH and thus in P .
The right panel shows an example point that is not part of H but
is in P .

FIG. 3. Histograms of ð���=��Þ?, ð���=��Þk, and ���=��

for the waveforms that went into the construction of H. As
expected, ð���=��Þ? is around single-precision floating-point
roundoff error, and the average ���=�� (solid vertical line)
matches the expected fractional SNR loss (dashed vertical line).

(a) (b)

FIG. 4. (a) Histograms of ð���=��Þ?, ð���=��Þk, and ���=�� for waveforms from P that were not inH. ð���=��Þ? is seen to be
of the same order of magnitude as ð���=��Þk. The peak of ���=�� is above the expected fractional SNR loss for waveforms from H
(vertical dashed line); however, the average ���=�� is skewed to large values by a tail in the distribution. (b) How these mismatches
vary across P , averaged over the �3 direction. The largest mismatches come from near the borders of the template bank in the �0
direction. Figure 5 restricts our attention to the central 75% of the domain of P , whose boundaries are shown by the vertical lines here
in Fig. 4(b).
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Examining where these large mismatches are located in
parameter space, we find they originate from near the
boundaries of P . Removing the test points near the
boundaries in the �0 direction, shown in Fig. 5, we find
that the tail of large mismatches disappears.

An additional test of the second type, which systemati-
cally explores the reconstruction accuracy near a point
whose waveform went into H, is shown in Fig. 6. Figure 6
(a) shows a set of three nearest-neighbor templates. We
investigate how the reconstruction accuracy varies as one
moves from point A to the central point, point B. Point B
is assumed to have the largest mismatch between its
waveform and the waveforms from any of the three

surrounding points. Figure 6(b) shows the accuracies of
representing the waveforms along AB with the waveform
of point A with and without maximizing over phase and
time, called the fitting factor and match, respectively, and
with the SVD projection described by Eq. (8). The fitting
factor falls to the minimal match of the template bank
when comparing the waveforms from A and B, which is
expected as the minimal match involves maximizing over
phase and time. The reconstruction accuracy associated
with SVD projection is consistently high and close to the
chosen reconstruction accuracy of 1 part in 107.

IV. DISCUSSION

These investigations show that the SVD can be used to
find a set of basis vectors that not only span the signal
matrix H but also enclose the signal manifold P sampled
by H.
GW pipelines that search for known waveforms, such

as GWs from CBCs, commonly compute waveform-
consistency statistics that compare the observed response
of a template-waveform filter to the data with what one
would expect given the presence of that signal. These
consistency statistics are found to perform better when
the mismatch between the template waveform and the
signal waveform is small [15]. Filtering with a fixed-
density template bank can introduce mismatch between
the nearest template and the signal. This mismatch can
be greatly reduced if one is able to find the exact point in
parameter space where the signal is located and filter the
data using that point. Using the SVD-basis vectors, one
could reconstruct a point closer to the point of the signal
and improve the waveform consistency statistics.

FIG. 5. Histograms of ð���=��Þ?, ð���=��Þk, and ���=��

for waveforms from P that were not in H, similar to Fig. 4(b),
eliminating, however, test points near the boundaries in the �0
direction. The average ���=�� (solid vertical line) accuracy is
slightly worse than the expected fractional SNR loss (dashed
vertical line).

(a) (b)

FIG. 6. (a) A plot showing a region of P . The circles are points whose waveforms go into H. The line segment AB connects one of
those points, A, with the point B, which is the central point of A and two of its nearest neighbors. Point B is situated such that it should

have a 89.9% fitting factor with each of the surrounding points. (b) How well a waveform from a given point of AB, ~hp, can be

‘‘matched.’’ The lowest, light-grey curve shows the match, which is the normalized inner product between ~hA and the waveform from
the corresponding point along AB. The next-lowest (dark-grey) curve shows the fitting factor, which is the match maximized over
phase and time. Since we are using a 89.9% minimal match bank, it is expected that the fitting factor falls to around that value.
The three upper curves are associated with the SVD projection. As before, the solid curve is 1� ���=��, the dashed curve is
1� ð���=��Þk, and the dotted curve is 1� ð���=��Þ?. The SVD-basis vectors are able to reconstruct to high accuracy all points

along the line.
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Parameter-estimation techniques for GWs from CBCs
often use Monte Carlo Markov chain algorithms to search
the parameter space. This involves producing waveforms
and filtering the data against many points of the parameter
space, building up probability-density functions associated
with each parameter. If one filtered the data using the basis
vectors from the SVD, it would be simple to reconstruct to
high accuracy the output one would have seen if one had
filtered the data using any waveform from within the
parameter space, which could then be used to map out
the probability density functions implicitly.

Finally, some waveforms are computationally costly to
produce. Such is the case to a limited extent for waveforms
produced by solving post-Newtonian differential equations
and, as an extreme case, solving the full Einstein equations
using numerical relativity. The SVD could be used to
generate numerically interpolated waveforms starting
from a limited sampling of the parameter space.

In order to gain benefit from these applications, it would
be necessary to determine the reconstruction coefficients in
a computationally efficient manner. This paper has not
tried to address this problem because (1) it has assumed

the target waveforms are known and (2) it computes the
reconstruction coefficients using computationally expen-
sive inner products. Generation of these reconstruction
coefficients warrants future investigation, as the benefits
derived from this technique would be substantial.
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