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1 Abstract 

Japanese Encephalitis (JE) is the most common form of viral encephalitis in the world, 

caused by the Japanese Encephalitis virus (JEV), it is responsible for around 10,000 

deaths a year whilst many more are left with long term neurological sequelae and 

disability. This work sought to use small-scale development techniques alongside high-

throughput methodologies to explore and develop selected processing techniques. 

Formaldehyde inactivation of JEV was characterised and optimised through the use of 

Design of Experiments screening techniques where temperature, time and 

formaldehyde concentration were found to be key factors in antigen loss. Glycine and 

to a lesser extent sorbitol were found to have positive effects as stabilisers during 

inactivation at different stages of the process. Four anion exchange resins were 

screened at micro-scale, with the help of an ELISA method evaluated for high-

throughput screening, for their potential to replace sucrose gradient purification as the 

principle purification step of the process. Although Q Sepharose FF was eventually 

chosen for scale-up studies, the transition of method and recovery rates from batch 

bind micro-plate studies to 1 mL column scale proved difficult. Yet it was observed that 

pre-treatment of feed with formaldehyde and glycine could increase JEV antigen 

recovery rates in flow-through mode chromatography, thought to be due to enhanced 

stability of the virus particles. 
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3  Introduction  

3.1 Vaccine bioprocessing 

The driver for much of what we see in vaccine development is made on the basis of 

quality, safety and efficacy. While most countries have implemented a vaccination 

policy since as early as the 1900’s, the manufacturing processes of these vaccines 

were simplistic and poorly characterised due to technology limitations of the age. The 

true function and mechanism of action was unknown for many early vaccines and the 

excipients used were equally obscure. However, these early vaccines became 

established and as the regulation and indeed regulatory agencies were created, many 

of these vaccines, excipients and manufacturing processes were grandfathered in. 

What was known is the interplay between the product and the process and how 

changes in manufacture can directly affect the quality, safety and efficacy of a vaccine. 

Such that changes to the process can often require regulatory approval. Much of 

vaccine bioprocess development is then focused on two main tranches. The first is the 

development of new processes and products against disease targets; the second to 

increase process understanding of existing vaccines. It is to this end that the tools of 

microscale development have been employed to Japanese Encephalitis virus vaccine 

production. As discussed below, some of the first Japanese encephalitis (JE) vaccines 

produced in the 1950s were produced in mouse brains and evolved into primary cell 

derived production. Yet much of the downstream processing remained unchanged 

during this process update. Thus, this thesis seeks to increase process understanding 

of JEV production and to explore new process options such as chromatography.  

3.1.1 Early history of vaccines 

Vaccines can be traced back to the end of the 18th century when cowpox pus was used 

to inoculate against smallpox in humans. A century later bacterial vaccines were 
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available against cholera and anthrax when it was established that ‘weakened’, through 

heat or otherwise, cultures could be used to provide immunity without harming the 

individual being administered. By the start of the last century a whole-cell inactivated 

bacterial vaccine was licensed against pertussis for the prevention of whooping cough, 

which was soon followed by formalin inactivated toxoid vaccines against tetanus and 

diphtheria in the 1930s (Josefsberg and Buckland, 2012). 

3.1.2 Types of vaccines 

Unknowingly at the time, when Edward Jenner began immunising people against 

smallpox using pus from the bovine variant of the disease, this was the first attenuated 

live virus vaccine – so called because the strain used as a vaccine was replication 

incompetent in humans. This is just one of many different types of vaccines that are 

able to induce protective immunity in humans, broadly speaking the main types are: 

whole cell or virus vaccines, of which they can also be attenuated, inactivated or both, 

DNA vaccines and vaccines of antigenic components from a pathogen (Josefsberg and 

Buckland, 2012), these are summarised in Table 3.1. 

The first group of vaccines, whole organism, whether live, inactivated, attenuated or a 

combination thereof, could be considered the traditional type of vaccine. The focus of 

this research is in fact targeted towards a whole inactivated virus vaccine, discussed in 

detail below. Vaccines can be attenuated through multiple passages and expression 

through non-human hosts, for example, or otherwise adapted so as not to pose a threat 

to humans. Inactivation, in turn, is performed to damage or weaken the pathogen to 

such an extent with the same aim. Yet despite these two attributes, the whole organism 

must be presented to the immune system in such a state that will still confer immunity 

against wild type (or other protective targets) variants of the disease encountered. 

Inactivation is covered in more detail below in section 3.3.3. Early chick embryo 

produced influenza vaccines are examples of live attenuated vaccines. The polio 

vaccine is another example of an inactivated vaccine. 
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DNA vaccines, seen as a promising treatment against many forms of cancer, 

essentially involve reprogramming the recipient’s cells to produce specific antigens by 

transfecting them with the required gene and promoter. DNA vaccines offer easier 

manufacture than the more traditional vaccines, can be tailored towards a specific 

immune response (T-cell mediated or antibody) and are safer as no pathogenic 

organisms are handled. However, although pre-clinical results were promising, the first 

generation of DNA vaccines demonstrated disappointing potency overall (Liu, 2003). 

Trials and development of subsequent generations are on-going such as for HPV 

induced cervical cancer (Poláková et al., 2010) and multiple sclerosis (Stüve et al., 

2007). 

Other antigenic components of pathogens can be used as vaccines to confer immunity, 

such as proteins (e.g. inactivated tetanus and diphtheria toxoid vaccines), 

polysaccharide conjugates (e.g. the Pneumococcal vaccine) and virus-like particles 

(e.g. the human papillomavirus vaccines). Virus-like particles can be produced in 

recombinant yeast and purified after homogenisation and though downstream 

processing is more complicated, they have the advantage of being safer to produce 

and administer because processing of pathogenic organisms is not required and no 

nucleic acids are administered to the patient. Additionally, the next generation of 

antigenic targets such as these could more easily be identified using reverse 

vaccinology (Josefsberg and Buckland, 2012). This is a process by which genome 

analysis is used to identify the most conserved immunogenic epitopes across strains of 

pathogens, which can be screened not only as vaccine candidates but also for 

suitability to large-scale manufacture. 
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Type of vaccine Description Example vaccines 

Live attenuated 

The organism, viral or bacterial, has 

been weakened to the point of being 

unable to cause disease.  

Viruses: Measles, mumps, 

rubella, rotavirus; bacteria: 

typhoid, tuberculosis. 

Inactivated 

The disease-causing agent has been 

killed or inactivated with chemicals, 

heat or radiation to prevent it from 

replicating or causing disease. 

Japanese Encephalitis, 

influenza, rabies, hepatitis 

A. 

Subunit 

A component of the pathogen of the 

pathogen is synthesized or purified; 

e.g. surface antigens and 

polysaccharides. Can be used in 

conjugate vaccines  

Virus Like Particles: 

hepatitis B, human 

papillomavirus; 

pneumococcal, typhoid.  

Toxoid 

Toxoids, e.g. proteins, from the 

pathogen are produced and 

inactivated. Have been combined 

amongst themselves and with other 

subunits (see above). 

Tetanus, anthrax and 

diphtheria.  

DNA 

Plasmid containing gene(s) coding for 

an antigen target are used to 

inoculate so that the recipient 

produces the it themselves.  

None licensed. 

Table 3.1 – Different types of vaccines in production which each method to illicit an immune 

response for providing future immunity in the recipient, with descriptions and examples, adapted 

from (Josefsberg and Buckland, 2012). 

 

3.2 Japanese Encephalitis 

3.2.1 Epidemiology 

Japanese Encephalitis (JE) is caused by the Japanese Encephalitis virus (JEV) an 

arthropod borne Flavivirus, and it is the most common form of viral encephalitis in Asia, 

There are an estimated 50,000 cases of the disease every year, of which around 

10,000 are fatal and approximately 15,000 result in long term neurological sequelae. 

Fortunately only 1 in 250-500 of those individuals infected with JEV develop any form 

of symptoms of the disease (Erlanger et al., 2009; WHO, 2006). As with many such 
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diseases, efforts are underway to efficiently produce safe and effective vaccines to 

Japanese Encephalitis (JE), mostly in the form of purified and attenuated inactivated 

whole virus vaccines (Mackenzie et al., 2004). 

JEV is transmitted between animals by Culex mosquitoes, Culex tritaeniorrhynchus 

being the most important in terms of human infection due to breeding in stagnant rice 

paddies. Birds are seen as the host for the natural life cycle whereas domestic pigs 

hosts for the virus amplifying cycle. Humans are regarded as terminal hosts, with those 

infected living primarily in rural areas in close proximity to swine (Solomon, 2000).  

Outbreaks of JE were first reported in Japan in the 1870s and the disease has since 

spread to most of China, South Asia, Southeast Asia, East Asia, the Indian 

subcontinent, the Pacific Rim and some regions of northern Australia. It is estimated 

that a total of 3 billion people may be at risk (Erlanger et al., 2009). Major epidemics 

occur in endemic regions approximately every 10 years (Solomon, 2000). 

3.2.2 JEV – structure and replication 

JEV is of the genus Flavivirus in the family Flaviviridae, one of 70 members in the 

family. Flaviviruses are enveloped virions of approximately 500 Å (Mukhopadhyay et 

al., 2005), JEV, specifically, is around 50 nm (Sumiyoshi et al., 1987). The glycoprotein 

envelope surrounds the nucleocapsid which itself contains an 11 kb single stranded 

positive sense RNA genome. This genome contains an open reading frame (ORF) of 

10.3 nucleotides equivalent to 3432 amino acid residues (Sumiyoshi et al., 1987). 

All Flavivirus genomes are similar, the ORF codes for a single polyprotein cleaved 

during maturation, by viral and host cell proteases, into 3 structural proteins and 7 non-

structural proteins (Chambers et al., 1990). The 3 structural proteins are: capsid (C), 

membrane (M, though expressed as prM, the precursor to M) and envelope (E). E and 

prM are glycoproteins containing two transmembrane helices. Prior to cleavage to form 

M, prM is thought to act as a folding and assembly chaperone to E (Mukhopadhyay et 

al., 2005). The 7 non-structural proteins are NS1, NS2A, NS2B, NS3, NS4A, NS4B and 
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NS5. The largest of which, NS1, NS3 and NS5, are also the most highly conserved 

within the Flavivirus genus. NS2A, NS2B, NS4A and NS4B are smaller, hydrophobic 

proteins. Flavivirus ORF encoding reads as follows: 5’-C-prM(M)-E-NS1-NS2A-NS2B-

NS3-NS4A-NS4B-NS5-3’ (Chambers et al., 1990). 

The glycoprotein mentioned above is the envelope protein or E-protein, it consists of 3 

domains (I, II and III) and forms the viral envelope as 90 homodimers arranged in 30 

rafts each of 3 sets of dimers in a ‘herringbone’ formation parallel to the surface of the 

lipid bi-layer (Lindenbach et al., 2007; Mukhopadhyay et al., 2005). This envelope 

structure is anchored in position by the membrane proteins or M-protein that attach the 

E-proteins to the lipid bi-layer; this Flavivirus structure is represented by West Nile virus 

in Figure 3.1. E-protein domain I forms a β-barrel; domain II, the largest of the 3, runs 

along the surface of the membrane between the transmembrane regions of the 

homodimer subunits and has a fusion peptide at its end to mediate entry into host cells 

(see below); domain III contains an immunoglobulin like-fold, is involved in receptor 

binding and is the dominant target for neutralising antibodies (Lindenbach et al., 2007; 

Mukhopadhyay et al., 2005; Stiasny and Heinz, 2006).  

Flaviruses enter host cells by receptor-mediated endocytosis a process whereby cells 

internalise an external particle or macromolecule using surface receptors that cross the 

cell membrane. These receptors cause the membrane lipid bi-layer to fold in on itself 

and bud into the cytoplasm creating an endosome, where, in the case of Flavivirus 

internalisation, the acidic pH causes first a dissociation of the E-protein dimer followed 

by its irreversible trimerisation. This structural reconfiguration allows the fusion peptide 

on domain II of the E-protein to fuse the endosome and viral membranes resulting in 

the release of the nucleocapsid into the host cytoplasm for translation of the ORF into 

the single polyprotein described above. The genome is replicated on intracellular 

membranes and immature non-infections virions are created in the lumen of the 

endoplasmic reticulum. These virions mature into infectious particles in trans-Golgi 
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network by cleavage of the prM, these then exit the host by exocytosis (Lindenbach et 

al., 2007; Mukhopadhyay et al., 2005; Stiasny and Heinz, 2006).  
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Figure 3.1 – Image showing the structure of Flaviviruses. The E-protein dimers (red) sit on top 

of the membrane and are anchored in position by the membrane proteins (purple). The 

nucleocapsid is represented here by the yellowish structure. Image actually shows West Nile 

virus and is copyrighted to Russell Knightley Media. 
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3.2.3 JE Vaccines 

The first Japanese Encephalitis vaccines were made available in the 1950s and up 

until 2008 there were seven vaccines available using various JEV strains; 3 mouse 

brain derived available in Japan and Korea and 4 mammalian cell derived (primary 

hamster kidney & Vero) available in China (Beasley et al., 2008; Halstead and Thomas, 

2010). However, Valneva has since received approval from all major western 

regulatory bodies with the licenced commercial product IXIARO®/JESPECT® available 

in these territories.  

There have been fears over adverse side-effects with the mouse brain derived 

vaccines (e.g. BIKEN & JE-VAX), specifically acute disseminated encephalomyelitis 

(ADEM, (Plesner et al., 1998)). As a result the Japanese government no longer 

recommends the use of mouse brain derived vaccines (Beasley et al., 2008; Halstead 

and Thomas, 2010). This has paved the way for more inactivated and live attenuated 

mammalian cell derived JE vaccines. 

Attempts have been made to produce JEV subunit vaccines using purified recombinant 

E-protein, E-protein domain III antigens, subviral particles and plasmids encoding each 

of these types but few have been shown to be effective outside of mice models 

(Beasley et al., 2008). 

3.3 Vaccine bioprocessing with application to JE vaccines 

This section will focus primarily on exploring production and purification methods of 

Japanese Encephalitis whole virus vaccines. Other vaccines will be mentioned and 

described where applicable in relation to the techniques used. 

3.3.1 Upstream & the Vero cell line 

The Vero cell line was established from the kidney of an African green monkey in 1962 

by Yasumra and Kawakita (Sugawara et al., 2002) and subsequently characterised 

(Hopps et al., 1963). Vero cells have also been used to develop a host of other 
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vaccines including rabies (Frazatti-Gallina et al., 2004), influenza (Kistner et al., 1998) 

and polio (van Wezel et al., 2009).  

As stated, the first JE vaccines were purified from the brains of infected mice with 

production methods, which though fundamentally the same, they did improve and 

increase in scale over the years (Aizawa et al., 1980). A formalin inactivated JE 

vaccine has also been produced in Hamster kidney cells (Darwish and Hammon, 1966) 

and chick embryos (Warren et al., 1948). 

Vero cells have been used with micro-carrier technology for development of an 

inactivated polio vaccine (Simizu et al., 2006). Prior to this, research had been done to 

improve the up-scaling problems seen with micro-carriers, such as using bead-to-bead 

transfer of Vero cells as opposed to traditional cell harvesting and splitting (Wang and 

Ouyang, 1999). 

Another novel approach used an oscillating bioreactor to produce Japanese 

Encephalitis in Vero cells at 500 mL scale (Toriniwa and Komiya, 2007). Termed 

BelloCell, the system involved a packed bed of immobilised Vero cells which is 

alternately submerged in media then exposed for gaseous exchange within the cell 

using bellows integrated into the base of the bioreactor. 

3.3.2 Downstream processing 

Most JE vaccine manufacturing processes essentially have two purification steps to 

remove host cell DNA (hcDNA) and host cell proteins. Common methods include 

hcDNA removal by precipitation with protamine sulphate and sucrose gradient 

centrifugation for removal of protein impurities and concentration of the virus product, 

both of which are described below. 

3.3.2.1 Removal of host cell DNA by protamine sulphate precipitation 

Protamine sulphate is a highly basic peptide (being 66% arginine) and is derived from 

the nucleus of fish milt (Suzuki and Ando, 1972). It is the highly cationic properties that 
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allow protamines to bind to DNA. The resulting nucleoprotein precipitate formed 

between protamine and DNA is exploited in bioprocessing for removal of nucleic acids 

in process material, and has been specifically documented for the purification of JEV 

for use as a vaccine is described (Aizawa et al., 1980; Gupta et al., 1991; Okuda et al., 

1975; Pyo Hong et al., 2001). A substitute for protamine sulphate could be 

polyethylenimine, a highly charged polymer, which has also been shown to precipitate 

nucleic acids (Burgess and Jendrisak, 1975). Protamine sulphate has also been shown 

to significantly affect recovery of rabies virus in the production of a vaccine where the 

authors go so far as to recommend an additional sucrose gradient step (Kumar et al., 

2002) to fully remove the protamine sulphate peptides. 

3.3.2.2 Removal of host cell proteins by sucrose gradient centrifugation 

Sucrose gradient centrifugation, a type of isopycnic separation, separates on the basis 

of the sedimentation co-efficient of the particle within a sucrose medium undergoing 

centrifugation. The centrifugal forces acting on the material separates them along the 

centrifuge tube according to density with the densest particles settling furthest from the 

axis of rotation. The density range of the medium should cover the whole span of 

particle densities within a sample. The step is most often performed in an 

ultracentrifuge but a centrifuge can also be used to create the gradients, but over a 

longer period. Once the run has finished the material can be separated into different 

fractions, which each one tested for the desired product.  

Sucrose gradient ultracentrifugation has been the dominant principle purification step 

for whole JEV for use a vaccine for decades (Gupta et al., 1991; Okuda et al., 1975; 

Pyo Hong et al., 2001; Srivastava et al., 2001; Toriniwa and Komiya, 2008). There are 

variations, such as using PEG as opposed to sucrose (Aizawa et al., 1980) or being 

followed by a cellufine-sulphate chromatography step (Sugawara et al., 2002). 

When optimising rabies virus recovery, Kumar et al. (2002) used two continuous 

ultracentrifugation (isopycnic banding with sucrose) steps back to back. The gradient 
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was created with 60% sucrose being spun in an ultracentrifuge, with the feed 

introduced at 4-5 L/h . The selected fractions were then pooled and the process 

repeated. Having this second ultracentrifugation step was found to give better recovery 

rates than removing DNA using protamine sulphate and Tween-80. In fact, 

ultracentrifugation and continuous density centrifugation are also the most common 

methods for purifying rabies vaccines (Perez and Paolazzi, 1997). 

3.3.2.3 Alternative purification methods 

Seeking and testing alternative purification methods for JEV lie within the scope of this 

project. Alternatives to current commercial manufacturing processes include 

automating density gradient steps and changing the type of isopycnic banding (e.g. to 

CsCl) and moving away from the current methods altogether towards chromatography 

or membrane based separation. There is a Hepatitis A vaccine which is purified using a 

complex mix of reagents but is essentially CsCl isopycnic banding with 

ultracentrifugation (Provost et al., 1986). This is merely an alternative form of most 

current methods and does not offer much benefit. The increased complexity of the step 

and its operation at a commercial manufacturing scale would result in this not being 

considered a viable alternative to current JEV targeting density gradient processes.  

The nature of the JEV product as a large biological entity makes sucrose gradient 

centrifugation an ideal technique, due to separation based on density. The major 

drawbacks are not so much with the method itself but with the high labour and variable 

recovery rates (a result of operator input) associated with the method. Automation of 

the process is therefore the obvious step forward, though evaluating and testing large-

scale equipment does not fall within the scope of the project, as a result only different 

methodologies will mentioned here. 

A significant disadvantage of sucrose gradient centrifugation and ultracentrifugation is 

their limited scope for scalability. Such processes require significant operator input 

leading to increased batch to batch variability, high labour costs and loss of potency 
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due to increased processing times (Andreadis et al., 1999; Lambert et al., 1980; 

Morenweiser, 2005; Saha et al., 1994; Todd et al., 1990). An alternative is the 

chromatographic purification of viruses which potentially offers easier scale-up and a 

reduction in processing times (Morenweiser, 2005). Evidence suggests that 

chromatographically purified vaccines are as effective as their sucrose gradient purified 

counterparts but associated with fewer adverse effects, though the mechanisms 

underlying these observations have yet to be properly elucidated. This was the case 

with one study (Lang et al., 1998) which compared two Vero cell derived rabies 

vaccines, one of which was purified using a single zonal centrifugation step, while the 

was purified with a 3-step chromatography process. Although administration of the 

chromatographically purified vaccine apparently resulted in more localised adverse 

effects, systemic effects were significantly lower. The differences in adverse reactions 

noted in this study could be due to achieving a higher level of purity with several 

chromatography steps over a single zonal centrifugation step. The three 

chromatography steps would have separated process constituents based on 3 different 

properties, unlike the zonal centrifugation which would have been based solely on 

sedimentation coefficient. Furthermore another comparative study was described 

(Prem Kumar et al., 2005) between zonal centrifuge purification and a single 

chromatography step for purification of a Vero cell derived rabies vaccine. They found 

that a single ion exchange chromatography step yielded 50% more antigen than zonal 

centrifugation. 

Chromatography is already used extensively in the production of biopharmaceuticals, 

but adapting such proven methods to the purification of viruses could require extended 

process development programs in order to determine optimal processing conditions. 

This is mainly due to the much larger size of viruses compared to most 

biopharmaceuticals, resulting in slower diffusion rates in solution and to adsorption 

being predominantly restricted to the surface of resin beads hence limiting binding 
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capacities (Lyddiatt and O’Sullivan, 1998; Morenweiser, 2005). Further limitations to 

the dynamic binding capacity can occur due to aggregation of the virus particles. 

If viral absorbance is limited to only the surface of the resins then membrane absorbers 

for virus capture can also be considered. This has been studied for influenza (Opitz et 

al., 2007; Opitz et al., 2009) and Vaccinia (Wolff et al., 2010) viruses.  

Monolith chromatography addresses this surface-only absorbance issue differently by 

having a single macroporous block of media as a continuous stationary phase as 

opposed to the individual porous resin beads of more traditional packed-bed 

chromatography. Monoliths for bioseparations are made using many different 

techniques on many different materials. Some examples of materials are 

polymethacrylate, compressed polyacrylamide gels, graphitised carbon, silica columns, 

cellulose and agarose. The production methods create highly interlinked channels in 

the media with diameters typically around 1500 nm. In comparison with more 

conventional media, this internal macroporous structure not only allows for higher flow 

rates, but also quicker mass transfer because surface absorption is dictated by 

convection not diffusion, as with porous resin beads. The initial published work on 

monolith purification of viruses gave promising results (Jungbauer and Hahn, 2004; 

Jungbauer and Hahn, 2008). More recently hydrophobic interaction monolith disks 

were successfully used to help isolate Hepatitis B surface antigens virus like particles 

from crude homogenised Saccharomyces cerevisiae feed (Burden et al., 2012). 

 Non-absorptive chromatographic purification of viruses has been achieved previously 

with Tick-Borne Encephalitis virus, also a Flavivirus, using gel filtration chromatography 

after concentration of the viral harvest (Crooks et al., 1990). However more recent 

literature concerned with the use of chromatography for virus separation focuses upon 

viral vector purification for gene therapy, where preserving viral activity, or infectivity, is 

the principal consideration. It is suggested that the mild processing conditions of ion 

exchange chromatography may offer the most favourable purification strategy to yield 
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intact virion recovery and selective elution of the product (Andreadis et al., 1999; 

Lyddiatt and O’Sullivan, 1998; Morenweiser, 2005). Similarly, with the production of a 

whole virus vaccine, surface antigen integrity and high purity are the key qualities of the 

final drug substance required in order to initiate the desired immune response with 

minimal adverse reactogenicity. These results indicate that serious consideration 

should be made as to the possibility of incorporating ion exchange chromatography into 

vaccine manufacturing processes. 

Ion exchange chromatography has been documented for the purification of active 

respiratory syncytial virus (Downing et al., 1992) and for the production of an effective 

rabies vaccine (Frazatti-Gallina et al., 2004) where it acts as a principal purification 

step. The technique has also proved to be efficient when used in conjunction with 

poly(ethylene glycol) precipitation to produce a highly purified inactivated hepatitis A 

vaccine (Hagen et al., 1996). 

3.3.3 Viral inactivation in vaccine production 

As stated, some vaccines are administered as live attenuated products, for example 

China’s live attenuated JE strain SA 14-14-2 vaccine, but many are also inactivated. 

Formaldehyde inactivation will be covered in detail as this was the project’s first area of 

investigation. 

Viral inactivation in vaccine production is required not least to compromise the ability of 

the product itself to infect, replicate and cause harm to the patient, but also to inactivate 

any potential contaminating adventitious viruses lying dormant in the host (cell-line or 

otherwise) and those which may have been introduced during manufacture. 

Furthermore, this inactivation procedure must be deemed sufficiently robust to 

inactivate a panel of model virus candidates in a viral clearance study (required for 

approval in biopharmaceutical products) as well as any potential as yet undiscovered 

viruses. 
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Inactivation methods can take many forms, yet the most common in vaccine 

manufacture appears to be chemical inactivation. Chemicals used for inactivation 

include: detergents (Jakubik et al., 2004), azirdines (Brown, 2001), β-propiolactone 

(Race et al., 1995), psoralens, sulphonates, sodium periodate (Sofer, 2003), and 

formaldehyde. Generally speaking, enveloped viruses, such as JEV, are easier to 

chemically inactivate than non-enveloped virus. This is because the phospholipid bi-

layer, unique to enveloped viruses and required for receptor mediated endocytosis 

entry to host cells (as stated in 3.2.2) makes much more sensitive to changes in 

environment than non-enveloped viruses. 

3.3.3.1 Formaldehyde inactivation 

The precise conditions for viral inactivation using formaldehyde vary from virus to virus, 

with the common variables being formaldehyde concentration, temperature, time and 

pH. Formaldehyde has been used to inactivate toxins since the start of the 20th century 

(Loewenstein, 1909). Formaldehyde forms crosslinks with other proteins (Fraenkel-

Conrat and Mecham, 1949) which, when applied to viruses, results in their inactivation. 

Specifically, non-prontinated amino groups form hydroxymethylamine with 

formaldehyde. This in turn then combines with the amino, amide, imidazole, phenolic or 

guanidyl group of another amino acid forming an inter- or intra-molecular methylene 

cross-link (Metz et al., 2004). This cross-linking effect prevents nucleic acids from 

leaving the nucleocapsid and infecting host cells. 

The following examples highlight the variability of the technique with different targets 

for inactivation, or indeed, the scope for improvement in working with different 

conditions. Note that some studies quote formalin as opposed to formaldehyde; 

formalin is the form in which formaldehyde is commonly supplied at 40% v/v or 37% 

w/v formaldehyde often with methanol as a stabiliser. 

One study demonstrated the capacity to inactivate the non-enveloped vesicular 

stomatitis virus (VSV) at 4°C over 30 minutes with 1% (10,000 ppm) formaldehyde or 
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over 18 h with 0.0625% (625 ppm). Yet both sets of conditions yielded preparations 

that induced immune responses in mice (Bachmann et al., 1993). 

SARS-CoV, the corona virus which induces severe acute respiratory syndrome, was 

exposed to 0.009% (90 ppm) formaldehyde over 3 days at 4°C, 25°C and 37°C. 

Inactivation failed at 4°C and some active virus was still detectable after day 3 at 25°C 

and 37°C (Darnell et al., 2004), highlighting that for this type of virus increases in time, 

temperature and formaldehyde concentration are required.  

Measles virus (MV) inactivated with 1:100 formalin at 4°C over 24 hours causes an 

imbalance in the immune system due to the improper presentation of the MV 

nucleoprotein to murine class I restricted CLTs (Cardoso et al., 1995). This is evidence 

of recognised antigen biding sites or viral capsids being damaged to such an extent 

that they were not recognised by the murine immune system – a warning that 

excessive exposure to formaldehyde could render a vaccine product useless. 

A 1984 study into formaldehyde inactivation of foot and mouth disease virus (FMDV) 

revealed rapid inactivation of around one log10 reduction in plaque forming units per 

hour at 25°C with 0.04% (400ppm) formaldehyde at pH 8.5 for the first 2 to 3 hours. 

This then dropped to 0.2 log10/hour up until 30 hours when no more active virus was 

detected (Barteling and Woortmeyer, 1984). This 1984 study was conducted after 

safety concerns resulting from outbreaks due to incomplete inactivation using 0.02% 

formaldehyde (Barteling and Vreeswijk, 1991). 

The first inactivated polio vaccine (IPV) was one of the earliest formaldehyde 

inactivated vaccines available and one which was to have profound consequences for 

all other vaccines. The first IPV vaccine was inactivated with 1:4000 formalin 

(approximately 0.001% (10 ppm) formaldehyde), yet two of the batches produced by 

Cutter in 1955 resulted in 260 cases of poliomyelitis with 10 fatalities. The subsequent 

investigation found that ‘viral clumps’ could hide infectious particles and that 

inactivation became non-linear towards the end of the inactivation period due to the 
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lower concentration of infectious particles. The process was immediately changed to 

include a filtration step to remove aggregates and the inactivation period was extended. 

The changes mattered little, however, as confidence was lost and, at the time, the oral 

polio vaccine proved safer and more effective (Bottiger et al., 1958; Furesz, 2006). 

However, the IPV has since proved crucial in the global fight against polio and is still 

widely used today. 

An example of Flavivirus inactivation is with a dengue-2 virus vaccine which undergoes 

0.05% (500 ppm) formalin inactivation at 22°C (Putnak et al., 1996). 

While producing a JE vaccine in hamster kidney cells (HKCs), Darwish et al. (1966) 

compared inactivation without and without formalin (1:4000) at 30°C and 37°C, 

followed by a comparison between different formalin concentrations. Without the 

addition of formaldehyde the half-life of JEV was reported as being 14 hours at 30°C 

and 5 ½ hours at 37°C. Also inactivation of JEV occurred twice as fast at 37°C than 

30°C at formalin concentrations of 1:1000, 1:2000, 1:4000 and 1:8000. For both 

temperatures it was discernible that higher concentrations of formaldehyde brought 

about quicker inactivation, it was also remarked that increasing the pH from 7.1 to 8.0 

had no effect. The authors ultimately expressed fears for antigen integrity at higher 

concentrations of formalin and therefore decided to proceed with 1:4000. 

Most other reports involving JEV inactivation by formaldehyde for a vaccine product fail 

to mention product recovery rates but are each fairly similar to one another; a summary 

can be seen in Table 3.2. The conditions vary from a few days at 22°C to a few months 

at 4°C with the formaldehyde (as formalin) concentration varying considerably with little 

explanation for the conditions in their respective papers with the exception of the 

addition of glycine (Toriniwa and Komiya, 2008) which was the best preforming of 4 

stabilisers tested, the others being sorbitol, L-glutamine and Lactose. 
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Authors Location in process Conditions Additives 

(Okuda et al., 

1975) 
After purification. 

1:2500 formalin, 30 

days in a cold room 

0.01% w/v 

Thimerosal 

(Gupta et al., 1991) 

After protamine sulphate 

treatment of concentrated 

harvest, prior to 

ultracentrifugation. 

0.01% formalin, 35 

days at 4°C. 
- 

(Pyo Hong et al., 

2001) 

After purification (various 

methods). 

0.05% formalin, 7 days 

at 22°C. 
- 

(Srivastava et al., 

2001) 

After sucrose gradient 

centrifugation purification. 

0.05% formalin, 10 

days at 22°C. 
 

(Sugawara et al., 

2002) 

After harvest 

concentration prior to 

ultracentrifugation. 

0.08% formalin, a few 

months in a cold room. 
- 

(Toriniwa and 

Komiya, 2008) 

After ethanol precipitation 

of concentrated harvest 

and prior to 

ultracentrifugation.  

0.05% formalin, 3 

months at 4°C 
0.5% glycine* 

Table 3.2 – Summary of selected formaldehyde inactivation procedures performed on Japanese 

Encephalitis virus for use as a vaccine. Conditions are quoted as they appear in the 

publications, N.B formalin = 37 – 41% w/v formaldehyde in water. *Best performing stabiliser of 

the four tested. 

 

The studies described above illustrate the variability of formaldehyde inactivation and 

the importance that optimal conditions are met to achieve complete inactivation of the 

live virus. In the case of formaldehyde treatment of purified JEV this is achieved in 72 

hours, as can be seen by the inactivation kinetics plot in Figure 3.2, but the treatment 

was allowed to continued up to 240 hours. As previously stated, this is to ensure not 

only complete inactivation of the viral product but any other adventitious agents which 

may have been undetected in animal derived components or introduced with other raw 

materials during production. Based on the different conditions quoted in Table 3.2 it is 
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assumed that the rate of inactivation decreases with temperature, thus the kinetics 

slow down at lower temperatures and therefore would require longer reaction times to 

achieve the same result. 

The increased cross-linking effect on proteins by formaldehyde at higher 

concentrations and for extended periods could be seen as the cause of variable 

immunological responses in terms of antigen recognition. A certain degree of product 

loss could therefore be attributed to this cross-linking effect during formaldehyde 

inactivation – an effect that can be measured using ELISA or Western Blot assays, as 

immunoassays dependant on antigen recognition – reducing such losses would be a 

key milestone for any such process development. 
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Figure 3.2 – Inactivation kinetics of purified Japanese Encephalitis virus treated with 0.05% 

formalin for 10 days at 22°C, for final use as a vaccine. This figure was produced using data 

from the literature (Srivastava et al., 2001); plaque forming units (pfu) were counted by direct 

assay onto cultured Vero cells. 
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3.4 Microscale process development 

Process development, whether it is the initial development on the route to commercial 

licensure and manufacture or optimisation of an established process, is critical to 

achieving a profitable product, yet pressure exists to obtain results using minimal 

resources. Microscale process development allows for the rapid acquisition of large 

amounts of data across many different conditions using only microliter amounts of 

starting material. Such characterisation and development is applicable to both 

upstream and downstream processing. The key challenges of these microscale 

methods is the successful transfer to larger scale and understanding the mechanisms 

and limitations with which this can be done – i.e. to what extent is such work 

representative of commercial scale (Micheletti and Lye, 2006). Microscale development 

also ties in nicely with Quality by Design (QbD), which is increasingly important in the 

early stages of bioprocess development including vaccine production (Josefsberg and 

Buckland, 2012), as this development platform intrinsically allows for the creation of 

design spaces within which a process can be characterised. 

Microscale development can range from whole processes to individual unit operations 

but each application often involves the use of multiple high-throughput technologies 

representing large scale followed by actual testing at large scale. In order to select a 

suitable biocatalyst, one study automated a whole microscale process involving 

fermentation, enzyme induction and bioconversion was performed and optimal 

conditions were selected for successful replication at the 2 L scale (Ferreira-Torres et 

al., 2005). Cell disruption to release an intracellular product from yeast was 

characterised in another study using adaptive focused acoustics and milligrams of test 

material to mimic homogenisation at laboratory scale (Wenger et al., 2008). This latter 

example involved some level of statistical analysis, yet the nature of microscale 

process development has allowed for multiple rounds of design of experiments (DoE), 

e.g. the screening for significant factors and subsequent optimisation in lentivirus 
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production in microwell suspensions (Guy et al., 2013) and in the production of firefly 

luciferase, also in microwells (Islam et al., 2007). 

However, research exploring high-throughput microscale downstream process 

development for virus products is somewhat lacking though not because the 

downstream units, such as chromatography, have not been investigated. The broad 

range of available resins as well as their associated binding and elution conditions 

combined with the cost and time of producing test material from cell-culture requires 

that novel development strategies and innovative experimental techniques be 

developed for identifying suitable chromatographic purification strategies for 

biopharmaceutical manufacture. The use of high-throughput methodologies and 

technologies for chromatography media screening and optimisation is well-documented 

(Chhatre and Titchener-Hooker, 2009; Coffman et al., 2008; Hahn, 2012; Kelley et al., 

2008). Such development activities are often centred around the use of a Design of 

Experiments approach, a multiwell platform e.g. 96-well plate experimental formats and 

a robotic liquid handling mechanism (Chhatre and Titchener-Hooker, 2009; Coffman et 

al., 2008; Kelley et al., 2008). Such is the demand for high-throughput process 

development of biopharmaceutical manufacturing processes that, for example, filter 

plates pre-packed with resins are now readily available (Bergander et al., 2008). 

Alternatively, chromatography resin packed into pipette tips has been used to predict 

laboratory scale yield and purity and outline a process for purification (Wenger et al., 

2007). Two of the most recent studies using the microplate format demonstrate its use 

in developing purification strategies for a glycosylated protein using cation exchange 

and hydrophobic interaction media (Sanaie et al., 2012) and screen resins for viral 

clearance potential in antibody production (Connell-Crowley et al., 2013). 

3.5 Project aims and objectives 

The literature review illustrates the variation of vaccine, and indeed JEV, production 

and processing but hence also the scope for process development. From this review, a 
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typical production process for a cell-culture derived Japanese Encephalitis whole virus 

purified inactivated vaccine (JE-PIV) is proposed and can be seen in Figure 3.3. The 

steps highlighted in red were those identified for development and investigation as part 

of this project: sucrose gradient centrifugation and formaldehyde inactivation. Sucrose 

gradient centrifugation was often cited as the primary purification step in the process 

described above, yet its limited scalability, labour intensiveness and inherent variability 

in some formats make it a target for replacement. Overall in such a production process, 

a formaldehyde inactivation step ultimately has one specific criterion to achieve, to 

render any and all pathogens in the final product replication incompetent and harmless. 

It could be argued from the examples above that product yields and recovery rates 

over the inactivation steps come a distant second to complete inactivation of the cited 

products and that as a result, thorough characterisation of the step also suffers. Hence 

the focus of this project was on these two steps with the full scope, challenges and 

objectives outlined as follows. 

3.5.1 Formaldehyde inactivation of JEV 

For better process understanding, it was thought that formaldehyde inactivation of JEV 

required a more through characterisation, not only of the step itself but also its location 

in a production process. From this increased understanding it was hoped to be able to 

identify the key factors of formaldehyde inactivation of JEV, suggest potential step 

improvements or modifications and theorise on the effect these may have further 

downstream. 

The challenges for this work included many variable factors requiring investigation and 

limited availability of fully purified JEV. As will be seen in Chapter 5, ‘Formaldehyde 

inactivation of Japanese Encephalitis virus’, these were met by using fractional factorial 

designs to identify significant factors at different stages of a production process 

maximising the amount of information acquired from limited amounts of material. Once 

such factors were identified, the findings were verified outside of a DoE setting and 

applied to settings further downstream.  
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3.5.2 Purification of JEV 

After highlighting the limitations of sucrose gradient centrifugation it was decided to 

investigate an alternative step as the predominant purification step of a JEV production 

process. Scalability, variability and labour intensiveness were the principle limitations 

highlighted thus a technique that could address each of these was selected for 

investigation: bind and elute resin-based chromatography. 

Although in some contrast to the formaldehyde inactivation work, in that this is more of 

a fundamental step change instead of improvement of an existing one, there is overlap 

in the challenges faced and the methods used. Despite deciding on anion exchange 

chromatography there were still many factors to explore such as which specific resin 

and binding conditions. This task of investigating multiple factors was met with the use 

of existing high-throughput screening (HTS) methodologies and by adapting a key 

product specific assay for use within such development methods. Chapter 6, 

‘Microscale investigation of chromatography resins for JEV purification’, details this 

HTS approach at this scale and identifies an anion exchange resin to be taken forward 

for studies at larger scale in a system more closely resembling process scale. In turn, 

Chapter Error! Reference source not found., entitled ‘Chromatography scale-up of 

Japanese Encephalitis virus capture and elute’ highlights the difficult transition from 

microscale HTS techniques to a pre-packed column using the same conditions. 

However, it is demonstrated that knowledge gained from process characterisation in 

Chapter 5 is used to somewhat mitigate unforeseen shortcomings of such scale-up 

observed in Chapter 7 when a new purification strategy was implemented. 

3.5.3 Overarching challenges and objectives 

A consistent challenge that runs through this project is that JEV is a relatively labile 

product, susceptible to degradation even when stored for relatively short periods of 

time. Another challenge was the limited availability of test material, reference material, 

reference standards and antibodies raised against purified JEV as will be evident in the 
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coming chapters. In a sense, such limited availability of materials vindicates the use of 

miscroscale and HTS methodology as well as requiring innovative adaption of 

established immunoassays. These aspects will be investigated and addressed 

throughout the rest of this thesis but it follows that an overall objective would be to 

evaluate the development and investigation methods used in this project. Are these 

methods suitable for vaccine process development and have they contributed to a 

greater understanding of Japanese Encephalitis vaccine production? Overall the 

objectives for this project can be summarised as follows: 

• Characterisation of formaldehyde inactivation of JEV to identify key factors and 

suggest process improvements. 

• Evaluate anion exchange capture chromatography for the purification of JEV 

o Use high-throughput microscale techniques to screen for suitable resins 

and condtions. 

o Transfer from batch binding and elution to a larger scale more closely 

resembling commercial processing conditions. 

• Increase overall process and product knowledge. 

• Evaluate suitability of the methods used for this type of product and process. 
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Figure 3.3- Flow schematic of a typical Japanese Encephalitis purified inactivated vaccine (JE-

PIV) manufacturing process adapted from the literature (Okuda et al., 1975; Pyo Hong et al., 

2001; Srivastava et al., 2001) Steps highlighted in red indicate those identified for investigation 

as part of this project. Sucrose gradient centrifugation is labour intensive, variable and not 

amenable to scale-up and anion chromatography is evaluated as a potential alternative. 

Characterisation of the formaldehyde inactivation step leads to greater process understanding 

and suggestions for improvement and potential re-location. 
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4 Materials and Methods 

4.1 Working viral seed and cell banks 

A working cell bank (WCB) of Vero cells and a working viral seed bank (WVSB) of 

Japanese Encephalitis virus SA14-14-2 (attenuated vaccine strain) were provided by 

Valneva Scotland Ltd. and stored in liquid nitrogen and at -80°C, respectively, until 

required for use. 

4.2 JEV production and test material 

Certain process data relating to JEV production at lab-scale in the ACBE can be found 

in the Appendix as highlighted below. Process analytics from the concentrating and 

protamine sulphate treatment of an example batch can be found in Appendix 10.3. 

4.2.1 Cell culture 

Vero cells at passage 143 (Valneva Scotland Ltd., Livingston, U.K.) were thawed and 

proliferated through a minimum of 3 passages using Eagle’s minimum essential 

medium (E-MEM, Life Technologies Ltd., Paisley U.K.) supplemented with 10% v/v 

foetal bovine serum (FBS, Fischer Scientific, Loughborough, U.K.), 2 mM L-glutamine 

(Life Technologies Ltd., Paisley U.K.) and 2.5 µg/mL Fungizone (Lonza, Slough, U.K.) 

at 37°C. Cell monolayers were washed with 1 x phosphate buffered saline (PBS, 

Fischer Scientific, Loughborough, U.K.) and removed with 0.25% trypsin-EDTA (Life 

Technologies Ltd., Paisley U.K.) incubation at 37°C for 5 minutes. Accumulated cell 

passage data can be seen in Appendix 10.1. 

4.2.2 Viral infection and concentration of harvest pool 

After the final cell expansion, the cells were inoculated with an attenuated Japanese 

Encephalitis Virus strain SA14-14-2 (Valneva Scotland Ltd., Livingston, U.K.) using a 
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multiplicity of infection (MOI) of 0.01. The infected cells were further incubated for 9 

days with harvests on days 3, 5, 7 and 9 post infection. Typical viral harvest titres can 

be seen in Appendix 10.2. Harvested material was filtered through 0.22 µm PVDF 

membranes (Millipore Ltd., Watford, U.K.) to remove cell debris and stored at 2°C - 

8°C. The harvests were subsequently pooled, creating the harvest pool (HP), and, if 

not used in experiments at this stage, this HP concentrated approximately 18 times 

using a Pellicon Xl 50 Biomax Polyethersulfone Polypropylene membrane (Millipore, 

Watford, U.K.) with a 100 kDa cut-off. The concentrated material diluted with an equal 

volume of PBS (Fischer Scientific, Loughborough, U.K.) and mixed. This was the 

concentrated harvest pool (cHP). 

4.2.3 Protamine Sulphate treatment 

Protamine sulphate (Sigma, Gillingham, U.K.) was added to the cHP to a nominal 

concentration of 2 mg/mL and the mixture incubated for 3 hours ± 1 hour at 2°C - 8°C 

to precipitate out host cell DNA. This material was then centrifuged at 4,000 g for 10 

minutes at 4°C (Eppendorf Centrifuge 5810R) and the resulting supernatant was 

filtered through a 0.22 µm PVDF membrane (Millipore, Watford, U.K.) to yield 

protamine sulphate treated material (PST), the test material for chromatography 

studies. 

4.2.4 Storage of test material 

Test material for different experiments, either HP, cHP or PST (as defined above), was 

either stored for up to one week at 2 - 8°C or at -80°C for longer periods. 

4.2.5 Purified JEV 

Purified Japanese Encephalitis virus, used in formaldehyde inactivation studies, was 

provided by Valneva Scotland Ltd. (Livingston, U.K.). This material had a protein 

concentration of 52.11 µg/mL based on their qualified Bradford total protein assay, this 
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was within specification of their manufacturing process. Upon arrival at UCL it was 

stored at -80°C. 

4.3 Inactivation experiments 

The material used for inactivation studies was representative of different stages in a 

typical production process as described in Figure 3.3: harvest pool (HP), concentrated 

harvest pool (cHP), protamine sulphate treated material (PST) and purified JEV. Where 

required, pH was altered with 1 M NaOH and 1 M HCl (both Fischer Scientific, 

Loughborough, U.K.). Stabilisers and additives were added to make up the final 

concentrations as detailed from stock solutions as follows: 20% w/v glycine, 1% v/v 

formaldehyde, 50% sorbitol, 50% glycerol (all Fischer Scientific, Loughborough, U.K.), 

50% polyethylene glycol Mn 400 (PEG), and 10% lysine (both Sigma, Gillingham, U.K.). 

Samples were mixed on a vortex mixer upon addition of each one and formaldehyde 

was always added last. Samples were incubated in incubators at temperatures above 

22°C, in a fridge at 2-8°C when 4°C was required and in a water bath when 22°C was 

required. At the end of each inactivation, formaldehyde was neutralised with excess of 

solution of sodium metabisulphate (NaMe, Sigma, Gillingham, U.K.) of equivalent 

concentration, e.g. if 100 µL of 1% formaldehyde was required to make up to 0.02% 

(200 ppm or 6.65 mM) formaldehyde, 200 µL of 200 mM NaMe was used to neutralise 

representing twice the required amount for like for like quenching.  

4.4 Shear experiment 

20 mL of pooled JEV harvest material was injected into an ultra-scale down shear 

device (UCL Biochemical Engineering, London, U.K.) and exposed to shear through a 

rotating disc in a sealed chamber spun at either 1000 or 6000 rpm for 30 seconds. The 

first such device in use had a Perspex casing (Boychyn et al., 2001; Levy et al., 1999), 

this experiment used a stainless steel device described later (Tait et al., 2009). 
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4.5 Chromatography resin selection & optimisation 

4.5.1 PreDictor Plates (G.E. Healthcare) 

Anion exchange resin screening and single media Predictor Plates (G.E. Healthcare, 

Amersham, U.K.) were used in this project. The 96 well resin screening plates 

contained 24 wells each of Capto Q (2 µL/well), Capto DEAE (2 µL/well), Q Sepharose 

Fast Flow (6 µL/well) and Capto Adhere (6 µL/well). The single resin plates, used for 

wash and elution studies contained 20 µL of the test resin in each well. The plates 

were prepared as per the manufacturer’s instructions. Briefly, each plate was 

equilibrated using 3 washes of load buffer (0 – 60 mM NaCl, 50 mM tris at pHs 7.5 to 

8.6, exact composition dependant on the experimental run). Load buffer and feeds 

were prepared in separate 96 deep well microtitre plates. The preconditioned feed for 

each well was prepared to the required salt concentration and pH by diluting PST by a 

third with the appropriate buffer and salts. Separate material was prepared and pH 

tested to ensure correct loading conditions. 

Screening plates were loaded with 200 µL of preconditioned feed with a protein 

concentration of 260 µg/mL ±10% per well, the plate was incubated on an orbital 

shaking platform (Model MS3, IKA, Staufen, Germany) set to 1100 rpm, with a shaking 

diameter of 4.5 mm at room temperature for 2 hours. This ensured complete saturation 

of the resin with the feed. The plate was then centrifuged at 500g for 1 minute, allowing 

the feed to pass through the screening plate and flow through to be collected in a 

separate 96 well plate. A wash step was subsequently conducted using the 

centrifugation conditions stated above using 200 µL loading buffer and the wash fluid 

collected on to a separate 96 well plate. 

The single resin plates were prepared as above, except that 290 µL of preconditioned 

feed (Protein content = 186 µg/mL for Q Sepharose FF and 259 µg/mL for Capto 

Adhere) was loaded into each well at either pH 8.0, 8.3 or 8.6, and incubated at 1100 

rpm on a shaking platform for 2 hours followed by centrifugation at 500 g for 1 minute. 
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A separate 96 well plate was placed underneath the resin plate to collect the 

centrifuged flow-through. 3 washes using 200 µL loading buffer per well were then 

performed prior to elution using 200 µL of the same loading buffer but increasing NaCl 

concentration from 100 to 800 mM at 100 mM increments. During elution the resin was 

incubated for 1 minute on a 1100 rpm shaking platform followed by centrifugation at 

500 g for another minute onto a separate 96 well collection plate. 

4.5.2  ÄKTA method 

Chromatographic JEV purification was performed on an AKTA purifier (G.E. 

Healthcare, Amersham, U.K.) with a 1 mL HiTrap Q Sephrose Fast Flow column (G.E. 

Healthcare, Amersham, U.K.).  During column loading, washing and elution the flow 

rate was kept constant at 1 mL/min. Starting material was either buffer exchanged or 

diluted 1/3 with loading buffer (50 mM tris, pH 8.3 or 8.6, Sigma, Gillingham, U.K, see 

below). All buffers and feeds were filtered prior to use: feeds using syringe filters with 

0.2 µm PES membranes (Sartorius Stedim UK Ltd., Epsom, U.K.) and buffers using 

0.22 µm PVDF membranes (Millipore, Watford, U.K.). The column was equilibrated 

with at least 20 column volumes (CVs) of loading buffer prior to feed challenge. 

4.5.2.1 Loading and washing 

The feed was loaded onto the column at 1 mL/min with an injection loop. The column 

was then washed with 10 column volumes (CVs) of loading buffer. Where stated, a 

second post-load wash was performed using 200 mM NaCl 50 mM tris at pH 8.3 or 8.6 

over 20 CVs and separated into 2 mL fractions. 

4.5.2.2 Elution and final wash 

Elution was performed with 400 mM NaCl 50 mM tris pH 8.3 or 8.6 over 20 CVs into 1 

mL fractions. A final wash with 20 CVs 1 M NaCl 50 mM tris-base pH 8.3 or 8.6 was 

also performed to regenerate the resin.  
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4.5.3 Buffer exchange for AKTA chromatography 

Where stated, feeds for AKTA chromatography were buffer exchanged into loading 

buffer using 20 mL 50 kDa MWCO Vivaspin centrifugal units (Sartorius Stedim UK Ltd., 

Epsom, U.K.). 10 mL of test material was loaded into the unit with 10 mL of loading 

buffer then spun at 5,000g (Beckman Coulter Avanti J-E centrifuge, JS-5.3 rotor) for 10 

minutes. The amount of fluid that had crossed the membrane was measured and 

replaced with loading buffer. This was repeated up to 6 times, depending on the 

volume reduction, until less than 10% of the original fluid remained (equivalent to a 10 

fold buffer exchange). 

4.6 Analytical techniques 

4.6.1 Plaque assay (viral infectivity plaque titre determination) 

Vero cells were thawed and passaged as described in section 4.2.1. Each well on a 6 

well tissue culture plate was seeded with 3 mL of Vero cell suspension diluted to 

approximately 8.4 x 104 viable cells per mL. Cells were incubated for at 37°C for 3-4 

days until 95% confluent. These plates were then used for plaque assays. Virus 

samples were serially diluted using a 1 in 10 dilution, a maximum of 8 times (thus, 

effective dilutions of 10-1 to 10-8), using a volume of 200 µL sample into 1.8 mL of 

plaque assay dilution media. The dilution media was composed of Eagle’s Minimum 

Essential Medium (Life Technologies Ltd., Paisley U.K.) supplemented with 2% v/v 

foetal bovine serum (Fischer Scientific, Loughborough, U.K.), 2 mM L-glutamine and 

2.5 µg/mL Fungizone (Life Technologies Ltd., Paisley U.K.). The 0.2mL of the serially 

diluted samples were loaded onto the Vero confluent 6 well plates, alongside a 

negative control of dilution media. Samples were run in duplicate, with a positive 

control plate of WVSB (≈ 1 x 106 pfu/mL) and a negative control. After loading the 

samples at the respective dilutions (see below) onto the plates, they were incubated at 

37°C for 70 minutes ± 10 minutes. After which, 3 mL of a plaque solution, Eagle’s 

Minimum Essential Medium supplemented with, 10% FBS, 2 mM L-glutamine, 2.5 
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µg/mL Fungizone and 1% w/v Sea Plaque® agarose (Lonza, Slough, U.K.) was 

layered onto the top of each of the wells. This was allowed to set prior to incubation for 

72 hours at 37°C. After this period, each well was stained with 3 mL plaque staining 

solution (1% w/v Sea Plaque® agarose containing 0.02% neutral red solution (Sigma, 

Gillingham, U.K)) and allowed to set and incubated for a further 18 to 24 hours at which 

point plaques could be visualised and counted.  

The sample dilutions which were loaded into the wells were as follows: standard 

harvest samples and harvest pool: 10-3 to 10-7; harvest inactivation DoE experiment 

samples: 10-1 to 10-5; other inactivation samples in section 5.1.3: 0.5 mL of neat 

sample; WVSB positive control: 10-4 to 10-6. 

4.6.2 Thermo Scientific Pierce BCA Protein Assay 

BCA protein assays were performed in 96 well micro-titre plates according to 

manufacturer’s instructions. Briefly, samples were mixed in a 1:8 ratio with the working 

reagent (50 parts bicinchoninic acid solution [exact composition not given] to one part 

4% copper sulphate solution) and incubated at 37°C for 30 minutes. Plates were read 

at 562 nm in a plate reader (Safire 2, Tecan; Männedorf, Switzerland) and sample 

absorbances compared against a standard curve prepared using diluted bovine serum 

albumin (BSA) protein reference standards supplied with the kits (0 – 2 mg/mL, R2 ≥ 

0.995). Where possible BSA reference standard samples were diluted using the same 

buffer as the test material; all buffers were also tested as blank readings and these 

absorbance values were subtracted from test material readings as required. An 

example of a BSA standard curve can be found in Appendix 10.4. 

4.6.3 Life Technologies Picogreen assay 

Quant-iT™ PicoGreen® assay kits (Life Technologies, Paisley, U.K.) were used to 

quantify dsDNA as per the manufacturer’s instructions. Briefly, samples and reference 

standard (bacteriophage-λ DNA, supplied) were diluted with a working solution of 1 x 

tris-EDTA buffer (supplied) as required and assayed on a 96 well microtitre plate with a 
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1 to 1 ratio of the PicoGreen working reagent. Plates were incubated for 5 minutes at 

ambient temperature then excited at 483 nm and emissions were read at 525 nm in a 

96 well plate reader (Safire 2, Tecan; Männedorf, Switzerland). The sample 

absorbances were compared against the standard curve prepared on the same plate 

(25 – 2000 ng/mL, R2 ≥ 0.995). An example of the bacteriophage-λ DNA standard 

curve can be found in Appendix 10.5. 

4.6.4 SDS-PAGE and SilverQuest™ staining 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate proteins, in chromatography samples (loading, wash and elution), by size. 

The JEV envelope protein should appear as a band around 52 kDa sometimes 

alongside the capsid and membrane proteins at 14 and 7 kDa, respectively. 

Samples were loaded onto pre-cast 12 well 1.0 mm 4-12% Bis-Tris gels (Life 

Technologies Ltd., Paisley U.K.) with LDS (x4) sample buffer (Life Technologies Ltd., 

Paisley U.K.) at a 4:1 ratio, total volume loaded always <20 µL. The gels were run in 1 

x MES buffer in a Life Technologies XCell SureLock™ Novex Mini-Cell electrophoresis 

system (Life Technologies Ltd., Paisley U.K.) at constant voltage of 200 V for 40 

minutes. Gels were removed from their casing, washed with reverse osmosis water, 

(pure – RO water), fixed overnight with 10% v/v acetic acid, 40% v/v ethanol and 

stained as per the SilverQuest staining protocol (Life Technologies Ltd., Paisley U.K.). 

Stained gels were scanned using a GE Image Scanner III (G.E. Healthcare, 

Amersham, U.K.). 

4.6.5 Immunoassays 

Western blotting and enzyme-linked immunosorbent assays (ELISAs) were used to 

identify JEV protein bands in SDS-PAGE gels and quantify JEV antigen in samples, 

respectively. The anti-JEV antibodies were supplied by Valneva Scotland Ltd. 

(Livingston U.K.), and were purified from sera originating from sheep and rabbits 

inoculated with purified formaldehyde inactivated JEV. The same batch of sheep anti-
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JEV was used as the primary antibody in Western blotting and as the coating antibody 

in the ELISAs. Two different batches of Rabbit anti-JEV were used as the primary 

antibody in the ELISAs, to be used at different concentrations depending on the batch. 

There were also two different batches of JEV reference standard (purified 

formaldehyde inactivated JEV) provided by Valneva Scotland Ltd., at two different 

concentrations. The concentrations at which these antibodies and standards were used 

were based on guidance from Valneva Scotland Ltd. The secondary antibody 

conjugate, used in both the western blots and the ELISAs, was available commercially 

and also used at a concentration based on the suppliers guidelines. 

4.6.5.1 Western blotting 

Samples were run on SDS-PAGE gels as described above except that prior to staining 

they were transferred onto Novex 0.2 µm PVDF pre-cut blotting membranes (Life 

Technologies Ltd., Paisley U.K.) using an XCell II Blot Module (Life Technologies Ltd., 

Paisley U.K.) for use with the electrophoresis system described above. Transfer was 

performed at constant voltage of 30 V over 1 hour. Western blots were developed at 

room temperature on a rotating platform by first blocking for 1 hour with 1% w/v BSA 

(Sigma, Gillingham, U.K.) in phosphate buffered saline (0.01 M phosphate and 0.154 M 

sodium chloride pH 7.4, hereafter referred to as 1 x PBS) for 1 hour. The membrane 

was then washed 3 times with 30 mL 1 x PBS with 0.05% tween 20 (supplied by 

Sigma, Gillingham, U.K., the composition is hereafter referred to as PBS-T) and 

incubated in 30 mL of primary antibody solution (1:30,000 sheep anti-JEV (Valneva 

Scotland Ltd., Livingston U.K.)) for 1 hour.  This primary antibody was then discarded 

and the membrane washed 3 times with PBST and incubated with 30 mL of the 

secondary antibody conjugate solution (1:10,000 donkey anti-sheep horseradish 

peroxidase (Stratech Scientific, Newmarket U.K.)) for 1 hour. Both the primary and 

secondary antibodies were diluted to the required concentrations from stocks with 

PBS-T. After the second incubation the liquid was discarded and membrane washed 3 

times with PBST. The membrane was then incubated with 20 mL of Opti 4CN substrate 
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solution prepared as stated by the supplier (Bio-Rad Laboratories Ltd. Hemel 

Hempstead, U.K.) and left until desired band intensity has been reached then washing 

3 times with purified water. 

4.6.5.2 JEV ELISA 

96 well microtitre plates were coated overnight (18 ± 1 hour) with 100 µL/well 1:1,000 

sheep anti-JEV (Valneva Scotland Ltd., Livingston U.K.) in carbonate buffer (0.05M 

NaHCO3, pH 9.6). After washing 3 times with 300 µL/well PBS-T remaining binding 

sites on the plate were blocked with 200 µL/well 5% w/v BSA in PBS-T at 37°C for 1 

hour followed by another 3 washes with 300 µL/well PBS-T. For antigen content 

determination the samples and standard (purified JEV supplied by Valneva Scotland 

Ltd., Livingston U.K.) were loaded in triplicate alongside negative controls in a 1:3 

dilution series down the plate. JEV reference standard was added at 90 µL/well of 1:10 

or 1:5, depending on batch, samples were added at 90 µL/well with dilution depending 

on the sample. Once loaded plates were incubated for 1 hour at 37°C. The primary 

antibody, rabbit anti-JEV (Valneva Scotland Ltd., Livingston U.K.), was added, 100 

µL/well at 1:1,000 or 1:5,000 depending on the batch, and similarly incubated for 1 

hour at 37°C. The plate was then washed 3 times with PBS-T and incubated with 100 

µL/well of 1:10,000 of the secondary antibody conjugate, donkey anti-rabbit-HRP 

(Stratech Scientific, Newmarket U.K.), at 37°C for 1 hour. 3 washes with PBS-T were 

applied again after incubation with the secondary antibody. The plates were incubated 

with the TMB substrate solution, BD OptEIA (BD Biosciences, Oxford, U.K.) for 20 

minutes at 37°C after which the reaction was stopped with 2 M sulphuric acid (Fischer 

Scientific, Loughborough, U.K.). The plates were read at 450 nm in a plate reader 

(Safire 2, Tecan; Männedorf, Switzerland) plate reader and samples compared against 

the standard curve generated from the same plate (R2 = 0.99992). Dilutions and serial 

dilutions of samples and the reference standard was performed with 1 % BSA in PBS-

T, this diluent was also the negative control. 



 62 

For relative absorbance determination as used in Chapter 6 in the form of the modified 

ELISA, samples were diluted as required based on known concentration of the feed, 

with no standard loaded alongside the samples, and then treated as above. 

4.6.6 Zeta potential and dynamic light scattering 

A Zetasizer Nano ZS (ZEN3600, Malvern; Malvern U.K.) was used to determine zeta 

potential of samples and size based on dynamic light scattering (DLS). For zeta 

potential, samples were injected into folded capillary cells (Malvern; Malvern U.K.) 

using a syringe as per the manufacturer’s guidelines. For size measurements, 400 µL 

of sample was measured in low volume disposable cuvettes. The same standard 

operating procedure (SOP) was created using the instrument’s software and used for 

all size measurements. The SOP characteristics were as follows: a size measurement 

of a protein sample in phosphate buffer with a 5 minute equilibration at 25°C; 5 

measurements were taken at 1 minute intervals for each sample; the length of each 

measurement was determined automatically (default machine setting). Phosphate 

buffer was selected as the dispersant in the software as it most closely resembles the 

process material tested. 

4.6.7 Nanoparticle tracking analysis 

Nanoparticle tracking (NTA) analysis was performed using a Nanosight LM10 with 

version 2.3 of the associated software. A 1 mL syringe was used to inject 0.4 mL of the 

sample into the 0.29 mL chamber; the syringe was left in for stability during video 

capture. 3 60-second videos were recorded per sample with the camera level (an 

arbitrary value of 1 to 10 assigned to configurations of the camera gain and aperture 

length) optimised for each sample but usually between 2 and 6. A separate 

temperature probe was used to measure the temperature inside the chamber which 

was recorded at the end of each video. For the analysis of the videos, minimum particle 

size was set to 30 nm and the remaining options set to default. 
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Two data analysis methods were employed, a percentage in class measurement of 

particles in the 35 to 60 nm range and a particle ratio with a cut off of 80 nm. For the 

percentage in class calculation, the number of particles with the 35 – 60 nm range was 

determined as a percentage of total particles in the sample. With the particle ratio, the 

number of particles below 80 nm was divided by the number of particles above 80 nm. 

Both analyses used an average measurement from the analysis of all 3 videos from 

each sample. 

4.6.8 Amino acid sequencing 

Amino acid sequencing was outsourced to Alta Bioscience Ltd. (Birmingham, U.K.). 

Samples were acquired using the SDS-PAGE method described above except for 

dying with Coomassie blue as opposed to Silver Stain. Gels were removed from their 

casing and washed with purified water for 20 minutes, then submersed in Coomassie 

Blue (Bio-Rad Laboratories Ltd. Hemel Hempstead, U.K.) for an hour and finally 

washed in purified water again for an hour, all on a rotating platform. Desired gel bands 

were excised with a scalpel on light box and sent to Alta Bioscience for N-terminal 

sequencing. Once the results were received from the company, each potential 

combination of the 5 or 10 amino acid sequences were entered into the BLAST 

programme on the UNIPROT website (www.uniprot.org). 

4.6.9 Liquid Chromatography-Mass Spectrometry protein 

identification 

Samples were prepared for Liquid Chromatography-Mass Spectrometry Ion trap Time 

of Flight (LC-MS ITTOF) analysis by running an SDS-PAGE gel with Coomassie 

staining, as above, and excising the required bands. The gel pieces were de-stained 

and trypsinised using an in-gel de-stain and digestion kit (Sigma, Gillingham, U.K.). 

Briefly, the excised gel pieces were covered with 200 µl of destaining solution and 

incubated at 37 °C for 30 minutes. The solution was removed and discarded, then this 

step was repeated prior to them being dried in a Speed Vac SC100 (Eppendorf, 
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Stevenage, U.K.) for 15 to 30 minutes. Then 20 µl of the prepared trypsin solution (0.4 

µg of trypsin) and 50 µl of the trypsin reaction buffer were added to each piece. The 

samples were incubated overnight at 37 °C then the liquid removed from each of the 

gel samples and transferred to a fresh container to be handed over to the UCL Wolfson 

Institute (London, U.K.) for analysis. The results were inconclusive and can be seen in 

Appendix 10.14. 

4.7 Design of Experiments 

2-level fractional factorial designs were generated and analysed using Design Expert 8 

(build 8.0.1, Statease Inc., Minneapolis, MN, U.S.A.) all with a minimum resolution of IV 

and each containing 4 centre points. The software was able to determine significant 

factors as described in Chapter 5.1.  
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5  Formaldehyde inactivation 
of Japanese Encephalitis 
virus 

The inactivation step for some JE vaccine manufacturing processes is performed on 

purified JEV, often diluted density gradient pools. The rational for formaldehyde 

inactivation during the manufacturing process is two-fold, not only to ensure that no 

Japanese Encephalitis Virus in the final drug substance is able to replicate but also that 

adventitious agents (viruses, bacteria or other pathogens…) which may have been 

accidentally introduced during manufacture are unable to propagate. Potential sources 

of such contamination could include animal derived products used during production 

(e.g. foetal bovine serum) that could contain adventitious agents and dormant or as yet 

uncharacterised pathogens that could lie within the cell and virus banks. Ultimately the 

robustness of this step will be judged on its ability to inactivate any such biological 

contaminants whilst minimising product losses. Although the final inactivation step in 

licensed vaccines is benchmarked on a panel of viruses, the work here focused on the 

impact formaldehyde inactivation had on JEV product recovery. The formaldehyde 

inactivation step was identified as a target for improvement due to product losses 

observed over extended inactivation periods and it was seen as an opportunity to 

reduce the overall processing time for such inactivation steps. The objective was to 

keep formaldehyde as the method of inactivation but investigate different conditions in 

an attempt to improve antigen recovery over the course of the step, increase process 

knowledge and consider the use of additives. In this instance of formaldehyde 

inactivation, additives, or stabilisers, were compounds generally regarded as safe 

(GRAS) which could be included in the inactivation step to increase product recovery 
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without compromising the step’s potential to inactivate the virus and aforementioned 

pathogens. 

As previously discussed, the theory underlying formaldehyde inactivation is based on 

the molecule’s ability to cross-link proteins; this action on the envelope or capsid of a 

virus nullifies the virus’ ability to disassociate and introduce nucleic acids into the host 

cell. More specifically, this is done by disrupting the potential for receptor-mediated 

endocytosis and nucleic acids being unable to leave the nucleocapsid due to the cross-

linking of its structural proteins. It is also possible that the formaldehyde also crosslinks 

the nucleic acids to the capsid proteins. Whilst this cross-linking is beneficial when 

acting more internally on virus particles, their surface antigens on the virus envelope 

will also be affected, possibly more so due to their increased exposure to the medium. 

These structural changes could negatively impact on sites expected to be recognised 

by the immune system of the vaccine recipient and effectively result in product losses. 

It is possible that the inclusion of additives within this step might be able to mitigate 

these losses without compromising inactivation. Glycine and sorbitol have previously 

been used in JEV vaccine production as stabilisers during inactivation and storage 

(Toriniwa and Komiya, 2008) and therefore were initially tested alongside other 

common stabilisers; polyethylene glycol (PEG), lysine and glycerol. It has been 

speculated that the addition of these stabilisers help to reduce loss due to aggregation, 

though little is known about the specific mechanism of action.  

When situated towards the end of the manufacturing process, as the penultimate step 

prior to formulation, the purified product has high value making losses important to 

avoid. With inactivation and the inherent product losses owing to it inevitable, there is 

already a case for carrying out inactivation at an earlier stage in the process. 

Characterisation of formaldehyde inactivation of JEV at the start and the end of the 

vaccine production process was undertaken using design of experiments-based 

investigations to determine significant factors. The principle assessment techniques 
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were antigen recovery and JEV inactivation using ELISAs and plaque assays, 

respectively; though particle sizing was also investigated in an attempt to identify 

possible sources of aggregation. 

5.1 Inactivation Results 

The characterisation of formaldehyde inactivation of Japanese Encephalitis Virus was 

carried out initially with fractional 2-level factorial investigations, giving the opportunity 

to screen numerous factors simultaneously, followed by confirmation of findings. 

Fractional 2-level factorial designs are used to identify significant factors and 

interactions between factors within a particular design space without having to 

investigate all possible combinations of those factors. As the name implies, this is done 

by experimenting with the factors at 2 levels, high (+1) and low (-1), where the selected 

subset of experimental conditions chosen is a fraction of the total number of 

experiments required for a full-factorial design. A full 2-level factorial would have 2x 

sets of experimental conditions (where x = the number of factors) but a fractional 

factorial, in this case, would be suitable to identify main effects as well as any likely 

interactions between effects but with a significantly reduced number of experimental 

conditions. For example the first investigation below looked at 8 different factors over 2 

levels, a full factorial would involve 256 different sets of conditions but the fractional 

factorial involved just 32 but identified the main effects and interactions out of those 

measured. This reduction is generally successful due to the scarcity-of-effects 

principle, which states that most systems are dominated by a few factors and low-order 

interactions (interactions between 2 factors) while high-order interactions (those 

involving 3 or more factors) are extremely rare and can be ignored (Montgomery, 

2009). The ability of this type of experimental design to be able to distinguish between 

single effects, low-order and high-order interactions is dependent on its resolution, with 

higher resolutions requiring more runs. 
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The initial experimental designs for these sets of experiments were constructed and 

analysed using Design Expert 8 software (build 8.0.1). The designs had a resolution of 

IV and each included 4 centre points. Resolution IV allows for identification of main 

effects without them being aliased with 2 factor (or higher) interactions but two factor 

interactions can be aliased against each other as well as higher-order interactions 

(Montgomery, 2009). In other words, in order for these fractional factorial designs to 

have a reduced number of runs, any observed interaction effects involving more than 

one factor were aliased to other such interactions as fewer combinations can be 

accounted for at lower resolutions. Therefore combining the factors at different levels in 

such a way to accommodate this desired resolution created the individual sets of 

conditions, or runs. It should be noted that for the design to work all runs should be 

completed to have adequate data to identify significant factors for each response.  

The details for each design, including lists of aliases can be found in the Appendices as 

detailed. Centre points are included in designs without replicates to estimate the 

experimental and analytical error without significantly increasing the number of runs. 

The effect of a factor is numerically determined by the change in average response 

when a factor goes from its low level (-1) to its high level (+1), which can be either 

positive or negative. Significant effects, or factors and combinations thereof, were 

elucidated for each response below using half-normal probability plots. Whereby 

absolute values of the effects are plotted against their cumulative normal probabilities, 

a straight line is always included representing the estimated normal distribution. 

Factors that line-up to the bottom left of the plot are effectively noise, used in the 

estimation of error, whereas factors in the top right, distinctly apart from the line, are 

significant terms which can be included in a model should one be chosen. The half-

normal probability plots allowed for easy and rapid determination of significant factors 

and interactions for each response. In terms of aliasing, where two or more factors 

were involved in an interaction, the software allowed the user to select which 

combinations of factors they deemed most probable. 
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The selection of each factor’s high and low levels for each experiment was based on a 

combination of practicality, previously published studies, common sense and desire for 

reliable effects estimations. The latter of these reasons is the possibly the only one of 

the four which requires an explanation – simply speaking when dealing with single 

replicate designs one cannot be wholly sure that the observed effect is reflective of the 

true effect or an artefact of error. To a certain extent the inclusion of centre points, help 

resolve this problem, but increasing the distance between the high and low adds further 

robustness to the estimation of effects. This can be seen below with the investigation of 

the stabilisers whereby a ten-fold difference between the low and the high levels was 

used. 

5.1.1 Formaldehyde treatment of purified JEV 

The first examination of formaldehyde inactivation was performed using purified JEV, 

providing results under limited influence from other components of the process 

material; thus, experimentation at this stage of the process was more directly 

representative of formaldehyde inactivation of JEV than at any other stage of the 

manufacturing process. 

8 factors were each observed at 3 levels (-1, 0 and +1) as detailed in Table 5.1 

alongside the coded term that represents the factor in this particular design. 

Formaldehyde concentration was expected to have to the most negative impact on 

antigen recovery but it was also assumed that at higher formaldehyde concentrations 

the JEV would be inactivated more rapidly. Personal communications from Valneva 

suggested that JEV inactivation and stability are pH sensitive thus, this was included in 

the investigation with the range confined to pH 7-9. Temperature was also explored 

between a range of 22°C and 37°C as the high and low, respectively, with the rationale 

being related to inactivation kinetics in that despite a potential increases in product 

losses, more rapid inactivation of viruses would occur at higher temperatures. The 5 

potential stabilisers investigated at this stage are all standard GRAS additives used in 
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the pharmaceutical industry with glycine and sorbitol having previously been explored 

for inactivation studies. (Toriniwa and Komiya, 2008). 

Factor 
DoE coded 

term 

Level 

-1 0 +1 

Formaldehyde 

concentration (v/v %) 

A 
0.02 0.03 0.04 

pH B 7 8 9 

Temperature (°C) C 22 28.5 35 

Glycine (w/v %) D 0.05 0.275 0.5 

Lysine (w/v %) E 0.05 0.275 0.5 

Sorbitol (w/v %) F 0.1 0.55 1 

Glycerol (v/v %) G 0.1 0.55 1 

PEG (v/v %) H 0.1 0.55 1 

Table 5.1 – factors for 2-level fractional factorial experiment with purified JEV, together with 

their respective coded terms and value at each level. 

 

Using the Design Expert software a fractional factorial design was produced 

encompassing 36 experimental runs of which 4 were centre points (level 0) with 

identical conditions and 32 were completely individual sets of conditions each with 

different combinations of -1 and +1 levels. The conditions were implemented as 

described for 96 hours before quenching the formaldehyde inactivation with an excess 

of sodium metabisulphite. The experiment was allowed to run for 96 hours as this is a 

point at which all JEV was assumed to be inactivated, based on data from the literature 

as shown in Figure 3.2. The full details of the experimental design can be found in 

Appendices 10.6 (design summary), 10.8 (design evaluation) and 10.9 (conditions and 

results). 

Figure 5.1 shows a half-normal probability plot obtained after inputting the ELISA data 

from each of the 36 experimental runs back into the Design Expert. Unsurprisingly, 
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formaldehyde concentration was shown to have the largest overall negative effect on 

antigen recovery as the cross linking effect would be indiscriminate and also alter the 

surface antigens. Temperature was deemed to have no significant effect on antigen 

recovery within the range observed. Glycine was by far the best performing stabiliser, 

with glycerol and sorbitol also shown to have minor beneficial effects. Glycine was also 

involved in an interaction with glycerol, where increases in both factors help reduce 

antigen losses. However, as stated, the resolution of this design still allows for some 

aliasing to occur between interactions and so careful interpretation of each potential 

interaction is required. In the case of glycine and glycerol (DG), the aliased interactions 

are temperature and sorbitol (CF) and formaldehyde concentration and pH (AB). The 

AB interaction would suggest that the antigen losses observed when increasing 

formaldehyde concentration could be somewhat mitigated by also increasing the pH. 

CF is unlikely as temperature is not identified as significant and sorbitol only has a 

minor effect. Therefore DG is much more plausible, than both instances, as glycine and 

glycerol are stabilisers, which were also shown to have positive effects individually; 

therefore combining the two should also be beneficial. Another less significant but 

negative interaction was highlighted with formaldehyde concentration and glycine (AD), 

a feasible consideration due to having already identified glycine as a stabiliser and the 

strong negative effect of increasing formaldehyde. This interaction serves to reinforce 

the individual identification of formaldehyde and glycine and demonstrates that glycine 

reduces the magnitude of the formaldehyde’s negative effect. However, this argument 

could work both ways in that the benefits of glycine could be reversed in the presence 

of too much formaldehyde. This formaldehyde concentration and glycine (AD) 

interaction was aliased with pH and glycerol (BG) as well as lysine, sorbitol and PEG 

(EFH) both of which are extremely unlikely as none of those factors, except for glycerol 

as a positive effect, are identified as significant on their own. 
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Figure 5.1 – Antigen concentration response Half-Normal probability plot from formaldehyde 

inactivation experiment with purified JEV. The factors highlighted, with their coded terms 

evident, are those deemed to be statistically significant as they deviate from the normal 

distribution as defined by the software. The factors are split into two colours according to the 

overall effect of switching to their higher level, orange for positive (more antigen) and blue for 

negative (less antigen). Note that due to the design the following interactions are aliased: DG is 

aliased to CF and AB; and AD is aliased to BG and EFH. DG and AD were highlighted because 

they are the most likely to be responsible for significant effects as one or both of the terms had 

already been singled out as such. 
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5.1.2 Formaldehyde treatment of harvest material 

The first experiment focused on optimising the step as it is found in some production 

processes with relatively minor adjustments on purified virus prior to formulation. Viral 

inactivation is also sometimes conducted after a concentration step in order to reduce 

the volumes of formaldehyde required. However, it could be suggested that 

formaldehyde treated virus particles are more robust due to the cross-linking effect of 

the formaldehyde and potentially then able to resist process damage experienced 

further downstream. Therefore, it may be advantageous to inactivate the virus particles 

further upstream prior to sucrose gradient centrifugation in order to increase overall 

recovery. However, the material is very different at this stage as the virus will be less 

concentrated (around 10 fold) and there will be no residual sucrose or concentrated co-

contaminants that may have carried over from gradient centrifugation step.  

Another 2-level fractional factorial experiment was designed for pooled JEV harvest 

material. Figure 3.3 shows that the process material at this stage has undergone no 

purification other than clarification by filtration through a 0.22 µm membrane to remove 

cell debris. Table 5.2 shows the details of each factor and their respective levels. 

Fewer factors, 6, were included in this instance, with lysine glycerol and PEG removed 

and formaldehyde incubation time included. Lysine and PEG were shown to have no 

effect on purified material in the previous experiment and thus were excluded. Glycerol 

was also removed despite showing a slight benefit in the previous experiment as it was 

decided to reduce the number of factors overall but to investigate more responses (see 

below). Although, sorbitol was left in because of evidence in the literature which states 

that including sorbitol and glycine can increase antigen recovery during formaldehyde 

inactivation of JEV (Toriniwa and Komiya, 2008); pH also remained due to the potential 

interaction effect described above in 5.1.1. Time was included as a factor in an attempt 

to gauge whether any factors became more significant the longer inactivation 

proceeded. Temperature and formaldehyde concentration were included again but with 
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a larger range between levels for broader investigation, this is especially relevant for 

temperature as some viral inactivation procedures are performed at 4°C. 

The resulting design contained 16 different sets of conditions and 4 centre points with 

the same resolution as previous allowing for individual factors to be singled out a 

significant and only potential interactions aliased to each other. A design summary from 

the experiment can be found in Appendix 10.10 and a design evaluation, together with 

a list of aliased terms, can be found in Appendix 10.11. 

Factor 
DoE coded 

term 

Level 

-1 0 +1 

Time A 24 60 96 

pH B 7 8 9 

Temperature (°C) C 4 20.5 37 

Formaldehyde 

concentration (v/v %) 
D 0.01 0.03 0.05 

Glycine (w/v %) E 0.1 0.55 1 

Sorbitol (w/v %) F 0.1 0.55 1 

Table 5.2 – factors for 2-level fractional factorial experiment with JEV harvest material, together 

with their respective coded terms and value at each level. 

 

As stated, more responses were included with this experiment. In addition to antigen 

recovery the following responses were also measured: infectivity (measured by plaque 

assay and defined as plaque forming units per millilitre (pfu/mL)), size (measured by 

dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA)) and the 

electrophoretic properties of the samples (measured by Malvern Nano ZS zetasizer). 

Measuring infectivity as a response was contingent on including time as factor to 

potentially gain an understanding of inactivation kinetics under different conditions. The 
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high level was set at 96 hours, the level after which there is unlikely to be any 

remaining infective JEV particles, as can be seen in Figure 3.2. 

The electrophoretic properties (zeta potential, mobility and conductivity) of the samples 

were measured in an effort to observe if any of factors altered the stability of the 

medium in this way. As it transpired no significant differences were witnessed for these 

responses within this design space and therefore they are not discussed in detail 

below. Two particle sizing methods were also used, DLS for average particle size in the 

samples and NTA for particle size distribution between 10 and 1000 nm. The DLS 

results are discussed below.  However, no significant results were obtained from the 

NTA analyses. One result was a percentage in class analysis of the number of particles 

within a 35 – 60 nm size range. This produced no significant changes across the 

observed conditions. The other result was an attempt to distinguish the samples based 

on a particle ratio, divided at an 80 nm cut off. Again, no significant effects for this 

response were identified, which was somewhat at odds with the DLS observations as 

will be discussed below.  

A complete list of the experimental conditions and the results obtained for each can be 

found in Appendix 10.12. 

5.1.2.1 Infectivity 

From the 20 sets of conditions, just 5 were found to contain infective JEV particles by 

yielding positive results in the plaque assays. This response is too small a sample set 

for the statistical software to generate a half-normal probability plot, as 15 samples 

gave a zero result. Therefore, Figure 5.2 shows these results as a bar chart of the 

results with the details of each set of conditions. The only correlation that can be drawn 

is that all of the samples containing active JEV underwent a 4°C incubation and only 

one, with the lowest infectivity, included formaldehyde at the high concentration. 

However this run also included glycine (at +1), which as we have observed from Figure 

5.1 reduces the net negative effect of formaldehyde and might go some way to 
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providing an explanation as to why this sample still contained some infective JEV. 

Perhaps the inactivation potential of the increased level of formaldehyde was mitigated 

somewhat in the presence of higher levels of glycine. 

The 3 remaining runs at low temperature, of the 8 in total, which did not exhibit any 

viral infectivity all had increased formaldehyde concentration. From this it can be 

assumed that the two most significant factors in terms of infectivity are temperature and 

formaldehyde concentration, respectively; from what is known of the mode of action of 

formaldehyde inactivation it is unlikely that any of the other factors were significant. 
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Figure 5.2 – Details of samples still found to contain active JEV particles. The + and –symbols 

correspond to the high (+1) and low (-1) values for each factor, respectively, as detailed in Table 

5.2. Error bars are based on standard deviation across 2 plaque assay plates. 
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5.1.2.2 Antigen recovery 

As with the previous experiment the antigen content of the samples was measured by 

ELISA. The half-normal plot of the results from DX8 can be seen in Figure 5.3. 

Immediately apparent is that fewer significant factors affecting antigen recovery were 

identified with this experiment on harvest material than with purified JEV, with 3 factors 

having a negative effect and one interaction having a slightly positive effect. The most 

significant factor for this response was deemed to be temperature followed by 

formaldehyde concentration and time, respectively, all of which negatively impacted on 

the antigen content of the samples when their levels were increased. These results 

follow expected logic that measurable antigen was reduced by increased exposure 

(time), increased concentration of the cross-linking agent (formaldehyde) and 

increased energy in the system (temperature). Consistent with the previous 

experiment, formaldehyde was also a significant factor though not temperature, most 

likely due to the much smaller difference between levels used previously. The only, 

albeit small, positive effect observed was an apparent interaction between glycine and 

sorbitol. Both factors were also singled out individually as reducing antigen losses 

during formaldehyde inactivation of purified material, but this interaction effect is more 

in line with the literature (Toriniwa and Komiya, 2008). As with all possible interactions 

in these designs, this positive effect glycine and sorbitol interaction (EF) is aliased to 

time and formaldehyde (AD). As these have both been shown to significantly impact 

negatively on antigen recovery as individual factors, it is extremely unlikely that such an 

interaction would have a beneficial effect.  
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Figure 5.3 – Antigen concentration response Half-Normal probability plot from formaldehyde 

inactivation experiment with JEV harvest material. As in Figure 5.1, the factors highlighted, with 

their coded terms evident, are those deemed to be statistically significant as they deviate from 

the normal distribution as defined by the software. The factors are split into two colours 

according to the overall effect of switching to their higher level, orange for positive (more 

antigen) and blue for negative (less antigen). Note that due to the design the positive EF 

interaction is aliased to AD. 
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5.1.2.3 Average particle size 

In order to gain greater understanding of the cross-linking effect of formaldehyde and 

whether it could affect particle aggregation levels at this early stage of the process, 

dynamic light scattering (DLS) was used to determine the size distribution of particles 

in the samples. The samples were by no means homogenous, despite this pooled 

harvest material having been filtered through a pore size of 0.22 µm, they contained a 

wide particle size distribution up until this diameter. This is illustrated by the fact that 

the polydispersity index (PDI) for these samples averaged 0.485. The PDI is a 

dimensionless number calculated from a 2 parameter fit to the correlation data, 

effectively all the readings from a particular sample. It is scaled such that values 

smaller than 0.05 are rarely seen other than with highly monodisperse standards and 

values above 0.7 indicate that the sample has a very broad size distribution and is 

probably not suitable for DLS analysis (Zetasizer Nano Series User Manual, 2004). 

Thus the DLS results inputted into the software represented the average particle size of 

all the size populations in a sample as opposed to having a homogenous sample of 

particle of the size measured. 

Figure 5.4 shows the half-normal plot of the data fed into DX8. In this instance 

temperature and time are the two standout factors which, when increased, contribute to 

increasing the average particle size in the samples. Furthermore they are the most 

likely factors for the interaction effect also observed, as the aliased interaction is pH 

and sorbitol (BE). This response follows similar logic to that described for the antigen 

recovery, if one assumes that the particles in solution increase in size due to 

aggregation, simple Brownian motion dictates that increased time and energy in the 

system will promote this process. 

As with the antigen recovery, the only factor that appeared to mitigate an increase in 

particle size, was the interaction effect of glycine and sorbitol, again with only a slight 

effect compared to the main effects. Having the same significant factors for two 

different responses not only to a certain extent validate the results but also suggests a 
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link between the two. From the data, it could be suggested that alongside the product 

losses due to formaldehyde cross-linking antigen sites, major losses could also be due 

to aggregation phenomena brought about by increases in temperature over extended 

periods of time. Temperature was been singled out as a significant factor in all of the 

above analyses except for the experiment on purified JEV where the difference 

between the measured levels was potentially too small to register an effect. 
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Figure 5.4 – Dynamic light scattering response Half-Normal probability plot from formaldehyde 

inactivation experiment with JEV harvest material. As with the two previous figures, the factors 

highlighted, with their coded terms evident, are those deemed to be statistically significant as 

they deviate from the normal distribution as defined by the software. The factors are split into 

two colours according to the overall effect of switching to their higher level, orange for positive 

(average particle size increases) and blue for negative (average particle size decreases). Note 

that due to the design the positive AC interaction is aliased to BE and EF is aliased to AD. 
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5.1.3 Interpretation of DoE results 

The 2-level factorial experiments described above helped characterise formaldehyde 

inactivation at the start and end of a production and purification process for JEV. 

Overall the analysis is consistent with literature in that during the inactivation process, 

time, temperature and formaldehyde were all significant factors; increasing these 

dominant factors will always serve to reduce antigen recovery. Perhaps more 

unexpected is the effect of glycine, the potential role of which would be to mitigate 

these losses. Although singled out in the literature (Toriniwa and Komiya, 2008) as a 

stabiliser during formaldehyde inactivation and as a storage stabiliser alongside 

sorbitol, glycine in this study showed only a comparatively small effect as an interaction 

with sorbitol on harvest material but a very significant effect on retaining the antigenic 

sites with purified JEV. The mechanism has also somewhat been alluded to as the 

presence of glycine serves to reduce the average particle size and therefore may be 

reducing aggregation. Therefore an attempt was made to ascertain the usefulness of 

glycine during inactivation at various stages of the purification process. Additionally, 

should the inactivation step be brought further upstream there could also be some 

benefit in processing more robust viral particles brought about by the cross-linking 

effect of formaldehyde treatment. An ultra-scale down shear device, which has been 

shown to mimic the shear experienced in the feed zones of industrial scale centrifuges 

(Boychyn et al., 2004; Hutchinson and Bingham, 2006; Tait et al., 2009), was used to 

determine the effect of shear on formaldehyde treated harvest material and non-treated 

material. 

5.1.3.1 Glycine 

Glycine was shown to be the most significant factor in the experiment with purified JEV 

but only has a slight benefit in conjunction with sorbitol when formaldehyde treating 

harvest material. A possible reason for this could be that harvest material, by definition, 

contains so many more impurities alongside a much lower concentration (~10 fold) of 

virus particles, creating a situation where the formaldehyde and glycine then have more 
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components to interact with but much less JEV – therefore any possible beneficial 

effects could pass unnoticed. 

It was decided to initially test the interaction effect between formaldehyde and glycine. 

In the first instance pooled harvest material (HP) was exposed to 0.02% (200 ppm) 

formaldehyde over 96 hours at 20°C in the presence and absence of glycine at two 

concentrations of 0.5% and 2%. This was to see if the excess glycine (2%) would 

overcome the issue of high levels of impurities. In order to ensure inactivation of JEV, 

the infectivity was tested: all those treated with formaldehyde were shown to contain no 

plaque forming units at the end of the experiment. The non-treated HP, however, 

contained 9630 pfu/mL down from 2.3 x 105 pfu/mL at the start of the experiment. This 

represent a reduction in infectivity of over 95% from 4 days at 20°C with no additives 

and highlights the instability of JEV at ambient temperature. 

Figure 5.5 shows the antigen content of each of the samples after the incubation 

period, sample HP was a control sample with no additives. The chart demonstrates that 

neither the 0.5% nor the 2% additions of glycine had any significant effect on reducing 

the losses due to exposure to formaldehyde – the slight benefit observed with 0.5% 

glycine is within error range of the sample containing just 0.02% formaldehyde. As 

stated, perhaps at this stage, due to the small concentrations of measurable antigen, 

any benefits due to glycine may not yet be distinguishable. In order to further 

investigate the issue the concentration of virus particles must be increased, however, 

the test material ceases to be process equivalent harvest material. Therefore the 

testing should move on to after the next step in this purification process, concentrating 

the harvest material where we obtained concentrated harvest pool (cHP). 
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Figure 5.5 – ELISA antigen data of JEV harvest material, with and without 0.02% formaldehyde 

and glycine at different concentrations over 96 hours at 20°C. Key: HP = harvest pool, F = 

0.02% formaldehyde, G = glycine. 
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In addition to investigating the effect of glycine during formaldehyde inactivation of 

cHP, there is one other purification step, apart from sucrose gradient centrifugation, 

after which there is a hold point that could be used for inactivation. This is the 

protamine sulphate precipitation step used to remove host cell DNA. As previously 

described, this is where cHP is incubated with protamine sulphate. DNA precipitates 

with the protamine sulphate and the material is then centrifuged with the supernatant 

kept for further processing, this is protamine sulphated treated material (PST). The next 

step in the process is sucrose gradient centrifugation (SGC), which was not available 

for purifying this virus at UCL at the time. However, in order to mimic the effect of post 

SGC material, 5%v/v sucrose was added to the PST. The 5% sucrose value is based 

on values from the literature which state that JEV would band just below 40% sucrose 

(Sugawara et al., 2002) and the resulting pooled fractions would be diluted 

approximately 8 times (Srivastava et al., 2001). This separation of variables allowed for 

the independent testing of the effect of concentrated virus and glycine-sucrose 

interaction effects on antigen recovery. 

Concentrated harvest pool (cHP), protamine sulphate treated material (PST) and PST 

with 5% sucrose were all exposed to 0.02% formaldehyde over 96 hours at 20°C with 

and without 0.5% glycine. 3 controls with no formaldehyde or stabilisers added were 

also examined as part of this experiment: starting cHP, starting PST and cHP 

incubated alongside the formaldehyde treated samples. The infectivity of all samples 

and the two cHP controls was tested, the infectivity of the PST was not tested. All 

formaldehyde treated samples were shown to contain no active virus particles. The 

cHP control sample infectivity dropped from 6.6 x 105 pfu/mL to 1 x 105 pfu/mL over the 

course of the 4 day incubation at 20°C, an 85% drop in active virus particles. 

Figure 5.6 shows the antigen data for each of the samples alongside the 3 controls, 

starting cHP and PST (st exp) as well as cHP incubated alongside the other samples 

with no additives. The 3 controls illustrate potential product losses observed during 

general processing and storage at 20°C. The treatment of concentrated harvest pool 
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with protamine sulphate incurred antigen losses of approximately 35% in this instance, 

as can be seen in by the drop in antigen content between ‘cHP st exp’ to ‘PST st exp’. 

The incubation of cHP over 96 hours at 20°C equated to losses of approximately 30%, 

as shown by the drop between ‘cHP st exp’ and ‘1-cHP’.  

With the samples which underwent the formaldehyde treatment, there is clear evidence 

of the effect that glycine had in preserving the antigen sites at the cHP and PST stages 

of the process with 20% and 30% less antigen lost, respectively. Perhaps more 

surprising are the significant losses observed when PST material is exposed to 

formaldehyde, around 95% of the antigen lost without glycine and approximately 63% 

with glycine – thus reasoning a prohibition on formaldehyde treatment at this stage. 

The addition of 5% sucrose does not seem to have an effect with or without glycine, 

ruling out the possibility of it having a stabilising effect. 
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Figure 5.6 – ELISA data showing the effect of glycine during formaldehyde treatment at different 

stages of the JEV purification process. Key: st exp = start of the experiment, cHP = 

concentrated harvest pool, PST = protamine sulphate treated material, F = 0.02% 

formaldehyde, G = 0.5% glycine, S = 5% sucrose. Samples 1 to 7 underwent the incubation at 

20°C for 96 hours, sample 1 was a control with no formaldehyde or stabilisers added. 
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5.1.3.2 Effect of shear 

Harvest material was again treated with 0.02% formaldehyde and incubated for 96 

hours at 20°C, this treated material, along with non-treated harvest material, was 

exposed to low (1000 rpm) and high (6000 rpm) shear levels for 30 seconds in an ultra-

scale down shear device. The rpm relates to the rotation speed of the disc inside the 

device which mimics the effect of shear found during processing, 6000 rpm is 

approximately equivalent to the stresses found in the feed zone of hermetic disc stack 

centrifuge (Hutchinson and Bingham, 2006). Figure 5.7 shows the ELISA results and 

the relative antigen recovery compared with the non-sheared samples. It would appear 

that there is no significant effect of formaldehyde treated material being able to better 

withstand stand the forces than the non-treated material, with the recovery rates within 

the error range. These results do however show that in general, harvest material is not 

significantly impacted by these high shear forces, with losses of just around 10% 

observed, in both instances. 
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Figure 5.7 – Antigen recovery data from non- and formaldehyde treated harvest material 

exposed to high and low shear in an ultra scale down shear device. Key: NT = non-treated, FT 

= Formaldehyde treated, Lo = 1000 rpm, Hi = 6000 rpm 
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5.2 Formaldehyde treatment discussion 

Across the results from this formaldehyde inactivation investigation, the consistently 

significant factors for antigen recovery, infectivity and particle size are formaldehyde 

concentration, glycine and, arguably, temperature. Although temperature variation did 

not significantly effect the inactivation of purified JEV, this was investigated across a 

smaller range – 22°C to 35°C appeared to have no effect but 4°C to 37°C definitely did. 

Temperature is certainly the key factor for the responses of infectivity, antigen recovery 

and particle size with treatment of harvest material. Furthermore, temperature has 

previously been shown to be a key factor in adenovirus aggregation (Galdiero, 1979). 

Therefore, discounting formaldehyde concentration for the moment, the significant 

factors for both antigen recovery and particle size distribution are similar. Even in rank, 

it is possible to determine that antigen recovery and aggregation are strongly related 

within this system. Viral antigen losses due to aggregation that are driven by increases 

in temperature should be seen as a major concern for JEV processing and indeed any 

virus production process. Moreover, with the sorbitol and glycine interaction singled out 

as slightly benefiting antigen recovery as well as slightly showing to affect a reduction 

in observed particle size perhaps this positive outcome is owing to their ability to jointly 

mitigate aggregation. The caveat to this theory, however, is the lack of correlation with 

the electrical properties of the samples, which in turn showed no significance within the 

design and indeed very little evidence of variation across all the conditions (Appendix 

10.12). The average zeta potential across the 20 samples was -14.67 ± 1.93 mV which 

is considered relatively low, meaning that the system is unstable and particles within 

prone to agglomeration. The electrical properties of solutions have long been linked to 

stability (Besra and Liu, 2007), with particles in solution carrying a large charge less 

likely to aggregate due to electrostatic repulsion, this lack of deviation from low zeta 

potential values throughout the samples would suggest a different mechanism of 

aggregation mitigation than electrical stability of the particles in solution brought about 

by these two stabilisers. 
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The harvest material offered a more complex medium for experimentation that could 

explain the relative lack of impact of the stabilisers when compared with purified JEV 

experimentation. This harvest material contained spent metabolites from cell culture 

along with other waste products that could present a process challenge.  Each 

stabiliser would have had more components to act on and, as stated, any effects may 

not have been visible within the design. One option could be to increase the 

concentrations of the stabilisers, as was attempted with glycine, certainly with sorbitol 

and glycine this could be interesting. Time and temperature were identified as 

significant effects with harvest material though these will obviously not be affected by 

increases in test material components 

The cross-linking effect of formaldehyde between amino acids in peptide and protein 

chains as well as the inclusion of glycine has been shown before (Metz et al., 2004; 

Metz et al., 2005; Metz et al., 2006), with glycine interacting with formaldehyde to form 

a Schiff base which then binds to primary amino groups on certain amino acids. During 

formaldehyde inactivation of viruses, it is possible this process would have occurred 

outside of the virus envelope, around the antigen sites, with the glycine and the 

glycine-formaldehyde complex too large to enter between the envelope proteins and 

certainly gain access to the nucleocapsid underneath – unlike the much smaller 

formaldehyde molecules. Thus, this could be the reason why glycine is shown to 

improve antigen recovery, formaldehyde reactions near the virus surface are more 

likely to also involve glycine and being the smallest amino acid the conformational 

changes on the antigen sites should be minimal. Yet amino acid cross-linking due to 

formaldehyde occurring within the virus particle would still render it inactive but also 

with minimal topological changes. 

Data acquired by DLS proved to be of significance with one of the above designs, in 

contrast to the NTA data that yielded no significant results. At first, it would appear that 

the two sizing techniques were at odds yet the two techniques were effectively 

analysing different aspects of the same particle distributions. The NTA attempted to 
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distinguish the different size populations within the samples whereas DLS observed the 

average changes in the population as a whole, as DLS is unable to resolve particles 

within a sample where there is not at least a 3-fold difference in diameter (Filipe et al., 

2010).  Yet, the shifts detected by the DLS as an average size of the whole population 

was not picked up using the analysis methods of the NTA readings of the different size 

populations within the samples. NTA is a relatively new technique compared to DLS, it 

is possible that the analysis methods of the NTA data are flawed or even that the 

settings used to acquire the data are not optimised for these samples and this target – 

JEV is bordering on the lower limit of this technique’s capabilities. 

The high shear rate (6000 rpm) investigated is equivalent to an energy dissipation rate 

of approximately 30300 W/Kg (Levy et al., 1999) and is similar to the higher end forces 

experienced in agitated reactors (Davies, 1987) or the feed zone of a hermetic disc 

stack centrifuge (Hutchinson and Bingham, 2006). Such forces are not currently 

experienced in the vaccine manufacturing process but should increases in scale be 

sought it is useful to know that the product is relatively safe in this environment. It may 

also be that formaldehyde treatment of JEV does begin to demonstrate some shear 

resistance at higher rates, though undetected in this instance. 

5.3 Inactivation summary 

Temperature and formaldehyde concentration are the principle considerations with 

formaldehyde inactivation of JEV. With these in place the duration of the virus’ 

exposure to formaldehyde will depend on the requirements of the step, whether to 

inactivate just the product or a panel of model viruses. The most important finding is 

the use of glycine to increase product recovery. This has been observed during 

formaldehyde treatment at nearly every potential step of the process (Figure 5.6). It has 

also been demonstrated that more product loss is observed when formaldehyde 

treating PST than treating cHP. Thus perhaps formaldehyde inactivation of 

concentrated harvest pool would be a more ideal location for the step. Certainly moving 
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the step further upstream has the benefit of dealing with a safer product downstream 

and there is also evidence here that a formaldehyde treated feed is not significantly 

more susceptible to shear than the non-treated feed; perhaps there may yet be further 

advantages of processing a formaldehyde treated feed. However, extent of inactivation 

when working with purified JEV would first have to measured and compared with 

upstream inactivation as there could be difference in inactivation rates. Furthermore, 

not having inactivation as a final step prior to formulation would require additional 

controls of the product stream to prevent introduction of adventitious agents. 
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6 Microscale investigation of 
chromatography resins for 
JEV purification 

Chromatography was selected for investigation as a potential alternative to sucrose 

gradient purification due to its ubiquitous use throughout industry and the availability of 

high-throughput screening (HTS) formats for resin screening and optimisation using 

small quantities of material. HTS of new resins and purification conditions as a 

replacement for a current step was an ideal starting point and provided the focus for 

this section of the project. However, to complement the HTS formats, adequate assays 

were required to be amenable to process large quantities of samples simply and 

effectively, therefore a certain amount of assay development and modification was also 

required with the objective of adapting a quantifiable JEV specific assay to HTS use. 

Initial selection of resins and conditions to be screened was based on known properties 

of JEV alongside an appropriate buffer system at the desired pHs. The first 

requirement here was to identify one or two suitable resins based on maximum binding 

capabilities across those various conditions. Selected resins were then screened for 

elution conditions using the same formats and analysis techniques used during resins 

screening. The material used for these studies was protamine sulphate treated material 

(PST) in order to represent material which would be further purified using sucrose 

gradient centrifugation, as outlined in the generic JEV production process represented 

in Figure 3.3. 

The ultimate aim of this section was to identify a suitable resin and conditions for 

studies at larger scale, which is detailed in the following chapter. 
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6.1 PreDictor plate resin screening for binding conditions 

The JEV E-protein has a pI of 7.6 (Trent, 1977) and due to the nature of the JEV 

product, pHs above 9 should be avoided as these may damage the antigen (Donald 

Low, Valneva Biomedical Ltd., Personal communication), thus anion exchange (AIEX) 

resins were seen as a logical starting point due to the pH range. In turn, Tris was 

decided upon as the buffer system because of the pH range to be explored and its 

regular use throughout industry.  The GE PreDictor AIEX screening plate offered the 

opportunity to screen four AIEX resins and conditions in a standard 96 well plate format 

with high throughput screening methodology. 

The first round of screening using the AIEX GE PreDictor screening plates investigated 

the effects of loading pH (7.5, 8.0 & 8.5) and NaCl concentration (0, 20, 40 & 60 mM) 

on the binding capabilities of four resins (Capto Q, Capto DEAE, Q Sepharose Fast 

Flow and Capto Adhere). A format of 3 pHs and 4 salt concentrations was chosen as 

the 3 x 4 format would fit on the 96 well plate containing the 4 resins. The 3 pHs were 

within the desired experimental range, as stated above. The relatively low salt 

concentrations were selected because the starting material, PST, was assumed to 

already contain some salt at that point in the process and that too high an ionic 

concentration, and thus conductivity, would hinder the binding of a large particle such 

as JEV. The feed (F) in this chapter is what was loaded onto the resin, or with what the 

resin was challenged, was PST diluted with appropriate amounts of tris buffer 

containing NaCl to achieve the desired range of pHs and NaCl concentrations as 

described above and in section 4.5.1. 

Capto Q and Q Sepharose Fast Flow are strong anion exchangers, which maintain 

their charge over a large pH range unlike the Capto DEAE resin that, as a weak anion 

exchanger, will have a more variable ionic capacity over the same pH range. Capto 

Adhere is a strong anion exchange resin with multi-modal functionality, meaning that in 

addition to ionic interaction, hydrophobic and hydrogen bonding interactions are also 
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possible. The characteristics of all resins can be found in Table 6.1. The plates 

contained 24 wells of each type of resin with 2 µL of DEAE and Capto Q resin and 6 µL 

of Q Sepharose Fast Flow and Capto Adhere. The manufacturers stated that despite 

the difference in resin volumes, the binding capacities are comparable (Personal 

communication, Jon Baker, BioProcess Technical Support, GE Healthcare). Although 

this claim does not appear to be wholly supported by the binding capacities in their 

literature, as quoted in Table 6.1, the two resins with the larger volumes QSFF and CA 

do appear to have highly variable capacities depending on the test protein, in the case 

of QSFF, and their function, in the case of CA. 

 

Resin Abbreviation Type Bead size 
(nm) Capacity with test protein 

Capto Q CQ Strong 90 BSA (67 kDa) > 100 mg/ml 

Capto 
diethylaminoethyl DEAE Weak 90 Ovalbumin (66 kDa) > 90 mg/ml 

Q Sepharose 
Fast Flow QSFF Strong 90 

Thyroglobulin (669 kDa) 3 mg/ml 

HSA (68 kDa) 120 mg/ml 
α-lactalbumin (14.3 kDa) 110 

mg/ml 

Capto Adhere CA Multimodal 75 Tested in flow-through mode 100-
300 mg/mL 

Table 6.1 – Resin characteristics adapted from Ion Exchange columns and Media selection 

guide (GE Healthcare, 2011). 

 

Each set of conditions was run in duplicate. The protein concentration of the feed, flow-

through and the wash step were each measured by BCA assay with a BSA standard 

curve. The amount of protein found in the wash was negligible for all resins and 

conditions tested. The protein concentration of the feed averaged 260 µg/mL across 

the 96 wells of the feed plate, with a standard deviation of 9.7%. The resins were 

saturated with material, as in components of PST, to evaluate adequate loading 

conditions. One load challenge of 200 µL of feed per well was sufficient, in this 

instance, for the 2 or 6 µL of resin per well, which amounted to approximately 52 µg of 
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protein. As stated above, the feed in this instance was PST diluted with appropriate 

Tris buffers containing NaCl. The amount of protein measured in the flow-through from 

each well was used to determine the theoretical amount of protein bound to each resin 

type under each set of conditions (by subtracting this from the amount of protein feed 

into each well). The results can be seen in Figure 6.1.   
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Figure 6.1 – colour contour plots demonstrating amount of protein bound to each anion 

exchange resin on the GE PreDictor screening plate for varying loading NaCl concentrations (0, 

20, 40 and 60 mM) and pHs (7.5, 8.0 and 8.5), when challenged with PST diluted with 

appropriate buffer. Figures generated using Matlab R2012b (8.0.0.783). 

  



 100 

Overall, the Q Sepharose Fast Flow (QSFF) and Capto Adhere (CA) resins bound 

more protein from the PST load than Capto Q (CQ) and Capto DEAE (DEAE) resins; 

yet each resin also demonstrated unique optimal conditions for protein binding. CQ 

favoured low NaCl concentration at pH 8, QSFF low NaCl with high pH, whereas CA 

low pH with changing NaCl concentration showing no significant impact except for at 

40 mM. DEAE also displayed some variation in protein binding across the ranges 

observed, though appeared to favour pH 8. A possible explanation for QSFF and CA 

binding the most protein is that the volume of resin for each is 6 µL per well as 

opposed to 2 µL per well for CQ and DEAE. The manufacturers state that these are 

comparable volumes as CQ and DEAE are deemed ‘high capacity’ resins yet this could 

be for protein and not virus purification. It is feasible that other potential differences in 

the design space were not observed due to being below the limit of detection of the 

BCA assay, which is a protein concentration of approximately 20 µg/mL. From the data 

it also appears that at the lowest pH investigated CQ, DEAE and QSFF, bind less 

protein, or in the case of CQ none at all. In contrast, with CA lower pH appears to 

favour protein binding. This could be an indication of Capto Adhere’s multimodal 

functionality coming into play where anion exchange binding is poor. The BCA assay 

indicates total protein per sample, and while important, does not indicate the proportion 

of JEV binding to the resin. Consequently, the next data set needed to come from a 

JEV-specific assay. 

A modified ELISA (mELISA) method was developed for high throughput, product 

specific analysis for use with PreDictor plates, whereby instead of analysing just 3 or 4 

samples alongside a standard on a 96 well plate to determine antigen content, all 96 

wells were used to obtain relative absorbance values for each sample. There is a 

sigmoidal relationship between the concentration of the JEV reference standard and 

absorbance in a customary sandwich JEV ELISA. In order for this different method to 

produce results to compare JEV binding across different resins and condition, test 

samples would have to be diluted to a concentration corresponding to a point within the 
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linear region of the absorbance/reference standard relationship. The other aspects of 

the JEV ELISA, coating, primary and secondary antibodies, incubation times and 

substrate reaction, remain unchanged. Only the sample loading onto the sheep anti-

JEV coated test plate and the lack of standard and blanks are deviations from the 

standard protocol. Standard curves previously generated during antigen content testing 

of the same material determined this point in the linear region to be an absorbance 

value of around 2.1 (at 450 nm), a dilution of 1 to 80 with ELISA dilution buffer (1 % 

BSA in 1 x PBS, 0.05 % tween) was required to achieve this with the feed material. As 

a result, relative absorbance by ELISA was measured for the feed, flow-through and 

wash by diluting all samples 1:80 with ELISA dilution buffer prior to loading onto the 

ELISA test plates. As above, an indication of amount of JEV binding to each resin was 

deduced by subtracting the absorbance values of the flow-through from those of the 

feed from the same wells – thus the larger difference in absorbance (Δ abs) the more 

JEV has been retained by the resin. The results can be seen in Figure 6.2. The 

absorbance values from the wash were deemed insignificant as they were in the same 

range as the blank values determined from testing the buffer preparation plates using 

the same mELISA method. 
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Figure 6.2 – colour contour plots showing the change in absorbance (Δ abs) across observed 

ranges of pH (7.5, 8.0 and 8.5) and NaCl concentrations (0, 20, 40 and 60 mM) for each anion 

exchange resin of the GE PreDictor screening plate when challenged with PST diluted with 

appropriate buffer. Δ abs was elucidated from modified ELISA testing of the feed and flow-

through and subtracting one from the other for each well of the resin screening plate. Δ abs 

colour scale goes form least JEV binding in blue to most JEV binding in red. Figures generated 

using Matlab R2012b (8.0.0.783). 
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Overall CA bound the most JEV, consistent with the protein binding results, with DEAE 

binding the least, yet these two resins also displayed the least variation in binding 

capabilities within the observed ranges. Both of the strong anion exchangers, CQ and 

the QSFF, demonstrated a clear increase in JEV binding from low pH, high NaCl 

concentration to high pH, low NaCl concentration; with QSFF in particular having a 

larger window of operation for optimum JEV adherence. CA again indicated capabilities 

beyond anion exchange with pH and salt shown to have little effect on the amount of 

JEV binding to the resin. 

In order to confirm the ELISA results, an SDS-PAGE gel and corresponding western 

blot were conducted to ensure the JEV antigen was being captured. Figure 6.3 shows 

a silver stained SDS-PAGE gel (A) and corresponding western blot (B) from the feed, 

flow-through and wash of 3 separate conditions from the screening experiment. The 

western blot was performed with antibodies raised against purified inactivated JEV, 

supplied by Valneva Scotland Ltd., therefore the appearance of bands indicates the 

presence of JEV in a given sample. The most prominent band occurs around 52 kDa 

representing the JEV envelope protein (E-protein), bands can also sometimes be 

observed for the capsid (C, 14 kDa) and membrane (M, 7 kDa) proteins. As seen in 

Figure 6.3 all feed samples contain JEV but it was not evident in the wash samples. 

The presence of a band in the flow-through sample indicates either non-adherence of 

JEV to the resin or a saturation of the resin under those conditions. The flow-through 

sample for the QSFF resin challenged at pH 8.5 with 0 mM NaCl is the only such 

sample in Figure 6.3 with no band present, confirming binding of JEV. These results 

are consistent with the previous analyses. 

From these quantitative (Figure 6.1 and Figure 6.2) and qualitative (Figure 6.3) 

screening results it was concluded that the Q Sepharose FF and Capto Adhere resins 

were demonstrated to bind more JEV than Capto Q and DEAE. Although JEV binding 

results with Capto Q were comparable to Q Sepharose FF, for simplicity and 

practicality only two resins were selected for further studies. QSFF had a larger window 
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of operation than CQ and Capto Adhere appeared to bind significantly more JEV 

possibly due to its multimodal functionality which, as different from a simple strong 

anion exchanger, could offer possibilities with further investigation. Therefore the QSFF 

and CA resins were taken forward for small-scale binding and elution studies using the 

single resin PreDictor plates. 
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Figure 6.3 – silver stained SDS-PAGE (A) and corresponding western blot (B) analysis of 

selected samples from screening plate study (NaCl concentration in mM and pH). Samples 

loaded from stated resin and conditions are feed (F), flow-through (FT) and wash (W). Arrow 

indicates location of E-protein (~51 kDa) band giving positive signal in western blot for 

antibodies raised against JEV. 
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6.2 Elution studies on CA and QSFF single resin plates 

PreDictor plates containing only Q Sepharose FF and Capto Adhere resins were used 

for binding and elution of feed material containing JEV. It was determined during 

screening that JEV retention on QSFF was favoured by high pH and low NaCl 

concentration and so, for ease of comparison, CA was assessed with these same 

conditions. Therefore no additional NaCl was added to the loading buffer but pH was 

further investigated at 8.0, 8.3 and 8.6 to observe potential effects on elution 

requirements and eluted product recovery. Elution from the two resins was investigated 

by establishing a gradient down the plate with loading buffer containing 100 to 800 mM 

NaCl at 100 mM increments. The 96 wells on the PreDictor plates each contained 20 

µL of resin, this was challenged with 290 µL of feed (again, PST diluted with Tris 

buffers as required) and incubated for 2 hours on a shaking platform. The protein 

concentrations of the feeds were different for each experiment because two different 

batches of PST were used, the protein challenge for each well was 54 ± 6 µg for the 

QSFF plate and 75 ± 10 µg for the CA plate. Using all the wells on the plates and 

testing 3 different pHs with 8 different concentrations of NaCl for elution allowed for 4 

replicates of each set of conditions. 

Figure 6.4 shows the total protein data obtained using the BCA assay from these 

experiments. Figure 6.4.A indicates a slight increase in the amount of protein bound to 

QSFF compared with that bound to CA at pHs 8.0, 8,3 and 8.6, with increasing pH not 

shown to have a significant effect within this range. Figure 6.4.B shows the 

concentration of protein in the feed, flow-through and eluted fractions of increasing 

NaCl concentration for QSFF. The protein content of the wash steps and elution of 

protein from CA was below the limit of detection (LOD) of the BCA assay, this could be 

further evidence of CA’s multimodal functionality and therefore just increasing NaCl 

concentration may not be the required elution strategy. This data also suggests that, for 

all pHs, protein elution begins and incrementally increases with 100 mM NaCl yet 

remains relatively unchanged after 400 mM NaCl. However, the BCA results imply a 
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discrepancy between protein loaded onto the resin in the feed (F) and that which 

flowed-through without binding (FT) and which bound but subsequently eluted (E); as 

in theory F = FT + E. From Figure 6.4.B it was estimated that the protein unaccounted 

for is 10 µg as an approximate average across all pHs. It is possible that this is still 

bound to the resin with 800 mM NaCl not sufficient to elute. This may also be due in 

part to the use of the BCA assay at the lower end of its sensitivity; the focus on protein 

concentrations within such a small window towards the base of the assay’s standard 

curve will inherently make the calculated results significantly more variable and prone 

to being masked by the intercept and subtraction of blanks – a contributing factor to the 

lack of data for the washes and eluted fractions of the CA resin. 
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Figure 6.4 – total protein data obtained from QSFF and CA single resin plates challenged with 

PST diluted with appropriate buffer. Comparison of protein bound to each resin at different pHs 

(A). Protein content of eluted fractions for QSFF (B), washes and CA eluted protein content 

were below the limit of detection. Error bars based on standard deviation of analytical samples 

as follows: Feed in A and B, n=96; pHs in A, n=32; flow-throughs in B each pH n=32; NaCl 

elution concentrations in B each pH, n=4. 
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Figure 6.5 shows the mELISA results for the load and elute of the QSFF (A) and CA 

(B). The dilutions required to bring the data within range of the mELISA were 1 to 100 

for the QSFF experiment and 1 to 4 for the CA experiment. Overall this data indicates 

that JEV bound to CA is not eluted with NaCl up to a concentration of 800 mM, unlike 

with QSFF which shows some JEV eluting with 100 mM NaCl increasing up to 500 mM 

NaCl at which point increasing NaCl has no further significant effect. The effect of 

increasing pH was negligible with CA and appeared to slightly promote JEV binding 

and elution on QSFF. This data is consistent with the BCA data in suggesting that 

material bound to QSFF is more easily eluted than with CA. 
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Figure 6.5 – modified ELISA absorbance data for the load and elute fractions of Q Sepharose 

FF (A) and Capto Adhere (B) single resin plates challenged with PST diluted with appropriate 

buffer. Error bars based on standard deviation of analytical samples as follows: Feed in A and 

B, n=96; flow-throughs in A and B each pH n=32; NaCl elution concentrations in A and B each 

pH, n=4. 
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Figure 6.6 shows a silver stained SDS-PAGE analysis of the load and elute from pH 

8.6 of QSFF, with the feed, flow-through and wash samples all taken from the same 

corresponding well. The staining pattern of the elution fractions corroborates the BCA 

results in Figure 6.4.B, with no staining observed from the wash sample and some 

protein eluted with 200 mM NaCl which increases with 300 mM NaCl where it 

plateauxs with no obvious further increases in band intensity. The BCA data also 

shows flow-through concentrations for pH 8.6 to be around 92 µg/mL and for the 200 

mM NaCl elution at the same pH to be around 22 µg/mL. However no staining is 

evident from the flow-through sample loaded onto the gel in Figure 6.6 despite the 

protein concentration being reported as higher than that of the 200 mM eluted fraction 

where staining is evident. A possible explanation is that the protein concentration 

determined is derived primarily from the leftover protamine sulphate added to the 

process material in the previous step to remove host cell DNA from the concentrated 

harvest material. Protamine sulphate (PS) is a highly cationic peptide of approximately 

5.1 kDa. The nature of this impurity, that of being significantly positively charged, will 

dictate that it does not bind to an anion exchange resin under the pH conditions 

investigated and should therefore be found in the flow-through. In terms of staining, the 

amino acid sequence of PS indicates that it is not a peptide amenable to the reduction 

of silver ions required by this assay for protein visualisation (Rabilloud, 1990), lacking 

as it does the following residues: Asp, Glu, His, Cys, Met (assuming cleavage of 

initiator methionine) and Lys (Moir et al., 1988). Consequently it can be assumed that 

protamine sulphate passes into the flow-through, where it is picked up by the BCA 

assay, but is not visualised with silver staining. 
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Figure 6.6 – SDS-PAGE analysis of fractions from load and elute of Q Sepharose Fast Flow 

single resin plate at pH 8.6. Lanes loaded as follows: Novex Mark 12 protein unstained protein 

standard (M), feed (F), flow-through (FT), wash (W) and NaCl elution concentration (100 – 800 

mM). F, FT, W and 100 mM samples were all taken from the same corresponding well. 
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From this investigation it was decided to take forward Q Sepharose FF a resin for 

studies at a larger scale as it performed more favourably than Capto Adhere in terms of 

JEV recovery in eluted fractions. 

6.3 Microscale investigation discussion 

6.3.1 Choosing Q Sepharose FF 

Overall the small-scale studies for binding and elution of PST JEV process material on 

micro-titre plates performed as expected. The weak anion exchanger Capto DEAE 

demonstrated the least desirable loading results during screening and the multi-modal 

Capto Adhere resin displayed the greatest affinity for binding material under all 

observed conditions yet the subsequent elution strategy failed in retrieving any JEV. 

More desirable operating windows for loading pH and NaCl and were elucidated for 

Capto Q and Q Sepharose Fast Flow, most probably due to being strong anion 

exchangers. 

It is likely that QSFF and CA bound the most protein due to having 6 µL of resin per 

well unlike CQ and DEAE that had 2 µL, despite the manufacturers assertion that the 

latter two resins have a higher capacity and the two sets are comparable. Such a 

characteristic could be true for specific protein purification (e.g. monoclonal antibodies) 

but unlikely for virus purification as the product is too large to pass through the pores in 

the resin beads thus only their surface is available for ionic interaction and exchange 

conferring a distinct binding advantage with a larger volume of resin due to having 

access to a greater surface area. 

Capto Adhere is a high capacity multi-modal resin designed to be operated in flow-

though mode for the capture of impurities, such as viruses (GE Healthcare Life 

Sciences, 2012). The results show that CA functions in this respect with high capacity 

for protein binding and capture of JEV from the feed. The data also shows that JEV is 

not recovered with NaCl elution concentrations of up to 800 mM, which is why the resin 
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was not taken forward for larger-scale investigations. However, this could indicate an 

alternative mode of binding other than anion exchange as pH and NaCl concentration 

did not appear to affect JEV binding under the observed conditions. Perhaps the 

multimodal functionality of Capto Adhere came into full effect with strong hydrophobic 

interaction and/or hydrogen bonding having taken place instead of or as well as anion 

exchange. 

Q Sepharose Fast Flow has previously been shown to capture enveloped viruses 

(Connell-Crowley et al., 2013; Strauss et al., 2009a) with the primary binding 

mechanism proven to be through electrostatic interaction with the charged functional 

group, in this case quaternary ammonium (Strauss et al., 2009b). Therefore the 

performance of the two strong anion exchange resins, Capto Q and QSFF, showing 

satisfactory levels of JEV binding with high pH and low NaCl in the screening 

experiment was as expected – a more highly charged resin charge (due to pH) with 

fewer competing ions (lower NaCl concentration). Although somewhat marginal, 

possible reasoning for QSFF demonstrating a more favorable operating window over 

CQ (Figure 6.2), apart from the larger volume of resin, could be found in the differences 

in the matrix structure between the two resins. Although the average bead diameter is 

the same (90 µm, Table 6.1), QSFF has ligands attached directly to the surface of the 

cross-linked agarose matrix, whereas CQ uses dextran surface extenders on an 

agarose matrix with a higher-level of cross-linking and porosity (Pezzini et al., 2009). 

These structural characteristics make CQ a popular choice for rapid (high flow rate) 

purification of lower molecular weight proteins through greater rigidity and higher 

binding capacities yet the increased ligand density could limit binding of large 

biomolecules, such as JEV. 

6.3.2 HTS JEV process development and assays 

Although useful for obtaining qualitative data, SDS-PAGE and Western Blotting are not 

suited to high throughput processing of samples. It is necessary to be more practical 
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and use the quantitative methods to decide which samples to run using these other 

methods, as was done in this work. 

Silver staining of SDS-PAGE gels is a highly sensitive technique, reportedly about 100 

times more sensitive than with a Coomassie stain (Rabilloud, 1990), able to visualize 

bands containing low nanogram levels of protein (Chevallet et al., 2006). For 

chromatography process development it is useful in being able to compare relative 

purity of the feed and subsequent fractions. With this study the technique demonstrates 

banding predominantly in the region of ~56 kDa (Figure 6.3.A and Figure 6.6), this was 

initially assumed to be the JEV E-protein yet western blot analysis of the same 

fractions using antibodies raised against JEV give a signal at ~51 kDa (Figure 6.3.B), 

slightly below the expected value and not part of the principal band shown in the gel. 

Amino acid sequence analysis of the JEV E-protein returns a value of 53.8 kDa – a 

value which could easily be visualised as either of the other two values on a gel once a 

certain degree of assay error is factored into interpretation of the band location relative 

to the protein standard ladder. A possible explanation for the 50 to 56 kDa region of 

anomaly may again be found with the high concentration of protamine sulphate added 

in the previous step. Perhaps the highly cationic, ~5 kDa, PS binds to the JEV E-

protein in such a fashion that the antibody epitopes on domain III of the protein (Lin and 

Wu, 2003) are inaccessible for antibody binding – thus increasing the molecular weight 

from ~51 to ~56 kDa yet interfering with the western blot by steric hindrance. However, 

this is unlikely, as unless the PS binds covalently to the E-protein then it is assumed 

the denaturing effect of SDS-PAGE sample preparation process would separate the 

two proteins. 

The BCA assay is a simple total protein assay that can be adapted for use in HTS in a 

micro-plate format, where the BSA standard curve has linearity range of 20 to 2000 

µg/mL (Thermo Scientific, 2010). Within these experiments the protein concentrations 

measured were rarely above 800 µg/mL and most often well below 100 µg/mL, 

particularly with the eluted fractions. Although within range of the linearity and as stated 
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above, the focus on such a small window of operation at the lower end of the assay’s 

sensitivity engendered results more susceptible to variation and baseline fluctuations 

(background/blank readings). It is estimated that more optimal operating conditions 

would be achieved with the BCA assay with higher feed titres to make better use of the 

of the assay’s linearity range with all samples. 

The selectivity, sensitivity and high-throughput applicability of the modified ELISA 

provided a valuable perspective in deciding the resin with which to proceed. Yet, this 

new method is subjective to each individual experiment and the reagents used, as the 

standard curve’s linear region, in terms of range of absorbance values, must be 

determined to elucidate the starting dilution. Two different batches of feed material and 

two different lots of the primary antibody were used in the screening study and the 

QSFF single resin experiment compared with the CA single resin plate. An immediately 

evident difference is the absorbance value of the feed (Figure 6.5 A and B), indicating a 

lower JEV titre in the batch or a primary antibody with a lower affinity for the virus, or 

both, in the CA experiment over the QSFF. 

Previous studies involving high-throughput screening of chromatography resins for 

specific virus capture used quantitative PCR (qPCR) to determine log reduction values 

(LRV) of virus (Connell-Crowley et al., 2013; Strauss et al., 2009b). Although specific 

and fairly accurate, this method would not give an indication of product quality or 

antigen yields over the course of the step as is required when the virus is the 

purification target and not an impurity to be removed. 

The BCA and ELISA assays are both fundamentally colorimetric assays and so can be 

adapted for HTS, as with the mELISA. The shift from using reference standards, blanks 

and controls to reliance on purely relative absorbance values may seem bold, and, to a 

certain extent, crude, but judged acceptable within the constraints of each individual 

design space. That is to say, with reference to the example above, the subjectivity of 

such methods needs to be taken into account in cross-experimental comparison. 



 117 

Furthermore, the range of commercially available, colorimetric, microplate compatible 

assays would enable screening of resins and conditions for a broad range of attributes, 

for example dsDNA quantification with the Quan-iT™ PicoGreen® assay (Life 

Technologies), quicker and easier. Protein concentration could also be read directly in 

a U.V. transparent microplate, as has been noted in previous HTS studies (Sanaie et 

al., 2012). 

The GE PreDictor plate format is a simple and relatively easy to use starting point for 

process development intending to incorporate ion exchange chromatography. 

However, the plates are more ideally suited to automated platforms; having a robotic 

system perform the buffer preparation and all steps (loading, washing and elution) 

would likely reduce error and improve consistency. An optimal scenario would be to 

incorporate assays with high-throughput potential (e.g. BCA, ELISA) into the process 

development flow, with sampling, reagent mixing, incubation, testing etc… executed in 

situ alongside experimentation creating a complete chromatography screening 

platform. Such a setup could be made simpler, and therefore more feasible, with the 

use of colorimetric assays in relative absorbance format without the need for standard 

curves, as stated above. 

6.3.3 Microscale investigation summary 

These experiments successfully used a high-throughput approach to screen anion 

exchange resins for optimal JEV binding and elution conditions. The development of a 

JEV specific high-throughput assay in the modified ELISA was invaluable in this effort. 

A greater degree of accuracy and consistency could have been achieved with the use 

of an automated platform, future work should look to include such technology alongside 

relative absorbance assays, as suggested, to maximise throughput, data obtained and 

reproducibility. 
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7  Chromatography scale-up of 
Japanese Encephalitis virus 
capture and elute 

Although sucrose gradient purification is well established for purifying viruses, it is also 

variable, labour intensive and not amenable to scale-up. Chromatography is well-

established across the pharmaceutical and biopharmaceutical sectors, even in vaccine 

production and so the decision was made to investigate the possibility of purifying JEV 

using this technique. 

The previous chapter detailed the high-throughput screening of 4 different anion 

exchange resins with different conditions of a Tris buffer for the capture and elution of 

JEV from protamine sulphate treated concentrated harvest material. Q Sepharose FF 

(QSFF) was deemed the best performing resin in the microplate format and taken 

forward for investigation using a 1 mL packed column run on an AKTA purification 

system. The successful purification of JEV at this scale will depend on maintaining the 

mass transfer levels observed during screening for effective bind and elute and building 

on the recovery rates with novel optimisation. Product integrity and purity were initially 

key markers for progress evaluated using the same techniques as with the screening 

study but with the Western blot playing a more central role to identify JEV in individual 

fractions. An assessment is made of the effectiveness of methodology transfer from 

batch binding microplate experiments and the feasibility of further scale-up. 

7.1 Initial Scale-up 

Following the previous studies investigating binding and elution conditions it was 

decided to scale-up the investigation to a 1 mL Q Sepharose Fast Flow pre-packed 
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column (GE) run on an AKTA Purifier 100. The starting material was protamine 

sulphate treated concentrated JEV harvest material, PST, see Figure 3.3 for location in 

a typical JEV production process. This PST was buffer exchanged into 50 mM tris pH 

8.6 (the loading buffer) with 20 mL Vivaspin tubes with a molecular weight cut-off 

(MWCO) of 50 kDa, to create the feed, and loaded onto the column with an injection 

loop at a flow-rate of 1 mL/min. The initial AKTA stepwise method was comprised of a 

10 column volume (CV) post load wash with loading buffer, a 20 CV 2nd post load wash 

with 200 mM NaCl, elution with 400 mM NaCl and a post elution wash with 1 M NaCl 

(all buffers were also 50 mM tris pH 8.6). The rational behind including a 200 mM NaCl 

post load wash was to separate some of the process impurities from the product elution 

fraction at 400 mM NaCl. 

Figure 7.1.A shows the chromatogram from a load and stepwise elution of protamine 

sulphate treated JEV process material (PST) using the buffer exchange and conditions 

stated above, and the resulting silver stained SDS-PAGE gels of selected fractions in 

Figure 7.1.B and C. As before, the JEV E-protein was assumed to be the ~55 kDa 

band seen in the start material (lane SM, Figure 7.1.C pre-buffer exchange) and the 

feed (lane F) which is bound and eluted with 400 mM NaCl and can be seen at a 

relatively higher concentration and purity in lanes 10 to 12 in Figure 7.1.C. The 

difference in SM and F on the gel relates to the buffer exchange performed in the 

Vivaspin tubes, whereby some smaller <50 kDa) proteins are lost due to passing 

through the membrane and further product losses, possibly as a result of aggregation 

and membrane fouling. In this instance, the 10 mL of SM had a protein concentration of 

931 µg/mL, which was reduced to 259 µg/mL in the 19 mL of F, this equates to a 

protein loss of 47% during Vivaspin mediated buffer exchange. This is evident with the 

staining in Figure 7.1.C as F appears as a diluted form of SM. 

From the gels it also appears that little protein attributable to JEV can be found in the 

flow-through or the post elution wash. Furthermore, the protein bands observed in the 

post load wash seem to be impurities and/or degraded and aggregated JEV-E protein 



 120 

bands within the 45 to 70 kDa region. Based on this qualitative data set, the addition of 

the 2nd 200 mM NaCl post load wash serves its intended purpose to remove bound 

impurities from the column prior to the product elution with 400 mM NaCl, thus 

validating the chosen method.  
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Figure 7.1 – PST JEV process material buffer exchanged into 50 mM Tris pH 8.6 loaded onto 1 

mL Q Sepharose FF pre-packed column, equilibrated with the same buffer, at 1 mL/min. 

Chromatogram of U.V. absorbance against volume (A) and corresponding silver stained SDS-

PAGE analysis of selected fractions (B and C) where M = Novex Sharp unstained protein 

standard, SM = start material (pre-buffer exchange) and F = feed. All buffers steps shown in A 

also included 50 mM Tris pH 8.6.  
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However, quantitative data analysis presents an entirely different picture. Figure 7.2.A 

and Figure 7.2.B show the total protein and antigen content by BCA assay and ELISA, 

of the feed and the elution pool for this particular AKTA run. Significant losses are 

evident as only 5.7% protein and 7.1 % antigen loaded onto the column is recovered 

according to these results. To a certain extent, some protein losses might be attributed 

to Protamine Sulphate not binding to the resin under these conditions and not being 

visualised with silver staining, as stated in the previous chapter. Although it is more 

likely that most of the PS would have been lost during the buffer exchange as it is small 

enough to pass through the membrane MWCO of 50 kDa and therefore would not have 

contributed to the protein content of the feed. It would be more reasonable to then 

assume that most of the JEV loaded onto the column either does not bind to the 

column and thus should be present in the flow-through, or does bind but is eluted with 

the 200 mM NaCl wash, or perhaps a combination of the two effects is being 

witnessed. Yet despite some protein being accounted for in the load and washes, one 

would still expect a significant proportion to be found in the eluted fractions, judging by 

the elution peak height in Figure 7.1.A and intensity of the bands observed in lanes 10-

12 of Figure 7.1.C, though according to the BCA and ELISA data, this is not the case. 

The bands observed at 55 kDa in lanes 10-12 of Figure 7.1.C do not seem to be the 

JEV E protein band, though the molecular weight is in keeping with the literature value 

of the JEV E-protein. Thus, the poor antigen yield in the elution could be due to either 

JEV not being in the eluted fraction, through non-binding or being washed off with 200 

mM NaCl (the wash was not assayed at this stage), or the ELISA antibodies not 

binding to the virus, through steric hindrance of and/or damage to the antigenic binding 

sites.  

  



 123 

 

 

 

Figure 7.2 – Protein (A) and antigen (B) content of feed and elution pool relating to the AKTA 

run in Figure 7.1, the elution pool specifically relates to lanes 10-12 in Figure 7.1.C. The error 

bars arise from the standard deviation between analytical samples, n=3. 
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7.2 Antigen Monitoring using Western Blots 

Despite the qualitative and quantitative data sets being at odds, it was nevertheless 

clear that this initial AKTA method was unsuitable for JEV purification in its current 

format. The protein content discrepancies could be overlooked, to a certain extent, 

owing to previous concerns with the BCA assay being used to measure samples at the 

lower end of its sensitivity as protein levels below the LOD of the microplate format 

BCA assay can still be visualised by silver staining of SDS-PAGE gels. However the 

antigen recovery was a more pertinent issue; the results suggested that if JEV was 

binding to the QSFF resin at this scale the eluted product was unrecognisable to the 

antibodies used in the ELISA. This could be due to process damage caused by contact 

with the charged or conditions within the column. The next step was therefore to 

determine if JEV was binding under these conditions and if so, alter the conditions so 

that interaction with the resin over prolonged periods would not adversely affect 

product recovery, as suggested by some literature in the form of protein spreading on 

hydrophobic interaction resin (Haimer et al., 2007). 

Data from two further AKTA runs is given in Figure 7.3 and Figure 7.4; in each case the 

pH was reduced from 8.6 to 8.3 and attempts were made to reduce the contact time of 

JEV with the resin by reducing the volume of feed loaded onto the column and the 

number of column volumes used for the washes. In the case of the run represented by 

Figure 7.4, the 2nd post load wash with 200 mM NaCl was removed altogether. Western 

blots were also performed alongside SDS-PAGE analysis to track JEV over the course 

of the step. 

Figure 7.3 shows the results of a repeated AKTA run using the same conditions as in 

Figure 7.1, only this time Western blots have been included as part of the analysis. 

Additionally, a reduced load is used in order to minimise any background on the gels 

and blots (5 mL of 108 µg/mL). Unfortunately, due to the low protein concentration of 

the feed all subsequent samples were below the LOD for standard BCA analysis. The 
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feed sample (lane F, Figure 7.3.C and E) displayed the strongest immuno-signal at ~55 

kDa, representing the JEV envelope protein (E), followed by the capsid (C, ~14 kDa) 

and membrane (M, ~7 kDa) proteins. As mentioned in the previous chapter, the sheep 

anti-JEV antibody used in the ELISAs and Western blots is raised against purified 

inactivated JEV therefore bands representing other structural proteins can show up on 

Western blots. There was also a visible band just above 160 kDa, which could 

correspond to trimerised envelope protein, possibly indicating aggregation of the 

protein monomer. 

The most striking result from this run was the complete lack of banding in the Western 

blot of the 400 mM NaCl eluted fractions (Figure 7.3.E) despite the clear banding 

observed in the SDS-PAGE (Figure 7.3.C). It would seem that the strong 55 kDa 

banding seen in lanes 10-13 in Figure 7.3.C do not correspond to the JEV E-protein as 

identified by Western blot. Conversely, Western blot signals are observed in samples 

which give fainter bands after being silver stained on SDS-PAGE gels, this is 

particularly evident with the flow-through (Figure 7.3.B and D, lane 1), and slightly less 

so in the post load wash (Figure 7.3.D), with very faint Western blot bands observed at 

~55 kDa and just above ~160 kDa, similar to those found in the feed. The diluted 

elution pool sample was included in case the 400 mM NaCl in the elution buffer was 

somehow damaging the antigen or interfering with the assay – a sample from the 

elution pool was immediately taken and diluted 1:1 with PBS. No change was noticed. 
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Figure 7.3 – PST JEV process material buffer exchanged into 50 mM Tris pH 8.3 loaded onto 1 

mL Q Sepharose FF pre-packed column, equilibrated with the same buffer, at 1 mL/min. 

Chromatogram of U.V. absorbance against volume (A) and corresponding silver stained SDS-

PAGE analysis (B and C) and Western blots (D and E) of selected fractions where M = Mark 12 

unstained protein standard (B and C) or Novex Sharp pre-stained protein standard (E), F = 

feed, EP = elution pool and DEP = diluted elution pool. All buffers steps shown in A also 

included 50 mM Tris pH 8.3.  
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7.3 Consequence of removing the second wash step 

A similar run was performed again with the same conditions except the load volume 

was also reduced compared with the first run, from 19 to 7 mL as the feed 

concentration was increased to 305 µg/ml, resulting in four times as much protein being 

loaded onto the column than the run described in Figure 7.3. Additionally, the 200 mM 

NaCl wash step was removed; the resulting chromatogram (A), SDS-PAGE gel (B) and 

Western blot (C) can be seen in Figure 7.4. The amount of material eluted off the 

column compared to the load is the most evident difference in the U.V. absorbance 

compared with the previous run. The resin appears to have correctly taken the wide 

load peak and concentrated the protein into a sharp, tightly defined elution peak almost 

16 times the height of the original load peak (Figure 7.4.A). Figure 7.4.B indicates that 

the strong 55 kDa band seen in the Feed and Starting Material is concentrated and 

eluted in lanes 5-8, however this does not correlate with the Western blot in Figure 

7.4.C. No Western blot bands were evident from the elution samples of the same size 

as those found in the feed and start material (Figure 7.4.C) regardless of the significant 

silver stained bands in the same samples above (Figure 7.4.B). The only Western blot 

bands observed that could be attributed to the JEV E-protein monomers are those in 

the feed, start material and flow-through; and as with the previous run, a larger protein 

is seen in the eluted fractions, with an extremely faint band at ~55 kDa in lane 5. The 

removal of the 200 mM NaCl second wash step had no noticeable effect; therefore 

prolonged interaction of material with the resin is unlikely to be the cause of the 

unexpected antibody binding patterns.  

These two AKTA runs further cast doubt on the effectiveness of the method for the 

binding and elution of JEV to a QSFF resin, backing up the data in Figure 7.1 and 

Figure 7.2. According to the Western blots, the desired product seemed to not bind to 

the resin, appearing only in the feed and flow-through, and what small amount of 

product did appear to interact with resin and elute, was aggregated or trimerised to 

approximately 160kDa. Both feed samples (Figure 7.3.E and Figure 7.4.C lanes F and 
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SM) imply that some aggregation occurs prior to loading, yet also some aggregation 

could have occurred to the virus proteins on interface with the resin or during elution. 
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Figure 7.4 – PST JEV process material buffer exchanged into 50 mM Tris pH 8.3 loaded onto 1 

mL Q Sepharose FF pre-packed column, equilibrated with the same buffer, at 1 mL/min. 

Chromatogram of U.V. absorbance against volume (A) and corresponding silver stained SDS-

PAGE analysis (B) and Western blot (C) of selected fractions where M = Mark 12 unstained 

protein standard, EP = elution pool, F = feed, and SM = start material. All buffers steps shown in 

A also included 50 mM Tris pH 8.3  
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7.4 The impact of cross-linking the virus with formaldehyde 

treatment 

At this stage it was thought that perhaps the integrity of the JEV particles was being 

compromised when interacting with the QSFF resin; envelope protein possibly 

dissociating and aggregating, and the intact virions damaged to such an extent that the 

antigenic epitopes were unrecognisable to the antibodies which were raised against 

JEV – envelope protein and not giving a positive Western result. This method exposed 

the virus to forces not experienced during resin screening – such as shear forces of 

fluid flow in a pressurised system. It was conceivable that these forces, in addition to 

the electrostatic forces of binding to the resin, were having a detrimental effect on the 

virus and its surface antigens. 

In an attempt to preserve the structure and antigen binding sites of JEV in the feed, 

and using knowledge gained from previous work (Chapter 5.1), some of the feed (PST 

buffered exchanged into 50 mM Tris pH 8.3, as usual) was treated with 0.02% v/v 

formaldehyde in the presence of 1% w/v glycine for 1 week at 4°C. It was intended that 

the effect of the formaldehyde would be to cross link proteins in the virus envelope 

thereby helping to mitigate any process damage induced during the chromatography 

step. The glycine, in turn, would minimise antigen losses due to the presence of the 

formaldehyde, as described previously. This treated material was run under the same 

conditions as the two previous runs, at pH 8.3, with the 200 mM NaCl second wash 

and compared against some non formaldehyde - glycine treated feed. The loading 

volumes were 5 mL for both formaldehyde treated (FT) and non-treated (NT) feeds. 

Figure 7.5 shows the U.V absorbance spectra of both runs (A) as well as SDS-PAGE 

(B and D) and Western blot analysis (C and E) of selected fractions. 

The chromatogram shows that more FT material is loaded and eluted from the column 

than NT material – there is a 49% difference in total peak area (load, washes and 

elution) in FT over NT. Some variation in the amount of U.V. observable protein 
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between the two samples is to be expected with the buffer exchange process and the 

formaldehyde inactivation, but this is a significant difference. U.V. is absorbed in 

proteins predominantly by tryptophan and tyrosine residues (Aitken and Learmonth, 

1996) and 1 % w/v glycine has been shown to not affect the U.V. absorbance of an 

AKTA run under the same conditions with 1 mg/mL BSA (see Appendix 10.13). 

Furthermore the nature of the inactivation step (with 0.02% v/v formaldehyde) should 

ensure very limited microorganism growth over the course the week spent at 4°C. 

Although this was not explicitly tested, in other instances where material was treated 

with formaldehyde and subsequently tested for infectivity on Vero cell monolayers, 

sample contamination was not found to be a problem (except in isolated cases where 

other factors were blamed for contamination). Therefore an increase in the amount of 

measurable material can be ruled out, thus if not an increase in the treated feed then 

perhaps a decrease in the non-treated feed, as formaldehyde treated feed is probably 

more stable than non-treated feed due to the cross-linking effects reducing protein 

degradation. 

The protein content of the feeds were measured by BCA as follows: NT = 305 µg/mL 

and FT = 1589 µg/mL. These values are in line with the observed U.V. absorbance 

trace from the chromatogram, as commented on above, however there are two issues 

to consider with these results. The BCA assay specifically detects peptide bonds, being 

based on the reduction of Cu2+ to Cu1+ by protein in an alkaline medium, this reaction 

requires at least tripeptides. One might ask if the presence of formaldehyde and glycine 

could artificially increase the observed protein concentration with this method due to 

the cross-linking effect of formaldehyde and the binding of glycine to protein due to 

formaldehyde. The answer is no because formaldehyde does not induce the formation 

of more peptide bonds (Metz et al., 2004). Furthermore, despite being a single amino 

acid, glycine interferes with this assay at a concentration of 1 M (Smith et al., 1985). 

1% glycine is equivalent to approximately 125 mM and has been shown to return a 

value below the expected protein concentration (Appendix Figure 10.7). Therefore the 



 132 

FT protein concentration value, as it in this case being measured in the presence of 1 

% w/v glycine, could be being reported lower than its true value. However, this 

interference is measured without prior incubation with formaldehyde, this incubation will 

decrease the available free glycine in solution as the formaldehyde induces it to bind to 

protein therefore at the point of measurement less will be available to interfere with the 

assay reagents. 

Overall it follows that the BCA measurement of the NT and FT feeds can be assumed 

to be comparable and that the difference in the amount of measurable protein being 

loaded and eluted during the AKTA run could be attributed to degradation of material in 

the non-formaldehyde treated feed. 

The SDS-PAGE and Western blot banding patterns observed in Figure 7.5.B, C, D and 

E correlate with those previously observed. Formaldehyde treatment had no effect in 

terms of acquiring JEV in the desired eluted fraction. However, ELISA data from both 

runs, seen in Table 7.1, shows that antigen recovery rates for the flow-throughs are 

59.5% and 80.7% for the non-treated and formaldehyde treated material, respectively. 

Definitive evidence that, contrary to the screening results, very little JEV is binding and 

eluting from the resin under these conditions. It also appears that there is a protein, 

very similar in size to the JEV E-protein, in the eluted fraction and possibly the feed of 

all test material which binds to the resin but does not give positive results using either 

product specific assay, the Western blot or ELISA. 

  Non-treated feed Formaldehyde and 
glycine treated feed 

Feed (AU) 409.9 ±70.6 562.9 ±25.9 

Flow-through pool (AU) 243.8 ±19.2 454.2 ±14.2 

Recovery (%) 59.5 ±12.6 80.7 ±3.9 

Table 7.1 – Antigen content and recovery data based on ELISA for treated and non-treated 

feed. Error based on standard deviation within ELISA assay. 
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Figure 7.5 – U.V absorbance of non-treated PST feed and formaldehyde and glycine treated 

PST feed loaded onto 1 mL Q Sepharose FF (A) with corresponding silver stained SDS-PAGE 

analysis (B and D) and Western blots (C and E) of selected fractions where M = Mark 12 

unstained protein standard (B and D) or Novex Sharp pre-stained protein standard (C and E), F 

= feed, and SM = start material. Non-treated fractions can be seen in B and C with 

formaldehyde and glycine treated fractions in D and E. All buffers steps shown in A also 

included 50 mM Tris pH 8.3.  
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7.5 Flow-through mode operation and pre-treatment 

optimisation 

Clearly the bind and elute method was not suitable for JEV purification at this scale. 

Yet favourable antigen recovery rates were recorded in the flow-through, therefore it 

was decided to test the flow-through mode further, also comparing non-treated and 

formaldehyde treated feeds, and to dispense with the capture mode. With the second 

wash becoming redundant, it was removed. For this experiment, the formaldehyde 

treatment of the feeds was slightly different. Protamine sulphate treated JEV process 

material was removed from -80 °C storage, glycine was added to a concentration of 0.5 

% and formaldehyde to 0.02% the mixture was then incubated at 20°C for 96 hours 

until quenching with sodium metabisulphite. This reduced the process exposure time 

and brought the glycine concentration down to a level less likely to interfere with 

assays without significant compromise to inactivation potential and recovery rates. It 

was also decided to remove the buffer exchange using centrifuge filter tubes as 

significant product losses were consistently observed. To create the feeds with the 

correct pH, the treated and non-treated PST material were diluted 1 in 3 with loading 

buffer (50 mM tris pH 8.3), in the same fashion as with the screening study; the feeds 

were each pH tested prior to loading.  

One of these comparative AKTA runs is shown in Figure 7.6, in this instance the U.V. 

traces off the column were very similar with the NT feed giving just an 8.7% larger peak 

area than the FT feed, a significantly smaller difference than previously observed. 

However the banding patterns on both the SDS-PAGE gels (Figure 7.6.B and D) and 

the Western blots (Figure 7.6.C and E) are significantly different than previously 

observed. From the gels it appears that the FT material contained much less protein 

than the NT material, despite the U.V. traces being similar and the BCA results stating 

that the FT feed concentration was 705 µg/mL and the NT feed 428 µg/mL, in theory 

therefore more protein should have been loaded onto the column. Furthermore only 

extremely faint bands appear on the FT Western blot (Figure 7.6.E), compared with the 
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highly visible bands appearing in each lane with the NT material. ELISA analysis of the 

feeds yielded NT = 17.8 AU/mL and FT = 9.2 AU/mL, some antigen loss is expected 

during formaldehyde inactivation and with this batch of material of a particularly low 

titres it is possible that the FT material was below the LOD for the Western blot. Of 

perhaps greater interest is the visualisation of Western blot bands in the eluted 

fractions of the non-treated material (Figure 7.6.C), this was not observed in any 

previous AKTA runs. Possible reasons could be a larger load providing a longer 

residence time of the feed with the column, in turn providing greater scope for 

interaction or it could be a result of removing the buffer exchange step. 
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Figure 7.6 - U.V absorbance of non-treated PST feed and formaldehyde and glycine treated 

feed applied to a 1 mL Q Sepharose FF at 1ml/min equilibrated with 50 mM Tris pH 8.3 (A) with 

corresponding silver stained SDS-PAGE analysis (B and D) and Western blots (C and E) of 

selected fractions where M = Novex Sharp unstained (B and D) or pre-stained (C and E) protein 

standard and F = feed. Non-treated fractions can be seen in B and C with formaldehyde and 

glycine treated fractions in D and E. All buffer steps in A also contained 50 mM Tris pH 8.3. 
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However, one lingering consistency between all comparisons of AKTA runs of non-

treated and formaldehyde and glycine treated feed is the average 20% increase in 

antigen recovery after flow-through mode chromatography with formaldehyde treated 

material. Figure 7.7 shows cumulative recovery rates for all runs where treated and 

non-treated feeds were compared (6 in total, 3 of each), therefore based on 

quantitative results, for favourable JEV antigen recovery with chromatographic 

purification, the bind and elute method should be abandoned in favour of a flow-

through through method with formaldehyde and glycine treated feed. This in contrast to 

the qualitative results in Figure 7.6.C, which suggest that non-treatment of the feed 

yields better flow-through collection of JEV antigen. 
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Figure 7.7 – Average JEV antigen recovery from flow-through chromatography mode of non-

treated feeds and PST feeds pre-treated with formaldehyde and glycine and applied to a 1 mL 

Q Sepharose FF pre-packed column at 1 mL/mL for 6 different AKTA chromatography runs. 

Loading, equilibration and wash buffer was 50 mM Tris pH 8.3. Error bars represent standard 

deviation between results from separate chromatography runs, n=3.  
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7.6 Scale-up discussion 

7.6.1 From plates to the column 

The most striking finding of this scale-up work was the contrast in results when 

compared to the smaller scale bind and elute screening (Chapter 6). Based on antigen 

recovery, bind and elute was severely limited with the 1 mL Q Sepharose FF column. 

The intrinsic differences of column flow and hydrodynamic properties in the packed bed 

over the batch binding experiments could go some way to explaining these results. 

Assuming that the virus particles are too large to pass into the resin beads then mass-

transfer by ionic adsorption onto the surface of the resin beads should be the limiting 

factor to successful binding. This type of limiting factor, external mass-transfer, is 

described by one study as being extremely difficult to achieve the same results when 

transferring between plate and column formats due to the differences in hydrodynamic 

conditions surrounding the resin particles (Łącki, 2012). In essence, with the plate 

format, as the feed is being incubated with resin slurry on an agitated platform, the 

resin is in effect suspended in the feed (the resin to feed ratio was approximately 1:14) 

as opposed to the packed column format where the feed moves around the immobile 

resin – here lie the fundamental differences in hydrodynamic properties which could 

account for the differences observed when scaling up the purification of JEV from the 

PreDictor plates to the 1 mL column. Contact time between feed and resin needs also 

to be taken into account: 2 hours on an agitated platform for the plate format and 

columns were loaded at 1 mL/min for each AKTA run, none of which exceeded 15 

minutes. Thus, we have significant changes in two fundamental conditions, the 

hydrodynamic flow of the target around the resin and residence time. Yet, for a 

previous study these were not seen as obstacles and indeed they obtained comparable 

results when scaling up from HTS plate formats to columns when developing a 

chromatography method for the capture of a virus (Connell-Crowley et al., 2013). 

Although admittedly the aim of this study was virus removal, and therefore the authors 

were unconcerned amount maintaining virus structure, they were able to successfully 
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demonstrate virus binding to QSFF. Another study also significantly reduced residence 

time when switching to a packed column from a plate format, though this one had the 

benefit of intra-particle mass transfer, as the target was a glycosylated protein able to 

penetrate within the resin, thus changing the limiting factor to internal mass-transfer 

(Sanaie et al., 2012). Ultimately, for JEV purification the method transfer from batch 

binding plates to a column format was unsuccessful, unlike with the virus capture study 

mentioned above. One hypothesis could simply be the residence time – some resin 

binding was observed with the final AKTA run described above (Figure 7.6.C, lanes 9-

13), which was one of the experimental AKTA runs with a longer contact time, totalling 

13 minutes. This is a theory that could be tested with a reduced flow-rate during 

loading, though still at odds with the literature. Another theory, with the screening 

method on the plates, could be the incubation period on the agitating platform 

disrupting the virus to such an extent that the envelope proteins became separated and 

were able to migrate into the resin beads for binding and subsequent elution as the 

JEV E-protein is not required to be part of the whole virus to be picked up by the 

corresponding antibodies during analysis with Western blots and ELISA. The final, and 

arguably the simplest, theory to be put forward is that there simply was not enough JEV 

in the feed that was applied to the column in each attempt. This fact along with the 

difference in contact time colluded to produce different results at different scales – the 

increased contact time at microscale compensated for the relatively low concentration 

of JEV.  

These results point towards significant limitations of such high-throughput process 

development techniques for products of this nature: large biomolecules at relatively low 

concentrations in the crude harvest feed streams.  

7.6.2 JEV stability, binding and interaction 

The stability of JEV has been brought into question previously with this project and was 

the principle reasoning for pre-treating the feed with formaldehyde and glycine prior to 

loading onto the column. The consistent 20% increase in antigen recovery observed 
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when comparing treated with non-treated feeds could be due to increased stability of 

the virus particles. The stresses experienced during flow-through chromatography 

could have been less likely to degrade and damage the virus due to the envelope 

protein having been cross-linked by the formaldehyde, resulting in higher recovery 

rates. However, due to the method now being flow-though, it could be simply be that 

less of the virus is binding to the column and thus passing straight through, the 

formaldehyde and glycine treatment having altered the virus´ surface chemistry to such 

an extent that the overall charge of the virus changes, compared to the non-treated 

feed, so less binds to the Q Sepharose FF resin under those conditions. Such 

alterations could be due to the lone action of the formaldehyde on JEV or the action of 

formaldehyde binding glycine and/or the principle contaminant, residual protamine 

sulphate, to the virus envelope. Formaldehyde has been shown to bind proteins to 

glycine and other molecules (Metz et al., 2004; Metz et al., 2005; Metz et al., 2006). 

Glycine is not a highly charged molecule and previous studies have shown that the 

zeta potential of JEV harvest material treated with formaldehyde in the presence of 

glycine does not significantly change (see Chapter 5.1). As previously stated in 

Chapter 6, protamine sulphate is a highly charged cationic peptide which will not bind 

to an anion exchange resin under these conditions. Therefore the possibility exists that 

formaldehyde induced binding of PS to JEV surface proteins could cause the overall 

charge on the virus particle to become less negative and therefore not bind to the anion 

exchange resin thus improving flow-through recovery. Repeating the experiments with 

purified JEV could test this theory. Formaldehyde induced binding of protamine 

sulphate to all proteins in solution could also explain the limited staining of the gels in 

Figure 7.5.D and Figure 7.6.D when compared with their non-treated counter parts 

(Figure 7.5.A and Figure 7.6.A), as silver ions do not bind to protamine sulphate 

(discussed in section 6.2). 



 142 

7.6.3 The eluted protein 

Having discussed the contents of the flow-through and the apparent non-adherence of 

JEV to the resin, the focus should now switch to what did adhere to the resin and was 

subsequently eluted with 400 mM NaCl. All AKTA runs (including those not shown) had 

a significant peak with said elution, fractions of which produced a distinct band at 

approximately 55 kDa when run on polyacrylamide gel with either silver or Coomasie 

staining. As discussed in Chapter 6, the JEV E-protein amino acid sequence is 500 

residues long and calculated to be 53.8 kDa, Western blot analysis highlights a protein 

at ~52 kDa which correlates with positive control samples at Valneva Scotland Ltd. 

(Livingston, U.K.) who supplied the virus stock and the antibodies (D. Low, Valneva 

Scotland Ltd., personal communication). The eluted protein did not give an immuno-

signal and so was twice excised, digested and outsourced (to the UCL Wolfson 

Institute, London U.K.) for LC-MS identification but the analysis was inconclusive in 

both instances due to a weak signal and no fragments were detected. Subsequently, 

the same eluted bands were excised from further AKTA runs and outsourced (to Alta 

Bioscience, Birmingham, U.K.) for amino acid sequencing, first for 5 residues then 10 

residues but again the signal was too weak for conclusive results (see Appendix 

10.14). Various combinations of the short sequences obtained were still analysed using 

numerous BLAST searches with online resources, but no significant hits for Flavivirus 

or Chlorocebus (the host cell genus) proteins were made. Some searches yielded 

results where the top results were partial hits for proteins belonging to large families 

(ABC transporters, dehydrogenases…) suggesting contamination of material or 

samples, but ultimately the protein concentration in the excised gel samples was too 

low for reliable identification using either of these methods. At this point, it is not 

conclusively possible to say if this protein is a contaminant or a process related 

impurity, one of the most obvious contaminants would be bovine serum albumin (BSA). 

BSA is used in many assays as a standard or stabiliser and is present in the serum 

used to supplement growth media during cell expansion. However this band is too 
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small to be BSA  (= 66.5 kDa) and slightly too large to be E-protein, unless the theory 

raised in Chapter 6.3 is again brought to the fore, that this is somehow an interaction of 

the JEV E-protein and protamine sulphate which inhibits antibody binding. This would 

give the protein the approximate size as seen by the band yet still be small enough to 

diffuse into the resin beads, but would be at odds with the theory above, hypothesising 

such an interaction to prevent anion exchange binding to the resin under these 

conditions due to the cationic properties of protamine sulphate. 

7.6.4 Bound versus unbound 

With regard to protein binding, a retrospective analysis of 14 AKTA chromatography 

runs showed that the proportion of material in the feed which bound to resin and that 

which flowed-through was impacted on by storage of the feed after buffer exchange. 

Significant product losses were noticed when using the 50 kDa MWCO Vivaspin tubes 

to change the buffer of the protamine sulphate treated JEV process material (the start 

material, SM) into the Tris loading buffer at the required pH, therefore the decision was 

taken to simply dilute the SM with loading buffer instead to achieve the correct pH. 

However, after buffer exchange the feed was sometimes stored at 4°C overnight 

increasing the pH of the Tris buffer to approximately 8.9; this was not measured but the 

pKa of Tris will increase by 0.03 per 1°C degree decrease in temperature (El-Harakany 

et al., 1984). This did not occur with feed which was merely diluted and when the U.V. 

spectra of the AKTA runs of the two types of feed were compared, the results showed 

that feed stored overnight in Tris buffer, prior to being used in an experiment and 

applied to column, had proportionally more material bind to the resin. Figure 7.1.A, 

Figure 7.4.A and Figure 7.5.A are examples of AKTA runs in which the feed was 

exposed to higher pH due to low temperature storage, Figure 7.3.A and Figure 7.6.A 

are examples of those which were not, the elution peaks in the former set are clearly 

much larger relative to the loading peaks than in the latter. Figure 7.8 shows the 

average ratios of bound to unbound material for the two types of feeds, those stored 

overnight in Tris (pH >8.3) and those not (maintained at original pH of 8.3). The ratios 
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were determined by dividing the total U.V. peak area for the eluted material (including 

2nd wash step, where applicable) by the total peak for the load. The figure clearly 

illustrates that feed exposed to higher pHs overnight binds on average more than 12 

times a higher proportion of material to the resin than feed diluted with loading buffer. 
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Figure 7.8 – Average ratios of bound to unbound peak areas (elution peak area over loading 

peak area) of AKTA runs from feeds which were stored overnight in Tris loading buffer at 4°C 

and feed maintained at pH 8.3. Feeds generated from PST JEV process material by either 

buffer exchanging into or diluting with the Tris buffer in use for a particular experiment. 

  



 146 

Two, not necessarily mutually exclusive, theories will be put forward to help explain this 

behaviour. The first and most obvious is that the material in the feed was carrying more 

charge due its exposure to a higher pH – the feed components became more 

negatively charged. One may expect the pH of the solution to have fallen back to the 

prepared value as the temperature rises to an ambient level but perhaps the molecules 

within remained with a greater overall charge than they had prior to the drop in 

temperature. A second theory, which could work in addition to the increased charge on 

the molecules, is that the pH increase could also have destabilised the virus, unfolding 

the various proteins from each other and the lipid envelope allowing for them to 

penetrate the resin to bind and elute. If that were the case then formaldehyde treated 

JEV should mitigate this pH induced degradation, which is in fact what is suggested 

above when discussing the results of the AKTA run represented by Figure 7.5, where 

formaldehyde treated feed appears more stable. Another observation, possibly related 

to stability, is the appearance of potentially trimeric forms of JEV E-protein in the feeds 

stored in Tris buffer at 4°C overnight after buffer exchange (lanes, F and SM in Figure 

7.4.C and Figure 7.5.C and E) and slightly less visibly in feed which underwent buffer 

exchange (Figure 7.3.C, lane F) but not in diluted feeds (Figure 7.6. C and E, lane F). 

The buffer exchange step itself could have somehow caused these bands to appear by 

damaging or dissociating the JEV particles in the feed or it could be due to a change in 

pH. This larger protein, identified as JEV E-protein by the Western blots, is seen in the 

elution fraction in Figure 7.4.C, lanes 4 and 6, though also much less so in Figure 

7.3.D. It appears to bind to the resin and elutes with 200 and 400 mM NaCl, it is 

unlikely to be aggregated JEV because the band is consistently the size of trimerised 

E-protein, which would still be able to diffuse into the resin for bind and elute, unlike 

large aggregated virions. Furthermore, virus aggregation events are very unlikely to 

hold together during SDS-PAGE sample preparation, as proteins are denatured to their 

secondary structures. These larger forms of E-protein were not observed with the 

diluted feeds not exposed to fluctuations in pH. Flavivirus E-proteins have been shown 

to trimerise with decreases in pH as part of virus maturation and receptor mediated 
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endocytosis (Lindenbach et al., 2007; Mukhopadhyay et al., 2005), and although no 

such behaviour has been reported to date with increases in pH, it does demonstrate 

the inherent sensitivity of the protein to changes in pH. Perhaps changes in pH caused 

the virus to degrade and then the trimers to be formed, or the virus degraded and the 

shift in pH caused the trimers to form. Either way, this is further evidence of JEV 

instability. 

7.6.5 Scale-up summary 

The results highlight the severe limitations when switching from high-throughput 

microplate based process development to a column format for virus purification for 

systems where differences in hydrodynamic properties have significant impact due to 

the nature of the product as large biomolecule compared to the smaller protein 

products for which they are originally designed. Indeed this is a difficult process to 

characterise with many different variables. Process development work of this nature 

should probably initially be performed with purified product before using process 

material, so that one may understand how it reacts to each operation without the 

interference of impurities or contaminants. 

A consideration for future process development would be to avoid using a Tris based 

buffer as, should process hold steps be required, the fluctuations in pH due to 

temperature could destabilise the product. The stability of JEV has consistently proven 

to be a concern yet there is evidence herein that formaldehyde treatment can mitigate 

losses due to instability and processing. The continued scale-up of this method would 

be contingent on significant improvements in characterisation of the process 

components and their interactions. Based on initial results it is suggested to further 

explore the potential for flow-through mode chromatography, based on the qualitative 

data in Figure 7.6 prior embarking on pre-treatment solely for chromatography 

development. 
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8  Conclusions and Future 
work 

8.1 Conclusions 

8.1.1 JEV processing 

The project established a scale down method that allowed a typical whole virus 

Japanese Encephalitis vaccine production process to be explored down to the 

microwell level. This successfully led to a certain level of characterisation of the 

formaldehyde inactivation step, by coupling the investigation at small scale to Design of 

Experiments based screening of conditions. This also allowed for the identification of 

significant factors linked to infectivity, antigen recovery and aggregation and the extent 

to which they impacted. The overriding significant factors were temperature, time and 

formaldehyde concentration and their potential impact on product losses through 

aggregation has been highlighted. 

Glycine should be seriously considered for inclusion into any JEV inactivation steps 

using formaldehyde, having consistently shown to improve antigen recovery rates. 

Evidence was also presented to argue for preferentially inactivating JEV at the 

concentrated harvest stage. Furthermore, should scale-up of the commercial 

processes be considered, it has been shown that JEV harvest material could withstand 

considerable increase in the shear forces to which it is may be exposed. 

In terms of the purification, although initially showing promising results for bind and 

elute the performance of Q Sepharose FF altered significantly on scale-up with having 

to switch to operating in flow-though mode which appeared to show promising results, 

and though there is still plenty of more work to be done, this has increased overall 

understanding of processing potential. The benefits observed by pre-treating the feed 



 149 

with formaldehyde and glycine could say more about the stability of JEV than suitability 

of the method developed. Indeed, JEV stability was a constant issue throughout the 

project as can be seen in the sensitivity to pH (Chapter 7.6) and the significant drops in 

antigen content and infectivity of control samples (Chapter 5.1.3). 

Only one type of chromatography was investigated in this work when it is likely that 

more than one type of chromatography step will have to be implemented to achieve the 

same level of purity as sucrose gradient purification. Therefore, despite the limits of 

density gradient purification in terms of scalability and labour intensive processing, this 

work underlines the useful simplicity of that technique when seeking to purify products 

of this type. However this also suggests that production of JEV and potentially other 

similar products are limited in terms of scale without significant capital investment in 

additional equipment and labour.  

8.1.2 Process development using small scale high-throughput 

techniques 

Small-scale process development is undoubtedly cheaper than at larger scale. Yet 

unless adequate assays are in place to accurately support and maintain such 

development, high-throughput small-scale analysis becomes self-limiting. The 

development of the modified ELISA method provided a specific and sensitive tool for 

such development by making minor changes to a routine assay. It is certainly possible 

to use other established assays in this way – using their relative as opposed to 

absolute capabilities and maximising limited resources such as antibodies and 

standards (see below and section 6.3.2). 

As stated, one of the main limitations of sucrose gradient purification, and thus reason 

for investigation, was scalability. Ironically, in the search for a scalable alternative the 

methods used where not shown to be themselves amenable to scale-up for this class 

of product. 
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8.1.3 Retrospective process characterisation and development 

With retrospective characterisation of pre-existing vaccine manufacturing processes, 

one is locked into all the established production and purification strategies along with 

the associated analytics. This limits the scope of potential improvements in terms of 

changes that can be made to manufacturing processes and in even broader terms 

challenge the vaccine product itself. Perhaps a Vero cell derived inactivated whole 

virus vaccine is not the most efficient or effective product to combat the spread of 

Japanese Encephalitis – other potential products are suggested below. Although a 

benefit of having production processes already established is that reference material 

should be readily available. Indeed, from this work it could be argued that any such 

process development should be performed with purified product first to elucidate how 

the product itself should react in the different environments to which it is exposed. 

8.2 Future work 

8.2.1 Further JEV process investigation  

The benefit of including glycine in formaldehyde JEV inactivation needs to proven at 

larger scale. Furthermore, although touched on in this work, it was never completely 

established whether changing the location of the formaldehyde inactivation step would 

have a quantifiable benefit on process yield. This could link in to further stability studies 

of JEV through-out the process and determine fully whether purifying a cross-linked 

virus particle is easier or gains higher recoveries than would otherwise be observed.  

The extent of formaldehyde induced cross-linking could also be investigated in relation 

to virus stability, possibly using circular dichromism and heat to monitor the shift from 

tertiary to secondary structures. Or a highly sensitive particle sizing techniques, beyond 

DLS and NTA, such as atomic force microscopy or transmission electron microscopy, 

could be used to investigate whether the cross-linking effect causes the virus particles 

to contract, and if so by how much relative to the conditions and additives used for 

inactivation. 
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The screening plates failed to predict behaviour on scale-up to column resins, possibly 

due to the differences in hydrodynamic conditions between the two formats, as stated 

in Chapter 7.6. The theory states there should be some form of charge relationship 

between the resin and the virus and this appeared to be observed in the microwell 

format though perhaps the differences in hydrodynamic conditions allow for other 

forces to come into play. The results from the Capto Adhere at least allow that this is a 

possibility. Only anion exchange resins were tested at this small scale but cation and 

hydrophobic interaction resins are also available. Moreover, to investigate the possible 

mass transfer issue, different monolith media and membrane adsorbers are also now 

available at this scale for high-throughput investigation. Further to this, batch-binding 

experiments could also be investigated at larger scale as this would reduce the 

stresses on the product. 

As stated above, many of the questions surrounding this work could be answered if 

much of it was repeated with purified JEV. This would focus observed effects solely on 

JEV, such as the interaction or lack thereof with the chromatography media, which 

could then be compared against results such as these from crude process material. 

The microscale methodologies used here could be coupled with other high-throughput 

methodologies at a similar scale, with a view to incorporating upstream development of 

cell proliferation and viral titres at harvest with, as touched on in Section 6.3.2, 

colorimetric (or similar) microplate based process analytics within a fully automated 

system. This would form a complete microscale process development platform with 

minimum operator input generating significant amounts of data. For example, different 

upstream culture conditions could be investigated in sequence with different purification 

conditions, or even technologies. In parallel, the relevant process information could be 

acquired in situ, characterising the developments as they unfold by simplifying assays 

such as BCA total protein, Picogreen and ELISA. This simplification would involve just 

using their absorbance (or otherwise) attribute, without standards or blanks, accruing 

relative, as opposed to absolute, quantitative data – which is for the most part what is 
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required at this scale to make decision on which routes to investigate at larger scale. 

Indeed, reference material (or pre-purified product) and blanks could be included within 

this development process stream. 

With protamine sulphate identified as the most significant and visible process impurity 

perhaps different DNAses could be investigated for removing host cell DNA instead. As 

JEV is an RNA virus it should not be affected. However, perhaps RNAses could also 

be investigated as potential JEV inactivating agents. 

8.2.2 Impurity characterisation 

The 56 kDa protein band observed throughout the chromatography investigation is a 

mystery. It appears to be an uncharacterisable process impurity structurally unrelated 

to JEV, as no antibody binding was evident. Understanding, or at the least identifying, 

this protein and where it came from could lead to increasing yields further, for example 

if it is identified as some form of degraded or damaged product perhaps it can be 

elucidated how where it occurred. Or, should it turn out to be a process related impurity 

perhaps certain production materials would need to be re-evaluated. 

8.2.3 Other processes and the future vaccines 

Clearly beyond the scope of this work, though it would be interesting to attempt to 

apply what was found here to other virus purification and inactivation processes. 

Particularly viruses of a more labile disposition – would increased robustness due to 

cross-linking be more evident, or even possible? 

The Japanese Encephalitis virus, as with many such whole virus vaccine products, is 

clearly a difficult product to handle and monitor. So while for this type of vaccine this is 

a good start for process development, understanding and characterisation, this is just 

scratching the surface. 

Perhaps then the key to more successful vaccine products lies in changing their nature 

– moving away from fragile whole viruses to more robust products. Such vaccines 
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should be able to withstand not only their large-scale manufacture but also the rigours 

of global product supply without the need for a cold-chain to the point of care. This is a 

longstanding issue with all medicines, not just vaccines. Yet with vaccines the solutions 

could be simpler than with, say, a therapeutic protein for which activity must be 

preserved. The antigen which provide future immunity do not have activity, just their 

structure must be preserved, and not even in its entirety as part of the whole pathogen. 

For example, once identified potential immunogens could be immobilised onto stable 

more stable supports, such as gold nanoparticles, to elicit an immune response. Such 

as study as already been performed with Flavivirus E-protein in mice (Niikura et al., 

2013), but as previously stated in section  3.2.3, subunit vaccines do not perform well 

outside of animal models for JE vaccines. Overall then, it could be argued that the 

vaccines products need to improve before the processes. 
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10 Appendix 

10.1 Cell passage data 

 

Figure 10.1 – Accumulated passage data for Vero cells grown at laboratory scale in T150 tissue 

culture flasks with L-glutamine, serum and antimycotic supplemented media. Error bars are 

based on standard deviation of results, where it was impossible to show negative error on the 

log scale of the primary axis (for passages 3 to 7 and 9), the minimum measured cells/mL value 

was used. N number for each passage (P): P0 =15, P1 = 14, P2 = 12, P3 = 9, P4 = 9, P5 = 5, 

P6 = 3. P7 = 4, P8 = 3, P9 = 2. 
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10.2 Viral harvest titres 

 

Figure 10.2 – Average plaque assay derived viral titres for each of the four harvest points at 3, 

5, 7 and 9 days post infection of the Vero cell cultures at laboratory-scale production of JEV. 

Error bars based on standard deviation thus only maximum error can be plotted on a logarithmic 

scale, n=5. 
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10.3 Example batch process analytics 

 

Figure 10.3 – Process analytics for a batch after pooling the harvest (HP), concentrating the 

harvest (cHP) and treating it with protamine sulphate to remove hcDNA. The antigen content 

data overlaps the total protein and dsDNA data because it is plotted on the secondary axis. 

Error bars are of standard deviation of samples within their respective assays (n=3). 
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10.4 Typical BCA assay standard curve generated with BSA 

 

Figure 10.4 – BCA assay standard curve generated with bovine serum albumin (BSA). Error 

bars represent standard deviation of absorbance reading for dilution of the BSA reference 

standard, n=4. 
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10.5 Typical Quant-iT PicoGreen standard curve with dsDNAs 

 

Figure 10.5 – Quant-iT PicoGreen assay standard curve genertated with the supplied 

bacteriophage-λ DNA. Excited at 483 nm and read at 525 nm, the error bars represent the 

standard deviation of measured emissions for each dilutions of the reference standard, n=3. 
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10.6 Protamine sulphate measured by BCA assay 

These two graphs show the difference between calculated (by weighing out) and BCA 

assay measured protamine sulphate concentration. The measured value is >50% lower 

than the calculated value, the difference also increased the smaller the amount of PS. 
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10.7 Design summary for fractional 2-level factorial on purified 

JEV from DX8 
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10.8 Design evaluation for fractional 2-level factorial on purified 

JEV from DX8 

Use your mouse to right click on individual cells for definitions. 
   

       8 Factors: A, B, C, D, E, F, G, H 
     

       Design Matrix Evaluation for Factorial Reduced 3FI Model 
   

       Factorial Effects Aliases 
      [Est. Terms] Aliased Terms 
      [Intercept] = Intercept 
      [A] = A + BCF + BDG 
      [B] = B + ACF + ADG 
      [C] = C + ABF + DFG 
      [D] = D + ABG + CFG 
      [E] = E 
      [F] = F + ABC + CDG 
      [G] = G + ABD + CDF 
      [H] = H 
      [AB] = AB + CF + DG 
      [AC] = AC + BF + EGH 
      [AD] = AD + BG + EFH 
      [AE] = AE + CGH + DFH 
      [AF] = AF + BC + DEH 
      [AG] = AG + BD + CEH 
      [AH] = AH + CEG + DEF 
      [BE] = BE + CDH + FGH 
      [BH] = BH + CDE + EFG 
      [CD] = CD + FG + BEH 
      [CE] = CE + AGH + BDH 
      [CG] = CG + DF + AEH 
      [CH] = CH + AEG + BDE 
      [DE] = DE + AFH + BCH 
      [DH] = DH + AEF + BCE 
      [EF] = EF + ADH + BGH 
      [EG] = EG + ACH + BFH 
      [EH] = EH + ACG + ADF + BCD + BFG 

     [FH] = FH + ADE + BEG 
      [GH] = GH + ACE + BEF 
      [ABE] = ABE + CEF + DEG 
      [ABH] = ABH + CFH + DGH 
      [ACD] = ACD + AFG + BCG + BDF 

     
       Design Matrix Evaluation Performed Omitting Aliased Terms 

   
       Aliases are calculated based on your response 
selection, 

    taking into account missing datapoints, if necessary. 
    Watch for aliases among terms you need to estimate. 
    

       Factorial Effects Defining Contrast 
     I = ABCF = ABDG = CDFG = ACEGH = ADEFH = BCDEH = BEFGH 

  
       Defining Contrast Word Lengths 

     1 2 3 4 5 6 7 
0 0 0 3 4 0 0 

       8 
      0 
      

       Degrees of Freedom for Evaluation 
     Model 31 
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Residuals 4 
     Lack Of Fit 1 
     Pure Error 3 
     Corr Total 35 
     

       A recommendation is a minimum of 3 lack of fit df and 4 df for pure error. 
  This ensures a valid lack of fit test. 

     Fewer df will lead to a test that may not detect lack of 
fit. 

    
       Power at 5 % alpha level to detect signal/noise ratios of 

    
Term StdErr** VIF 

Ri-
Squared 

0.5 Std. 
Dev. 

1 Std. 
Dev. 

2 Std. 
Dev. 

A 0.18 1 0 19.50% 57.20% 98.40% 
B 0.18 1 0 19.50% 57.20% 98.40% 
C 0.18 1 0 19.50% 57.20% 98.40% 
D 0.18 1 0 19.50% 57.20% 98.40% 
E 0.18 1 0 19.50% 57.20% 98.40% 
F 0.18 1 0 19.50% 57.20% 98.40% 
G 0.18 1 0 19.50% 57.20% 98.40% 
H 0.18 1 0 19.50% 57.20% 98.40% 
AB 0.18 1 0 19.50% 57.20% 98.40% 
AC 0.18 1 0 19.50% 57.20% 98.40% 
AD 0.18 1 0 19.50% 57.20% 98.40% 
AE 0.18 1 0 19.50% 57.20% 98.40% 
AF 0.18 1 0 19.50% 57.20% 98.40% 
AG 0.18 1 0 19.50% 57.20% 98.40% 
AH 0.18 1 0 19.50% 57.20% 98.40% 
BE 0.18 1 0 19.50% 57.20% 98.40% 
BH 0.18 1 0 19.50% 57.20% 98.40% 
CD 0.18 1 0 19.50% 57.20% 98.40% 
CE 0.18 1 0 19.50% 57.20% 98.40% 
CG 0.18 1 0 19.50% 57.20% 98.40% 
CH 0.18 1 0 19.50% 57.20% 98.40% 
DE 0.18 1 0 19.50% 57.20% 98.40% 
DH 0.18 1 0 19.50% 57.20% 98.40% 
EF 0.18 1 0 19.50% 57.20% 98.40% 
EG 0.18 1 0 19.50% 57.20% 98.40% 
EH 0.18 1 0 19.50% 57.20% 98.40% 
FH 0.18 1 0 19.50% 57.20% 98.40% 
GH 0.18 1 0 19.50% 57.20% 98.40% 
ABE 0.18 1 0 19.50% 57.20% 98.40% 
ABH 0.18 1 0 19.50% 57.20% 98.40% 
ACD 0.18 1 0 19.50% 57.20% 98.40% 
**Basis Std. Dev. = 1.0 

      
       Standard errors should be similar within type of coefficient. Smaller is better. 

  
       Ideal VIF is 1.0. VIFs above 10 are cause for alarm, 

    indicating coefficients are poorly estimated due to multicollinearity. 
   

       Ideal Ri-squared is 0.0. High Ri-squared means terms are correlated with each 
other, 

  possibly leading to poor models. 
     

       Power should be approximately 80% for the effect you want to 
detect. 

   Be sure to set the Model (on previous screen) to be an estimate of the terms you expect to be significant. 

       Measures Derived From the (X'X)^-1 Matrix 
    

       
Std Leverage 

Point 
Type 

    1 0.9965 Factorial 
    2 0.9965 Factorial 
    3 0.9965 Factorial 
    4 0.9965 Factorial 
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5 0.9965 Factorial 
    6 0.9965 Factorial 
    7 0.9965 Factorial 
    8 0.9965 Factorial 
    9 0.9965 Factorial 
    10 0.9965 Factorial 
    11 0.9965 Factorial 
    12 0.9965 Factorial 
    13 0.9965 Factorial 
    14 0.9965 Factorial 
    15 0.9965 Factorial 
    16 0.9965 Factorial 
    17 0.9965 Factorial 
    18 0.9965 Factorial 
    19 0.9965 Factorial 
    20 0.9965 Factorial 
    21 0.9965 Factorial 
    22 0.9965 Factorial 
    23 0.9965 Factorial 
    24 0.9965 Factorial 
    25 0.9965 Factorial 
    26 0.9965 Factorial 
    27 0.9965 Factorial 
    28 0.9965 Factorial 
    29 0.9965 Factorial 
    30 0.9965 Factorial 
    31 0.9965 Factorial 
    32 0.9965 Factorial 
    33 0.0278 Center 
    34 0.0278 Center 
    35 0.0278 Center 
    36 0.0278 Center 
    Average = 0.8889 

     
       Watch for leverages close to 1.0. Consider replicating these points 

   or make sure they are run very carefully. 
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10.9 Conditions and antigen data for fractional 2-level factorial 

on purified JEV from DX8 

  
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Response 1 

Std Run A:Formaldehyde B:pH C:Temp D:Glycine E:Lysine F:Sorbitol G:Glycerol H:PEG Antigen 

  
% 

 
°C % % % % % AU/mL 

30 1 0.04 7 35 0.5 0.5 0.1 0.1 0.1 0.04 

24 2 0.04 9 35 0.05 0.5 1 0.1 0.1 0.08 

14 3 0.04 7 35 0.5 0.05 0.1 0.1 1 0.02 

8 4 0.04 9 35 0.05 0.05 1 0.1 1 0.09 

27 5 0.02 9 22 0.5 0.5 1 0.1 0.1 0.29 

23 6 0.02 9 35 0.05 0.5 0.1 1 0.1 0.08 

11 7 0.02 9 22 0.5 0.05 1 0.1 1 0.25 

29 8 0.02 7 35 0.5 0.5 1 1 0.1 0.63 

15 9 0.02 9 35 0.5 0.05 0.1 0.1 0.1 0.15 

6 10 0.04 7 35 0.05 0.05 0.1 1 0.1 0.01 

26 11 0.04 7 22 0.5 0.5 1 0.1 1 0.04 

16 12 0.04 9 35 0.5 0.05 1 1 0.1 0.23 

35 13 0.03 8 28.5 0.275 0.275 0.55 0.55 0.55 0.043 

31 14 0.02 9 35 0.5 0.5 0.1 0.1 1 0.3 

20 15 0.04 9 22 0.05 0.5 0.1 0.1 1 0.09 

4 16 0.04 9 22 0.05 0.05 0.1 0.1 0.1 0.09 

13 17 0.02 7 35 0.5 0.05 1 1 1 0.63 

5 18 0.02 7 35 0.05 0.05 1 0.1 0.1 0.16 

18 19 0.04 7 22 0.05 0.5 1 1 0.1 0.01 

28 20 0.04 9 22 0.5 0.5 0.1 1 0.1 0.2 

3 21 0.02 9 22 0.05 0.05 1 1 0.1 0.1 

34 22 0.03 8 28.5 0.275 0.275 0.55 0.55 0.55 0.03 

19 23 0.02 9 22 0.05 0.5 1 1 1 0.12 

17 24 0.02 7 22 0.05 0.5 0.1 0.1 0.1 0.1 

21 25 0.02 7 35 0.05 0.5 1 0.1 1 0.13 

36 26 0.03 8 28.5 0.275 0.275 0.55 0.55 0.55 0.03 

33 27 0.03 8 28.5 0.275 0.275 0.55 0.55 0.55 0.04 

9 28 0.02 7 22 0.5 0.05 0.1 1 0.1 0.32 

32 29 0.04 9 35 0.5 0.5 1 1 1 0.23 

1 30 0.02 7 22 0.05 0.05 0.1 0.1 1 0.13 

7 31 0.02 9 35 0.05 0.05 0.1 1 1 0.11 

12 32 0.04 9 22 0.5 0.05 0.1 1 1 0.15 

2 33 0.04 7 22 0.05 0.05 1 1 1 0.01 

22 34 0.04 7 35 0.05 0.5 0.1 1 1 0.01 

25 35 0.02 7 22 0.5 0.5 0.1 1 1 0.42 

10 36 0.04 7 22 0.5 0.05 1 0.1 0.1 0.04 
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10.10 DX8 design summary for inactivation of harvest material 
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10.11 DX8 design evaluation for harvest material experiment 

   Use your mouse to right click on individual cells for definitions. 
  

                    6 Factors: A, B, C, D, E, F 
    

                    Design Matrix Evaluation for Factorial Reduced 3FI Model 
  

            Factorial Effects Aliases 
    [Est. Terms]    Aliased Terms 
         [Intercept] = Intercept 

          [A] = A + BCE + DEF 
          [B] = B + ACE + CDF 
          [C] = C + ABE + BDF 
          [D] = D + AEF + BCF 
          [E] = E + ABC + ADF 
          [F] = F + ADE + BCD 
          [AB] = AB + CE 
          [AC] = AC + BE 
          [AD] = AD + EF 
          [AE] = AE + BC + DF 
          [AF] = AF + DE 
          [BD] = BD + CF 
          [BF] = BF + CD 
          [ABD] = ABD + ACF + BEF + CDE 

         [ABF] = ABF + ACD + BDE + CEF 
    

       Design Matrix Evaluation Performed Omitting Aliased Terms 
  

          Aliases are calculated based on your response selection, 
       taking into account missing datapoints, if necessary. 
       Watch for aliases among terms you need to estimate. 
  

            Factorial Effects Defining Contrast 
         I = ABCE = ADEF = BCDF 
    

            Defining Contrast Word Lengths 
    1 2 3 4 5 6 

 0 0 0 3 0 0 
 

        Degrees of Freedom for Evaluation 
    Model          15 

     Residuals    4 
       Lack Of Fit 1 
       Pure Error  3 
     Corr Total    19 
     

          A recommendation is a minimum of 3 lack of fit df and 4 df for pure error. 
      This ensures a valid lack of fit test. 

         Fewer df will lead to a test that may not detect lack of fit. 
  

       
    

Power at 5 % alpha level to detect signal/noise ratios of 

Term StdErr** VIF 
Ri-
Squared 0.5 Std. Dev. 1 Std. Dev. 2 Std. Dev. 

A 0.25 1 0 12.2 % 33.6 % 84.3 % 
B 0.25 1 0 12.2 % 33.6 % 84.3 % 
C 0.25 1 0 12.2 % 33.6 % 84.3 % 
D 0.25 1 0 12.2 % 33.6 % 84.3 % 
E 0.25 1 0 12.2 % 33.6 % 84.3 % 
F 0.25 1 0 12.2 % 33.6 % 84.3 % 
AB 0.25 1 0 12.2 % 33.6 % 84.3 % 
AC 0.25 1 0 12.2 % 33.6 % 84.3 % 
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AD 0.25 1 0 12.2 % 33.6 % 84.3 % 
AE 0.25 1 0 12.2 % 33.6 % 84.3 % 
AF 0.25 1 0 12.2 % 33.6 % 84.3 % 
BD 0.25 1 0 12.2 % 33.6 % 84.3 % 
BF 0.25 1 0 12.2 % 33.6 % 84.3 % 
ABD 0.25 1 0 12.2 % 33.6 % 84.3 % 
ABF 0.25 1 0 12.2 % 33.6 % 84.3 % 
  **Basis Std. Dev. = 1.0 

     
          Standard errors should be similar within type of coefficient.  Smaller is better. 

 
          Ideal VIF is 1.0.  VIFs above 10 are cause for alarm, 

       indicating coefficients are poorly estimated due to multicollinearity. 
 

          Ideal Ri-squared is 0.0.  High Ri-squared means terms are correlated with each other, 
     possibly leading to poor models. 

    
          Power should be approximately 80% for the effect you want to detect. 

    Be sure to set the Model (on previous screen) to be an estimate of the terms you expect to be significant. 

        Measures Derived From the (X'X)^-1 Matrix 
   

       
Std Leverage 

Point 
Type 

    1 0.9875 Factorial 
    2 0.9875 Factorial 
    3 0.9875 Factorial 
    4 0.9875 Factorial 
    5 0.9875 Factorial 
    6 0.9875 Factorial 
    7 0.9875 Factorial 
    8 0.9875 Factorial 
    9 0.9875 Factorial 
    10 0.9875 Factorial 
    11 0.9875 Factorial 
    12 0.9875 Factorial 
    13 0.9875 Factorial 
    14 0.9875 Factorial 
    15 0.9875 Factorial 
    16 0.9875 Factorial 
    17 0.05 Center 
    18 0.05 Center 
    19 0.05 Center 
    20 0.05 Center 
              Average 

= 0.8 
     

                 Watch for leverages close to 1.0.  Consider replicating these points 
             or make sure they are run very carefully. 
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10.12 All conditions and data for fractional 2-level factorial on 

JEV harvest material from DX8 
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10.13 BSA and glycine AKTA control runs 

Figure 10.6 shows the elution profiles from three AKTA runs with a base buffer of 50 

mM tris pH 8.3 on a pre-packed 1 mL Q Sepharose Fast Flow column: 5 mL each of 

1% glycine, 1 mg/mL BSA and 1 mg/mL BSA with 1% glycine. These runs were 

performed to assess the effect of glycine on the bind and elute of BSA to the resin. As 

seen in Figure 10.6, 1% glycine on its own did not produce a significant U.V. 

absorbance profile while the profiles of 1 mg/mL BSA with and without 1 % glycine are 

indistinguishable from one another. Therefore 1% glycine does not affect the elution 

profile of BSA off QSFF under these condtions. 

 

Figure 10.6 – U.V. absorbance chromatograms 5 mL each of 1 mg/mL BSA, 1% glycine and 1 

mg/mL BSA with 1% glycine, all run in 50 mM tris pH 8.3 on a pre-packed 1 mL Q Sepharose 

Fast Flow column. 1% glycine on its own does not shown any significant U.V. absorbance and 

when added to 1mg/mL BSA it does not change the elution profile. Insert shows the load and 

start of the elution peak with the absorbance scale increased 100 fold to distinguish between 

the U.V. traces.  

X 100 
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To investigate the effect of 1 % glycine on the BCA assay, selected fractions from the 

run depicted in Figure 10.6 were analysed using the assay. 1% glycine on its own gave 

results below the LOD of the standard BCA assay and the results are not included with 

those of the 1 mg/mL BSA and the 1 mg/mL BSA + 1 % glycine shown in Figure 10.7. 

The load, wash and elute samples for both feeds gave the results indicating no 

interference from glycine with the assay. The feed samples, however, gave significantly 

different results with the sample containing 1 % glycine returning a value much smaller 

than that of the BSA only sample. This effect was reduced but still evident when 

sample was diluted 1:2 with PBS. 

 

Figure 10.7 – Protein concentration determined by BCA assay relating to fractions and samples 

form the AKTA run described in Figure 10.6. The diluted samples were diluted with equal part 

PBS. Error bars are based on standard deviation of experimental samples, n=3. 
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10.14 Outsourced sequencing results 

10.14.1 Sequencing attempt 1 - 5 amino acids 

 

Figure 10.8 – Report from 1st sequencing attempt of 5 amino acid sequence results for excised 

~55 kDa gel from eluted fractions of a typical AKTA run.  
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10.14.2 Sequencing attempt 2 – 10 amino acids 

 

Figure 10.9 – Report from 2nd sequencing attempt of 10 amino acid sequence results for 

excised ~55 kDa gel from eluted fractions of a typical AKTA run 

 


