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Abstract

Accretion onto compact objects plays a central role in high-energy astro-

physics. The presence of a compact object considerably alters the structure

and dynamics of the accreting plasma, as well as its radiative emissions. For

accreting black holes in Active Galactic Nuclei (AGN) this is especially true.

A significant fraction of the emission may originate or pass near the event hori-

zon. Strong gravity modifies the radiation from an emission source. Photons

no longer propagate in straight lines and experience frequency shifts. Gravita-

tional lensing creates multiple images of an emission source, further modifying

its temporal and spectral properties. Addressing these effects, the first part of

this thesis formulates the equations of radiative transfer for particles with and

without mass in a manifestly covariant form. Using ray-tracing, the observed

images and line emission from accretion disks and tori are calculated. The

effects of absorption, emission and optical depth gradients are investigated.

The second part of this thesis examines scattering in general relativity.

The general relativistic Compton scattering kernel and its angular moments

are expressed in closed-form for the first time, in terms of hypergeometric

functions. This has the advantage of being fast, accurate and not restricted

by specific energy ranges. The results are in perfect agreement with semi-

analytic calculations and Monte-Carlo simulations of Compton scattering of

monochromatic emission lines.

Finally, I investigate the effects of variability in the accretion flow. Two

models are considered: a plasmoid on a Keplerian orbit around a black hole

and a magnetically-driven plasmoid ejection from the disk corona. Deriving

a new time-dependent radiative transfer formulation, I calculate this variable

emission, presenting the results in the form of spectrograms and lightcurves.
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1.1 Schematic view of an AGN through the equatorial plane. The

black hole in the central engine is surrounded by a thin ac-

cretion disk, which may have an inner thick disk/torus. The

accretion disk lies within the optically thick torus of molecular

gas and dust. Broad emission line and narrow emission line

clouds lie outside of the equatorial plane, above the accretion

disk. Narrow emission line clouds are much further from the

black hole than the broad emission line clouds. A pair of rela-

tivistic jets may also be launched from within the vicinity of the

black hole event horizon into their corresponding radio lobes.

Credit: Brooks/Cole Thomson Learning . . . . . . . . . . . . 4

1.2 Multiband collage in X-ray, optical, large-scale radio and VSOP

survey images of the jet in the quasar 3C273. Bottom: Linear

perturbation analysis of Kelvin-Helmholtz instability to model

the observed double helical structure of the jet (outlined with

red and blue lines) describes well the intrinsic structure of the

jet on scales of up to 300 parsecs. Credit: Andrei Lobanov and

Anton Zensus (MPIfR). . . . . . . . . . . . . . . . . . . . . . 17

2.1 Polarisation of Synchrotron radiation. The orbital plane of the

particle is instantaneously in the x − y plane at t = 0. The

vector n points towards the observer. The orthogonal axes e‖

and e⊥ are introduced to discuss the polarisation of the emission. 33



List of Figures xvi

2.2 Illustration (not to scale) of how a line profile from an accre-

tion disk is formed. The intrinsic line is a delta function (pur-

ple) centred about the line rest frequency ν0. Due to natural

line broadening, thermal broadening, turbulent broadening and

macroscopic Doppler motions the line assumes a Voigt profile

(blue). Keplerian rotational motion of the disk shifts the line

to higher and lower energies (orange) due to opposite line of

sight motions. Finally, special relativistic and space-time cur-

vature effects broaden and shift the line, causing it to become

asymmetric (red). . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Cut-through view in 3D of the key surfaces of a Kerr black hole

with spin parameter a = 0.998. From outside to inside: Static

Limit (blue), Event Horizon (red), Cauchy Horizon (green), In-

ner Static Limit (purple) and the ring singularity (blue equa-

torial ring). The grey dotted line is the spin axis of the black

hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Equatorial orbits around Schwarzschild (a = 0, top) and Kerr

(a = 0.998, bottom) black holes. Solid and dotted lines indicate

photon and particle geodesics respectively. Geodesics originate

from the right hand side of the panels. The red circle indicates

the black hole event horizon, the yellow circle the light circu-

larisation radius and the blue circle the static limit. Note the

top-bottom symmetry in the Schwarzschild case and the effect

of frame-dragging on retrograde orbits in the extreme Kerr case.

In the Kerr case the black hole is rotating anticlockwise. . . . 62

3.3 Cross-sectional view of the major critical surfaces of the Kerr

black hole (a = 0.998). Solid and dotted lines denote prograde

and retrograde surfaces respectively. . . . . . . . . . . . . . . . 63
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3.4 Ray-tracing setup. An observer (green axes) is located some

distance from the black hole (blue axes). The observer grid

(image plane) is the x−y plane. An example photon trajectory

is indicated by the red dashed line. . . . . . . . . . . . . . . . 66

3.5 Ray-tracing a grid of 49 photon geodesics from an observer

located in the equatorial plane (robs = 10 rg, θobs = π/2,

a = 0.998). Grey lines indicate geodesics which are not cap-

tured by the black hole. Coloured lines indicate geodesics cap-

tured by the black hole. Yellow, blue and red translucent sur-

faces represent the LCR, Static Limit and Event Horizon re-

spectively. The grey dotted line is the spin axis of the black

hole, with the black hole rotating anticlockwise as viewed from

above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Torus inner radius as a function of the angular velocity profile

index parameter n. Red, blue and black curves correspond to

black holes with spin parameters a = 0.998, 0.5 and 0 respec-

tively. Solid, dashed and dotted lines correspond to Keplerian

radii of rK = 8 rg, 10 rg and 12 rg respectively. The inner edge

of the torus is strongly dependent on the index n. In the case

n = 0 the assumed angular velocity profile becomes pseudo-

Keplerian (r sin θ – dependence) and the inner edge is located

at the ISCO. However, as n increases the inner edge of the torus

quickly moves further away from the ISCO. This effect is more

pronounced for higher black hole spin parameters. The black

hole spin parameter a and the index parameter counteract each

other. The former shifts the torus inner edge towards the ISCO

(thereby increasing the torus’ vertical extent and volume) and

the latter shifts this inner edge away from the ISCO, conse-

quently reducing the torus’ vertical extent and volume. . . . . 79
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4.2 Cross-sections of the boundary surfaces of model rotationally

supported tori in cylindrical coordinates with z = r cos θ (the

equatorial plane of the tori is z = 0). The top panel shows

the tori around Kerr black holes with spin parameters a = 0,

0.5 and 0.998. The angular velocity profile index of the tori

n = 0.21, and the Kelperian radius rK = 12 rg. The bottom

panel shows the tori with angular velocity indices n = 0.14, 0.17

and 0.232. The Keplerian radius of the tori is rK = 8 rg, and

the black-hole spin parameter a = 0.998. . . . . . . . . . . . . 81

4.3 Torus height (vertical extent) as a function of the angular ve-

locity profile index parameter n. Same as in Figure 4.1, except

the case a = 0 (black) is omitted. As the Keplerian radius in-

creases, so does the torus height. However, as in Figure 4.2,

the effect of n is to reduce the torus height. Thus n ultimately

determines the size of the torus, as well as the extent to which

it self-occludes. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Cross-sections show the density, pressure and temperature con-

tours in model translucent tori (panels from top to bottom).

The angular velocity profile index of the tori n = 0.21, the

Keplarian radius rK = 12 rg. The black-hole spin paramter

a = 0.998. The central density of the torus ρc = 1011 cm−3. The

ratio of the gas pressure to the total pressure β = 1.235× 10−5. 87
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4.5 False-colour frequency shift maps of the surface emission from

opaque tori around different black holes. The torus parameters

are n = 0.232 and rK = 12 rg. The black-hole spin parameters

are a = 0, 0.5 and 0.998 (panels from top to bottom). The

viewing inclinations of the tori are 45◦ (left column) and 85◦

(right column). For a = 0 the range of frequency shifts E/E0

(where E0 is the rest-frame line centre energy) for i = 45◦ and

i = 85◦ are (0.874, 1.445) and (0.756, 1.560), respectively. Sim-

ilarly, for a = 0.5 the frequency shift ranges are (0.870, 1.487)

and (0.755, 1.591). Finally, for a = 0.998 the corresponding

frequency shift ranges are (0.864, 1.535) and (0.767, 1.616). . . 89

4.6 Profiles of emission lines from an opaque rotationally supported

accretion torus (top panel) and a geometrically thin optically

thick accretion disk (bottom panel) viewed at different inclina-

tions i. The torus dynamical parameters are n = 0.21 and rK =

12 rg. The inner boundary radius of the torus rinner = 8.486 rg

and the outer boundary radius router = 20.246 rg. The disk has

the same values for the inner boundary radius and the outer

boundary radius as the torus. In both cases, the black-hole

spin parameter a = 0.998. The line emissivity is proportional

to r−2, where r is the radial distance from the central black hole.

The line profiles are normalised such that the flux F (E0) = 1

at the viewing inclination angle i = 60◦. . . . . . . . . . . . . 90

4.7 Surface brightness images of optically thin radiative pressure

dominated accretion tori, viewed at inclination angles of 15◦,

30◦, 45◦, 60◦, 75◦ and 89◦ (left to right, top to bottom). The

torus parameters are n = 0.21, rK = 12rg and β = 1.235 ×

10−5. The black-hole spin parameter a = 0.998. The brightness

of each pixel represents the total intensity integrated over the

entire spectrum. The torus brightness is normalised such that

the brightness of the brightest pixel in each image is the same. 95
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4.8 Surface brightness images of optically thin radiation pressure

dominated tori viewed at inclination angles of 30◦, 45◦, 75◦ and

85◦ (left to right, top to bottom). The torus parameters are

n = 0.21, rK = 12rg and β = 5 × 10−5. The black-hole spin

parameter a = 0.998. The brightness of each pixel represents

the total intensity integrated over the entire spectrum. The

torus brightness is normalised such that the brightness of the

brightest pixel in each image is the same. . . . . . . . . . . . . 96

4.9 (Top panel) Profiles of an emission line from an optically thin

pressure supported structured accretion torus viewed at dif-

ferent inclinations i. The dynamical parameters of the torus

are n = 0.21 and rK = 12 rg. The black-hole spin parame-

ter a = 0.998. The ratio of the gas thermal pressure to the

total pressure β = 1.235 × 10−5. The radius of the inner

boundary rinner = 8.528rg and the radius of the outer boundary

router = 20.246 rg. The line emissivity is proportional to the

density ρ. These line profiles are normalised such that the line

flux F (E0) = 1 when the torus is viewed at i = 60◦. (Bottom

panel) Profiles of composite profiles from two emission lines.

The torus and black hole parameters are the same as those for

the lines in the top panel. The line energies are such that one

line has an energy 10% higher than the other line and the emis-

sivity of the line with the higher line centre energy is 14% of

that of the line with the lower line centre energy (cf. analogous

to the relative properties of the Fe Kα and Kβ lines (Hölzer

et al. 1997)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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4.10 Surface brightness images of opaque radiative pressure domi-

nated accretion tori viewed at inclination angles of 15◦, 30◦,

45◦, 60◦, 75◦ and 85◦ (left to right, top to bottom). The torus

parameters are n = 0.21, rK = 12rg and β = 1.235× 10−5. The

black-hole spin parameter a = 0.998. The emissivity is pro-

vided by emission from two spectral lines, and the two opacity

sources given in equations (59) and (60). Absorption is pro-

vided through the Thomson cross-section in equation (62). The

brightness of each pixel represents the total intensity integrated

over the entire spectrum. The torus brightness is normalised

such that the brightness of the brightest pixel in each image is

the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.11 Surface brightness images of quasi-opaque accretion tori around

extreme Kerr (a=0.998) black holes, viewed from left to right,

top to bottom, at observer inclination angles of 30◦, 45◦, 75◦ and

85◦. Same parameters as Figure 4.10, but now β = 5 × 10−5.

Line emission and continuum emission are included. These tori

also self-occlude and higher-order emission is greatly suppressed

at high inclination angles. The images are normalised such that

the brightest pixel in each image is of the same intensity. . . . 100

4.12 Schematic illustration of the resonance between two lines with

E1 and E2, emitted at radial distances r1 and r2 from a black

hole, where r2 > r1. In the rest frames E1 > E2. . . . . . . . 104

5.1 Plot of λ+ as a function of ζ for an incident photon of energy

100 keV. For outgoing photon energies of 95 keV and 90 keV, λ+

has a minimum and thus the integration over λ must be divided

into two regions. For outgoing photon energies of 60 keV and 70

keV, λ+ does not have a minimum value between λ+(−1) and

λ+(1), hence the integration over λ is simply taken between λL

and infinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



List of Figures xxii

5.2 Numerical Fortran evaluation (in double precision) of the mo-

ment integrals Qn, Rn and Sn,m, through recursion, for x = 10

keV (left) and x = 100 keV (right). The same colour scheme is

employed for Rn and Sn,m. For Qn numerical round-off errors

occur beyond n = 20. For Rn and Sn,m numerical round-off

errors dominate beyond n = 30. . . . . . . . . . . . . . . . . . 123

5.3 As in Figure 5.2, but now with Qn, Rn and Sn,m evaluated di-

rectly through the numerical hypergeometric function method,

for x = 10 keV (left) and x = 100 keV (right). Qn is now

numerically very stable, even beyond n = 100 (not shown).

However, for Rn and Sn,m there is no improvement compared

to the recurrence relation method. . . . . . . . . . . . . . . . . 124

5.4 Numerical evaluation of the moment integralMn as a function

of n. Same colour scheme as Rn and Sn,m in Figures 5.2 and 5.3.

In all plots the incident photon energy is 10 keV. Left plots show

Compton scattering resulting in an outgoing photon energy of

1 keV, for (top to bottom) electron velocities of βe = 0.01,

βe = 0.99 and λ = 106 (βe ' 0.9999999999995) respectively.

Right plots show inverse Compton scattering for an outgoing

photon of energy 100 keV. . . . . . . . . . . . . . . . . . . . . 128

5.5 Plots of the moment integral Mn as a function of ζ for an

incident photon energy of 10 keV. Plots on the left show an

outgoing photon energy of 1 keV, plots on the right an outgoing

photon energy of 100 keV (i.e. inverse Compton scattering).

Left and right columns show, from top to bottom,Mn evaluated

for n = 0, 2, 4 and 6, and n = 1, 3, 5 and 7, respectively. Solid,

dotted, and dashed lines denote electron velocities of βe = 0.01,

βe = 0.99 and λ = 106 respectively. As n increases, the angular

moments become increasingly insensitive to a wider range of ζ.

The angular moments are strongly dependent on electron velocity.129
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5.6 Plots of the moment integralMn as a function of ζ for an inci-

dent photon energy of 10 keV, as in Figure 5.5. Left and right

columns show, from top to bottom, Mn evaluated for n = 24,

50, 74 and 100, and n = 25, 51, 75 and 101, respectively. As

n increases, the angular moments become increasingly insensi-

tive to a wider range of ζ. The angular moments are strongly

dependent on electron velocity. . . . . . . . . . . . . . . . . . 130

5.7 Zeroth moment of the Compton scattering kernel (as a function

of scattered photon energy) evaluated at an electron tempera-

ture of 1 keV. Top: incident photon energies of 5 keV, 10 keV,

20 keV, 40 keV and 60 keV. Bottom: incident photon energies

of 80 keV, 100 keV, 150 keV, 200 keV and 300 keV. . . . . . . 144

5.8 Zeroth moment of the Compton scattering kernel (as a function

of scattered photon energy) evaluated at an electron tempera-

ture of 20 keV. Top: incident photon energies of 5 keV, 10 keV,

20 keV, 40 keV and 60 keV. Bottom: incident photon energies

of 80 keV, 100 keV, 150 keV, 200 keV and 300 keV. . . . . . . 145

5.9 The 1st, 2nd, 3rd, 4th and 5th moments of the Compton scat-

tering kernel (as a function of scattered photon energy) evalu-

ated at an incident photon of energy of 40 keV. Top: electron

temperature of 1 keV. Bottom: electron temperature of 20 keV. 146

5.10 The 1st, 2nd, 3rd, 4th and 5th moments of the Compton scat-

tering kernel (as a function of scattered photon energy) evalu-

ated at an incident photon of energy of 100 keV. Top: electron

temperature of 1 keV. Bottom: electron temperature of 20 keV. 147

5.11 The 1st, 2nd, 3rd, 4th and 5th moments of the Compton scat-

tering kernel (as a function of scattered photon energy) evalu-

ated at an incident photon of energy of 300 keV. Top: electron

temperature of 1 keV. Bottom: electron temperature of 20 keV. 148
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6.1 Time delay images of geometrically thin, optically thick accre-

tion disks viewed at inclination angles of i = 0◦ (top), i = 60◦

(middle) and i = 75◦ (bottom). The black hole spin parameters

are a = 0 (left) and a = 0.998 (right). The inner and outer radii

of the disk are the ISCO and 20 rg respectively. Solid black lines

indicate constant-time contours. Contours of equal time have

different radial locations in different spin black holes viewed at

the same inclination angle, due to the differing Keplerian ro-

tational velocities in the disk. The effects of frame-dragging

can be seen in the innermost time contour of the bottom right

(a = 0.998, i = 75◦) image. The images are normalised such

that the brightness of the brightest pixel in each image is the

same (see accompanying text). . . . . . . . . . . . . . . . . . . 151

6.2 Snapshot images of a plasmoid orbiting black holes with spins of

a = 0 (left) and a = 0.998 (right). The plasmoid is orbiting in

the eφ-direction, i.e. anticlockwise as viewed from above. From

top to bottom: orbital phases φ = 0◦, φ = 90◦, φ = 180◦ and

φ = 270◦. The observer inclination angle i = 0◦ in all images.

For a = 0, the plasmoid deviates only slightly from its spherical

shape, as Doppler effects are moderate at rc = 6.5 rg. For

a = 0.998, at rc = 2.5 rg gravitational lensing is significant and

the plasmoid appears elongated in its direction of propagation.

Arcs of emission are higher-order images from the plasmoid that

orbit the black hole multiple times before reaching the observer.

Same colour coding as Figure 6.1. . . . . . . . . . . . . . . . . 154

6.3 As in Figure 6.2, but now viewed at an observer inclination

angle i = 45◦. At φ = 180◦, i.e. when the plasmoid is directly

behind the black hole, the direct image and opposite first-order

images are more elongated and larger in surface area. . . . . . 155
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6.4 As in Figure 6.3, but now viewed at an observer inclination

angle i = 75◦. Now when the plasmoid is directly behind the

black hole, the direct image and opposite first-order images are

even more pronounced as gravitational lensing starts to dominate.156

6.5 As in Figure 6.4, but now viewed at an observer inclination

angle i = 89◦. When the plasmoid is directly behind the black

hole, in the case of an a = 0 black hole a near-complete Einstein

ring forms (this would be complete at i = 90◦). The direct

image and opposite first-order image merge into one bright ring

of emission. At the highest inclination angles, gravitational

lensing is the dominant effect. No corresponding Einstein ring

is observed for the a = 0.998 black hole when the plasmoid is

directly behind. This is because the point of maximum blueshift

has been shifted away from φ = 180◦ by the frame-dragging of

the Kerr black hole. . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6 Smoothed frequency-integrated lightcurves of a plasmoid orbit-

ing a black hole for different observer inclination angles: i = 0◦

(black), i = 15◦ (yellow), i = 30◦ (magenta), i = 45◦ (cyan),

i = 60◦ (green), i = 75◦ (blue), i = 85◦ (orange) and i = 89◦

(red). Roughly one period of emission is shown (top axis).

The plasmoid is initially at φi = 90◦ and is orbiting in the

eφ-direction, i.e. anticlockwise as viewed from above. Top:

plasmoid orbiting an a = 0 black hole at rc = 6.5rg. Bottom:

plasmoid orbiting an a = 0.998 Kerr black hole at rc = 2.5rg.

At high inclination angles relativistic beaming causes the light

curves to become sharply peaked as the plasmoid approaches

the observer. Beyond inclination angles of 80◦ gravitational

lensing creates an Einstein ring when the plasmoid moves be-

hind the black hole. The lightcurves become asymmetrical due

to time delays from ring images, the spin of the black hole, and
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Chapter 1

Introduction

1.1 Overview

In this thesis I investigate general relativistic radiative transfer and apply it

to calculate the emission from AGN. The supermassive black holes (SMBHs)

which reside in the centres of AGN provide an opportunity to probe the nature

of matter and radiation under the most extreme of conditions. The intense

gravity in the vicinity of a black hole affects the hydrodynamics of the accretion

flow and significantly alters the manner in which radiation is emitted and

transferred in the flow.

I derive a general relativistic radiative transfer formulation. This for-

mulation incorporates emission, absorption, and relativistic, geometrical and

optical depth effects, as well as particle mass self-consistently. The formulation

is derived in a covariant manner, expressing all physical quantities as relativis-

tic invariants. This avoids the need to Lorentz-transform between frames of

reference until the very end of calculations, meaning all relativistic effects (in-

cluding Doppler boosts and frequency shifts, beaming, gravitational redshifts,

lensing and formation of multiple images) are implicit in my calculations.

In solving the general relativistic radiative transfer equations, I employ a

ray-tracing method. I include particle time delay effects in my formulation,

considering situations where variability and outflows are present. For the case

where the opacity is high and Compton scattering dominates, I present a new

method for calculating the scattering kernel for Compton scattering in general

relativistic environments.
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The core focus of this thesis is the radiative transfer of radiation in accre-

tion and outflows around black holes. Whilst general relativistic magneto-

hydrodynamic (GRMHD) and general relativistic particle-in-cell (GRPIC)

simulations of the flow from which the radiation is emitted are now quite so-

phisticated (e.g. Fuerst et al. 2007; Drappeau et al. 2013), my primary concern

is with the details of radiation transport around black holes. The formulation

I present can accurately and self-consistently calculate emission from arbi-

trary matter distributions. The numerical results from GRMHD and GRPIC

simulations may be used to obtain this matter distribution, along with its as-

sociated magnetic, thermodynamic and kinematic properties, upon which the

general relativistic radiative transfer formulation developed in this thesis may

then be applied.

Throughout I have adopted a modular approach, enabling continuous re-

finement of the treatment of radiative processes with the minimum of com-

putational overhead. Calculations of the emission from geometrically thin,

optically thick accretion disks are now ubiquitous. I begin in Chapter 4 by

applying the formulation to emission from an optically thick accretion torus,

and comparing with emission from disks. Geometrical effects on the observed

emission are discussed. Next, I introduce opacity gradient effects in the form a

transparent three-dimensional emitting volume, modelled as a thermodynamic

torus with density-driven emission. I then include emission and absorption in

the form of thermal free-free emission and electron scattering. In Chapter

5, I derive the Compton scattering kernel in general relativity, the first such

closed-form calculation. Finally, In Chapter 6, I investigate relativistic out-

flows in the form of plasmon ejecta, applying the time-dependent part of my

code to calculate the observed lightcurves and spectrograms.

1.2 Active Galactic Nuclei

An AGN is a compact region at the centre of a galaxy (the nucleus), charac-

terised by exceptionally bright observed luminosities across the entire electro-

magnetic spectrum far in excess of what can produced by the host galaxy’s

stars alone. AGN were first detected in the 1940s as point-like sources with
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powerful optical emission spectra showing very broad, strong and redshifted

emission lines (Seyfert 1943). They were also found to exhibit variability in

the optical waveband over periods of several months, with the emitting source

being completely unresolved. However, strong X-ray variability was observed

in detail in AGN over periods of a few hours to a few days (see McHardy and

Czerny 1987; Lawrence et al. 1987). Such observations imply an extremely

compact emission region. AGN are the dominant sources of cosmic X-rays,

which are generated in their nuclei down to distances of a few gravitational

radii of the central black hole. Emission at other wavelengths is generated

at distances several orders of magnitude further out. Moreover, X-rays are

the most direct probe of AGN and their underlying accretion processes and

prodigious energy liberation (1042–1046 erg s−1) as they can penetrate through

the vast columns of obscuring gas and dust associated with accreting mat-

ter around the central SMBH. The corresponding power of an AGN in the

X-ray alone is between 109–1013 L� (bolometric solar luminosity), sufficiently

powerful to rival an entire galaxy.

There exist many different classes of AGN with different observational

properties (see Krolik 1999; Beckmann and Shrader 2012). These classes ex-

hibit different ratios of radio, optical/UV and X-ray flux, dissimilar amounts

of variability and the presence or absence of broad and narrow emission lines

in their optical spectra. Multi-wavelength studies of AGN and their corre-

sponding results have lead to the unification model of AGN (Antonucci 1993),

which attempts to explain these different classes in terms of observer inclina-

tion angles to the central black hole and the accretion rate.

In a generic AGN model (Figure 1.1) the central engine is assumed to be

a SMBH (∼ 106M�–1010M�), surrounded by a geometrically thin, optically

thick accretion disk. At very high mass accretion rates (e.g. Abramowicz et al.

1988) the radiation pressure force becomes so great that the inner disk expands

vertically and can no longer be treated as geometrically thin (see Abramowicz

et al. 1978; Kozlowski et al. 1978). In accretion onto the black hole there are

also collimated outflows in the form of a pair of large scale relativistic jets

which are directed along the spin axis of the accretion disk. These relativistic
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Fig. 1.1: Schematic view of an AGN through the equatorial plane. The black hole in

the central engine is surrounded by a thin accretion disk, which may have an inner thick

disk/torus. The accretion disk lies within the optically thick torus of molecular gas and dust.

Broad emission line and narrow emission line clouds lie outside of the equatorial plane, above

the accretion disk. Narrow emission line clouds are much further from the black hole than

the broad emission line clouds. A pair of relativistic jets may also be launched from within

the vicinity of the black hole event horizon into their corresponding radio lobes. Credit:

Brooks/Cole Thomson Learning

jets feed into large scale radio-emitting lobes, which are roughly ellipsoidal in

structure (Blandford and Rees 1974). These radio lobes are powered by beams

of ultra-relativistic particles and magnetic field in their respective relativistic

jets, which are launched from very close to the central engine (see Boettcher

et al. 2012, for a review of jet launching models).

Above the accretion disk there are broad emission line gas clouds, at a few

fractions of a pc from the central black hole, which are heated by radiation

from the disk, giving rise to broad optical/UV emission lines. Observations of

these broad emission lines in Seyfert-1 galaxies imply velocities at full-width-

half-maximum (FWHM) ∼ 1000–5000 km s−1 very close to the black hole. If
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the observer’s view is uninterrupted by the dusty torus then this is classed as a

Type-1 AGN. This optically thick torus of molecular gas and dust is located at

roughly from one to a few pc from the central black hole, reprocessing radiation

from the accretion disk and re-emitting it mainly in the infrared. Even further

out are the narrow emission line gas clouds, between approximately 30 pc and

300 pc, which also interact with radiation from the accretion disk. Although

this model contains the essence of the components, their linear dimension and

the distance to the central black hole are approximate, depending greatly on

the luminosity of the AGN (see Krolik 1999). If an observer’s line-of-sight

passes directly through the dusty torus, whereby only the narrow emission

line clouds are observable, this AGN is classed as Type-2. Observations of

the narrow optical/UV emission line region in Seyfert-2 galaxies suggest gas

velocities at FWHM ∼ 500–1000 km s−1. Seyfert-1 and Seyfert-2 galaxies are

radio-quiet Type-1 and Type-2 AGN, respectively, and exhibit only small, sub-

parsec scale versions of the large-scale relativistic jets and radio lobes seen in

extragalactic radio sources (see Wilson and Ulvestad 1982, 1983; Pedlar et al.

1993). Radio-loud Type-1 and Type-2 AGN are divided into broad-line radio

galaxies (BLRGs) and narrow-line radio galaxies (NLRGs), respectively.

Radio-loud AGN often exhibit relativistic jets of plasma being emitted

from the nucleus. The axis of these relativistic jets is assumed to be aligned

with the spin axis of the accretion disk. Relativistic jets are thought to be

responsible for the synchrotron radio emission from the nucleus and the radio

lobes where the relativistic jets terminate. The appearance of a radio-loud

AGN also depends on the viewing angle relative to the jet. If viewed almost

directly along the jet axis, relativistic Doppler boosting causes the jet emission

to be beamed forward, significantly enhancing the observed emission, and

leading to observed superluminal motion along the line of sight. Such radio-

loud AGN are classified as blazars. However, if viewed at angles away from the

jet axis towards the equatorial plane, then the radio-loud AGN is classified as

a radio galaxy, with an associated pair of radio lobes either side of the nucleus.

Blazars are themselves divided into two main catagories: BL Lacertae (BL

Lac) objects and flat spectrum radio quasars (FSRQs) (see Penston and Can-
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non 1970; Strittmatter et al. 1972). FSRQs are also known as optically violent

variable (OVV) quasars, since the majority of FSRQs tend to show rapid vari-

ability, high polarization, and radio structures dominated by compact radio

cores.

Sources of radio emission other than radio galaxies first appeared star-

like in optical images, possessing neither a galaxy nor a nebula. These objects

were named quasars (quasi-stellar radio sources) and are characterised by their

extremely luminous and rapidly varying continuum emission, as well as un-

usually broad emission lines in their optical spectra. This rapid variability is

observed at all frequencies from radio to γ-rays (Urry and Padovani 1995). It

was originally thought that quasars were nearby stars with very unusual prop-

erties. Spectral studies of 3C 273 identified well-known broad emission lines

at a then remarkable redshift of z = 0.158 (Schmidt 1963). Quasars were orig-

inally thought to be accretion-powered “super-stars” of a million solar masses

or more, with just a minor contribution coming from fusion (Hoyle and Fowler

1963; Fowler 1964, 1966). One of the early suggestions for the origin of the red-

shifts of quasar emission lines was gravitational redshift caused by extremely

high density Galactic stars. Shortly thereafter it was found that the observed

emission line widths required the emitting gas to be confined to a region within

a small fractional radius around the quasar. Such an object was shown to be

unstable (Chandrasekhar 1964). In addition to this, the observed symmetry of

the quasar emission lines could not be accounted for by gravitational redshift

(Greenstein and Schmidt 1964). A consensus quickly emerged and it became

clear that quasars were in fact extragalactic in origin, with their redshifted

emission lines a consequence of cosmological redshift from the expansion of

the Universe.

For many years the question as to what was fuelling the central SMBH

in AGN was an open debate (Schmidt 1972; Hills 1975; Frank and Rees 1976;

Adams 1977; Dahari 1984). It was from the accumulation of many theoretical

and observational arguments that the presence of tidal forces which remove

angular momentum from matter in the vicinity of the SMBH and enable it to

accrete was acknowledged. Thereafter the notion of a SMBH coupled with a
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rotating disk became widely accepted (Rees 1984) and the vast cosmological

distances of quasars became accepted by the astronomical community as a

whole. The host galaxies of quasars were eventually resolved with the advent

of charged-coupled devices (CCDs) and more sophisticated imaging detectors,

confirming quasars as AGN at high cosmological redshift. The most distant

quasar detected so far, at z = 7.085, is ULAS J1120+0641 (Mortlock et al.

2011), only 0.77 billion years after the Big Bang.

Quasar-like objects without strong radio emission called quasi-stellar ob-

jects (QSOs) were also discovered (e.g. Sandage 1965), although the terms

quasar and QSO are used interchangeably. It was later found that only roughly

10% of quasars are radio-loud. Strictly speaking, QSOs refer to radio-quiet

quasi-stellar sources. Although FSRQs and BL Lac objects share the proper-

ties associated with a non-thermal continuum, FSRQs have strong and broad

optical emission lines, while in BL Lacs the optical lines are weak or absent

altogether. Bolometric luminosities are higher in FSRQs than BL Lacs (Sam-

bruna et al. 1996), exhibiting thermal activity perhaps related to an accretion

disk in their optical and ultraviolet (UV) spectra. This is in contrast to BL

Lacs, which have smooth continua. At these inclinations the accretion disk

cannot be seen.

Moving further away from the relativistic jet axis, emission from the ac-

cretion disk is unobscured. In many systems this thermal disk emission is

revealed as the “big-blue-bump” in the optical/UV part of spectra (Shields

1978). Emission lines from both the broad line region and narrow line re-

gion may now be observed in the optical spectra. Objects viewed at such

inclinations are Seyferts-1s and steep-spectrum radio quasars (SSRQs). The

spectra of Type-1 Seyfert galaxies show broad emission lines in the UV and

X-ray, as well as visible light from their cores. SSRQs are normally radio

lobe-dominated radio quasars. Their lobe emission dominates their core emis-

sion, since beaming effects are less severe as their relativistic jets are viewed

at larger inclination angles.

At even higher inclinations the line-of-sight view of the accretion disk

and central black hole is interrupted by the dusty torus. Consequently, only
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light scattered from the nucleus is observable. At these inclinations even the

broad line emission region may be obscured, but the narrow emission line re-

gion remains unobscured. These objects are Seyfert-2s and are predominantly

radio-quiet. In practice, Seyfert-1 galaxies that show intermediate properties

(ratio of broad line to narrow line components) are divided into sub-classes

(Osterbrock and Ferland 2006). For example, a Seyfert-1.9 is a Seyfert-1 in

which only broad Hα (653 nm) emission lines are seen, whereas a Seyfert-1.5

has similar broad and narrow Hβ (486 nm) emission line components.

For radio galaxies not observed face-on, the relativistic jet is projected

onto the sky. These radio galaxies are divided into two separate classes: Fa-

naroff and Riley (1974) Class-I (FR-I) and Class-II (FR-II) objects. These

sources are classified using the ratio of the distance between the regions of

highest surface brightness on opposite sides of the central galaxy or quasar, to

the total extent of the source up to the lowest brightness contour in the radio

map. Those sources whose distance ratio is less than 0.5 are FR-I objects,

whereas sources with ratios greater than 0.5 are FR-II objects. FR-I radio

lobes are edge-dim and centrally bright, with a relativistic jet which gradually

widens into the lobe. FR-II radio lobes are edge-bright and centrally dimmer,

with a relativistic jet which maintains its narrow cross-section until the lobe.

In addition, FR-II radio jets also tend to have a hot spot on the side furthest

from the galaxy. This hot-spot is the strong shock where the relativistic jet

terminates, colliding with a wall of ambient thermal gas.

Upper limits to AGN size may be obtained from observations of AGN struc-

ture in the optical and radio, as well as through measuring the widths of their

spectral lines in various wavebands. However, more stringent constraints may

in some cases be set through observation of the variability timescale of the

AGN luminosity. In nearby AGN (e.g. NGC 4395), optical observations place

an upper-limit on the linear size of the nucleus at ∼ 1 pc (Ho et al. 1992).

Very-long-baseline interferometry (VLBI) measurements of the radio cores of

AGN enable upper-limits to be placed on the size of the compact core (see

Falcke and Biermann 1999; Ulvestad and Ho 2001; Anderson et al. 2004).
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Structure is present on all observed scales, with the length scale of observed

structure depending on the observed frequency. Measurements of absorption

lines and line variability (the reverberation technique) may also be used to

estimate the distance of the broad emission line region.

The variability timescale of a system is tvar = l/c, where l is the length-

scale of the system and c is the speed of light. In general, significant changes

in the structure of a system cannot be observed over timescales shorter than

this timescale. Due to the size of the system, different photons arrive at Earth

at different times, smearing out the changes in the observed structure. Conse-

quently, the size of the system is constrained by l ≤ ctvar. This variability-size

argument is the basis of the reverberation mapping technique using iron lines,

whereby following changes in the continuum, the lines change and through the

measured lag the distance may be inferred (see Blandford and McKee 1982;

Reynolds et al. 1999). This technique is used to probe the inner structure

of AGN accretion disks. This is complicated by reflecting boundaries and

intrinsic source motion. Reflection of the observed emission will lead to over-

estimation of the system size. However, as has been observed in superluminal

expansion, the observed tvar is shorter than the corresponding timescale in the

source rest frame. This inevitably leads to an underestimate of size for rapidly

varying sources.

Essentially AGN may be categorised based on their viewing inclination

angle and whether they are radio-quiet or radio-loud. Despite this taxonomy,

AGN are complex systems and do not always readily lend themselves to fixed

classifications. Obscuration of AGN by dust lanes and the interstellar medium

(ISM) makes optical distinction between starburst galaxies and low-luminosity

AGN difficult due to new star formation along the line-of-sight (e.g. Treister

et al. 2009). However, X-ray observations of AGN show a distinct emission

signature, enabling them to be clearly distinguished from galaxies without an

AGN.
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1.3 Accretion Disks

Accretion disks are an ubiquitous phenomenon in astrophysics, often giving

rise to bipolar relativistic jets. The strong gravitational field of black holes,

coupled with the high angular momentum of accreting matter, enables an

accretion disk to form. Frictional heating from relativistic matter in the inner

region of black hole accretion disks can generate temperatures in excess of

105K, emitting optical and UV photons. These photons are then up-scattered

to X-ray energies by a corona of hot electrons above and below the accretion

disk. The liberation of gravitational potential energy from matter accreting

onto black holes is widely believed to be the primary power source in AGN.

Accretion onto black holes is a natural and powerful mechanism to produce

the observed high-energy radiation from AGN.

1.3.1 Thin disks

In most cases the accretion flow is so closely confined to the equatorial plane

that the disk may be regarded as a two-dimensional flow. The most success-

ful formulation to-date is the α-viscosity prescription (Shakura and Sunyaev

1973). The accretion disk is assumed to be geometrically thin and the under-

lying subsonic turbulence is the source of viscosity. In this prescription the

largest eddies in the flow are negligible in comparison to the vertical extent of

the disk, and so the viscosity, ν, may be expressed as

ν = αcsH , (1.1)

where cs is the sound speed, H is the disk thickness, and α is a dimensionless

parameter (α < 1). All information about the disk viscosity is encapsulated

in this parameter. The presence of a free parameter does not hinder the pre-

scription, since most physical quantities only depend weakly on α. However,

since observable quantities depend weakly on α, it is difficult to constrain.

This prescription may be extended to include the disk vertical structure

(see Frank et al. 2002). For thin disks, the disk radius is much greater than

the disk height: radial and vertical dependencies are separable. Working in

cylindrical polar coordinates, the disk structure is most easily considered first

in the z-direction. The flow is negligible in this direction, and the momentum
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conservation equation gives

1

ρ

∂P

∂z
=

∂

∂z

(
GM√
R2 + z2

)
, (1.2)

where R is the radius of a disk element, ρ and P are the density and pressure of

the accreting matter, M is the mass of the accretor and G is the gravitational

constant. Since z � R, equation (1.2) immediately becomes

1

ρ

∂P

∂z
= −GMz

R3
. (1.3)

Since the typical disk scaleheight is H, z ∼ H and ∂P/∂z ∼ P/H, where

z ∼ H. Assuming an equation of state for the disk of the form

P = ρc2
s , (1.4)

the disk scaleheight may be expressed as

H

R
' cs

√
R

GM
, (1.5)

which yields, given H � R, the condition

cs �
√
GM

R
. (1.6)

Therefore, for the thin disk prescription to be valid, the local Keplerian velocity

must be highly supersonic. Neglecting time-dependence, the mass conservation

for the disk (see Frank et al. 2002) is

∂

∂R
(RΣvR) = 0 , (1.7)

where Σ ≡ Σ(R) =
∫

dz ρ(z) is the disk surface density and vR is the radial

drift velocity. Clearly RΣvR is a conserved quantity in the mass conservation

equation, representing the constant inflow of mass through each fluid element

in the disk. It therefore follows that the mass accretion rate is

Ṁ = −2πRΣvR , (1.8)

the minus sign indicating that the total mass within the disk is decreasing.

From conservation of angular momentum, integration yields

−νΣΩ = −ΣvRΩ +
C

2πR3
, (1.9)
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where Ω ≡ Ω(R) is the angular velocity of a disk fluid element and C is an inte-

gration constant determined by the disk inner boundary condition (Ω′(R) = 0).

For simplicity, it is assumed that the disk truncates at the surface of the ac-

cretor (R = R∗). The disk angular velocity remains Keplerian at this radius

and therefore

ΣvR

√
GM

R3
∗

=
C

2πR3
∗
. (1.10)

The constant C may now be found as

C = −Ṁ
√
R∗GM . (1.11)

Substituting equation (1.11) into equation (1.9) yields

νΣ =
Ṁ

3π

(
1−

√
R∗
R

)
, (1.12)

and

vR = − 3ν

2R

(
1−

√
R∗
R

)−1

. (1.13)

The viscous dissipation rate per unit disk area D(R) within the disk is given

by (see Frank et al. 2002) the following expression

D(R) =
1

2
νΣ (RΩ′(R))

2
. (1.14)

Substituting Ω = ΩK, the dissipation rate follows as

D(R) =
3GMṀ

8πR3

[
1−

√
R∗
R

]
. (1.15)

It is immediately evident that the dissipation rate through a thin accretion

disk is independent of the viscosity. If the disk is assumed optically thick in

the z-direction, then the radiation from each disk fluid element is roughly a

blackbody with temperature T (R) given by

σT 4(R) = D(R) , (1.16)

where σ = π2k4
B/60~3c2 is the black-body emittance constant, kB is the Boltz-

mann constant and ~ is the reduced Planck constant. Now the radial tem-

perature profile for a steady-state geometrically thin, optically thick Shakura-

Sunyaev accretion disk (Shakura and Sunyaev 1973) is given by

T (R) =

[
3GMṀ

8πR3σ

(
1−

√
R∗
R

)]1/4

. (1.17)
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The spectrum from the disk may be approximated as a black-body and inte-

grated over the disk to determine the observed flux at a given frequency, ν,

yielding

Fν ∝ ν3

∫ Rout

R∗

dR
R

ehν/kBT (R) − 1
, (1.18)

where Rout is the disk outer radius, h is the Planck constant, and the constant

of proportionality, which is equal to 4πh cos i/c2d2, depends on the observer

inclination angle, i, and the distance to the source, d.

All of the previous equations may now be combined to obtain the radial

dependence of all variables (see Frank et al. 2002). As an example, the disk

scale height, density and central temperature may be expressed as

H = 1.7× 108α−1/10Ṁ
3/20
16 m

−3/8
1 R

9/8
10 f

3/5 cm , (1.19)

ρ = 3.1−8α−7/10Ṁ
11/20
16 m

5/8
1 R

−15/8
10 f 11/5 g cm−3 , (1.20)

Tc = 1.4× 104α−1/5Ṁ
3/10
16 m

1/4
1 R

−3/4
10 f 6/5 K , (1.21)

where Ṁ16 = Ṁ/ (1016 g s−1), m1 = M/M�, R10 = R/(1010cm), and

f 4 = 1−
√
R∗
R

. (1.22)

From equation (1.19) it follows that

H

R
= 1.7× 10−2α−1/10Ṁ

3/20
16 m

−3/8
1 R

1/8
10 f

3/5 , (1.23)

i.e. H � R and the disk is indeed thin. As noted previously, the dependence

of all physical quantities on the parameter α is very weak.

1.3.2 Thick disks

The thin disk solution breaks down when the accretion rate, Ṁ , exceeds a

threshold, known as the Eddington accretion rate (Eddington 1926). This is

given by

ṀEdd =
4πGMmp

η c σT

, (1.24)

where mp is the proton mass, η is the accretion efficiency (the ratio of the

observed luminosity, L, to rest mass energy of the accreting material, Ṁc2),

and σT is the Thomson cross-section (Thomson 1906). When this happens the
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radiation pressure within the disk balances the gravitational force. The disk

scale height may now be defined as

H ' 3R∗
4

Ṁ

ṀEdd

(
1−

√
R∗
R

)
. (1.25)

As Ṁ increases, the disk scaleheight, particularly in the inner regions where R

is small, is no longer negligible. Consequently, it is expected that in accreting

systems like AGN the accretion disk will become thick in the inner region.

Like the stellar case in which the Eddington approximation was originally

derived, disk accretion may be limited by radiation pressure, counteracting

gravity and viscous dissipation. Unlike the stellar case, the different geometry

of the accretion disk can potentially complicate the situation considerably. In

applying this limit to disk models the following assumptions (see Heinzeller and

Duschl 2007) are inherent: (i) spherical symmetry; (ii) isotropic radiation;

(iii) homogeneous degree of ionisation and (iv) stationarity. It is clear none of

these approximations apply for the accretion disk. In addition to these, the

Eddington approximation, irrespective of the stellar or disk case, makes the

following approximations: (1) opacity is from Thomson scattering alone; (2)

gas pressure is negligible compared to radiation pressure and (3) no relativistic

effects are considered. As a consequence of this many research efforts have

been focused on the applicability of the Eddington limit to the disk case (e.g.

Jaroszynski et al. 1980; Abramowicz et al. 1980). In addition to standard

radiative cooling, these models considered advective flows which permit the

critical accretion rate to rise without increasing the radiative flux.

In the inner disk region H ' R and the assumption of a geometrically thin

disk is no longer applicable. The system of equations governing the properties

of the accretion disk becomes unclosed. This problem may be overcome by

parameterising the angular velocity or angular momentum of the thick disk,

instead of the viscosity. Equilibrium figures of steady thick disks are toroidal

in shape and internally stratified: a special case of the shape and structure of

a rotating relativistic fluid. This is discussed at length in Chapter 4, where the

relevant equilibrium figures, including internal thermodynamic properties, are

derived. For now a simple prescription is adopted to illustrate more general
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properties of thick disks.

Assuming fluid particles are rotating in circular orbits, with no radial

or vertical displacements, then in cylindrical polar coordinates (vR, vφ, vz) =

(0, RΩ, 0). The equations of hydrostatic equilibrium in the radial and vertical

directions yield

1

ρ

∂P

∂R
= −∂Φ

∂R
+ Ω2R , (1.26)

1

ρ

∂P

∂z
= −∂Φ

∂z
, (1.27)

where Φ is the gravitational potential. These equations, representing the bal-

ance of forces on a fluid element, may be written in vector form (see Kozlowski

et al. 1978; Frank et al. 2002) as

1

ρ
∇P = −∇Φ + Ω2R = geff , (1.28)

where geff is the effective gravitational acceleration, encompassing gravita-

tional and centrifugal accelerations. This effective gravity is orthogonal to

isobaric surfaces in the fluid. For a polytropic equation of state, the isopycnic

and isobaric surfaces coincide, and are orthogonal to the effective acceleration.

This important property is used in Chapter 4 to derive the structure of rela-

tivistic accretion tori. The condition for a polytropic equation of state to hold

is found by taking the curl of equation (1.28), yielding

∇
(

1

ρ

)
×∇P = 2Ω∇Ω×R

= 2
∂Ω

∂z
v , (1.29)

where v is the fluid velocity field. It is now clear in equation (1.29) that

isopycnic and isobaric surfaces coincide when ∂Ω/∂z = 0, i.e. Ω ≡ Ω(R).

In certain cases, the analytic form of Ω (R) is simple enough that equa-

tion (1.28) may be integrated analytically to obtain ρ (R, z) and P (R, z) (see

Kozlowski et al. 1978). In this instance Ω is essentially a free parameter, im-

plying a lack of constraint for the fluid. In reality the fluid is permeated by

a magnetic field and GRMHD effects govern the flow. In Chapter 4 the form

of Ω is chosen to closely approximate the geometrical properties of relativistic

accretion tori in numerical GRMHD simulations.
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1.4 Relativistic Jets in AGN

Relativistic jets in AGN are highly collimated plasma outflows. They are linear

features originating from, and associated with, the central SMBH. Although

some believe that these relativistic jets are powered by the accretion disk

around the black hole itself, it is now widely accepted that AGN jets are pow-

ered primarily by black holes. Relativistic jets transport tremendous amounts

of power away from the central region, necessitating them to be coupled with

processes involving a SMBH. Therefore potential energy and rotation of the

central SMBH are the main power sources for these jets.

Approximately 1% of AGN are radio galaxies which accrete enough matter

to become luminous enough to overpower the emission from the ensemble of

stars in the entire galaxy. AGN in spiral galaxies are weak radio sources, which

may involve small-scale jets or may only lead to uncollimated core sources.

Only about 10% of radio galaxies, i.e. ∼ 0.1% of all AGN, are able to launch

relativistic jets (see Begelman et al. 1984; Bridle and Perley 1984). These jets

exhibit structural dimensions far greater than their host galaxies.

The first recorded observation of a jet was in 1918 within the elliptical

galaxy M87 (Curtis 1918). The commonly accepted model of jets consists of

two oppositely directed jets, although in many cases only one side is easily

detected. Radio depolarisation measurements are used to determine which

jet is pointing towards Earth, with the side with the stronger jet closer to

Earth showing less depolarisation since it is viewed through a smaller amount

of material along the line-of-sight. This is the so-called “Laing-Garrington

effect” (Laing 1988; Garrington et al. 1988).

VLBI observations display superluminal motions within the jets them-

selves, now understood as bulk relativistic motions (i.e. Doppler boosting) of

emitting plasma closely inclined to the observer line-of-sight. Jets transport

energy, momentum and angular momentum from the black hole far away from

the central region (Rees 1971; Scheuer 1974). In the case of FR galaxies these

jets dissipate their energy and momentum within radio lobes up to a mega-

parsec away from the central region. Thus studies of jets must consider scales

varying by over ten orders of magnitude. It is still an open question as to
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MERLIN

10 milliarcseconds

18 parsecs

HST

CHANDRA

3C273 10 arcseconds

18 kiloparsecs

Space VLBI

Fig. 1.2: Multiband collage in X-ray, optical, large-scale radio and VSOP survey images

of the jet in the quasar 3C273. Bottom: Linear perturbation analysis of Kelvin-Helmholtz

instability to model the observed double helical structure of the jet (outlined with red and

blue lines) describes well the intrinsic structure of the jet on scales of up to 300 parsecs.

Credit: Andrei Lobanov and Anton Zensus (MPIfR).

what constitutes a jet: are they baryonic or leptonic in content? The prin-

cipal species responsible for transporting energy and momentum (electrons,

positrons, protons, nuclei, Poynting flux) is still unknown (Nishikawa et al.

2011). Consequently, the mechanism by which jets manifest and accelerate

also remains an open question.
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Prior to the Hubble space telescope (HST) observations of jets were

poorly resolved in the optical/UV due to the limited angular resolutions avail-

able. HST data of 3C273 were the first detailed morphological and degree-of-

polarisation observations of a jet in the optical/UV (e.g. Uchiyama et al. 2006).

The Einstein observatory (launched in 1978) was the first instrument to detect

X-ray knots in FR II radio galaxies and quasars, as well as hot spots associated

with jets (e.g. Lea et al. 1982). Later ROSAT (1990) detected several more

jets (e.g. Birkinshaw and Worrall 1994). However, it was not until the launch

of Chandra with its exquisite angular resolution that many more jets were

discovered (e.g. Chartas et al. 2000). X-ray observations of knots and jet hot

spots have provided key insights into jet physics. From a large-scale dynamics

perspective these knots appear as shocks propagating upstream/downstream

in the jet plasma. Radio galaxy-scale knots may stand still as decollimation

shocks i.e. standing shock waves. These knots are also interpreted by some

as separate ejection events (e.g. Jester 2008). It is not yet a settled matter

as to what determines the motions of knots in jets. The Lorentz factors of

radiating electrons within these jets must be of the order of 107–108 for such

weak magnetic fields to produce the observed synchrotron emission in X-rays.

Such ultra-relativistic electrons have extremely short half-lives. Consequently,

X-ray data can constrain source size much better than optical/UV data, since

such electrons cannot travel very far from where they were accelerated (see

Boettcher et al. 2012).

Most radio-loud AGN cores are spatially unresolved on sub-parsec scales.

Gamma-ray emission is observed in those regions when the AGN jet is closely

directed along the line-of-sight (i.e. blazars). Detected energies are in the

MeV and TeV ranges, with extremely short time variability for increasing

energy.

It is, however, gamma-ray bursts (GRBs) that are the sources of the most

powerful jets in the Universe (see Boettcher et al. 2012, for a review of GRBs

and jets). Observational association of GRBs with afterglows in the X-ray and

optical confirm that these sources are extragalactic in origin (Fishman and
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Meegan 1995; Galama et al. 1998). Calculations of GRB γ-ray flux yield

energies in excess of 1054 erg, exceeding the radiative energy release of typical

supernovae by more than three orders of magnitude. The fast flux variability

of GRBs (∼seconds) place lower bounds on the jet bulk Lorentz factor, Γ, of

102–103 (Rees and Meszaros 1992, 1994; Meszaros and Rees 1997; Piran 2005).

The emission in jets is highly non-thermal and associated with a power-

law distribution of relativistic electrons interacting with a magnetic field and

ambient photons. The two most likely emission processes in jets are there-

fore Synchrotron radiation and inverse Compton (IC) scattering. Synchrotron

radiation results from relativistic electrons gyrating in a magnetic field (and

will be discussed in Chapter 2). Most observed radio sources are powered by

synchrotron emission. However, in relativistic jets, synchrotron emission is

also seen in the optical and X-ray. IC emission occurs when ultra-relativistic

electrons scatter off low energy photons, transferring much of their energy-

momentum to the photon, resulting in a much higher-energy photon than

prior to scattering.

Numerical GRMHD simulations of accreting black holes which are spin-

ning rapidly exhibit spontaneous jet formation, suggesting that the majority of

jet energy comes from the black hole itself, and not the accretion disk. In ob-

servations of accreting stellar-mass black holes it has been found that jet radio

luminosity and black hole spin are correlated, implying a causal relationship

between jet power and black hole spin (Narayan and McClintock 2012), with

the jet power scaling roughly as the square of the black hole spin parameter.

The continuum fitting method (see Zhang et al. 1997; McClintock et al. 2006)

is used to determine the black hole spins in these cases.

The Penrose process around a spinning black hole allows, in principle, for

energy to be extracted from infalling matter (see Misner et al. 1973). Within

the ergo-region of a rotating black hole (discussed in Chapter 3), there exist

negative (redshifted) energy orbits. If a particle enters (or exits) the ergo-

sphere, it has positive energy. Particles with negative energy orbits must have

interacted with other particles prior to this state. When two particles of pos-

itive energy interact within the ergo-region, one is propelled into a negative
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energy orbit, and the other into a positive energy orbit (through conservation

of energy-momentum). If the subsequent positive energy particle exits the

ergo-region and escapes the black hole itself, it has extracted energy from the

black hole. However, in astrophysical black holes the presence of magnetic

fields in the flow necessitates an electromagnetic extension of this process (see

Komissarov et al. 2007).

The generalised Penrose process is commonly known as the Blandford-

Znajeck (BZ) mechanism (Blandford and Znajek 1977). This is an extension

of the Penrose process to include the dynamo effects of a uniform magnetic

field (see Komissarov 2004). A spinning black hole embedded in a uniform

magnetic field aligned with the black hole spin axis will generate a stationary

quadrupolar distribution of electric charge with a corresponding poloidal elec-

tric field. No seed electric charge is introduced, hence the BZ mechanism is

a purely general relativistic phenomenon (Misner et al. 1973). The magnetic

field essentially extracts angular momentum from the black hole, reducing its

spin. It is plausible that the launching site of jets is in this magnetospheric

region around the black hole, powered by the BZ mechanism. Numerous

numerical GRMHD simulations of jets support this conclusion (e.g. Komis-

sarov and Barkov 2009; McKinney et al. 2012). The proposed scenarios in

these simulations produce results consistent with observations.
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Chapter 2

Radiation Processes

2.1 Classical Radiative Transfer

Radiative transfer is the study of how radiation propagates through a medium.

As radiation passes through matter it may undergo absorption, emission and

scattering before finally reaching a distant observer. This interaction modifies

the radiation, leaving an imprint of the material the radiation has traversed.

This is applicable to all types of radiation flux, including flux in the form

of neutrinos and even gravitational waves. As such, radiative transfer is a

powerful tool for extracting information about matter from observations of its

radiative emissions. The classical radiative transfer equation and its general

relativistic covariant analog are derived and discussed in detail in Chapter 3.

2.1.1 Geometric optics limit

Throughout this thesis I investigate radiative transfer in the limit where the

wavelength of radiation is small in comparison to other characteristic length

scales of objects and the emitting environment itself. For example, the wave-

length of X-rays is negligible compared to the gravitational radius of an AGN.

As such, the effects of diffraction may be neglected and the refractive index of

the medium is unity.

In standard descriptions of radiative transfer theory the specific intensity

is used as a fundamental variable, with radiation in the form of rays. However,

the quantum properties of light assumed in the theory of radiative transfer

also impose certain restrictions. The specific intensity, Iν , is defined (e.g.
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Rybicki and Lightman 1979) as

dE = Iν dAdΩ dν dt , (2.1)

i.e. the energy dE crossing an area dA in time dt, within a solid angle dΩ in

a frequency range dν. In this description it is assumed that dA, dΩ, dν, and

dt are all infinitesimal. However, due to the uncertainty principle, dA and dΩ

cannot both be made arbitrarily small, that is

dAdΩ & λ2 , (2.2)

where λ is the wavelength of radiation. Therefore as soon as dA ∼ λ2, the

ray direction cannot be defined with accuracy and the concept of rays breaks

down. In addition to this, uncertainty in the energy means

dE dt & ~ . (2.3)

This implies

dν dt & 1 . (2.4)

Therefore when the wavelength of light exceeds atomic distance scales the

specific intensity in equation (2.1) is no longer a valid description of the in-

teraction of light on atomic scales. However, it is still a valid macroscopic

theory. To treat this more precisely requires employing the eikonal approxi-

mation, i.e. treating the radiation as a scalar field rather than a vector. In this

formalism rays are defined as curves whose tangents at each point are parallel

to the direction of propagation of the radiation. This condition only holds if

the amplitude and direction of the electromagnetic wave remain constant over

a distance λ. This is the formal definition of the geometric optics limit (see

Misner et al. 1973; Gammie and Leung 2012). Consider a time-varying wave

represented as a function f(r, t), expressed as

f(r, t) = a(r, t) eiψ(r,t) , (2.5)

where r is a spatial position vector, a(r, t) is the slowly varying amplitude of

the wave, and ψ(r, t) is its rapidly varying phase. Substituting equation (2.5)

into the wave equation yields

�a+ ia�ψ + 2i

(
∇a · ∇ψ − 1

c2
∂tψ ∂ta

)
− a (∇ψ)2 +

a

c2
(∂tψ)2 = 0 , (2.6)
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where the background metric signature is [−,+,+,+], � ≡ ∇2 − c−2∂2
t is the

D’Alembert wave operator and ∂t denotes partial differentiation with respect

to t. The geometric optics limit may now be formally defined as

1

a
|∇a| � |∇ψ| , (2.7)∣∣∇2ψ
∣∣ � |∇ψ|2 , (2.8)

1

a

∣∣∇2a
∣∣ � |∇ψ|2 , (2.9)

1

a
|∂ta| � |∂tψ| , (2.10)∣∣∂2
t ψ
∣∣ � |∂tψ|2 , (2.11)

from which it immediately follows that equation (2.6) becomes

(∇ψ)2 − 1

c2
(∂tψ)2 = 0 , (2.12)

which is precisely the eikonal equation. The wave vector k = −i∇ψ and the

local frequency ω = −∂tψ, which reduce the eikonal equation to

|k|2 − ω2

c2
= 0 , (2.13)

which is simply the dispersion relation for electromagnetic waves in vacuum.

In a refractive medium with refractive index n, by defining a total path

length derivative d/ds, where s is the path length, the radiative transfer equa-

tion, in the absence of scattering, may be written (see Pomraning 1972) as

d

ds

(
Iν
n2

)
+

3

c
∂tn

(
Iν
n2

)
= 0 . (2.14)

If the refractive index is not time-varying then

d

ds

(
Iν
n2

)
= 0 , (2.15)

implying Iν/n
2 is a conserved quantity. In this manner, the radiative trans-

fer formulation in Chapter 3 may be extended to included the effects of a

dispersive medium. Details may be found in Pomraning (1972).

2.1.2 Scattering in radiative transfer

In flat space the equation of radiative transfer through a stationary medium,

in the presence of isotropic scattering, may be written as

dIν
ds

= −ανIν + jν +

∫∫
dΩ′ dν ′ σ (ν, ν ′) Iν (Ω′) , (2.16)
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where αν is the frequency-dependent absorption coefficient of the medium

(which is contributed to in the presence of scattering), jν the frequency-

dependent emission coefficient, and σ the scattering kernel for the assumed

radiation process. Equation (2.16) is an integro-differential equation and is

very difficult to solve analytically. The spatially non-local nature of the scat-

tering term means even radiation that is outside of the line-of-sight may be

scattered into it. To calculate the intensity variation along any particular ray,

the entire radiation field through all space (and for time-dependent radiative

transfer, time also) must be solved for. This is highly non-trivial and requires

proper accounting of the energy-momentum redistribution and correct spec-

ification of both spatial and energy boundary conditions. The case where

scattering is negligible is formulated in Chapter 3 and studied in Chapter

4. Radiative transfer with scattering, including relativistic effects and strong

gravity, is discussed in detail in Chapter 5.

In the vicinity of astrophysical black holes in AGN, accretion material may

be optically thick. In this regime electron scattering dominates and radiative

transfer calculations which omit scattering do not correctly approximate the

physics. In this case the intensity is non-local and does not separate out into

individual spatial and energy components.

There exist several methods to solve the radiative transfer equation with

scattering. One such method is employing Monte-Carlo simulations to follow

rays from the observer to the source, and at each time-step scatter the rays

with a probability which is weighted by the scattering kernel. This method

requires many rays in order to obtain a good sample of the scattering medium.

Unfortunately, as opacity increases the number of scatterings per ray becomes

quadratic in optical depth and the numerical scheme requires many more eval-

uations per time-step, inevitably failing.

Other methods employ spectral techniques, i.e. expanding the radiation

field in a series of moments, as a function of position, momentum and energy.

If the moment expansion is truncated at an appropriate point then a good

approximation for the distribution of the radiation field is obtained. Given

sufficient symmetry, the above equation can be reduced to a one-dimensional
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form. This occurs in the plane-parallel case, where the radiation field only

depends on the z coordinate. It is common to calculate angular moments of

the intensity in terms of µ = cos θ, where θ is the angle between the ray and

the z-direction. Expanding moments to order n yields n equations in n+1

unknowns, i.e. the problem is under-determined.

The Eddington approximation applies a closure equation for the system,

reducing the problem to the solution of n equations in n unknowns, which

may be solved algebraically. The Eddington approximation is most easily

illustrated in the plane-parallel case. By assuming that the intensity may be

written as a series of increasing powers in µ, the intensity may be expanded

as

Iν (µ, z) =
N∑
n=0

an (z)µn , (2.17)

where an are coefficients in the expansion and N is the maximum order of the

moment expansion. The i-th radiative moment (Mi) of the radiation field may

now be written as

Mi =
1

2

∫ 1

−1

dµ Iν (µ, z)µi

=
N∑
n=0

1 + (−1)n+i

n+ i+ 1
an (z) , (2.18)

where imax = N + 1 for the system to remain closed.

As a simple example of the Eddington approximation, consider the case

N = 1, i.e.

Iν (µ, z) = a0 (z) + a1 (z)µ , (2.19)

with imax = 2. The first three moments are given by

M0 = a0 , (2.20)

M1 =
a1

3
, (2.21)

M2 =
a0

3
. (2.22)

It immediately follows that

M0 = 3M2 , (2.23)
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i.e. the Eddington approximation. In local thermodynamic equilibrium (LTE)

the radiative transfer equation in an isotropic scattering medium reads

µ
dIν
dz

= −αν (Iν − Bν) + σν(Jν − Iν) , (2.24)

where Bν is the black body emissivity and Jν (≡M0,ν) is the isotropic intensity.

Integrating at zeroth and first order in µ over all angles yields

dM1,ν

dz
= αν (Bν −M0,ν) , (2.25)

dM2,ν

dz
= − (αν + σν)M1,ν . (2.26)

Using equation (2.23), equations (2.25) and (2.26) may be combined, yielding

the following second order ODE

d2M0,ν

dz2
= 3αν (αν + σν) (M0,ν − Bν) , (2.27)

the radiative diffusion equation. By solving this equation with suitable bound-

ary conditions, the distribution of radiation may be obtained. Increasing the

number of moments in the method increases the accuracy of the obtained

radiation distribution. The method presented here does not work in general

relativity. In this instance a generalised moment expansion of the flux in terms

of tensors may be used (Thorne 1980; Fuerst 2006). In Chapter 5, I derive the

scattering kernel for Compton scattering in general relativity, and discuss its

inclusion into a generalised moment expansion.

2.2 Radiation Processes

Radiation arises from three types of process: bound-bound, free-bound and

free-free radiative transitions. These terms refer to the state of electrons prior

to and immediately after an atomic transition. In a bound-bound process

an atom or ion is agitated into an excited state, and subsequently decays

through the emission of a photon. This is the basis of spectral line formation.

From quantum mechanics it is known that these states are quantised, therefore

radiation of a specific frequency is emitted.

In free-free radiative transitions, e.g. Bremsstrahlung emission, the inci-

dent electron is free prior to and after its interaction with the Coulomb field of
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a nearby ion. However, in a free-bound transition, or recombination radiation,

the electron is captured in a bound stable orbit around the ion, emitting a

photon which carries off the excess energy. The capture cross-section of ions

is proportional to Z4 (where Z is the atomic number). Therefore a free-bound

transition for an iron ion is ∼ 4.6× 105 times more likely than for a hydrogen

ion.

Free-free spectra are a continuum, extending from the electron energy

down to zero. Free-bound spectra cover a relatively narrow energy range above

the electron kinetic energy. This is because the photon energy from free-bound

interactions is the sum of the kinetic energy of the incident electron and the

binding energy of the state into which it recombines. The photon energy

is greater than the electron kinetic energy, in contrast to the situation with

free-free interactions where it must be less.

It is important to note that photons with energies of up to ∼ 8 keV

can be produced by electrons with zero kinetic energy, if they are captured

by a fully ionised iron nucleus. Consequently, the free-bound continuum is

very sensitive to the electron spectrum down to very low energies. This is

in contrast to free-free radiation, which is not. In spite of this, and even

with the huge increase in the probability of free-bound interactions with iron

nuclei compared to other nuclei, free-free interactions still dominate at hard

X-ray energies, since protons are so much more abundant than iron nuclei.

In the following subsections the properties of Bremsstrahlung, synchrotron

radiation and Compton scattering are introduced, all being free-free emission

mechanisms and the dominant radiation processes close to a black hole.

2.2.1 Bremsstrahlung radiation

Radiation due to acceleration of a charged particle in the Coulomb field of

another charged particle (e.g. an ion or nucleus) is Bremsstrahlung (literally

“braking”) or free-free emission (see Jackson 1975; Tucker 1975; Rybicki and

Lightman 1979; Longair 1992). In hot dense plasmas in the accretion flow

around black holes there exist multiple charged species and Bremsstrahlung

is an important radiation process. Bremsstrahlung due to the collision of

like particles (e.g. electron-electron, proton-proton) is zero in the dipole ap-
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proximation, since the dipole moment is simply proportional to the centre of

mass of the two particles, which is a constant of motion. However, at elec-

tron and photon energies above ∼ 300keV (i.e. hard X-rays) electron-electron

Bremsstrahlung (i.e. quadrupolar radiation) becomes important and can even

explain, for example, the observed hard spectral cut-off in solar flares (e.g.

Kontar et al. 2007).

Throughout this thesis I neglect quadrupolar and other higher order ef-

fects. The electron is assumed to be travelling in a straight line and the effect

of radiation on its orbit is not considered.

It is assumed that the emission comes from electron-ion Bremsstrahlung,

with the ion having a rest mass far greater than the electron. In this regime the

electron may be considered as moving in a fixed Coulomb field. It is assumed

that the electron is moving rapidly enough that the angle through which it

is deflected by the ion is small. Bremsstrahlung is the dominant continuum

emission mechanism in thermal plasmas, where the electrons and ions are in

thermal equilibrium. Consequently, it is an important cooling mechanism for

astrophysical plasmas and very efficient at producing X-rays in black hole

accretion.

However, accelerated electrons often have a power law distribution of ener-

gies. Power law distributions of particles may also be produced in shock waves.

This means that non-thermal Bremsstrahlung can be produced in objects such

as AGN and their associated jets. In FR-II radio galaxies the hot-spots in

strong shocks where the jet terminates can emit inverse Bremsstrahlung radia-

tion. This is characterised by the emission of photons by fast suprathermal ions

in collisions with ambient electrons possessing relatively low velocities, as is

found in jet termination regions. Therefore, the particular importance of ther-

mal or non-thermal state, and the corresponding electron-ion Bremsstrahlung

or inverse (ion-electron) Bremsstrahlung depends on the underlying velocity

distributions of the interacting species. Hereafter, the term Bremsstrahlung

refers specifically to thermal Bremsstrahlung radiation from a population of

relativistic electrons with an underlying Maxwellian velocity distribution.

The Bremsstrahlung radiation spectrum covers a broad range of the elec-
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tromagnetic spectrum as it is not an oscillatory process. The total power in the

process is dominated by the distance of closest approach (impact parameter),

b, of the electron, where it is most strongly accelerated.

For a single non-relativistic electron of charge e at a distance d from an

ion of charge Ze, its acceleration is given, as in Jackson (1975), by

a =
Ze2

med2
d̂

=
Ze2

me (b2 + v2t2)
d̂ , (2.28)

where t = 0 is taken as the time of closest approach, me is the electron mass

and v is the electron velocity. The dipole electric field at a radial distance r

from the electron is given by

|E| =
ea

c2r
sin2 θ

=
Ze3 sin θ

mec2r (b2 + v2t2)
. (2.29)

In order to obtain the spectrum radiated by a single electron, first the Fourier

transform of the electric field must be calculated

Ẽν =

∫ ∞
−∞

dtE(t)e2iπνt

=
Ze3 sin θ

mec2r

∫ ∞
−∞

dt
e2iπνt

b2 + v2t2

=
Ze3 sin θ

mec2r

π

bv
e−2πνb/v . (2.30)

The radiated spectrum of a single electron is therefore

dW

dν
=

c

2π

∫
dω r2

∣∣∣Ẽν∣∣∣2
=

4π2

3

Z2e6

m2
ec

3b2v2
e−4πνb/v , (2.31)

which is a flat spectrum for ν � v/b and an exponential cutoff in its tail for

ν � v/b. For simplicity, assuming all electrons have the same velocity, v, then

the number of electrons passing through an annulus of thickness db of possible

impact parameters of a single ion per unit time is nev 2πb db, where ne is the

number density of electrons. To calculate the radiated power per unit volume
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requires multiplying by the number density of ions, ni, yielding

dW

dνdV dt
= 2πneniv

∫ ∞
bmin

db b
dW (b)

db

≈ 8π3

3

Z2e6

m2
ec

3v

∫ bmax

bmin

db

b
, (2.32)

where the fact that the spectrum has an exponential cutoff for ν � v/b allows

the exponential to be approximated by a step function which changes from 1

to 0 at ν ∼ v/b. In essence this sets a maximum impact parameter bmax ∼ v/ν.

The value of bmin may be set in one of two different ways. The first is through

quantum mechanical considerations. Because of the uncertainty principle,

the electron cannot approach closer than b ∼ ~/mev. The second is where

the small angle approximation for the electron trajectory breaks down, i.e.

bmin ∼ Ze2/mev
2. In high velocity regions, like in the accretion flow near the

black hole event horizon, the uncertainty principle sets bmin.

To find the emission coefficient for Bremsstrahlung, the radiated power

per unit volume must be integrated over the velocity distribution for electrons

(assumed Maxwellian). The lower limit of this integration is set by the min-

imum allowed energy of the electron, which is mev
2/2 = hν in order to emit

a photon of energy ν. So the minimum electron velocity is quantised by the

discreteness of photon energies. Performing this integration yields

jff
ν =

32π

3

(
2π

3

)1/2
Z2e6

m2
ec

3

(
me

kBT

)1/2

nenie
−hν/kBT ḡff

= 6.8× 10−38Z2neniT
−1/2
e e−hν/kBTe ḡff erg s−1 cm−3 Hz−1 , (2.33)

where Z is the atomic number, ne and ni the densities of electrons and ions

respectively, kB is the Boltzmann constant, Te the temperature of electrons

and ḡff(Te, ν) is the velocity-averaged Gaunt factor. The exponential cut-

off is a result of the quantisation of photon energies and the exponentially

small number of extremely high-energy electrons in the Maxwellian distribu-

tion function. The T
−1/2
e term is from the fact that the power emitted by an

electron is proportional to v−1 and scales as v−1 ∝ T
−1/2
e . Free-free emission

is an electron-ion process, with emissivity proportional to neni, i.e. density

squared, and is hence a dominant process in dense plasmas. The exact tem-

perature and frequency dependence of the Gaunt factor depends on the regime



2.2. Radiation Processes 31

being considered, and lies in the range of 1.1 to 1.5. Tabulated values of the

Gaunt factor and its explicit functional dependencies may be found in e.g. Itoh

et al. (2002). The total integrated emissivity may be obtained by integrating

over all frequencies, yielding

jff = 1.4× 10−27T 1/2
e neniZ

2ḡB(Te) erg s−1 cm−3 , (2.34)

where ḡB(Te) is a frequency average over ḡff . Choosing the Gaunt factor to

be 1.2 is a good approximation and is always correct to within ∼ 20%. For

a thermalised distribution of highly relativistic electrons the total integrated

emissivity is now given by

jff = 1.4× 10−27T 1/2
e Z2neniḡB

(
1 + 4.4× 10−10Te

)
erg s−1 cm−3 , (2.35)

which is identical to equation (2.34), except for the bracketed temperature-

dependent relativistic correction term. The effects of thermal Bremsstrahlung

radiation in relativistic accretion tori are investigated in Chapter 4.

2.2.2 Synchrotron radiation

It is well-known that accelerated charges emit electromagnetic radiation. Syn-

chrotron radiation arises from the emissions of relativistic and ultra-relativistic

particles gyrating in a magnetic field (see Ginzburg and Syrovatskii 1965; Jack-

son 1975; Rybicki and Lightman 1979). Magnetic fields are now known to be

ubiquitous in the Universe with synchrotron radiation dominating much of

high energy astrophysics. It is responsible for the radio emission in the rela-

tivistic jets of black holes (ν < 300GHz), and is most likely the origin of the

optical and X-ray continuum emission in quasars.

Synchrotron emission is a non-thermal process, which in the present con-

text means that the radiation is from the continuum emission by particles with

a non-Maxwellian distribution of velocities.

From the Liénard-Wiechert potentials and fields for a point charge (see

Jackson 1975), upon differentiation the electric and magnetic fields of the point

charge are given by

E(r, t) =
q

c

[
(n− β) (1− β2)

κ3R2

]
+
q

c

n×
{

(n− β)× β̇
}

κ3R

 , (2.36)

B(r, t) = n× E(r, t) , (2.37)
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where β ≡ u/c, κ ≡ 1−n ·β, n is a unit vector, q is the charge of the particle

and R is the distance of the particle from the origin, including both present

and retarded positions of the charge, where

[
(1− n · β)2R

]
=

1

γ2

(
b2 + γ2v2t2

)
. (2.38)

Here b is the distance of closest approach to the origin of the particle, as

in Bremsstrahlung emission, and γ = (1 − β2)−1/2 is the Lorentz factor of

the particle. The fields are written in this way since in order to determine

the position of the particle at time t, the retarded position and time of the

particle must be calculated. Retarded time and present time are related via

t = t′ +R/c.

It is clear that the magnetic field is perpendicular to both E and n. The

first term in equation (2.36) is the velocity field of the particle, which is pro-

portional to 1/R2 and arises from the Coulomb law for moving point charges.

The second term is the acceleration field of the particle, is perpendicular to

n, and constitutes the radiation field of the particle, along with E. Since the

radiation field is of interest in this study, the radiation field of the particle is

therefore

Erad(r, t) =
q

c

n×
{

(n− β)× β̇
}

κ3R

 , (2.39)

Brad(r, t) = n× Erad . (2.40)

From this the energy per unit frequency per unit solid angle may be calculated

as
dW

dν dΩ
=

q2

4π2c

∣∣∣∣∫ dt
{[

n× (n− β)× β̇
]
κ−3
}
eiνt
∣∣∣∣2 . (2.41)

To solve this integral requires changing variable to the present time t′ = t −

R(t′)/c. In astrophysical settings the radiation source is located far from the

observer, so R ≈ R0 − n · r(t′), resulting in the following relation between the

retarded time and present time

dt = dt′(1− n · β)

= κdt′ . (2.42)
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Fig. 2.1: Polarisation of Synchrotron radiation. The orbital plane of the particle is in-

stantaneously in the x − y plane at t = 0. The vector n points towards the observer. The

orthogonal axes e‖ and e⊥ are introduced to discuss the polarisation of the emission.

Using the following identity

d

dt′

[
n× (n× β)

1− n · β

]
=

n× (n− β)× β̇

(1− n · β)2 , (2.43)

equation (2.41) may be integrated by parts to yield

dW

dν dΩ
=

q2

4π2c

∣∣∣∣∫ dt′ eiν(t′−n·r/c)n× (n× β)

∣∣∣∣2 , (2.44)

which is now independent of the particle acceleration. From Figure 2.1 the

vector product may be expressed as

n× (n× β) = −e⊥ sin

(
vt′

a

)
+ e‖ cos

(
vt′

a

)
sin θ , (2.45)

where β = 1 has been taken, θ is the opening angle of the Synchrotron emission

cone, and e‖ and e⊥ are polarisation basis vectors parallel and perpendicular

to the direction of motion, respectively. The exponent in the exponential term

in equation (2.44) may be expanded as

t′ − n · r(t′)

c
= t′ − a

c
cos θ sin

(
vt′

a

)
≈ 1

2γ2

[(
1 + γ2θ2

)
t′ +

c2γ2t′3

3a2

]
, (2.46)

where the fact that the opening angle of the emission cone is very narrow at

ultra-relativistic velocities has been used. Except when θ < 1/γ and ct′ < a/γ,
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the exponent oscillates rapidly so its contribution to the integral vanishes.

Integrating over the full particle path requires only the contribution from small

angles. Expressions for the spectrum in the two polarisation states may be

obtained along e‖ and e⊥. Applying the same techniques as previously, the

following expressions are obtained

dW

dν dΩ
=

dW‖
dν dΩ

+
dW⊥
dν dΩ

, (2.47)

dW‖
dν dΩ

=
q2ν2θ2

4π2c

∣∣∣∣∫ dt′ exp

{
iν

2γ2

[(
1 + γ2θ2

)
t′ +

c2γ2t′3

3a2

]}∣∣∣∣2 , (2.48)

dW⊥
dν dΩ

=
q2ν2

4π2c

∣∣∣∣∫ dt′
ct′

a
exp

{
iν

2γ2

[(
1 + γ2θ2

)
t′ +

c2γ2t′3

3a2

]}∣∣∣∣2 .(2.49)

The limits of integration may be extended from −∞ to∞ since the integrands

decay rapidly for t′ > a/γc. Upon changing variable and integrating the

following expressions are obtained

dW‖
dν dΩ

=

√
3 q2γ sinα

2c
[F (x)−G(x)] , (2.50)

dW⊥
dν dΩ

=

√
3 q2γ sinα

2c
[F (x) +G(x)] , (2.51)

where

F (x) ≡ x

∫ ∞
x

dζ K5/3(ζ) , (2.52)

G(x) ≡ xK2/3(x) , (2.53)

where x ≡ ν/νc and Kn(x) is the modified Bessel function of the second

kind of order n. Here νc is the critical frequency, above which the effects of

synchrotron radiation become negligible, and is defined as

νc =
3γ2qB sinα

2mc
, (2.54)

where α is the pitch angle of the Synchrotron radiation and m is the mass

of the charged particle. The frequency-dependent power in each polarisation

mode is found by simply dividing the above expressions by the orbital period

of the particle. The sum of these yields the frequency-dependent total emitted

power

P (ν) =

√
3 q3B sinα

2πmc2
F (x) . (2.55)
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From this the emission coefficient for Synchrotron radiation may be expressed

as

jν =

√
3 q3B sinα

8π2mc2
F (x) erg s−1 cm−3 Hz−1 , (2.56)

where jν = P (ν)/4π. Integrating this over a power-law distribution of elec-

trons of the form N(γ)dγ = Cγ−pdγ with γ1 < γ < γ2, where C is a constant

of proportionality and p is the power-law index. The total power per unit

volume per unit frequency may be obtained as

Ptotal(ν) =

√
3 q3CB sinα

2πmc2(p+ 1)
Γ

(
3p+ 19

12

)
Γ

(
3p− 1

12

)(
mcν

3qB sinα

)(1−p)/2

,

(2.57)

where Γ(p) denotes the gamma function. From the equations of motion of a

relativistic particle in a magnetic field it may be shown that the total emitted

power is given by

Psynch =
4

3
σTcβ

2γ2UB , (2.58)

where UB = B2/8π is the magnetic energy density.

One of the distinguishing features of synchrotron radiation is that it is

strongly polarised. Synchrotron radiation is only observable when the particle

is moving within ∼ 1/γ towards the observer. Such an observer sees strong

linear polarisation, the dominant component coming from the polarisation

perpendicular to B. For the power-law distribution of electrons assumed here,

the degree of polarisation (see Rybicki and Lightman 1979) is

Π =
p+ 1

p+ 7
3

. (2.59)

It can be shown that the degree of linear polarisation of mono-energetic parti-

cles is 75%, which is very high indeed. It follows that synchrotron emission is

highly polarised. For a single electron, seven times more power is radiated in

the perpendicular rather than the parallel polarisation direction. This method

is used to map the magnetic fields in spiral galaxies (e.g. Beck 2005).

By detailed balance, for every emission process there is an associated

absorption process. For synchrotron radiation this is termed synchrotron self-

absorption. An emitted photon interacts with a charge within the magnetic

field and is absorbed. However, stimulated emission may also occur. To treat
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this quantitatively requires using the Einstein coefficients for synchrotron ra-

diation. Details may be found in Westfold (1959). The important result is the

absorption coefficient for this process, which is found as

αν =

√
3 q3

8πm

(
3q

2πm3c5

)p/2
C (B sinα)(p+2)/2

× Γ

(
3p+ 12

12

)
Γ

(
3p+ 22

12

)
ν−(p+4)/2 . (2.60)

IC emission occurs when ultra-relativistic electrons scatter off of low energy

photons, transferring much of their energy-momentum to the photon, resulting

in a photon of much higher energy than prior to scattering.

2.2.3 Compton scattering

The thin accretion disk model in Chapter 1 is sufficient to explain the observed

optical and UV continuum emission in AGN. However, AGN also emit radi-

ation in the form of X-rays, which cannot be accounted for by thermal disk

models. This necessitates the existence of another radiating medium. This is

known as the corona: a cloud of hot electrons which up-scatters lower energy

optical and UV photons (emitted from the accretion disk) into the X-ray band.

The scattering of photons by electrons is known as Compton scattering

(e.g. Compton 1923; Tolhoek 1956; Rybicki and Lightman 1979; Pozdnyakov

et al. 1983; Longair 1992). When the photons lose energy to the electrons

in the scattering event the process is generally referred to as Compton scat-

tering. When low energy photons scatter off ultra-relativistic electrons the

photons gain energy and this is referred to specifically as IC scattering (e.g.

Krawczynski 2012). In the case of photons of energy much less than the elec-

tron rest mass energy being scattered by non-relativistic electrons the problem

may be treated classically in the Thomson regime (β � 1 and hν � mec
2).

Relativistic effects are negligible and the problem may be considered as that

of electromagnetic plane waves scattering off of an oscillating electron — i.e.

dipole radiation. The process is elastic. Of course, this is just an approxi-

mation and energy and momentum are exchanged between the photon and

the electron. To investigate the physics of this in detail requires a relativistic

treatment.
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In the photon-electron scattering process, conservation of energy-

momentum implies

kµ + pµ = k′µ + p′µ , (2.61)

where kµ is the 4-momentum of the photon, and pµ the 4-momentum of the

electron. Primed variables indicate post-collisional quantities. Taking the

square of both sides of equation (2.61) yields

��
�*

0

kµkµ +��
�*
−m2

e

pµpµ + 2kµpµ =��
��*

0

k′µk′µ +��
��*
−m2

e

p′µp′µ + 2k′µp′µ ,

from which the following equation is obtained

kµpµ= k′µp′µ . (2.62)

Contracting both sides of equation (2.61) with k′µ gives

kµk′µ + pµk′µ − pµkµ = 0 , (2.63)

where equation (2.62) has been employed. From quantum mechanics and

special relativity the photon and electron 4-momenta may be written as

kµ = hν [1, Ω̂/c] , (2.64)

pµ = γmec [c,β] , (2.65)

where Ω̂ is a directional unit vector. Inserting these momenta into equation

(2.63) yields the following formula

ν ′

ν
=

1− β · Ω̂(
1− β · Ω̂′

)
+ hν

γmec2

(
1− Ω̂ · Ω̂′

) . (2.66)

The angle between incident and scattered photons is θ, and therefore Ω̂ · Ω̂′ =

cos θ. If the incident photon energy is much less than that of the electron

(hν � mec
2), then ν = ν ′ and the incident and scattered photons have the

same energy. This is Thomson scattering. However, if the electron is highly

relativistic (β → 1 and γmec
2 � hν), after introducing the auxiliary angles

β ·Ω̂ = βµ and β ·Ω̂′ = βµ′, where µ ≡ cosα, then the energy change becomes

ν ′

ν
' 1− βµ

1− βµ′
' 1 + β(µ′ − µ) + (βµ′)2 + (βµ′)3 + . . . , (2.67)
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which may be written as

∆ν

ν
' (µ′ − µ) β +O

(
β2
)
. (2.68)

The angle α is simply the incoming angle with respect to the electron 4-

velocity. However, in the case of extreme beaming the angle α′ is strongly

beamed in the direction of the electron 4-velocity and α′ ∼ 1/γ � 1 and

hence µ′ ≈ 1, which gives

∆ν

ν
' (1− µ) β . (2.69)

Averaging over all angles µ yields〈
∆ν

ν

〉
'

β
∫ 1

−1
dµ (1− µ)∫ 1

−1
dµ

= β ,

which is the familiar Doppler shift formula

∆ν

ν
∼ β . (2.70)

The full Compton scattering case is far more complicated and has its roots

in quantum electrodynamics. The differential cross-section for unpolarised

radiation is given by the Klein-Nishina (Klein and Nishina 1929) formula

dσKN

dΩ
=
r2

0

2

(
ν ′

ν

)2(
ν

ν ′
+
ν ′

ν
− sin2 θ

)
, (2.71)

where r0 = e2/mec
2 is the classical electron radius. This formula reduces the

Compton scattering cross-section from its classical value as photon energies

become large, so Compton scattering becomes less efficient at higher energies.

The total cross-section is given by

σKN =
3

4
σT

[
1 + x

x2

{
2x(1 + x)

1 + 2x
− ln(1 + 2x)

}
+

1

2x
ln(1 + 2x)− 1 + 3x

(1 + 2x)2

]
,

(2.72)

where x ≡ hν/mec
2. For an isotropic distribution of photons scattering off

an isotropic distribution of electrons, the net power (averaged over all angles)

radiated by an electron in an IC scattering event is given by Rybicki and

Lightman (1979) as

PComp =
4

3
σTcγ

2β2Uph , (2.73)
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where Uph is the photon energy density prior to scattering and is defined as

Uph =

∫
d3p ν n (p)

=

∫
dν vν , (2.74)

where n (p) d3p = v dν is the density of photons having energy in the range

dν, and n (p) is the photon phase space distribution function. This derivation

assumes isotropy in both the photon and electron distributions, as well as

γhν � mec
2 and ν ′ � ν, and is only applicable in the Thomson regime.

Corrections to equation (2.73) to include the Klein-Nishina regime (x � 1)

and the effects of energy transfer in the electron rest frame may be included

(see Blumenthal and Gould 1970; Rybicki and Lightman 1979).

The total Compton power may be calculated by integrating equation

(2.73) over a power-law distribution of electrons. Taking N(γ)dγ as the num-

ber of electrons per unit volume with γ in the range γ to γ + dγ, then the

total power is

Ptot =
4

3
σTcUphC ×

ln
(
γmax

γmin

)
, if p = 3

(3− p)−1
(
γ3−p

max − γ
3−p
min

)
, otherwise

(2.75)

There is a similarity between the power due to Compton scattering (2.73) and

the power due to synchrotron radiation (2.58). They are related via

Psynch

PComp

=
UB

Uph

. (2.76)

Therefore losses due to synchrotron and Compton processes are in the ratio

of the magnetic field energy density to the photon field energy density, and

are independent of γ. The scattered photons may be produced in the source

from Synchrotron radiation, and if these electrons are subsequently boosted

in energy through IC scattering then the resultant emission is said to be syn-

chrotron self-Compton (SSC).

If the spectrum of a radiation source is primarily determined by Compton

processes then it is referred to as Comptonised. This requires that the medium

in which this is occurring be sufficiently transparent that other processes (e.g.

Bremsstrahlung) do not dominate the spectrum instead. Comptonisation be-

comes more likely the hotter the gas is.
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For simplicity, first consider an ensemble of photons and non-relativistic

electrons, where hν � mec
2. From equation (2.66) the relative change in

photon energy may be written

∆ν

ν
=

hν

mec2
(1− cos θ) . (2.77)

Averaging this over all angles yields

∆ν

ν
=

hν

mec2
, (2.78)

which satisfies ∆ν/ν � 1. Therefore ν ′ ' ν and the photon energy gain after

scattering is negligible. The radiated power of these non-relativistic electrons

(γ ≈ 1) is given by

PComp =
4

3
σTc

(v
c

)2

, (2.79)

where v is the linear electron velocity. The number of scattered photons per

unit time is the number of photons encountered per unit time by an electron,

denoted by the photon number density NphotcσT, where Nphot is the total

number of photons. Thus, the photon number density is simply

Nphot =
Urad

hν
, (2.80)

hence

σTNphotc =
σTUradc

hν
. (2.81)

Therefore
∆ν

ν
=

4

3

(v
c

)2

, (2.82)

for hν � mec
2. Therefore, if the photon energy is much smaller than the

electron rest mass energy then the electrons gain energy in the scattering

event. Conversely, if the photon energy is far greater than the electron rest

mass energy then the photons gain energy.

In reality some of the electrons are thermalised. Consider a thermal dis-

tribution of electrons with temperature Te. It follows that

3

2
kBTe =

1

2
mev

2 , (2.83)

which implies (v/c)2 = 3kBTe/mec
2. Thus for photons which satisfy hν �

mec
2 the following relation may be obtained

∆ν

ν
=

4kBTe

mec2
(2.84)
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Combining this result with equation (2.78) an expression for the energy loss

or gain in both energy regimes may be written as

∆ν

ν
=

1

mec2
(4kBTe − hν) . (2.85)

This is the expression for energy transfer per scattering event for non rela-

tivistic electrons in thermal equilibrium. Thus if hν > 4kBTe then energy is

transferred to the electron (i.e. the photon loses energy due to electron recoil).

Conversely, if hν < 4kBTe then the photons may gain energy and this is IC

scattering. Around black holes and most other cases of astrophysical interest

hν < 4kBTe and IC scattering is dominant. Therefore photons gain or lose

energy in a random walk process as they move through a plasma cloud. The

photon energy gain per unit time due to the Doppler effect along a random

path is given by the Compton y-parameter

y =
kBTe

mec2
cσTne . (2.86)

If the plasma region has a characteristic length l, then the optical depth for

scattering is given by

τ = neσTl , (2.87)

and the associated probability for scattering is e−τ . In regions of high optical

depth it may be shown that the number of scatterings N ≈ τ 2, whereas for

regions of low optical depth N = 1−e−τ ' τ . In most estimates it is reasonable

to use N ≈ τ 2 + τ or, more commonly, N ≈ max(τ, τ 2) for all optical depths.

The above analysis considers strong and weak Comptonisation in a non-

relativistic medium. It is natural to ask what happens in intermediate cases.

This was considered and first solved by Kompaneets in 1949. The derivation

of this result is non-trivial and omitted for the sake of brevity. The time

evolution of a Comptonised radiation spectrum is governed by the evolution

of the photon phase space density due to scattering from electrons. This may

be found by solving the Boltzmann equation for this process. Solving this to

second order yields the Kompaneets equation, which describes the evolution of

the photon distribution function (in the non-relativistic regieme) for multiple
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IC scatterings
∂n

∂y
=

1

x2

∂

∂x

[
x4

(
n+ n2 +

∂n

∂x

)]
. (2.88)

In the Kompaneets equation the first term in brackets, n, describes the cool-

ing of photons (i.e. electron recoil). The second term, n2 describes cooling

due to induced Compton scattering. The final term, ∂n/∂x, describes the

increase/decrease in photon numbers in frequency space. In this instance the

Compton y-parameter is generalised to an integral along the photon path

y =

∫
dl
kBTe

mec2
σTne . (2.89)

A good approximate solution for the flux density Fν found by Sunyaev and

Zel’dovich (1980), and applied to accretion disks by Sunyaev and Titarchuk

(1985), is given by

Fν(x) ∝


xα+3, x� x0

x−α, x0 � x� 1

x3e−x, x� 1

(2.90)

where the spectral index α is given by

α =

√
9

4
+

1

y
− 3

2
, (2.91)

and x0 = hν0/kBTe, where ν0 is the frequency of seed photons. For hν � kBTe

the spectrum is power-law in profile. At high photon energies (hν � kBTe)

electron recoil effects dominate and the spectrum assumes a Wien law profile.

2.3 Line Formation

The emission lines in AGN X-ray spectra are a key diagnostic of physical

processes occurring near the event horizon of the central black hole. These

broadened lines arise as a consequence of classical line broadening and rela-

tivistic line broadening (e.g. Griem 1974; Fabian et al. 2000). Classical broad-

ening includes the natural line width due to uncertainty in the electron en-

ergy levels, as well as thermal broadening and potentially turbulent broaden-

ing (see Novotny 1973). Macroscopic motions of the medium may introduce

Doppler shifts which can further increase the observed line width. Relativistic
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line broadening incorporates special relativistic transverse Doppler shifts and

beaming, as well as gravitational redshift, which is a purely general relativistic

effect.

2.3.1 Classical line formation

A non-relativistic line profile is essentially a delta function at the emission line

rest frequency. However, many effects serve to broaden this line. On a quan-

tum level, natural line broadening occurs from bound-bound transitions. A

photon incident upon an atom with a bound electron may be considered as an

oscillating electric field. The electron will radiate a quantised amount of radi-

ation when it undergoes a bound-bound transition. When the electron emits,

it experiences a force from its own radiation, damping its oscillatory motion

(see Rybicki and Lightman 1979). This damping is related to uncertainty in

the energy levels.

Assuming the incident photon is propagating in the x-direction, the elec-

tron will experience an oscillation in the y-direction. The electron is a har-

monic oscillator of the form

ÿ + Γẏ + ω2
0y =

e

me

E0eiωt , (2.92)

where an overdot denotes differentiation with respect to time, Γ is the damp-

ing constant for the electron, ω ≡ 2πc/λ is the incident photon oscillation

frequency, E0 is the electric field energy and ω0 = (Eupper − Elower)/2π~ is

defined in terms of the upper and lower energy levels, denoted respectively by

Eupper and Elower. Equation (2.92) may be solved, yielding

y(t) =

(
e

me

)
E0eiωt

ω2
0 − ω2 + iΓω

. (2.93)

This is the classical equation for the amplitude of dipole oscillations in a photon

field. Resonance occurs when the photon frequency matches the difference in

energy levels (ω = ω0). It may be shown that the natural absorption coefficient

per atom is given by

αnatural =
πe2

mec

Γ/2

(∆ω)2 + (Γ/2)2
, (2.94)

where ∆ω = (ω0−ω). This is a Lorentzian profile. A more detailed treatment

requires deriving the damping constant from the Einstein coefficients. There
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is in fact a damping constant associated with both the lower and upper energy

levels, with the damping constant being related to the uncertainty in each level

via

∆Eupper =
h

2πΓupper

, (2.95)

∆Elower =
h

2πΓlower

, (2.96)

where Γ = Γupper + Γlower. It is the probability distribution of this spread

of photon energies due to uncertainty in the energy levels that results in the

Lorentzian profile. This is the natural width of a line.

In reality, lines are always broader than their natural widths. Additional

broadening, particularly in AGN, arises from thermal and turbulence effects

(see Griem 1974). In an isothermal gas each atom has an observable ra-

dial component of velocity, vrad. Bound-bound transitions in atoms mov-

ing towards/away from the observer will absorb photons with wavelengths

shorter/longer than the rest-frame transition wavelength (λrest), by an amount

λ = λrest

(
1∓ vrad

c

)
. (2.97)

In terms of the most probable velocity, vp, for an atom in a gas with temper-

ature T , the Doppler shift is given by

∆λD =
vp

c
λrest

=
λrest

c

(
2kBT

m

)1/2

, (2.98)

where m is the mass of the atom and T is the gas temperature. These Doppler

shifts spread the absorption over a wider range of wavelengths, modifying the

observed line profile into a Voigt profile (Voigt 1912). At each radial velocity

the absorbing atoms form a natural absorption profile, with the amplitude

modulated by the number of atoms at that velocity. The probability that an

atom will have a velocity vrad is

f(vrad) =
1√
π vp

e−(vrad/vp)2dvrad . (2.99)
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Therefore, from the Doppler shift in equation (2.98), the distribution of ∆λ

removed from a ray is given by

f(∆λ)dλ =
1√

π ∆λD

e−(∆λ/∆λD)2dλ . (2.100)

Since ∆λD is proportional to T 1/2, the absorption increases with increasing

temperature. It is straightforward to show that the effects of redshift, z, are

easily included, resulting in the following relation

f(∆λobs)dλobs = f(∆λ)dλ , (2.101)

where ∆λobs = ∆λ(1 + z). Therefore, the observed broadening of a line is

increased in a redshifted medium, but the distribution of velocities is an in-

variant quantity. As such, equation (2.100) may be applied for all redshifts.

The Voigt profile gives the distribution of absorption as a function of

wavelength (Voigt 1912; Olivero and Longbothum 1977). This applies when

the natural absorption coefficient per atom for natural broadening is convolved

with the thermal distribution of atoms. In this instance the optical depth, τλ,

takes the form of a Voigt profile

τλ =

∫ ∞
−∞

dλ′Nαnatural(λ
′)f(λ′ − λ)

= N
e2λ2

rest

mec2
f

Γ̃

(λ− λrest)2 + Γ̃2
∗ 1√

π ∆λD

e−(∆λ/∆λD)2

= N
πe2λ2

rest

mec2

f√
π ∆λD

H(x, y) , (2.102)

where Γ̃ ≡ Γλ2
rest/4πc, N =

∫
ds n is the column density, and H(x, y) is the

Hjerting function

H(x, y) =
y

π

∫ ∞
−∞

dt
e−t

2

(x− t)2 + y2
, (2.103)

where

x =
∆λ

∆λD

, (2.104)

y =
Γλ2

rest

4πc

1

∆λD

. (2.105)

The Hjerting function may be written analytically as

H(x, y) = e−(x2−y2)
{

cos 2xy + Im
[
i Erf(iz)e−2ixy

]}
, (2.106)
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where Erf(z) is the error function. In this instance x is the independent

variable, being the difference between the wavelength along the profile and

the line center, in units of the Doppler width. The parameter y is not a

function of ∆λ, and so does not vary across the absorption profile. However

y is a function of the damping constant Γ, the wavelength of the line center

λrest and the Doppler width ∆λD.

Consequently, the absorption profile will have the form

Iλ = Iλ,0 e−τλ , (2.107)

where Iλ is the observed flux and Iλ,0 is the continuum flux in the absence of

the absorption line.

In principle, a given observed line shape may be fitted to equation (2.107)

to obtain the column density and Doppler width. In practice this approach

only works with high resolution data with good signal-to-noise. Additionally,

when looking at high-resolution spectra, absorption lines often have multiple

components, constituting a complex, blended profile.

In practice Doppler widths are written in terms of the Doppler b parameter

b =
c

λ
∆λD

=

(
2kBT

mi

)1/2

, (2.108)

where mi is the mass of the atomic species in which the transition occurs.

Equations (2.104) and (2.105) may be re-expressed as

x =
vrad

c
, (2.109)

y =
Γλ2

rest

4πb
, (2.110)

whereby the optical depth may be re-expressed in terms of a single component

as

τλ = N

√
π e2

meb2
f H(x, y) . (2.111)

By inserting this expression into equation (2.107), individual velocity compo-

nents may be measured in complex absorption profiles. If such an absorption
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line is viewed at a redshift z, then the transformation between the observer

frame and the rest frame is given by

vrad

c
=

λ

(1 + z)λrest

− 1 . (2.112)

In principle, with a given redshifted multiple-component absorption profile,

it is possible to determine the redshifts, Doppler b parameters and column

densities for each component. This requires statistical fitting of Voigt profiles

(e.g. Outram et al. 2000).

As mentioned earlier, if the emitting plasma is turbulent then line broad-

ening may also arise. Consider two absorption lines in the same isothermal

cloud of gas. For two atoms of masses m1 and m2 the ratio of their Doppler b

parameters is given by (
b1

b2

)
=

(
m2

m1

)1/2

. (2.113)

Heavier atoms have smaller Doppler b parameters, which follows intuitively.

By considering the turbulence as a Gaussian, although unphysical, the Voigt

profile is conserved in the total absorption coefficient. Gaussian functions may

be convolved by linearly adding the squares of their respective dispersions. As

such, the Doppler b parameters may be written as

b2 = b2
therm + b2

turb

=
2kBT

m
+ b2

turb , (2.114)

where the turbulent component is independent of mass. In a given gas cloud,

if turbulence dominates over thermal processes then the value of the Doppler

b parameter is roughly constant over all observed absorption lines.

It may be shown, using equation (2.114) for each component, that the

turbulent component may be written in terms of both components as

b2
turb =

b2
2 − (m1/m2)b2

1

1− (m1/m2)
. (2.115)

If more than two atomic species are present, more constraints may be placed

on T , as well as the relative contribution of bturb. The higher the mass ratio

of the atomic species, the better the constraints.
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Additional macroscopic motions of the medium may introduce Doppler

shifts which can further increase the line width when the observed emission is

integrated over a large region with an inhomogeneous velocity, e.g. rotational

broadening of stellar absorption lines (Shajn and Struve 1929).

2.3.2 Relativistic line formation (and distortions)

The X-ray emission observed in active galactic nuclei (AGN) and black hole

binaries is believed to be powered by accretion of material onto black holes

(Salpeter 1964; Lynden-Bell 1969; Shakura and Sunyaev 1973). Generally

speaking, the term ‘iron line’ refers to the neutral Fe Kα line (at 6.4 keV).

The accreting hot plasmas rotating around the black hole form a disk or a

torus. It has been suggested that dense remnant neutron tori can also be

formed around compact objects, which could be a very massive neutron star

or a black hole, after two neutron stars merge (see Shibata et al. 2003; Baiotti

et al. 2008; Rezzolla et al. 2010). In such systems, the influence of curved

space-time is significant. It affects the radiative transport of particles in the

accretion flow as well as the hydrodynamics of the flow itself (see Novikov and

Thorne 1973).

Emission from accretion disks around compact objects has been investi-

gated for several decades now. Emission lines from geometrically thin accre-

tion disks around gravitating objects are expected to have two peaks (Smak

1969). The peaks correspond to emission from the two parts of the disk,

which have opposite projected line-of-sight velocities. Double-peaked optical

lines have been observed in a variety of binary systems (e.g. black hole X-ray

binaries, Johnston et al. 1989; Marsh et al. 1994; Soria et al. 1999; Wu et al.

2001). Double-peaked optical lines are also seen in a small fraction of AGN

(Puchnarewicz et al. 1996; Eracleous and Halpern 2003; Strateva et al. 2006).

These double-peaked lines can be explained in a Newtonian framework as de-

scribed in Smak (1969) (see also Horne and Marsh 1986). Double-peaked lines

have also been observed in the X-ray spectra of accreting black holes. Broad

asymmetric double-peaked Fe Kα lines were found in the spectra of a number

of AGN (e.g. MCG–6-30-15, Tanaka et al. 1995). The X-rays of AGN are be-

lieved to originate from regions very close to the central black hole, where the
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Fig. 2.2: Illustration (not to scale) of how a line profile from an accretion disk is formed.

The intrinsic line is a delta function (purple) centred about the line rest frequency ν0.

Due to natural line broadening, thermal broadening, turbulent broadening and macroscopic

Doppler motions the line assumes a Voigt profile (blue). Keplerian rotational motion of

the disk shifts the line to higher and lower energies (orange) due to opposite line of sight

motions. Finally, special relativistic and space-time curvature effects broaden and shift the

line, causing it to become asymmetric (red).

accretion flow is highly relativistic and the gravity is strong. The emissions

from different parts of the accretion flow are therefore boosted differentially.

Various relativistic effects also cause additional differential broadening and

distortion of any line emission. As such, the emission lines from the inner

regions of relativistic accretion disks around black holes have a very broad

profile, with an extended red wing and a pronounced blue peak (Cunningham

1975; Reynolds et al. 1999; Fabian et al. 2000). These different effects are

illustrated in Figure 2.2. Black holes with faster spins would give rise to rel-

ativistic accretion lines with a broader red wing, because the inner boundary

of an accretion disk around a maximally rotating black hole can extend very

close to the black hole event horizon.

The emission from accreting gas and outflows in the vicinity of black

holes is subject to Doppler shifts, lensing, gravitational time-dilation, and

other relativistic dynamical effects. There have been numerous calculations
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of relativistic (photon) lines from accretion disks and tori around black holes

(e.g. Cunningham 1975; Gerbal and Pelat 1981; Fabian et al. 1989; Stella

1990; Kojima 1991; Bao 1992; Fanton et al. 1997; Reynolds et al. 1999; Fabian

et al. 2000; Fuerst and Wu 2004; Beckwith and Done 2004a, 2005; Čadež and

Calvani 2006; Schnittman and Rezzolla 2006; Fuerst and Wu 2007; Dexter and

Agol 2009; Sochora et al. 2011; Vincent et al. 2011; Wang and Li 2012).

The three most common methods for calculating relativistic line profiles

are (i) the transfer function method (e.g. Cunningham 1975; Fabian et al.

2000), (ii) the elliptic function method (e.g. Dexter and Agol 2009) and (iii) the

direct geodesic integration method (e.g. Fuerst and Wu 2004; Schnittman and

Rezzolla 2006; Fuerst and Wu 2007; Anderson et al. 2010; Vincent et al. 2011;

Younsi et al. 2012; Yang and Wang 2013). The transfer function method and

the elliptic function method are efficient for the calculation of emission from

thin axisymmetric optically thick accretion disks but are not applicable to sys-

tems that lack the appropriate geometry and symmetry. The elliptic function

method computes all co-ordinates in the Kerr metric semi-analytically. This

has the advantage of being very fast since integration step size is no longer

an issue, working well in simple observer emitter problems for relativistic line

profiles. However, this method is limited by its inability to handle radial

turning points in the geodesics, as well as the more general case of particle

geodesics. Moreover, it cannot handle emission structures without sharply

defined boundaries, i.e. three-dimensional structures with opacity. The direct

geodesic integration method is a brute force approach, and less restrictive in

this context, compared to the other two methods. It works well with any

three-dimensional accretion flow, e.g. time-dependent accretion flows from

numerical relativistic hydrodynamic simulations, and can also handle opacity

variations within the system.

In most of these relativistic calculations, the focus was on the investigation

of line broadening due to relativistic effects. While relativistic ray-tracing of

photons in strong gravity and the corresponding calculations of emission line

profile broadening have been investigated in various astrophysical settings for

decades, there have been only a few studies, often in restricted settings, of the
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opacity effects due to self-absorption, emission and scattering within the ac-

cretion flows and along the line of sight (e.g. Zane et al. 1996; Fuerst 2006; Wu

et al. 2006, 2008; Dolence et al. 2009). Covariant radiative transfer calcula-

tions of emission from accretion flows in more general settings with an explicit

treatment of absorption, emission and scattering are lacking. There is also

no corresponding covariant radiative transport formulation applicable to both

relativistic particles without mass (photons) and with mass (e.g. neutrinos), in

a general astrophysical setting in the present literature. (Note that particles

with mass do not follow null geodesics, and the relativistic formulation and

the corresponding ray-tracing need to be modified.) In Chapter 3, I derive a

covariant radiative transfer formulation to do just this.

Various aspects of the emission, e.g. reverberation and reflection

(Reynolds et al. 1999), and effects of higher-order images (e.g. Viergutz 1993;

Bao et al. 1994; Beckwith and Done 2005), have been investigated using the

methods mentioned above. These studies have shown how the intrinsic emis-

sion line profiles are shaped by the accretion flow dynamics and by the space-

time near the black hole. They have provided a framework to interpret the

observations qualitatively, in particular, the Fe lines in X-ray spectra. Absorp-

tion by line-of-sight material, as well as emission and the effects of electron

scattering have only been addressed in recent studies by Fuerst and Wu (2004)

and Younsi et al. (2012), the results of which will be discussed in Chapter 4.

Absorption and scattering are important in the line formation process. They

must be properly considered in spectral models in order to obtain results that

are useful for interpreting observations.
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Chapter 3

General Relativistic Radiative

Transfer and Ray-Tracing

In order to perform practical radiative transport calculations in full general

relativity, the geodesic motion of both photons and particles with mass must

be determined. However, in the strong gravitational field of a rotating black

hole, space-time is no longer flat, and the motions of both massive and massless

particles (such as photons) follow curved trajectories. Moreover, in the vicinity

of a rotating black hole, even space-time itself is affected by the black hole’s

rotation, giving rise to the dragging of inertial frames. This has a very strong

influence on the angular velocity of orbiting particles.

This Chapter introduces the mathematical techniques for computing

geodesics and performing radiative transport calculations in the strong gravi-

tational field of a rotating black hole. The properties of the space-time of the

rotating black hole are introduced and the equations of motion of both pho-

tons and particles with mass are derived through the Lagrangian formalism.

The motion of particles under the influence of external forces, such as in the

flow of a relativistic accretion torus, is also determined and the ray-tracing

setup is outlined in detail. Finally, the general relativistic radiative transfer

formalism is introduced.

3.1 Kerr Black Hole

It is widely acknowledged that most stellar objects that undergo gravitational

collapse are in possession of some angular momentum. Upon collapse the
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resultant object must also possess some angular momentum. It thus fol-

lows that black holes must have some intrinsic angular momentum inherited

from their progenitor. Therefore a complete treatment of radiative processes

around black holes must account for the black hole angular momentum, or

spin. Herein, unless explicitly stated otherwise, the geometrical unit conven-

tion (with G = c = h = 1) and the metric signature (−,+,+,+) are adopted

throughout this thesis. The black hole spin parameter, or angular momentum

per unit mass, is defined as

a ≡ J

M
,

where M is the mass of the black hole and J is its total angular momen-

tum. The black hole spin parameter satisfies |a| < 1, with the case a > 1

corresponding to a type of “naked singularity”, namely the non-existence of

an event horizon, which is generally considered unphysical due to violation

of causality, and led to the proposition of the “Cosmic Censorship” theorem

(see Wald 1998). Taking dynamical and evolutionary properties into account,

black holes may be in possession of spins as high as 0.998, as calculated by

Thorne (1974). The black hole “no-hair theorem” states that black holes can

be wholly characterised in terms of their mass, angular momentum and charge

(see Misner et al. 1973). However, it is highly unlikely that any black hole can

possess a significant amount of charge as any net charge it possesses would be

rapidly neutralised by the surrounding ISM or accretion flow. The rotating

black hole is therefore assumed to be uncharged.

With this in mind, the most general solution of the Einstein Field Equa-

tions describing a rotating black hole is given by the Kerr (1963) solution. The

Kerr metric, written in Boyer-Lindquist (BL) co-ordinates (oblate spheroidal

co-ordinates), is given by

ds2 = gttdt
2 + 2gtφdtdφ+ grrdr

2 + gθθdθ
2 + gφφdφ2 , (3.1)
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where the covariant metric coefficients gµν are given by

gtt = −
(

1− 2Mr

Σ

)
, (3.2)

gtφ = −2aMr sin2 θ

Σ
, (3.3)

grr =
Σ

∆
, (3.4)

gθθ = Σ , (3.5)

gφφ =
sin2 θ

Σ

[(
r2 + a2

)2 −∆ a2 sin2 θ
]
, (3.6)

and

Σ(r, θ) = r2 + a2 cos2 θ , (3.7)

∆(r) = r2 − 2Mr + a2 , (3.8)

where the three-vector (r, θ, φ) corresponds to spherical polar zenith and az-

imuthal co-ordinates respectively, and r is a modified radial co-ordinate vari-

able which does not coincide with the usual spherical polar radius. Note that

the Kerr metric, equation (3.1), is independent of both t and φ, implying that

the Kerr space-time is both stationary and axisymmetric. For completeness,

the contravariant components of the Kerr metric are also stated, which will

be useful in later calculations. These are given by

gtt = − gφφ
∆ sin2 θ

, (3.9)

gtφ =
gtφ

∆ sin2 θ
, (3.10)

grr =
1

grr
, (3.11)

gθθ =
1

gθθ
, (3.12)

gφφ = − gtt
∆ sin2 θ

. (3.13)

From these equations a discussion of the important properties and regions of

the Kerr space-time naturally follows. In the case of a non-rotating black hole,

setting a = 0 reduces equation (3.1) to

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θ dφ2, (3.14)
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which is precisely the Schwarzschild solution describing the exterior gravita-

tional field of a non-rotating compact object. When the black hole mass is

zero, equation (3.1) reduces to

ds2 = −dt2 +
Σ

r2 + a2
dr2 + Σ dθ2 + (r2 + a2) sin2 θ dφ2 , (3.15)

which is the metric for flat Euclidean space

ds2 = −dt2 + dx2 + dy2 + dz2 , (3.16)

in oblate spheroidal co-ordinates. From this the transformation between rect-

angular co-ordinates and BL co-ordinates is readily obtained as

x =
√
r2 + a2 sin θ cosφ , (3.17)

y =
√
r2 + a2 sin θ sinφ , (3.18)

z = r cos θ . (3.19)

The inverse transformation, from rectangular to BL co-ordinates, follows al-

gebraically and is given by

r =

√
σ +
√
σ2 + 4a2z′2

2
, (3.20)

θ = arccos

(
z′

r

)
, (3.21)

φ = atan2(y′, x′) , (3.22)

where σ ≡ x′2 + y′2 + z′2 − a2.

It is clear from equations (3.2)–(3.6) that there exist two singular regions,

one at Σ(r, θ) = 0 and the other at ∆(r) = 0. The former is satisfied when

(r, θ) = (0, π/2), which has no physical meaning in BL co-ordinates. However,

substitution into equations (3.17)–(3.19) yields (x, y, z) = (a cosφ, a sinφ, 0).

Hence the singularity at Σ(r, θ) = 0 corresponds to a ring of radius a, located

in the equatorial plane of the black hole. In the limit a = 0 this singularity

degenerates to a point, as is the case in the Schwarzschild space-time. The

second singular region, ∆(r) = 0, may be re-expressed as (r− r+)(r− r−) = 0,

where

r± = M ±
√
M2 − a2 , (3.23)
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giving rise to two singularities. The first singularity, r+, corresponds to the

“Event Horizon” of the black hole: the surface upon which the escape ve-

locity of a particle is locally the speed of light. The second, inner horizon,

is also known as the Cauchy Horizon, and is more a mathematical curiosity

than a physically relevant horizon since it is interior to the conventional event

horizon. A particle which passes into the region r < r+ must by necessity

follow geodesics along decreasing values of r until entering the region r < r−

(see Chandrasekhar 1983). Therefore r+ is a one-way membrane where once

crossed escape is impossible, hence the term “event horizon”, the boundary

of the black hole region. Thus, anything that happens within r = r− will not

affect physics outside of it, i.e in the rest of the Universe, since particles in the

region r < r− may never enter the region r > r−. For this reason r− is referred

to as a Cauchy Horizon. Note that in the limit a = 0, the event horizon is

located at r = 2M , which is precisely the Schwarzschild radius. The Cauchy

Horizon in this case is located at r = 0, coinciding with the ring singularity,

namely the singularity of the black hole.

Naturally the question arises as to what is the difference between a horizon

and a singularity, since the metric is singular at both. True singularities are

curvature singularities of the space-time itself, and may be computed from

curvature invariants like the Kretschmann scalar, which is the contraction of

the Riemann curvature tensor and is defined as

K ≡ RµναβRµναβ

=
48M2 (2r2 − Σ) (Σ2 − 16r2a2 cos2 θ)

Σ6
. (3.24)

It immediately follows that the only true singularity corresponds to Σ(r, θ) = 0,

namely the ring singularity. The event horizon (as well as the Cauchy horizon)

is thus a co-ordinate singularity and not a true physical singularity, and can

in principle be removed through a suitable co-ordinate transformation. For

the Kerr space-time such a transformation exists and is given by writing the

metric in Kerr-Schild form, as it was originally derived by Kerr (1963). The
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resultant co-ordinate transformation is given by

dt̃ = dt± r2 + a2

∆
dr , (3.25)

dφ̃ = dφ± a

∆
dr , (3.26)

which may be integrated to yield

t̃ = t±
[
r +M log ∆ +

2M2

r+ − r−
log

(
r − r+

r − r−

)]
, (3.27)

φ̃ = φ± a

r+ − r−
log

(
r − r+

r − r−

)
, (3.28)

where the ± sign corresponds to outgoing (ingoing) null geodesics. Of course

transforming from Kerr-Schild co-ordinates to BL co-ordinates is physically

meaningless when the geodesic is interior to the event horizon since in reality

everything within r+ is causally disconnected from the rest of the Universe.

However, the use of “horizon penetrating” Kerr-Schild co-ordinates has impor-

tant applications in many areas of numerical Astrophysics, such as GRMHD

simulations where physical quantities like the topology of the magnetic field

must not be abruptly truncated at the event horizon (e.g. Gammie et al. 2003).

An important phenomenon caused by the rotation of a Kerr black hole is

the dragging of inertial frames. To understand this, consider a zero angular

momentum observer (ZAMO). ZAMO’s are defined as a set of local observers

‘hovering’ with fixed spatial coordinates, whose world lines are orthogonal to

surfaces of constant time. In the Schwarzschild case this is simply (uµ)ZAMO =

(ut, 0, 0, 0). However, in the Kerr metric, even for a stationary observer with

Lz = uφ = 0, surfaces of constant BL time, t, are not orthogonal to the

observer’s world line. Since uφ = gtφut + gφφuφ 6= 0, even when uφ = 0, then

the geodesic of a ZAMO has a non-zero angular velocity

Ω =
dφ

dt

=
uφ

ut
. (3.29)

It follows from the metric that a ZAMO satisfies uφ = 0 = gtφu
t + gφφu

φ, from
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Fig. 3.1: Cut-through view in 3D of the key surfaces of a Kerr black hole with spin

parameter a = 0.998. From outside to inside: Static Limit (blue), Event Horizon (red),

Cauchy Horizon (green), Inner Static Limit (purple) and the ring singularity (blue equatorial

ring). The grey dotted line is the spin axis of the black hole.

whence it follows that

Ω = − gtφ
gφφ

=
2aMr

(r2 + a2)2 −∆a2 sin2 θ
, (3.30)

where Ω/aM > 0, i.e. the ZAMO’s angular velocity has the same sign as that

of the black hole and hence co-rotates with the black hole. It follows that the

4-velocity of the ZAMO is given by

(uµ)ZAMO =
(
ut, 0, 0, uφ

)
= ut (1, 0, 0,Ω) . (3.31)

In the Kerr metric ut = gttu
t + gtφu

φ, which upon inserting uφ for the ZAMO

yields

ut =

[
gtt −

(gtφ)2

gφφ

]
ut . (3.32)
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Using the identity uαuα = −1, equation (3.32) becomes

(
ut
)2

=
gφφ

(gtφ)2 − gttgφφ
=

gφφ
∆ sin2 θ

, (3.33)

hence

(uµ)ZAMO =

√
gφφ

∆ sin2 θ
(1, 0, 0,Ω) . (3.34)

Another region of physical interest of the Kerr black hole is the region

where gtt (equation 3.2), which is usually negative, changes sign. This surface

is termed the “Static Limit” and the region located between the static limit

and the event horizon is known as the ergo-region or ergosphere (in reality it

is not a sphere, but rather an oblate spheroid). The static limit is obtained

by solving for gtt = 0, yielding

rSL± = M ±
√
M2 − a2 cos2 θ . (3.35)

The static limit, rSL+, and the event horizon, r+, coincide at the poles of the

black hole spin axis (i.e. θ = 0, π). For a Schwarzschild black hole the static

limit and the event horizon coincide, i.e. the static limit is the event horizon

and there does not exist an ergo region for a non-rotating black hole. The

“Inner Static Limit” is given by rSL− and defines the inner boundary, beyond

which gtt again changes sign and an observer can once more remain static.

For a Schwarzschild black hole the inner static limit reduces to a point and

coincides with the singularity at the centre. A static observer is defined as

a timelike geodesic with a tangent vector proportional to the killing vector

kµ = (1, 0, 0, 0), hence a zero 3-velocity. Consider kµkνgµν = gtt for our static

observer, which must be negative for the static observer to remain timelike. As

already noted, gtt changes sign at the static limit and becomes positive, and

hence spacelike. That is to say a stationary observer cannot exist there. This

implies an observer cannot remain static in this region and must therefore

move with the rotation of the black hole in order to remain timelike. The

inner static limit, rSL−, although defining the inner edge of the ergo region,

lies within the event horizon of the black hole and is thus causally disconnected
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from the outside Universe. These regions of physical interest are illustrated in

Figure 3.1.

3.2 Particle Motion in the Kerr Space-time

The equations of motion of free particles in the Kerr space-time are readily

found from the geodesic equations of motion. This requires prior knowledge of

the Christoffel symbols. It is simpler, and more symmetric, to formulate the

equations of motion from the Lagrangian

L =
1

2

(
gttṫ

2 + 2gtφṫφ̇+ grrṙ
2 + gθθθ̇

2 + gφφφ̇
2
)
, (3.36)

where ẋµ ≡ dxµ/dλ. Note that, as with the metric itself, the Lagrangian is

not dependent on t and φ co-ordinates, which naturally gives rise to conserved

quantities. From the Euler-Lagrange equations of motion

d

dλ

(
∂L
∂ẋµ

)
− ∂L
∂xµ

= 0 , (3.37)

where λ is an affine parameter for the geodesic path and xµ is a position

4-vector. Stationarity and axisymmetry immediately imply the following con-

served quantities

∂L
∂ṫ

= −E , (3.38)

∂L
∂φ̇

= Lz , (3.39)

where E and Lz are respectively the total energy of the particle and the projec-

tion of its angular momentum along the black hole spin axis. The covariant 4-

momentum components thus follow as (pt, pr, pθ, pφ) = (−E, Σṙ/∆, Σθ̇, Lz).

The Euler-Lagrange equations now simplify considerably, yielding

ṫ = E +
2Mr

Σ∆

[
(r2 + a2)E − aLz

]
, (3.40)

ṙ2 =
∆

Σ

(
µ+ Eṫ− Lzφ̇− Σθ̇2

)
, (3.41)

θ̇2 =
1

Σ2

[
Q+

(
E2 + µ

)
a2 cos2 θ − L2

z cot2 θ
]
, (3.42)

φ̇ =
2aMrE + (Σ− 2Mr)Lzcosec2θ

Σ∆
, (3.43)

where the trivial constant of motion, µ, is the rest mass of the particle (equal

to 0 for massless particles and −1 for particles with non-zero mass), and Q is a
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fourth constant of motion called the Carter constant (Carter 1968). With this

the set of equations (3.40)-(3.43) may reduced to a problem of quadratures.

However, equations (3.41)-(3.42) contain square terms in ṙ and θ̇, potentially

making the determination of the signs of ṙ and θ̇, particularly at turning points,

numerically challenging. This problem may be circumvented by calculating the

second derivatives of r and θ from the Euler-Lagrange equations, yielding

r̈ =
∆

Σ

{
M(Σ− 2r2)

Σ2
ṫ2 +

(r −M) Σ− r∆
∆2

ṙ2

+ rθ̇2 +

[
r +

(
Σ− 2r2

Σ2

)
a2M sin2 θ

]
sin2 θ φ̇2

− 2aM sin2 θ

(
Σ− 2r2

Σ2

)
ṫφ̇+

a2 sin 2θ

∆
ṙθ̇

}
, (3.44)

θ̈ =
1

2Σ

(
sin 2θ

{
2a2Mr

Σ2
ṫ2 − 4aMr (r2 + a2)

2

Σ2
ṫφ̇− a2

∆
φ̇2

+ a2θ̇2 +

[
∆ +

2Mr (r2 + a2)
2

Σ2

]
φ̇2

}
− 4rṙθ̇

)
. (3.45)

Thus equations (3.40), (3.43), (3.44) and (3.45) are a system of six coupled

ordinary differential equations (ODEs) which must be solved at each point λ

along a geodesic, yielding (t, r, ṙ, θ, θ̇, φ), given appropriate initial conditions

for these six variables. This is illustrated in Figure 3.2. The initial conditions

are determined at the observer’s image plane prior to the computation of the

geodesic.

Since emission from accreting material around a Kerr black hole is of pri-

mary concern, the particle motion in the accretion flow must be considered.

This motion will be subject to the presence of non-gravitational external forces

acting on the particle, which must be specified beforehand to determine the

particle kinematics. However, for simplicity an implicit treatment of the ex-

ternal force applicable to accretion flows around black holes is considered.

Consider a simple model in which θ̇ � ṙ � φ̇ < ṫ, thus allowing ṙ and θ̇,

given their negligibility compared to other quantities, to be neglected as a

first approximation. The equation of motion of particles under the influence

of an external force reads (see Misner et al. 1973)

ẍα + Γαµν ẋ
µẋν = aα , (3.46)
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Fig. 3.2: Equatorial orbits around Schwarzschild (a = 0, top) and Kerr (a = 0.998, bottom)

black holes. Solid and dotted lines indicate photon and particle geodesics respectively.

Geodesics originate from the right hand side of the panels. The red circle indicates the

black hole event horizon, the yellow circle the light circularisation radius and the blue circle

the static limit. Note the top-bottom symmetry in the Schwarzschild case and the effect of

frame-dragging on retrograde orbits in the extreme Kerr case. In the Kerr case the black

hole is rotating anticlockwise.
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where aα is the 4-acceleration per unit mass due to an external force and Γαµν is

the Christoffel symbol. The assumption of stationarity implies aφ = 0. Given

the 4-velocity is everywhere orthogonal to the 4-acceleration (aνuν = 0), since

ṙ = θ̇ = 0, i.e. particles remain in circular orbits, then it follows that at = 0.

For simplicity ar = 0 is prescribed, which implies a rotationally-supported

flow. From uνuν = −1, aθ may be determined self-consistently under the

assumption θ̇ = 0. This solution corresponds to a flow rotationally supported

in the r̂ direction and pressure supported in the θ̂ direction. Inserting the

Christoffel symbol components (Appendix A) into equation (3.46) yields only

one non-trivial equation in the radial direction, which may be simplified to

yield

ṫ =

(
Σ
√
r sin θ√

M (2r2 − Σ)
+ a sin2 θ

)
φ̇ . (3.47)

The metric also gives the condition gttṫ
2 + 2gtφṫφ̇+ gφφφ̇

2 = −1. Although the

motion derived for these ‘forced’ particles is not geodesic, the approximation

that the (non-gravitational) external force, in the observer’s frame, does not

overpower the local gravitational force is employed, allowing the motion to

be considered geodesic to zeroth order. Inserting equation (3.47) into the

aforementioned metric condition yields, after algebraic simplifications

ṫ =
1

ξ

[
Σ
√
r + a sin θ

√
M (2r2 − Σ)

]
, (3.48)

φ̇ =

√
M (2r2 − Σ)

ξ sin θ
, (3.49)

with ṙ = 0, θ̇ = 0, where

ξ2 = Σ
[
Σ (r +M)− 4Mr2 + 2a sin θ

√
Mr (2r2 − Σ)

]
. (3.50)

Equating equations (3.48) and (3.49) with equations (3.40) and (3.43) respec-

tively gives the energy and z-component of the angular momentum of the

particle as

E =
1

ζ

[
(Σ− 2Mr)

√
r + a sin θ

√
M (2r2 − Σ)

]
, (3.51)

Lz =
sin θ

ζ

[(
r2 + a2

)√
M (2r2 − Σ) − 2aMr3/2 sin θ

]
. (3.52)
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The marginally stable orbit, or innermost stable circular orbit (ISCO), for

material particles is determined by the surface where ∂E/∂r = 0, which upon

differentiation of equation (3.51) and simplification yields

∆Σ2 − 4r
(
2r2 − Σ

) (√
2r2 − Σ − a sin θ

√
r
)2

= 0 , (3.53)

the solution of which determines rISCO as a function of θ. From equation

(3.51), the solution to E = 1 yields the radius of marginally bound parabolic

orbits, rMB, as a function of θ. The underlying assumptions used to derive the

particle velocities break down when ξ2 ≤ 0. The boundary surface ξ = 0 is the

light circularisation radius, rLCR. These are all illustrated in Figure 3.3. For

orbits in the equatorial plane, relevant to calculations for geometrically thin

accretion disks, the expressions for the ISCO, marginally bound orbits and the

light circularisation radius simplify to those given in Bardeen et al. (1972).

Although black hole mass is retained in all of the preceding expressions, in

practical calculations it is set to unity, which is equivalent to normalising the

length scale to the gravitational radius of the black hole, i.e. rg = GM/c2 = 1.

3.3 Ray-Tracing Initialisation

In determining the geodesic for a particle or photon, the initial conditions for

such a geodesic must be specified. Since the Kerr metric and consequently

the geodesic equations of motion are independent of time, the geodesic may

be traced backwards in time, from the observer to the point of emission. This

is reverse ray-tracing. If the ray is not captured by the black hole, then it is

taken to have originated either from the vicinity of the black hole, such as the

accretion flow, or from the background.

An observer is constructed as in Figure 3.4, represented by green axes.

The observer image plane is the x-y plane and the z-axis of the observer is

directed towards the black hole centre, with the x-y plane being perpendicular

to the z-axis. The orientation of the x and y axes is arbitrary and does not

affect the physics. In all calculations in this thesis the orientation of the x

and y axes is as shown in Figure 3.4. The centre of the image plane is located

a distance robs (in BL co-ordinates) from the centre of the black hole, at an
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robs

x

y

z

x '

y'

z '

Θobs

Φobs

Fig. 3.4: Ray-tracing setup. An observer (green axes) is located some distance from the

black hole (blue axes). The observer grid (image plane) is the x − y plane. An example

photon trajectory is indicated by the red dashed line.

angle θobs with respect to the black hole spin axis. The black hole axes are

(x′, y′, z′) and the spin axis of the black hole and the z′-axis are assumed to

coincide. The observer is located at a position φobs with respect to the black

hole x-axis. In practical calculations φobs is set to zero by default, by virtue

of the Kerr metric being axisymmetric. However, there are instances (e.g.

time-dependent radiative transfer) where it is sometimes useful to specify the

azimuthal location of the observer. Thus the observer is specified by the BL co-

ordinates (robs, θobs, φobs) and each individual photon or particle the observer

receives by (x, y, z).

Close to the black hole, space-time curvature becomes significant and the

observer image plane is curved, introducing a curvature-dependent distortion

of the observed image. To remove this effect, in all calculations in this thesis

the observer is located at a distance of 104rg from the centre of the black
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hole. At this distance numerical calculations of the geodesics yield a deviation

from Euclidean geometry of less than one part in 1010, which is smaller than

the numerical precision of the integration of the geodesic itself. Space-time is

assumed flat at this distance and the curvature of the observer image plane is

considered negligible, enabling the assumption of orthogonality of rays arriving

at its surface and the application of the ray-tracing method.

First the observer co-ordinate system, x ≡ (x, y, z)T, must be transformed

into the black hole co-ordinate system, x′ ≡ (x′, y′, z′)T. This may be achieved

by rotating and translating the observer’s axes onto the black hole’s axes.

First rotate clockwise by (π− θobs) about the x-axis, then clockwise by (2π−

φobs) about the z-axis, followed by a reflection in the plane y = x and then

a translation of (x, y, z) using (3.17) to (3.19). Upon simplification of the

resultant matrix algebra this yields

x′ = Ay=x Rz(2π − φobs)Rx(π − θobs)x + Tx→x′

=


D(y, z) cosφobs − x sinφobs

D(y, z) sinφobs + x cosφobs

(robs − z) cos θobs + y sin θobs

 , (3.54)

where

D(y, z) =

(√
r2

obs + a2 − z
)

sin θobs − y cos θobs . (3.55)

After employing equations (3.20)–(3.22), the initial position of a ray on the

image plane in BL co-ordinates can be determined. Next the initial velocities

of the ray must be determined. Differentiating equation (3.54) with respect to

the affine parameter yields

ẋ′ =


−ẋ sinφobs − (ẏ cos θobs + ż sin θobs) cosφobs

ẋ cosφobs − (ẏ cos θobs + ż sin θobs) sinφobs

ẏ sin θobs − ż cos θobs

 . (3.56)

Each ray received arrives perpendicular to the image plane, moving parallel to

the z-axis, hence setting (ẋ, ẏ, ż) = (0, 0, 1), yields the rectangular components
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of the ray’s velocity in black hole co-ordinates as

ẋ′ =


− sin θobs cosφobs

− sin θobs sinφobs

− cos θobs

 . (3.57)

Finally, differentiating equations (3.17) to (3.19) with respect to the affine

parameter, solving for ṙ, θ̇, φ̇, and inserting equation (3.57) yields the initial

conditions for the velocity of the ray’s geodesic as

ṙ = −rR sin θ sin θobs cos Φ +R2 cos θ cos θobs

Σ
, (3.58)

θ̇ =
r sin θ cos θobs −R cos θ sin θobs cos Φ

Σ
, (3.59)

φ̇ =
sin θobs sin Φ

R sin θ
, (3.60)

where R ≡
√
r2 + a2 and Φ ≡ (φ− φobs). However, the initial values for(

Lz, E, ṫ
)

must still be determined. An expression for Lz in terms of E and φ̇

may be obtained by eliminating ṫ between equations (3.40) and (3.43). Simi-

larly, E may be obtained by expressing equation (3.41) in terms of ṫ, equating

with equation (3.40), and eliminating Lz using the previously obtained expres-

sion. After some algebra the resultant expressions are

E2 =

(
Σ− 2Mr

Σ∆

)(
Σ ṙ2 + Σ∆ θ̇2 −∆µ

)
+ ∆ sin2 θ φ̇2 , (3.61)

Lz =

(
Σ∆φ̇− 2aMrE

)
sin2 θ

Σ− 2Mr
, (3.62)

ṫ =

[
1 +

2Mr(r2 + a2)

Σ∆

]
E −

(
2aMr

Σ∆

)
Lz . (3.63)

Hence equations (3.20)–(3.22) and (3.58)–(3.63) define (t, r, θ, φ, ṫ, ṙ, θ̇, φ̇, E, Lz)

completely in terms of the position of the centre of the image plane

(robs, θobs, φobs) and the position of the ray on the image plane (x, y, 0), with

the initial time t = tobs set to zero.

Although the above method appears more complicated as the BL co-

ordinate system has been dealt with explicitly, it affords greater generality in

allowing the observer to be positioned any finite distance (excluding the ergo-

region) from the black hole. These expressions provide analytic results and
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Fig. 3.5: Ray-tracing a grid of 49 photon geodesics from an observer located in the equa-

torial plane (robs = 10 rg, θobs = π/2, a = 0.998). Grey lines indicate geodesics which are

not captured by the black hole. Coloured lines indicate geodesics captured by the black

hole. Yellow, blue and red translucent surfaces represent the LCR, Static Limit and Event

Horizon respectively. The grey dotted line is the spin axis of the black hole, with the black

hole rotating anticlockwise as viewed from above.

mean the observer need not be located at infinity, where space-time is asymp-

totically flat. This saves significant computational time. The application of

the aforementioned procedures to ray-tracing a grid of photons is illustrated

in Figure 3.5.

Furthermore, since it has not been used in specifying the initial conditions

of the geodesic, the Carter constant

Q = Σ2θ̇2 +
[
L2

zcsc2θ − a2
(
E2 + µ

)]
cos2 θ, (3.64)

may be used as an independent check of the accuracy of the numerical inte-

gration. By computing Q using equation (3.64) at each step in the numerical

integration of the geodesic, ∆Qi→i+1 = |Qi+1−Qi| is calculated between suc-
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cessive steps. If ∆Qi→i+1 > 10−9 then the integration step is repeated at half

the previous step size until this condition is satisfied.

3.4 General Relativistic Radiative Transfer

In the previous sub-section the method to solve the geodesics for particles

around the Kerr black hole was detailed. An initial intensity for the ray is

assigned and its evolution through the material it traverses between its point

of emission in the accretion flow and the observer is computed. The absorption

and emission properties of the medium from point to point must be known,

and the whole method must be performed in a covariant manner, given that

the space-time is curved.

The emission and absorption processes may be considered as sources and

sinks which the ray bundle traverses. In vacuum the number of particles along

a ray bundle is conserved. In the presence of emission and absorption, the

radiative transfer equation can be expressed as

dIν
ds

= −ανIν + jν , (3.65)

(Chandrasekhar 1960; Rybicki and Lightman 1979) where Iν ≡ Iν(s) is the

specific intensity of the ray at a frequency ν, and αν and jν are, respectively,

the absorption and emission coefficients at a frequency ν. By introducing the

variable

τν(s) =

∫ s

s0

ds′ αν(s
′) , (3.66)

which is the optical depth (optical thickness of the medium between s and s0),

the radiative transfer equation may be rewritten as

dIν
dτν

= −Iν +
jν
αν

= −Iν + Sν , (3.67)

where Sν = jν/αν is the source function. Direct integration of the equation

yields

Iν(s) = Iν(s0) e−τν +

∫ s

s0

ds′ jν(s
′) e−(τν(s)−τν(s′))

= Iν(0) e−τν +

∫ τν

0

dτ ′ν Sν(τ
′
ν) e−(τν−τ ′ν) , (3.68)

where the constant Iν(s0) (= Iν(0)) is the initial value of the specific in-

tensity. While optical depth, which is a scalar quantity, is invariant under
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Lorentz transformations, the radiative transfer equations in the conventional

form (equations (3.65) and (3.67)) are not.

It is now shown that a covariant formulation for radiative transfer can be

derived from the conservation of phase space volume and the conservation of

particle number. Construct a phase space volume V threaded with a small

bundle of particles. In the co-moving frame, these particles occupy a spatial

volume element d3~x = dx dy dz and a momentum volume element d3~p =

dpx dpy dpz. Liouville’s theorem ensures that the phase space volume, given

by dV = d3~xd3~p, is unchanged along the affine parameter λ, i.e.

dV
dλ

= 0 (3.69)

(Misner et al. 1973). This together with the conservation of the number of

particles dN within the phase space volume element implies that the phase

space density

f(xi, pi) =
dN

dV
, (3.70)

is invariant along λ.

For relativistic particles, |~p| = E, and d3~p = E2dE dΩ. The volume

element of a bundle of relativistic particles is also given by d3~x = dA dt,

where dA is the area element of the bundle. Thus, the phase space density of

a bundle of relativistic particles may be expressed as

f(xi, pi) =
dN

E2dAdtdE dΩ
. (3.71)

The specific intensity of a ray (bundle of photons) is simply

IE =
E dN

dAdtdE dΩ
(3.72)

(see Rybicki and Lightman 1979). It follows that

I ≡ Iν
ν3

=
IE
E3

(3.73)

is a Lorentz invariant quantity. The Lorentz-invariant intensity is denoted by

I, and may also be regarded as the occupation number of particles in the

phase space for a particle bundle.

To find the transformation of the absorption coefficient, consider material

in a reference frame K streaming with velocity v between two planes parallel
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to the x-axis, separated by a distance l. In this frame the ray traverses the

material at an angle θ to the x-axis. Now let K ’ be the rest frame of the

material. In the rest frame the distance between the two planes is l’ and the

ray now makes an angle θ’ with respect to the x-axis. This is illustrated in

Rybicki and Lightman (1979) (Chapter 4).

The optical depth along the ray is an invariant, since e−τν gives the fraction

of photons passing through the material. As such, the optical depth may be

written as

τν =
l

sin θ
αν

=
l

ν sin θ
ν αν

∝ l

ky
ν αν , (3.74)

where ky ∝ ν sin θ is the y component of the photon 4-momentum. It follows

that ky = k′y and l = l’ in both frames, since they are perpendicular to the

streaming material. Therefore it immediately follows from equation (3.74) that

ν αν is a Lorentz invariant quantity and the corresponding Lorentz-invariant

absorption coefficient is χ = ν αν .

The transformation for the emission coefficient may be obtained from the

source function via jν = ανSν . From equation (3.67) it follows that Sν/ν
3 is a

Lorentz invariant quantity and therefore jν/ν
2 is a Lorentz invariant quantity

and the Lorentz invariant emission coefficient η = jν/ν
2 may also be obtained.

These absorption and emission coefficients, as seen by the observer, are related

to their counterparts in the local rest frame of the medium via ν αν = ν0 α0,ν

and jν/ν
2 = j0,ν/ν

2
0 respectively, where the subscript “0” denotes variables

measured in the local rest frame.

3.4.1 Photon and relativistic massless particle

For photons (or a massless relativistic particle) kαk
α = 0, where kα is the

(covariant) 4-momentum and defined as the tangent 4-vector d/dλ to the

photon world-line (kα = dxα/dλ), where λ is the affine parameter of the

world-line. Consider a photon propagating in a fluid with 4-velocity uβ. The

transverse component of the photon’s 4-velocity, orthogonal to uα, in the co-
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moving frame of the fluid is denoted by vβ, which may be obtained as follows

vβ = Pαβkα

= kβ + (kαu
α)uβ , (3.75)

where Pαβ = gαβ+uαuβ is the projection tensor and gαβ the space-time metric

tensor. The variation in the path length s with respect to the affine parameter

λ is then

ds

dλ
= −

∣∣∣∣vβ∣∣∣∣∣∣∣
λobs

= −
√
gαβ(kα + (kβuβ)uα)(kβ + (kαuα)uβ)

∣∣∣
λobs

= −
√
kβkβ + (kαuα)2uβuβ + 2(kαuα)2

∣∣∣
λobs

= −kαuα
∣∣∣
λobs

, (3.76)

where the minus sign arises from the metric signature adopted, and the fact

that the convention that the photon energy must be positive is such that

ds/dλ = 1 in the co-moving frame. For a stationary observer located at

infinity, kβu
β = −Eobs. The relative energy shift of the photon between the

observer’s frame and the comoving frame is therefore

γ−1 =
ν0

ν
=
−kαuα|λ
Eobs

=
kαu

α|λ
kβuβ|λobs

. (3.77)

Making use of the Lorentz-invariant properties of the variables I, χ and η,

and of the optical depth τν , the radiative transfer equation may be rewritten

in the following form

dI
dτν

= −I +
η

χ
= −I + S , (3.78)

where S = η/χ is the Lorentz-invariant source function. All quantities in

equation (3.78) are Lorentz invariant, and hence the equation is covariant. As

dτν = ανds, it follows that

dI
ds

= −ανI +
jν
ν3

. (3.79)

It follows that
dI
dλ

= −kαuα|λ
(
−α0,νI +

j0,ν

ν3
0

)
, (3.80)
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(see Winkler and Norman 1986; Fuerst and Wu 2004), where α0,ν ≡ α0(xβ, ν)

and j0,ν ≡ j0(xβ, ν), where, as before, “0” denotes variables that are evalu-

ated in the local fluid rest frame, for a given ν. In ray-tracing calculations an

observer frequency ν is specified, all required variables at this location are de-

termined, and how these variables change in different reference frames through

the radiative transfer equation is specified. The solution to equation (3.80) is

I(λ) = I(λ0)e−τν(λ)−
∫ λ

λ0

dλ′′
j0,ν(λ

′′)

ν3
0

exp

(
−
∫ λ

λ′′
dλ′ α0,ν(λ

′)kαu
α|λ′
)
kαu

α|λ′′ ,

(3.81)

(cf. Baschek et al. 1997; Fuerst and Wu 2004), where the optical depth is

τν(λ) = −
∫ λ

λ0

dλ′ α0,ν(λ
′
)kαu

α|λ′ . (3.82)

In terms of the optical depth,

I(τν) = I(τ0)e−τν +

∫ τν

τ0

dτ ′ν S(τ ′ν)e
−(τν−τ ′ν) . (3.83)

For a distant observer, −kαuα|λobs → E, the observed photon energy,

which may be normalised to unity. The radiative transfer equation can be

expressed as two decoupled differential equations

dτν
dλ

= γ−1α0,ν , (3.84)

dI
dλ

= γ−1

(
j0,ν

ν3
0

)
e−τν , (3.85)

which follow immediately from differentiation of equations (3.82) and (3.81)

respectively, with respect to λ. These two equations are more useful in prac-

tical relativistic radiative transfer calculations because they allow the efficient

computation, through a simple Eulerian method, of the optical depth along a

ray, regardless of whether the ray-tracing is executed forward or backwards in

time. This is then used to compute the intensity along the ray.

3.4.2 Relativistic particle with mass

For massless particles, contraction of the 4-momentum gives kαk
α = 0, but

for particles with a non-zero mass m, it gives pαp
α = −m2 ≡ µ. Possession

of mass modifies the particle’s equations of motion, changing the geodesics

from null to time-like (Carter 1968; Boyer and Lindquist 1967). Moreover,
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a covariant particle flux is mass-dependent. The radiative transfer equations

derived for massless particles (equations (3.79) and (3.80)) are therefore not

applicable for particles with mass (such as neutrinos or relativistic electrons).

Nevertheless, the formulation obtained for massless particles can easily be

modified to include the effects of particle mass. A similar procedure is followed

as in the case of massless particles in the following derivation. The variation

in the path length with respect to the affine parameter may be expressed as

ds

dλ
= −

√
gαβ(pα + (pβuβ)uα)(pβ + (pαuα)uβ)

∣∣∣
λobs

, (3.86)

(see Younsi et al. 2012), analogous to equation (3.76) in the case of massless

particles. Because pαpα 6= 0,

ds

dλ
= −

√
pβpβ + (pαuα)2

∣∣∣∣
λobs

= −
√

(pαuα)2 −m2

∣∣∣∣
λobs

. (3.87)

This may be inserted into equation (3.78), which does not depend on the

particle mass explicitly. After some algebra, the general covariant transfer

equation for relativistic particles is obtained as

dI
dλ

= −

√√√√1−

(
m

pβuβ
∣∣
λobs

)2

pαu
α

∣∣∣∣
λ

(
−α0,νI +

j0,ν

ν3

)
. (3.88)

For a stationary observer located at infinity, pβu
β = −E. Equation (3.88)

differs from equation (3.80) by an aberration factor
√

1− (m/E)2 . This factor

reduces the intensity gradient along the ray. Because it approaches unity when

m→ 0, the radiative transfer equation (3.80) is the radiative transfer equation

(3.88) in the zero-mass limit.
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Chapter 4

Accretion Tori

As equation (3.88) reveals, the essential components of the covariant radiative

transfer formulation are the emission coefficient, the absorption coefficient,

the relative energy shift of the particles with respect to the medium and the

aberration factor. These are all evaluated along the particle geodesics. Given

the thermodynamic conditions of the medium, local values of the emission

coefficient and the absorption coefficient can be calculated. Knowledge of the

hydrodynamic properties of the medium enables the relative energy shift and

the aberration factor to be determined.

In this Chapter the covariant radiative transfer formulation is applied and

calculations of the emission from three-dimensional objects in a gravitational

field are demonstrated. Accretion tori around rotating black holes are con-

sidered. They may have several emission components with different optical

depths. Accretion tori are three-dimensional objects with internal structure.

This is in contrast to optically thick, geometrically thin accretion disks, which

are two-dimensional objects where explicit covariant radiative transfer is un-

necessary in determining how the radiation propagates and is modified within

the disk.

4.1 Modelling Accretion Tori

For accreting objects, the accretion luminosity Lacc roughly scales with the

mass accretion rate Ṁ as Lacc = εṀ . The conversion parameter ε ∼

1020 erg g−1 for black holes (see Frank et al. 2002). The formation of geo-

metrically thin accretion disks around a black hole requires that the radiation
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pressure force in the accretion flow is much smaller than the local gravitational

force exerted by the black hole. This condition is usually satisfied when Ṁ is

sufficiently low, such that Lacc is much lower than the Eddington luminosity,

which is given by LEdd = 1.4 × 1038(M/M�) erg s−1. Because Lacc increases

with Ṁ , a high Ṁ implies a high Lacc and hence a large radiative pressure

within the disk where the radiation is liberated. When Lacc approaches LEdd,

the radiation pressure force becomes comparable to the local gravitational

force, and the accretion disk inflates and become a torus (see e.g. Frank et al.

2002).

In general, full knowledge of the fluid viscosity is required in determin-

ing the structure and hydrodynamics of the accretion torus. However, in

accretion tori the angular momentum transport is non-local. The relevant

processes cannot be parameterised with a local viscosity, as in the case of

modelling geometrically thin accretion disks, where the α-viscosity prescrip-

tion is often used (Shakura and Sunyaev 1973; Abramowicz et al. 1988). It

is believed that the angular momentum transport in accretion disks and tori

is mediated by tangled magnetic fields that permeate the flow (e.g. magneto-

rotational instability (MRI) – see Hawley 2000; Balbus 2003). In principle

this magnetic viscosity and the flow hydrodynamics need to be determined

simultaneously and self-consistently. Nevertheless, certain phenomenological

prescriptions are proposed to bypass the viscosity calculations, e.g. assuming

an angular momentum distribution within the torus instead of solving for the

distribution. With such prescriptions, the structure of the accretion torus can

be determined by solving only the remaining hydrodynamic equations and

the equation of state. This thesis takes such a phenomenological approach

to construct accretion tori, assuming a specific angular velocity profile within

the torus (see also Fuerst and Wu 2004, 2007; Abramowicz 2005). With the

angular velocity profile specified, the density and entire flow profiles may be

determined in terms of certain normalised variables. The resulting accretion

torus is then rescaled, using the results from accretion tori/disks obtained by

numerical MRI simulations (Hawley 2000; Balbus 2003). The torus model

constructed as such is able to capture the geometrical aspects of the MRI
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accretion tori and the physical conditions within the accretion flow.

The maximum energy available from an object of mass M is Emax = Mc2

and the minimum time in which said energy can be released is tmin = rg/c.

Therefore the maximum power is

LPlanck =
Emax

tmin

=
c5

G
≈ 1059erg sec−1 , (4.1)

which is the absolute upper limit for power of anything in the Universe. It

was noted by Abramowicz et al. (1988) that the upper limit for the radiative

power of an object of mass M (gravity and radiation in equilibrium) is given

by the Eddington limit

LEdd = LPlanck
Σgrav

Σrad

, (4.2)

where Σgrav is the object’s total effective gravitational cross-section and Σrad

the total radiative cross-section. This is the most general form of the Edding-

ton limit. The standard formula for the Eddington limit is obtained from the

assumptions that a “star” is radiation pressure supported, that the radiation

interacts with matter through electron scattering and that effective gravity

is provided exclusively by Newtonian gravity. This results in Σrad = NσT

and Σgrav = 4πr2
g, where N is the number of electrons within said object. It

immediately follows that for spherical accretion the corresponding Eddington

luminosity is

LEdd =
4πGMmpc

σT

≈ 1.4× 1038 (M/M�) erg sec−1 . (4.3)

Beyond the Eddington limit, the radiation pressure becomes so large that the

thin disk solution no longer holds, and the accretion disk puffs up into a torus.

4.2 Emission Surface of Rotationally Supported Torus

To calculate the emission from an opaque accretion torus, one need only to

specify the torus’ boundary surface and its physical conditions. The simplest

model that enables the boundary emission surface to be defined is a rotation-

ally supported torus. In this model, the total pressure force is balanced by the

4-acceleration in an arbitrary fluid element. The inner boundary of the torus is

defined where this balance breaks down. With an appropriate parametrisation
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Fig. 4.1: Torus inner radius as a function of the angular velocity profile index parameter

n. Red, blue and black curves correspond to black holes with spin parameters a = 0.998,

0.5 and 0 respectively. Solid, dashed and dotted lines correspond to Keplerian radii of

rK = 8 rg, 10 rg and 12 rg respectively. The inner edge of the torus is strongly dependent

on the index n. In the case n = 0 the assumed angular velocity profile becomes pseudo-

Keplerian (r sin θ – dependence) and the inner edge is located at the ISCO. However, as n

increases the inner edge of the torus quickly moves further away from the ISCO. This effect

is more pronounced for higher black hole spin parameters. The black hole spin parameter

a and the index parameter counteract each other. The former shifts the torus inner edge

towards the ISCO (thereby increasing the torus’ vertical extent and volume) and the latter

shifts this inner edge away from the ISCO, consequently reducing the torus’ vertical extent

and volume.
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of the angular velocity profile (Ω, as a function of position in the torus) the

4-acceleration may be derived, yielding the pressure force. Tracing the isobars

gives the isobaric surfaces inside the torus. This process is essential in order to

construct the gradient contours of the 4-acceleration in the r− θ plane (in the

(t, r, θ, φ) spherical co-ordinate system). The torus boundary surface is simply

the outermost allowed isobaric surface.

A stationary, axisymmetric, rotationally supported accretion torus is con-

sidered. The symmetry axis of the torus is aligned with the spin vector of the

central black hole. The 4-acceleration of the flow is derived from the 4-velocity

aα = uα,β u
β + Γαβσu

βuσ . (4.4)

Because the poloidal components of the flow are dynamically unimportant, we

set the 4-velocity as uα = (ut, 0, 0, uφ). It follows that uα,β u
β = 0 and

aα = Γαttu
tut + 2Γαtφu

tuφ + Γαφφu
φuφ . (4.5)

In BL co-ordinates, the covariant r and θ components of the 4-acceleration are

ar =
Σ

∆
ar = −

[
M

(
Σ− 2r2

Σ2

)(
ṫ− a sin2 θ φ̇

)2

+ r sin2 θ φ̇2

]
, (4.6)

aθ = Σ aθ = − sin 2θ

{
Mr

Σ2

[
aṫ−

(
r2 + a2

)
φ̇
]2

+
∆

2
φ̇2

}
. (4.7)

Setting aαu
α = 0 yields a set of differential equations for the isobaric surfaces.

It is more convenient to express the equations as

dr

dξ
=

ψ2√
ψ2

2 + ∆ψ2
1

, (4.8)

dθ

dξ
=

−ψ1√
ψ2

2 + ∆ψ2
1

, (4.9)

for the calculation and construction of the torus boundary surface. Here ξ is

an auxiliary variable, and the functions ψ1 and ψ2 are given by

ψ1 = M

(
Σ− 2r2

Σ2

)(
Ω−1 − a sin θ

)2

+ r sin2 θ , (4.10)

ψ2 = sin 2θ

(
Mr

Σ2

[
aΩ−1 −

(
r2 + a2

)]2
+

∆

2

)
. (4.11)

Solving equations (4.8) and (4.9), with the inner boundary radius of the torus

and the specified angular velocity profile gives the torus boundary surface.
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Fig. 4.2: Cross-sections of the boundary surfaces of model rotationally supported tori in

cylindrical coordinates with z = r cos θ (the equatorial plane of the tori is z = 0). The top

panel shows the tori around Kerr black holes with spin parameters a = 0, 0.5 and 0.998.

The angular velocity profile index of the tori n = 0.21, and the Kelperian radius rK = 12 rg.

The bottom panel shows the tori with angular velocity indices n = 0.14, 0.17 and 0.232.

The Keplerian radius of the tori is rK = 8 rg, and the black-hole spin parameter a = 0.998.
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Fig. 4.3: Torus height (vertical extent) as a function of the angular velocity profile index

parameter n. Same as in Figure 4.1, except the case a = 0 (black) is omitted. As the

Keplerian radius increases, so does the torus height. However, as in Figure 4.2, the effect of

n is to reduce the torus height. Thus n ultimately determines the size of the torus, as well

as the extent to which it self-occludes.

As in Fuerst and Wu (2004, 2007), an angular velocity profile with the form

Ω(r sin θ) =

√
M

(r sin θ)3/2 + a
√
M

(
rK

r sin θ

)n
, (4.12)

is considered, where rK is the radius on the equatorial plane at which the ma-

terial circulates with a Keplerian velocity. The differential rotational velocity

gradient gives rise to an implicit pressure force, supporting the torus material

above and below the equatorial plane. The parametrisation using the vari-

able r sin θ ensures the constant density and pressure surfaces coincide in the

Newtonian limit and a polytropic equation of state is applicable for the flow.

The index parameter n is crucial for regulating the pressure forces, thus

adjusting the torus’ geometrical aspect ratio. Its property is similar to that of

the q index of the von Zeipel parameter in the study of stability of accretion

disks (see Chakrabarti 1985; Blaes and Hawley 1988). Generally, n ≈ q− 1.5,

with the relation being exact for Schwarzschild black holes. Tori with q >
√

3
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are unstable. In the Newtonian limit tori with n = 0.232 are marginally stable

(Blaes and Hawley 1988).

The angular velocity and angular momentum of the flow are Ω = uφ/ut

and l = −uφ/ut respectively, and the redshift factor is given by

A = ut =
[
−(gtt + 2Ωgtφ + Ω2gφφ)

]−1/2
, (4.13)

and the energy per unit inertial mass of the flow material is

U = −ut = −

√
g2
tφ − gttgφφ

gφφ + 2lgtφ + l2gtt
. (4.14)

These two quantities are related via

AU =
1

(1− lΩ)
. (4.15)

Zero values for the denominators in equations (4.13) and (4.14) correspond to

the locations (the photon surface) where the local flow speeds reach the speed

of light.

In this model, the condition for the inner boundary radius must be spec-

ified. This is taken as the intersection of the isobaric surface with either the

orbits of marginal stability or the limiting surface of photon orbits, whichever

has a larger radius. Usually the photon surface is within the marginally stable

orbit. The inner boundary of the torus is therefore in general determined by

the orbits of marginal stability, which satisfy ∂U/∂r = 0. For a particular

angular velocity law Ω (r, θ), solving this condition yields

2aM sin4 θ

[
r2

Σ
−
(
r2 + a2 +

a2Mr sin2 θ

Σ

)Σ− 2r2

Σ2

]
Ω3

+ sin2 θ

[
M

(
6Mr(r2 + a2)

Σ
+ 3∆− Σ

)
Σ− 2r2

Σ2
+ r

(
1− 2Mr

Σ

)]
Ω2

−6aM2r sin2 θ

Σ

(
Σ− 2r2

Σ2

)
Ω

+∆ sin2 θΩ
∂Ω

∂r
−M

(
1− 2Mr

Σ

)
Σ− 2r2

Σ2
= 0 , (4.16)

which when solved for r, yields the inner edge of the torus (for a particular

choice of rK and n). The solution to equation (4.16) is plotted as a function

of n in Figure 4.1 for various values of a and rK. Equations (4.8) and (4.9) for

the torus surface are now readily integrated.
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Figure 4.2 shows the boundary surfaces of rotationally supported tori

with various system parameters. The shapes of the tori are determined by

the rotational velocity index of the torus n and the black-hole spin parameter

a. When rK is fixed, the vertical thickness of the torus increases with a but

decreases with n. The degree of self-occluding of an optically thick torus and

hence the spectral properties of the emission depend on the aspect ratio of

the torus (see Figure 4.3) and the viewing inclination. Note that the tori in

Figure 4.2 are purely rotation-supported. The thermal pressure of the torus

gas and the radiative pressure of the emission from the gas have not been

included in their construction. The presence of gas pressure and radiation

pressure will modify the aspect ratio of the tori. In the next subsection a more

general situation which includes both the gas pressure and radiative pressure

is considered, and tori with internal density and temperature structures are

considered.

4.3 Pressure Supported Torus Structure

Accretion tori resemble stars that have an atmosphere with an optical depth

gradient. While emission from an opaque torus originates from an unobscured

infinitesimally thin layer on the torus surface, emission from a translucent or

an optically thin accretion torus is formed by the emission contributions from

all regions interior to the torus. The thermodynamic and hydrodynamic struc-

tures of the torus determine the spectral properties of its emission, and so they

must be determined prior to performing the radiative transfer calculations.

To model the internal structure of the accretion tori, a prescription given

by Abramowicz et al. (1978) and Kozlowski et al. (1978) is adopted. The tori

are considered to be stationary and axisymmetric. They consist of a perfect

fluid, and the stress-energy-momentum tensor of the flow is given by

Tαβ = (ρ+ P + ε)uαuβ + Pgαβ , (4.17)

where P is the pressure, ρ is the density, and ε is the fluid internal energy.

Because Tαβ;β = 0, the following continuity equation is obtained

(ρ+ P + ε),βu
αuβ + (ρ+ P + ε)(uα;βu

β + uαuβ;β) + P,βg
αβ = 0 . (4.18)
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Projecting onto the 3-surface orthogonal to the fluid velocity uα with the

projection tensor Pαβ = gαβ + uαuβ yields the momentum equation

(ρ+ P + ε)uα;βu
β + P,βg

αβ = 0 . (4.19)

Because the torus is stationary and axisymmetric, it has negligible poloidal

flow components, hence

uα;βu
β = −Γσαβuσu

β = −1

2
uσuβgσβ,α . (4.20)

Differentiating uαuα = −1 gives

(uαuα),δ = gαβ,δu
αuβ + 2uαuα,δ = 0 .

Thus,

uαuα,δ = −1

2
uαuβgαβ,δ . (4.21)

It follows that

uα;βu
β = uβuβ,α = ut∂αut + uφ∂αuφ , (4.22)

where ∂α is the gradient in the xα direction. Recall that Ω = uφ/ut and

l = −uφ/ut. Therefore, it follows that

uφut = Ω(utut) = − Ω

1− lΩ
. (4.23)

The gradient of l is

∂αl =
uφ
u2
t

∂αut −
1

ut
∂αuφ . (4.24)

It follows that
Ω∂αl

1− lΩ
=

1

ut
∂αut + ut∂αut + uφ∂αuφ . (4.25)

Equation (4.22) can now be expressed as

uα;βu
β =

Ω∂αl

1− lΩ
− 1

ut
∂αut . (4.26)

Thus,
∂αP

ρ+ P + ε
= ∂α ln(ut)−

Ω∂αl

1− lΩ
(4.27)

(cf. equation (7) in Abramowicz et al. (1978) for the accretion torus).

An equation of state is required to close the system of equations and the

gas within the torus is assumed to be barotropic. Owing to the complexity of
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the Kerr metric, the solution must be computed numerically. However, in the

special case of l = constant, corresponding to a marginally stable torus, there

is an analytic solution∫ P

0

dP ′

ρ+ P ′ + ε
= ln(ut)− ln(ut)inner , (4.28)

where ln(ut)inner is evaluated at the inner edge of the torus.

To know the transparency of the torus to radiation requires that the local

emissivity and opacity within the torus be specified explicitly. As such, the

velocity, temperature and density structure of the torus must be determined

prior to the radiative transfer calculations.

The total pressure within the torus is the sum of the gas pressure and the

radiation pressure, i.e. P = Pgas + Prad, where

Pgas =
ρkBT

µmH

= βP , (4.29)

Prad =
4σ

3c
T 4 = (1− β)P . (4.30)

Here µ the mean molecular weight, mH the mass of a hydrogen atom and β

is the ratio of gas pressure to total pressure. Eliminating kBT in the above

equations yields

P = ~c
[

45(1− β)

π2(µmHβ)4

]1/3

ρ4/3 . (4.31)

For a polytropic equation of state P = κρΓ, the internal energy is related

to the pressure by ε = P/Γ− 1. Equation (4.31) implies Γ = 4/3, and κ =

~c[45(1− β)/π2(µmHβ)4]1/3.

Combining the momentum equation (4.19) for a perfect fluid with the

polytropic equation of state gives(
ρ+

Γ

Γ− 1
P

)
aα = −P,βgαβ . (4.32)

Differentiating the polytropic equation of state yields

∂αP = κΓρΓ−1(∂αρ) . (4.33)

The density structure of the torus is then given by

∂αρ = −aα
(
ρ2−Γ

κΓ
+

ρ

Γ− 1

)
. (4.34)
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Fig. 4.4: Cross-sections show the density, pressure and temperature contours in model

translucent tori (panels from top to bottom). The angular velocity profile index of the tori

n = 0.21, the Keplarian radius rK = 12 rg. The black-hole spin paramter a = 0.998. The

central density of the torus ρc = 1011 cm−3. The ratio of the gas pressure to the total

pressure β = 1.235× 10−5.
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Introducing a new variable ξ (akin to logarithm of temperature), where ξ =

ln(Γ− 1 + ΓκρΓ−1), equation (4.34) simplifies to

∂αξ = −aα . (4.35)

The stationarity and axisymmetry conditions imply that there are only two

non-trivial components (r and θ) in the equation. By evaluating the line

integral from r = rK, ρ = ρc at the torus centre to the required (r, θ) location,

the density field ρ(r, θ) is determined. The temperature within the torus may

also be derived as a function of ρ, yielding

kBT = ~c
[

45 (1− β)

π2(µmHβ)

]1/3

ρ1/3 . (4.36)

With ρ(r, θ) determined, the pressure and temperature are readily calculated

from equations (4.31) and (4.36).

Figure 4.4 shows the density, pressure and temperature structures of a

model torus with n = 0.21, rK = 12 rg, β = 1.235× 10−5, and ρc = 1011 cm−3.

The spin parameter of the black hole is a = 0.998. There are several noticeable

features in the torus. The torus is pressure supported. Its boundary is located

where the density ρ and hence the pressure P vanish. The temperature T

also vanishes at the torus boundary surface for the equation of state that has

been adopted. As is shown in the bottom panel of Figure 4.4, the temperature

T ∼ 107 K in most of the torus interior, but drops off rapidly within a very

short distance of ∼ 1 rg and reaches 0 K at the torus boundary. Compared to

the rotationally supported tori (Figure 4.1), the rotation and radiative pressure

supported tori are larger in vertical extent. The vertical inflation of the torus

is caused by the addition of radiative and thermal gas pressure forces.

4.4 Radiative Transfer Calculations for Accretion Tori

4.4.1 Emission from opaque rotationally supported tori

For an opaque torus, the emission spectrum can be calculated from the emis-

sivity distribution on the torus’ boundary surface, with corrections for the

relativistic shifts with respect to the distant observer. This emissivity has a

radial power-law distribution with an index of −2, i.e. j ∝ r−2. In Figure
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Fig. 4.5: False-colour frequency shift maps of the surface emission from opaque tori around

different black holes. The torus parameters are n = 0.232 and rK = 12 rg. The black-

hole spin parameters are a = 0, 0.5 and 0.998 (panels from top to bottom). The viewing

inclinations of the tori are 45◦ (left column) and 85◦ (right column). For a = 0 the range of

frequency shifts E/E0 (where E0 is the rest-frame line centre energy) for i = 45◦ and i = 85◦

are (0.874, 1.445) and (0.756, 1.560), respectively. Similarly, for a = 0.5 the frequency

shift ranges are (0.870, 1.487) and (0.755, 1.591). Finally, for a = 0.998 the corresponding

frequency shift ranges are (0.864, 1.535) and (0.767, 1.616).
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Fig. 4.6: Profiles of emission lines from an opaque rotationally supported accretion torus

(top panel) and a geometrically thin optically thick accretion disk (bottom panel) viewed

at different inclinations i. The torus dynamical parameters are n = 0.21 and rK = 12 rg.

The inner boundary radius of the torus rinner = 8.486 rg and the outer boundary radius

router = 20.246 rg. The disk has the same values for the inner boundary radius and the

outer boundary radius as the torus. In both cases, the black-hole spin parameter a = 0.998.

The line emissivity is proportional to r−2, where r is the radial distance from the central

black hole. The line profiles are normalised such that the flux F (E0) = 1 at the viewing

inclination angle i = 60◦.
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4.5 images of rotationally supported tori viewed at inclination angles of 45◦

and 85◦ for various black hole spin parameters are shown. The torus is left-

right symmetric in shape if the black hole is not rotating. The black hole’s

rotation drags the surrounding space-time around the black hole, and so the

torus around a Kerr black hole is asymmetric. Optically thick tori would suf-

fer self-eclipsing at high viewing inclination angles. Each pixel in the torus

images shown in Figure 4.5 has only one single value for the relative frequency

shift between the emission surface element and the observer. This relative

frequency shift is coded with colours in the torus images. It is clear to see

that the regions with the highest redshifts and with the highest blueshifts are

obscured by the front limb of the torus when the viewing inclination angle is

close to 90◦.

In calculating the intensity and the emission spectrum of an opaque torus,

the ray-tracing formulation described in Chapter 3.3 is employed, adequately

taking into account effects such as gravitational redshift, lensing, kinetic time

dilation and Doppler boosting. Only propagation of radiation outside the torus

is relevant, so the emission and absorption coefficients are set to zero in the

radiative transfer equation along the rays emerging from the torus’ boundary

surface. Relativistic frequency shifts are computed at the surface boundary,

which upon convolving with a specified spatial profile for the source function

of the emission yields the emission spectrum.

Figure 4.6 shows the spectral profiles of emission lines from an opaque

torus and a geometrically thin, optically thick disk with the same inner and

outer radius. The inner radius of the model accretion disk is much larger

than the minimum radius allowed, which is roughly 1.237 rg for a maximally

rotating black hole. A major difference between a torus and a thin disk is that

self-obscuration can occur for the torus at high viewing inclinations, while the

first-order emission from the upper disk surface is always visible by a distant

observer. The emission from the inner torus regions where relativistic effects

are most severe and the emission suffers the highest and lowest frequency

shifts does not contribute to the emission. For a thin disk, the inner disk

regions with the highest and lowest frequency shifts do contribute to the total
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emission spectra. The line profiles of the torus and the disk in Figure 4.6 show

little difference at low viewing inclinations. This is easily understood, because

the torus and disk not only look similar when they are viewed pole-on, they

show similar radial dependences in the surface emissivity distribution when the

entire upper emission surface is unobscured. For viewing inclinations i ∼ 80◦

or higher, the line from the torus is narrower than the line from the disk, and

in particular the edge of its blue wing is at a lower energy than that of the

line from the disk, because the inner torus region where the bluest emission

originates is eclipsed by the front limb. The third mini-peak in spectra viewed

at inclinations i ≥ 45◦ is due the emission from higher-order images (photons

which orbit the black hole multiple times before being received).

4.4.2 Emission from translucent pressure-supported tori

Optically thin and translucent tori do not have a sharply defined emission

surface. All parts within the tori contribute to the emission, with the contri-

bution weighted according to matter concentration (density) and to the local

values of the thermodynamic variables (e.g. temperature) relevant to the ra-

diation processes considered. A low optical depth across the torus permits the

transmission of the emission from higher-order lensed images, therefore the

emission spectrum of the torus is the sum of the spectra from all the orders of

lensed images weighted by the optical depth of the ray. Figure 4.7 shows the

intensity images of an optically thin radiative pressure dominated torus for

different viewing inclination angles, and Figure 4.8 shows the intensity images

of an optically thin radiative pressure dominated torus with a lower internal

radiation pressure.

For the β = 1.235 × 10−5 optically thin torus model, the value of β was

chosen so that the inner and outer radii of the torus very closely matched

the inner and outer radii of the opaque tori and thin disks discussed in the

previous section, enabling a comparison of the resulting images and emission

line profiles. The second model with β = 5 × 10−5, i.e. a smaller internal

radiation pressure, illustrates the dependence of the torus size on β. The

dynamical parameters of the two tori are n = 0.21 and rK = 12 rg, and the

spin parameter of the central black hole is a = 0.998. The emissivity takes the
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form j ∝ ρ, and the light-of-sight optical depth across the tori τ � 1. As seen

in the figures, changes in the pressure ratio parameter β alter the aspect ratio

of the torus, which determines to what degree self-occluding occurs for a given

viewing inclination angle. In spite of this, the general emission properties in

these images are qualitatively similar, because of the translucency of the torus.

In both tori, the intensity of the emission is strongest at the interior of the

torus, where the density is high. The rotation of the torus causes frequency

shifts in the emission and Doppler boosting of the intensity. These relativistic

effects are more obvious for high viewing inclination angles. The emission from

the approaching limb of the torus is amplified and appears to be significantly

brighter than the emission from the receding limb of the torus.

Figure 4.9 (top panel) shows the profile of an emission line from a ra-

diative pressure dominated optically thin torus viewed at different inclination

angles. The lines are broad and have an asymmetric profile, characteristic of

line emission from relativistic accretion disks viewed at moderate inclination

angles, i ≈ 45◦ − 70◦ (see e.g. Cunningham 1975; Fabian et al. 2000). In

contrast to the lines from relativistic accretion disks, the profiles of lines from

optically thin tori do not change significantly when the viewing inclination

angle changes from 45◦ to 85◦ (cf. the line profiles in Figure 4.6). The asym-

metric broad profiles of the lines from optically thick relativistic disks are due

to the combination of a number of effects: Doppler boosting, Doppler velocity

shift, gravitational time dilation and gravitational lensing. Emission from an

optically thin torus does not depend on the projected area of an emission sur-

face element, as is the case for optically thick accretion disks or optically thick

accretion tori. While the emission from an optically thin torus is modified

by Doppler boosting, Doppler velocity shifting and gravitational time dila-

tion, it is less affected by gravitational lensing and the area projection effect.

The transparency of the torus to the emission could complicate the process

of using the emission lines to diagnose the dynamical properties an observed

torus. First of all, the emission of the higher-order lensed images, which are

unobscured, could severely contaminate the emission from the direct image.

Secondly, two emission lines can cross-contaminate each other in the spectrum,
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and because of the large relativistic shifts one line could cause absorption of

another line that originates from a different region within the torus. For an

optically thin torus, multiple rays corresponding to different energy shifts can

hit the same pixel in the image plane. This is forbidden for ray-tracing in the

case of optically thick disks or tori, where each ray originates from a single

point on the emission boundary surface of the disk or the torus and each pixel

in the disk or torus image corresponds to a uniquely defined relativistic energy

shift.

Figure 4.9 (bottom panel) shows that two distinct lines can be blended

easily and may be taken as a single emission line with a complex relativistic

line profile. These two distinct lines are modelled according to the relative

properties of the Fe Kα and Kβ lines, with the Fe Kα line having an energy

10% higher than that of the Fe Kβ line, and the Fe Kβ having an emissivity

of 14% of that of the Fe Kα line. Details may be found in Hölzer et al. (1997).

4.4.3 Emission from quasi-opaque pressure-supported tori

The structured torus has density and temperature stratifications (see Figure

4.4) that give rise to variation in the opacity across the torus and opacity gra-

dients along the line-of-sight for different radiative processes. When the den-

sity is sufficiently high, the torus becomes opaque to radiation. Quasi-opaque

structured tori have more complex emission properties than their optically

thin counterparts and the idealised optically thick rotationally supported tori

in the previous sections.

The emission properties of these tori are investigated by employing the

covariant radiative transfer formulation introduced in Chapter 3.4. In con-

ducting a full radiative transfer calculation for a model-structured torus, two

opacity sources are considered, whose specific emissivities in the rest frame are

given by

j0,1(E0) = K
(

ne

cm−3

)2(
E0

keV

)−1(
Θ

keV

)−1/2

e−E0/Θ, (4.37)

j0,2(E0) = C

(
ne

cm−3

)(
E0

keV

)−2.5

, (4.38)

where Θ = kBT is the relativistic temperature andK = 8×10−46erg s−1cm−3Hz−1.
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Fig. 4.7: Surface brightness images of optically thin radiative pressure dominated accretion

tori, viewed at inclination angles of 15◦, 30◦, 45◦, 60◦, 75◦ and 89◦ (left to right, top to

bottom). The torus parameters are n = 0.21, rK = 12rg and β = 1.235 × 10−5. The

black-hole spin parameter a = 0.998. The brightness of each pixel represents the total

intensity integrated over the entire spectrum. The torus brightness is normalised such that

the brightness of the brightest pixel in each image is the same.
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Fig. 4.8: Surface brightness images of optically thin radiation pressure dominated tori

viewed at inclination angles of 30◦, 45◦, 75◦ and 85◦ (left to right, top to bottom). The

torus parameters are n = 0.21, rK = 12rg and β = 5×10−5. The black-hole spin parameter

a = 0.998. The brightness of each pixel represents the total intensity integrated over the

entire spectrum. The torus brightness is normalised such that the brightness of the brightest

pixel in each image is the same.
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Fig. 4.9: (Top panel) Profiles of an emission line from an optically thin pressure supported

structured accretion torus viewed at different inclinations i. The dynamical parameters of

the torus are n = 0.21 and rK = 12 rg. The black-hole spin parameter a = 0.998. The

ratio of the gas thermal pressure to the total pressure β = 1.235× 10−5. The radius of the

inner boundary rinner = 8.528rg and the radius of the outer boundary router = 20.246 rg.

The line emissivity is proportional to the density ρ. These line profiles are normalised such

that the line flux F (E0) = 1 when the torus is viewed at i = 60◦. (Bottom panel) Profiles

of composite profiles from two emission lines. The torus and black hole parameters are the

same as those for the lines in the top panel. The line energies are such that one line has

an energy 10% higher than the other line and the emissivity of the line with the higher line

centre energy is 14% of that of the line with the lower line centre energy (cf. analogous to

the relative properties of the Fe Kα and Kβ lines (Hölzer et al. 1997)).
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C is a normalisation, dependent on β, chosen such that both j0,1 and j0,2

are equal at E0 = 0.1 keV, at the torus centre. For β = 1.235 × 10−5,

C = 2.162 × 10−45 erg s−1cm−3 Hz−1, whereas for β = 5 × 10−5, C =

2.681 × 10−45 erg s−1cm−3 Hz−1. The electron number density is defined as

ne = ρ/µmH. The corresponding specific absorption coefficients are

α0,1(E0) = B1

(
ne

cm−3

)2

σTf1(E0) cm−1 , (4.39)

α0,2(E0) = B2

(
ne

cm−3

)
σTf2(E0) cm−1 , (4.40)

where f1(E0) and f2(E0) are functions of photon energy. The torus is optically

thin to the first process, but is partially opaque to the second process, therefore

B1 is set to zero for simplicity. Without loss of generality an energy indepen-

dent absorption is considered, which implies f2(E0) = 1. The normalisation

constant B2 is chosen such that α0,2router ∼ 1− 5 across the torus. Note that

the first process has a similar density and temperature dependence to thermal

free-free emission. The second process mimics a free-electron scattering-like

process that converts photons with different energies indiscriminately into a

power-law energy distribution.

Figures 4.10 and 4.11 show intensity images of opaque radiative pressure

dominated tori using the aforementioned spectral parameters. These tori differ

from the optically thin case in that the emissivity and opacity have changed

in the radiative transport calculations, causing significant differences in the

intensity images. Towards the outer-edges of the tori there is now obvious limb

darkening (dark red). There is now an additional temperature dependence on

the emission that is caused by the temperature stratification of the torus, with

nearly tangential rays sampling only the cooler surface layers of the torus.

However, rays almost perpendicular to the torus surface have a much higher

probability of traversing the hotter layers deep beneath the torus surface.

Consequently, surfaces viewed face-on by an observer will appear to be much

brighter than those viewed at higher inclination angles. For these tori we have

assumed τ � 1.
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Fig. 4.10: Surface brightness images of opaque radiative pressure dominated accretion tori

viewed at inclination angles of 15◦, 30◦, 45◦, 60◦, 75◦ and 85◦ (left to right, top to bottom).

The torus parameters are n = 0.21, rK = 12rg and β = 1.235 × 10−5. The black-hole spin

parameter a = 0.998. The emissivity is provided by emission from two spectral lines, and

the two opacity sources given in equations (59) and (60). Absorption is provided through

the Thomson cross-section in equation (62). The brightness of each pixel represents the

total intensity integrated over the entire spectrum. The torus brightness is normalised such

that the brightness of the brightest pixel in each image is the same.
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Fig. 4.11: Surface brightness images of quasi-opaque accretion tori around extreme Kerr

(a=0.998) black holes, viewed from left to right, top to bottom, at observer inclination

angles of 30◦, 45◦, 75◦ and 85◦. Same parameters as Figure 4.10, but now β = 5 × 10−5.

Line emission and continuum emission are included. These tori also self-occlude and higher-

order emission is greatly suppressed at high inclination angles. The images are normalised

such that the brightest pixel in each image is of the same intensity.
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4.5 Optically thin vs optically thick emission

For the optically thin tori in Figures 4.7 and 4.8, the low optical depth means

that these tori are almost transparent, allowing the entire torus volume to

contribute to the emission. The emission from the approaching side of the

torus is much stronger due to Doppler boosting, which causes an increase in

the projected velocity of the gas along the line of sight towards the observer.

The receding limb’s projected velocity is decreased and consequently dimmed.

At higher viewing inclination angles, geodesics travel through more emissive

material than at lower inclinations. Since the fast-moving gas in the inner

region of the torus is visible, blueshifting and beaming are very strong and

emission from the approaching side of the torus dominates these images. The

overall brightness of the optically thin tori at high inclination angles is much

greater than at lower inclinations, because at high inclinations geodesics may

sample significantly more emissive material in the limbs.

For the rotationally supported opaque tori, emission comes from the sur-

face of the torus only. Since the opaque torus models are optically thick, the

front limb of the torus obscures the fast-moving inner regions of these tori

at higher inclination angles. The obscuring of the inner regions by the front

limb is exhibited in the corresponding torus emission spectra in Figure 4.6,

where for i ≥ 45◦ the observed flux decreases rapidly. For the optically thin

torus model, emission is observed from the entire volume of the torus, not

just the surface. Since the fast-moving gas from the inner-region contributes

to the observed emission line profile (Figure 4.9), this gives rise to the more

pronounced red and blue wings, which are observed even at high inclination

angles. Additionally, for optically thin tori the observed line profiles appear to

be roughly monotonically increasing with observer inclination angle. This is in

contrast to the line profiles from optically thick accretion disks and tori in Fig-

ure 4.6, which decrease in amplitude and appear wedge-shaped for inclination

angles beyond 45◦ (Kojima (1991), Beckwith and Done (2004b), Fuerst and

Wu (2004)). As was found in Fuerst (2006), altering the black hole spin does

not affect the observed torus images or emission line profiles significantly. The

inner edges of the tori presented in this thesis do not extend as close to the
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event horizon as thin disks. Consequently, the red wing of their line profiles is

not as extended. The shape of these tori, as well as the location of their inner

edges, is much more sensitive to the distribution of pressure forces within the

tori themselves. If these models are realistic, it would prove difficult to derive

the central black hole spin from the observed spectral information.

The emission from quasi-opaque tori is restricted to a thin surface skin

layer that is similar to cases of the opaque accretion tori and disks. However,

the quasi-opaque torus is distinguishable from the fully opaque accretion tori

and accretion disks by the effects arising from gradients in the optical depth.

This effect is particularly noticeable near the edges of the quasi-opaque tori,

where significant limb darkening occurs (Figure 4.10). These limb effects are

a manifestation of the temperature and density stratification within the tori.

When looking at the edge of a torus, for a given optical depth, cooler, less

dense material is observed than when looking towards the torus centre. Just

above the surface of the quasi-opaque torus is an optically thin photosphere.

As can be seen in Figures 4.10 and 4.11, photons traversing only the edges of

the limb of the torus are weakly attenuated by the cool material and so appear

significantly darker than the rest of the torus surface, i.e. only line photons

are observed. Hotter neighbouring regions appear to be much brighter be-

cause continuum photons are attenuated by the local emission and absorption

properties of the medium, as detailed in equations (4.37)–(4.40).

Consider a simple phenomenological model of an emitting and absorbing

medium, in local thermodynamic equilibrium (LTE), at a uniform temperature

T, with a background source of intensity I(0). In the absence of scattering,

taking τ0 = 0 at the outer edge of the limb, equation (3.83) implies

I(τν) = I(0)e−τν + B(T )(1− e−τν ),

where B(T ) is the Planck function. For low optical depths, τν → 0 and so

I(τν)→ I(0), i.e. the observed intensity of the limb tends towards the back-

ground intensity, is independent of temperature, and emission from regions

deeper within the torus becomes negligible. In all calculations presented it

was assumed that I(0) � 1 and so the limb darkening effect is obvious, and
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in strong contrast to the rest of the torus image.

4.5.1 Gravitationally induced line resonance in 3D flows

Consider a two-level atomic system. Absorption of a photon causes the ex-

citation of an electron from a lower energy state to a higher energy state.

Conversely, a photon is emitted when an electron is de-excited from a higher

energy state to a lower energy state. The energy of the absorbed and the

emitted photon is the same as the energy difference between the two states.

Such a system can be considered an oscillator. Under general conditions, two

oscillators with different intrinsic frequencies at different locations would not

be resonantly coupled, and two lines from different atomic transitions would

not exhibit resonant behaviour without coupling to either other lines or an

optical pump.

However, in the vicinity of black holes, where relativistic effects are severe

and gravity is extreme, lines from different atomic transitions can couple and

exhibit resonance phenomena. As shown in numerous publications (e.g. Cun-

ningham 1975; Fabian et al. 1989; Stella 1990; Fanton et al. 1997; Reynolds

et al. 1999; Fabian et al. 2000; Fuerst and Wu 2004), the gravitational fre-

quency shifts of lines from relativistic accretion disks around black holes can

be severe. Photons propagating upwards, out of the gravitational well of the

black hole, are subject to energy redshifts, whereas photons propagating in

the opposite direction, deeper into the gravitational well, are blueshifted.

Consider a radiative transition process occurring in a medium at a radial

distance r1 from the black hole, which consequently emits a photon of energy

E1. The photon propagates outward, and its energy is redshifted. When

the photon reaches a distance r2, its energy becomes E2, lower than E1, the

energy at its point of emission. Suppose that the photon encounters a bound

electron in an atom or ion and is absorbed. The electron is excited to a higher

energy state. The electron is then de-excited and returns to its original state,

emitting a photon of energy E2. This photon, however, propagates inward.

When it reaches r1, its energy has been gravitationally blueshifted and is now

E1. Again suppose that this photon encounters another bound electron, is

absorbed, and causes the electron to be excited to a higher energy level. This
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Fig. 4.12: Schematic illustration of the resonance between two lines with E1 and E2,

emitted at radial distances r1 and r2 from a black hole, where r2 > r1. In the rest frames

E1 > E2.

electron is subsequently de-excited, and again emits a photon of energy E1.

The photon propagates outward once more, is absorbed by a bound electron,

and causes another excitation. The later de-excitation of the electron leads

to the emission of another photon of energy E2, and the photon propagates

inward again... This process would persist, forming a resonant feedback cycle

between the transitions of the two lines with different rest-frame energies (see

Figure 4.12).

Such a line resonance occurs easily in 3D flows but not in geometrically

thin accretion disks or 2D flows. This can be understood as follows. In the

Schwarzschild space time, for a photon with an energy E1 located at r1, one

can also find a closed surface corresponding to an energy redshift of ∆E, such

that the photon energy becomes E2 = E1 − ∆E, located at r2 > r1. The

converse also holds, and a photon of energy E2 located at r2 always finds

a closed surface corresponding to a blueshift of ∆E, such that the photon

energy increases to E1 = E2 + ∆E. A photon emitted from the vicinity of a

black hole must pass through the closed surface with a specific energy shift
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before reaching infinity, and in 3D radial flows the entire surface is in principle

embedded completely in the flow. A 2D flow cannot completely contain such

a surface and hence the photon can escape to infinity, passing through the

surface with a specific energy shift at a location not inside the flow. The

situation is similar in the Kerr space-time. A detailed quantitative analysis of

such a line resonance, and relativistic radiative transfer calculations including

these masing effects warrants further investigation.

4.6 Conclusions

Demonstrative numerical general relativistic radiative transfer calculations

with a ray-tracing algorithm constructed from the formulation in Chapter

3 were performed for three different models of accretion tori around rotat-

ing black holes. Different geometrical aspects, physical structures, emission

properties, and optical depth variations of these tori were considered. It was

demonstrated that radiative transfer calculations based on the formulation are

able to deal with the complexity in the various combinations and convolution

of relativistic, geometrical, physical and optical effects. These calculations

clearly showed the significant role that structures and optical depth, and their

gradients, together with geometrical and relativistic factors, play in shaping

the emission properties of these relativistic flows in the vicinity of rotating

black holes. The calculations also showed the presence of limb effects in ob-

jects with finite optical depths.

It was also found that gravitationally induced line resonance can occur in

accretion onto a compact object. This phenomenon is not present in planar

objects, such as geometrically thin accretion disks, where the radiation can

escape from the disk surface to free space without additional absorption or

re-emission.
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Chapter 5

General Relativistic Compton

Scattering

A covariant scattering kernel is a core component in any self-consistent gen-

eral relativistic radiative transfer formulation in scattering media. An explicit

closed-form expression for a covariant Compton scattering kernel with a good

dynamical energy range is as of yet unavailable. Such an expression is essen-

tial to obtain numerical solutions to the general relativistic radiative transfer

equations in complicated astrophysical settings where strong scattering effects

are coupled with highly relativistic flows and steep gravitational gradients.

In deriving such an expression, detailed calculations must be performed in a

systematic and efficient manner, owing to the complexity of the underlying

mathematics and physics.

The derivation of the covariant scattering kernel for Compton scattering in

a general relativistic setting is demonstrated explicitly in this Chapter. First

the covariant radiative transfer equation in the presence of scattering is intro-

duced and methods for its solution are discussed. The covariant Klein-Nishina

cross-section for relativistic Compton scattering is derived. Several methods

for computing angular moments of this cross-section are introduced and com-

pared. An analytic result for moments of the Klein-Nishina cross-section is

then obtained and from this angular moments of the Compton scattering Ker-

nel are calculated.
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5.1 Compton Scattering in Astrophysics

Compton scattering of photons by relativistic electrons is an efficient process in

the production of high-energy cosmic X-rays and γ-rays. Compton scattering

plays an important role in determining spectral formation and in regulating

energy transport in a variety of astrophysical systems, e.g. accretion disks of

black hole systems (Sunyaev and Titarchuk 1985; Dermer and Liang 1989;

Haardt 1993; Poutanen and Vilhu 1993; Titarchuk 1994a; Hua and Titarchuk

1995; Stern et al. 1995), relativistic AGN jets (Begelman and Sikora 1987; Mc-

Namara et al. 2009; Krawczynski 2012), neutron-star X-ray bursts (Titarchuk

1988; Madej 1991; Titarchuk 1994b; Madej et al. 2004), and in some accreting

white dwarfs (Kylafis and Lamb 1982; Matt 2004; McNamara et al. 2008b,a;

Titarchuk et al. 2009). Compton scattering of cosmic microwave background

(CMB) photons by hot gases trapped inside the potential wells of large gravi-

tating systems, such as galaxy clusters, also leads to Sunyaev-Zel’dovich effects

(Sunyaev and Zel’dovich 1980; Rephaeli 1995; Dolgov et al. 2001; Colafrancesco

et al. 2003), through which various aspects of cosmology and the evolution of

large-scale structures in the Universe may be investigated.

In astrophysical plasmas, Compton scattering is often investigated using

Monte-Carlo simulations (e.g. Pozdnyakov et al. 1983; Hua and Titarchuk

1995). The Monte-Carlo approach is an approximation scheme to proper ra-

diative transfer calculations, where the radiative transfer equation is derived

from the laws of conservation (see Rybicki and Lightman 1979; Chandrasekhar

1960; Peraiah 2001). It has the advantage of being able to handle complicated

system geometries, as well as the flexibility to incorporate relevant additional

physics, such as absorption and pair production, into the system. However, it

is not straightforward to implement the usual Monte-Carlo method in certain

extreme astrophysical environments, such as systems with steep density gra-

dients, fractal-like inhomogeneities, or ultra-relativistic flows near the event-

horizon of a black hole. In the vicinity of a black hole, relativistic and space-

time curvature effects are important, and radiative transfer in these systems

requires a covariant formulation (e.g. Lindquist 1966; Baschek et al. 1997;

Fuerst and Wu 2004; Younsi et al. 2012).
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In the absence of scattering, the covariant radiative transfer equation can

be solved along the null geodesic (see Viergutz 1993; Reynolds et al. 1999;

Dexter and Agol 2009) using a ray-tracing technique (e.g. Fuerst and Wu 2004;

Vincent et al. 2011). However, in the presence of scattering, the covariant

radiative transfer equation is much more complicated. The radiative transfer

equation becomes an integro-differential equation which is far from trivial

to solve. The scattering kernel is a key ingredient in the radiative transfer

formulation, describing how photons interact with electrons. The moment

expansion (Thorne 1981; Turolla and Nobili 1988; Wu et al. 2008; Shibata

et al. 2011) of this kernel is essential in deriving a practical (numerical) scheme

to solve the integro-differential radiative transfer equation (see Fuerst 2006;

Farris et al. 2008; Zanotti et al. 2011).

5.2 Radiative Transfer With Scattering

In flat space the radiative transfer equation in a medium reads(
1

c

∂

∂t
+ Ω̂ · ∇

)
Iν(Ω̂) = jν(Ω̂)−κνIν(Ω̂) +

∫∫
dΩ′ dν ′ σ(ν, Ω̂; ν ′, Ω̂′)Iν′(Ω̂

′) ,

(5.1)

(see Mihalas and Mihalas 1984; Peraiah 2001) where Iν(Ω̂) is the intensity

of the radiation at a frequency ν propagating in the Ω̂-direction, jν and κν

are the emission and absorption coefficient respectively, and σ(ν, Ω̂; ν ′, Ω̂′) is

the scattering kernel which determines the amount of radiation intensity at a

frequency ν ′ in a direction Ω̂′ being scattered into the intensity Iν′(Ω̂
′). For

instance, in the photon-electron scattering process, the scattering kernel is de-

termined by the momentum distribution of the electrons and the differential

scattering cross-section, the Klein-Nishina (Klein and Nishina 1929) differen-

tial cross-section(
dσ

dΩ

)
KN

=

(
e2

mec2

)2(
kf
ki

)2

f(kf , ε̂f ; ki, ε̂i)

=
3σT

8π

(
kf
ki

)2

f(kf , ε̂f ; ki, ε̂i) , (5.2)

where e is the electron charge, me is the electron mass, σT is the Thomson

cross-section, ki and kf are the wave numbers of the photon before and af-

ter scattering respectively, and ε̂i and ε̂f are the corresponding polarisation
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vectors of the photon. The function f(kf , ε̂f ; ki, ε̂i) is given by

f(kf , ε̂f ; ki, ε̂i) =
∣∣ε̂∗f · ε̂i∣∣2 +

(kf − ki)2

4 kfki

[
1 +

(
ε̂∗f × ε̂f

)
· (ε̂i × ε̂∗i )

]
, (5.3)

(see Jackson 1975).

The ray is specified by choosing an initial position xα(λ0) and an initial

direction of propagation kα(λ0). The total derivative of the invariant intensity

along the world line of the ray is therefore

dI
dλ

=
∂I
∂xα

dxα

dλ
+

∂I
∂kα

dkα

dλ

= kα
∂I
∂xα
− Γαβγk

βkγ
∂I
∂kα

, (5.4)

where the second term on the second line of equation (5.4) follows from the

geodesic equation of motion. Consequently, in the absence of scattering, the

covariant form of the radiative transfer equation may be written as

dI
dλ

= kα
∂I
∂xα
− Γαβγk

βkγ
∂I
∂kα

= −kαuα
∣∣
λ

( η0 − χ0I ) , (5.5)

which is obtained from equation (3.80) through substitution of the invari-

ant absorption and emission coefficients derived in Chapter 3.4 (χ = ν αν ,

η = jν/ν
2), where I is the invariant intensity of the radiation, xα is a posi-

tion 4-vector, η0 and χ0 are the invariant emission and absorption coefficients

respectively (evaluated in a local inertial frame), λ is the affine parameter,

kα is the propagation (wave number) 4-vector of the radiation, and uα is the

4-velocity of the medium interacting with the radiation. Equation (5.5) is sim-

ilar in form to equation (5.1) without the scattering term. The term kαuα|λ
is a correction factor for the aberration and energy shift in the transforma-

tion between any two reference frames. For covariant transfer of radiation in

the presence of scattering, the radiative transfer equation is of the form (see

Jackson 1975)

dI(xβ, kβ)

dλ
= −kαuα

∣∣
λ

[
η0(xβ, kβ)− χ0(xβ, kβ)I(xβ, kβ)

+

∫
d4k′β σ(xβ; kβ, k′β)I(xβ, k′β)

]
, (5.6)
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analogous to equation (5.1). Several methods have been proposed to solve the

above equation or to obtain an approximate solution. For instance, one could

transform the integro-differential radiative transfer equation into a set of differ-

ential equations using a moment expansion (Thorne 1980, 1981; Fuerst 2006;

Wu et al. 2008; Shibata et al. 2011). Nevertheless, one needs to specify the

properties of the medium spanning the space-time. In addition to the global

flow dynamics, one also needs to know how the radiation interacts with the

medium (via the emission coefficient, absorption coefficient and the scattering

kernel), at least in the local inertial frame. The invariant emission and ab-

sorption coefficients can be easily derived from the conventional emission and

absorption coefficients (see Fuerst and Wu 2004, 2007). The derivation of the

scattering kernel is more complicated. Some attempts have been made (e.g.

Shestakov et al. 1988), but only numerical results were obtained due to the

complexity of the underlying mathematics. To date a closed-form expression

for the corresponding scattering kernel is not available. The lack of a closed-

form scattering kernel hinders the development of fast and accurate numerical

algorithms to solve the covariant radiative transfer equation, which itself can

be numerically intensive.

5.3 Covariant Compton Scattering

Energy-momentum conservation implies that

kα + pα = k′α + p′α , (5.7)

in a photon-electron scattering process. Here unprimed and primed variables

denote, respectively, variables evaluated before and after scattering. The 4-

momentum of a photon kα and the 4-momentum of an electron pα satisfy

kαkα = k′αk′α = 0 and pαpα = p′αp′α = −m2
e, respectively. Energy-momentum

conservation also leads to the invariance relation

kαpα = k′αp′α , (5.8)

and a covariant generalised energy-shift formula for the scattered photon,

k′α(kα + pα) = kαpα . (5.9)
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As the scattering process occurs in a relativistic fluid, the derivation of the

scattering opacity due to ensembles of photons and electrons requires express-

ing the scattering variables of the particles in the local reference rest-frame

(co-moving with the fluid 4-velocity), as well as specifying the transformation

between the fluid rest-frame and the observer’s frame. The fluid 4-velocity

is denoted by uα. The transverse component of the electron’s 4-velocity, or-

thogonal to uα in the fluid rest frame, is denoted by vα. The directional unit

4-vector of the photon in the fluid rest frame may be specified as nα, which is

given by

nα =
Pαβkβ
||Pαβkβ||

. (5.10)

Defining the variable

γ =
hν

mec2

≡ −k
αuα
me

, (5.11)

which is the incoming photon energy (in units of the electron rest energy mec
2),

nα may be expressed as

nα =
kα

meγ
− uα . (5.12)

Hence, it follows the photon 4-momentum may be expressed as

kα = meγ(nα + uα) . (5.13)

Similarly, for the electrons,

λ ≡ −p
αuα
me

. (5.14)

Clearly λ = 1/
√

1− v2 , which is simply the Lorentz factor of the electron and

v̂α in the fluid frame rest frame is therefore

v̂α =
Pαβpβ
||Pαβpβ||

=
pα −meλu

α

meλv
, (5.15)

from whence it follows that

vα =
pα

meλ
− uα , (5.16)

and

pα = meλ(vα + uα) . (5.17)
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Note that the photon 4-momentum after the scattering event is

k′α = meγ
′(n′α + uα) . (5.18)

Thus, the following expressions are obtained:

kαk′α = m2
eγγ

′(ζ − 1) , (5.19)

pαkα = m2
eλγ(vαnα − 1) , (5.20)

pαk′α = m2
eλγ

′(vαn′α − 1) , (5.21)

where ζ = nαn′α is the direction cosine of the angle between the incident and

scattered photon. Hence energy-momentum conservation, equation (5.9), may

be expressed as:

m2
eγγ

′
[
ζ − 1 + λ

(
1− vαnα

γ′
− 1− vαn′α

γ

)]
= 0 . (5.22)

The cross-section for scattering of a photon by an electron is given in Kershaw

et al. (1986) as:

σ(γ → γ′, Ω̂→ Ω̂′,v) =
3σT

16πγνλ

[
1 +

(
1− 1− ζ

λ2DD′

)2

+
(1− ζ)2γγ′

λ2DD′

]

× δ
[
ζ − 1 + λ

(
D

γ′
− D′

γ

)]
, (5.23)

where D ≡ 1−Ω̂·v/c = 1−vαnα, and similarly for D′. Using equations (5.19)–

(5.21), the photon-electron scattering cross-section, equation (5.23), may be

expressed in the following covariant form:

σ(γ → γ′, nα → n′α, vα) =
3σT

16πγνλ

[
1 +

(
1 +

m2
eT

kαk′α

)2

+ T

]

× δ
(
P

m2
eγγ

′

)
, (5.24)

where δ denotes the Dirac delta function, and T , P are defined respectively

as

T =
(kαk′α)2

(pαkα)(pβp′β)
, (5.25)

P = kαk′α + pαk′α − pαkα . (5.26)

It follows that P represents energy and momentum conservation of the scat-

tering process. The delta function enforces the conservation of energy and
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momentum in the scattering process, by weighting the scattering cross-section

such that it is zero if energy and momentum are not conserved. Integrat-

ing this cross-section, equation (5.24), over a relativistic electron distribution

function yields the kernel for Compton scattering.

5.4 Electron Distribution Function

A distribution function for relativistic electrons, f(λ), must be specified in

order to calculate the Compton scattering kernel. The energy of an electron

is E = λmec
2, and its linear momentum is given by p = λmev, from which it

follows that
dp

dv
= me

d

dv
(λv) = meλ

3 . (5.27)

As an example, consider an ensemble of relativistic electrons with isotropic

momenta for which the distribution function is given by the pseudo-Maxwellian

Ψ(p) = C e−E(p)/kBTe , (5.28)

where E is the electron energy, Te the electron temperature, kB the Boltzmann

constant and C is a normalisation constant. Note that the distributions of

electrons in momentum space and in velocity space are related via

f(v)v2dv = Ψ(p)p2dp , (5.29)

which may be expressed as

f(v) =
p2

v2

dp

dv
Ψ(p) . (5.30)

It immediately follows that

f(v) = C′λ(v)5e−λ(v)/τ , (5.31)

where C′ = m3
eC is a constant and τ = kBTe/me. The normalisation of the

distribution function f(v) to unity, i.e.∫
dvf(v) = 4π

∫ 1

0

dv v2f(v) = 1 , (5.32)

yields the familiar relativistic Maxwellian form,

f(λ) =
λ5e−λ/τ

4πτK2(1/τ)
, (5.33)

where K2 denotes the modified Bessel function of the second kind of order 2.
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5.5 Compton Scattering Kernel

The Compton scattering kernel is essential in solving the radiative transfer

equation. It is defined by the convolution of the photon-electron scattering

cross-section with the electron velocity distribution, i.e.

σs(γ → γ′, ζ, τ) =
3ρσT

16πγ2

∫
dv

f(λ)

λ

[
1 +

(
1 +

m2
eT

kαk′α

)2

+ T

]
δ

(
P

m2
eγγ

′

)
,

(5.34)

where ρ is the electron density. To evaluate the above integral, first consider

the argument of the delta function

y ≡ P
m2

eγγ
′ . (5.35)

Rewriting (5.35) in terms of a linear combination of a scalar and an inner prod-

uct of two unit vectors is a succinct way of expressing the energy-momentum

conservation. More importantly, aside from the more compact notation, the in-

ner product of two unit vectors (the magnitude of which never exceeds unity)

provides constraints on the electron energy. This makes the subsequent in-

tegrals easier to solve, and is the most natural way of proceeding with the

problem. Substituting equations (5.19)–(5.21) into (5.35) yields

y =

[
ζ − 1 + λ

(
γ′−1 − γ−1

)
+

λ

γγ′
vα (γ′n′α − γnα)

]
,

= Γ + v̂αwα , (5.36)

where

Γ = ζ − 1 + λ
(
γ′−1 − γ−1

)
, (5.37)

wα =
λv

γγ′
(γ′n′α − γnα) , (5.38)

and hence (5.36) is split into a scalar and vector component. It immediately

follows that y may be rewritten as

y = w

(
Γ

w
+ v̂αŵα

)
, (5.39)

where

ŵα =
γ′n′α − γnα

q
, (5.40)

w =
λv

γγ′
q , (5.41)
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and q is defined as

q =
√
γ2 + γ′2 − 2γγ′ζ . (5.42)

Therefore ŵα represents a unit vector along the direction of photon momentum

transfer and v̂αŵα is simply the projection of the electron velocity onto this

preferred direction. Under integration, the delta function can be rewritten as

δ (Γ/w + v̂αŵα) /w, and the energy-momentum conservation may be rewritten

as

v̂αŵα = −Γ

w
. (5.43)

From this it immediately follows || − Γ/w|| ≤ 1 and therefore

(1− ζ) + λ(γ−1 − γ′−1) ≤ λvq

γγ′
, (5.44)

which is akin to solving the quadratic equation a2λ
2 + a1λ− a0 = 0, with the

coefficients a2, a1 and a0 given by:

a2 = 2γγ′(1− ζ) , (5.45)

a1 = (γ′ − γ)a2 , (5.46)

a0 = q2 +
a2

2

4
. (5.47)

Taking the positive solution to (5.44) yields, upon employing the identity

a2 = q2 − (γ′ − γ)2,

λ+ =

(
γ′ − γ

2

)
+
q

2

√
1 +

2

γγ′(1− ζ)
, (5.48)

which is essentially the minimum electron energy in the Compton scattering

process. The form of λ as a function of ζ is crucial in later calculations

involving integrations over λ and ζ. The integral in equation (5.34) may now

be rewritten (see Kershaw et al. 1986) as∫
dv =

∫ 1

0

dv v2

∫ 1

−1

d(v̂αŵα)

∫ 2π

0

dφ . (5.49)

Hence it follows that the delta function fixes this preferred direction naturally

(Prasad et al. 1986; Beason et al. 1991), and this is clearly the most straight-

forward approach. Note, as in Kershaw et al. (1986), the angular addition

formula:

v̂αm̂α = (n̂αm̂α)(v̂αn̂α) +
√

1− (n̂αm̂α)2
√

1− (v̂αn̂α)2 cosφ, (5.50)
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where m̂α is equal to ŵα or ŵ′α, the unit vector of the photon velocity before

or after collision, respectively. It is easily verified that

nαŵα =
γ′ζ − γ

q
, (5.51)

n′αŵα =
γ′ − γζ

q
, (5.52)

v̂αŵα = −γγ
′Γ

qλv
. (5.53)

As such, in equation (5.49) only the φ integral must be evaluated explicitly.

The square-bracketed term in the kernel may be rewritten (e.g. Kershaw et al.

1986) as

[
1 +

(
1 +

m2
eT

kαk′α

)2

+ T

]
= 2 + (λγ′D′)

−2
+ (λγD)−2

[
(λγ′D′)

−1 − (λγD)−1
]

×
[
γγ′(1− ζ)− 2− 2

γγ′(1− ζ)

]
, (5.54)

which must be integrated term-by-term over φ. The integrals to evaluate have

the forms:

I1 =

∫ 2π

0

dφ

α + β cosφ
, (5.55)

I2 =

∫ 2π

0

dφ

(α + β cosφ)2
, (5.56)

where

α = 1− v(ŵαnα)(ŵαv̂α) , (5.57)

β = −v
√

1− (ŵαnα)2
√

1− (ŵαv̂α)2 . (5.58)

Clearly, the two integrals are related, via I2 = −dI1/dα and therefore only I1

need be evaluated, yielding

I1 =
2π

(α2 − β2)1/2
, (5.59)

I2 =
2πα

(α2 − β2)3/2
, (5.60)
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where the coefficients α(x), β and α2 − β2 are given by

α(x) =
γ′

λq2

[
x
(
γ−1 + γ′−1

)
− (1 + ζ) γγ′

]
, (5.61)

α′(x) =
γ

γ′
α(x) , (5.62)

β =
γ′ω(ζ − 1)

λq2

√
a2λ2 + a1λ− a0 , (5.63)

β′ =
γ

γ′
β , (5.64)

α(x)2 − β2 =
γ′2 (1− ζ)2 (x2 + ω2)

λ2q2
, (5.65)

α′(x)2 − β′2 =

(
γ

γ′

)2 [
α(x)2 − β2

]
, (5.66)

where x ≡ (γ+λ) prior to collision and x ≡ (γ′−λ) after collision. Addition-

ally, ω2 ≡ (1 + ζ)/(1− ζ). The φ-integrals immediately follow, yielding∫ 2π

0

dφ D−1 =
2πλq

γ′
(1− ζ)−1

(x2 + ω2)1/2
, (5.67)∫ 2π

0

dφ D′−1 =
γ′

γ

∫ 2π

0

dφ D−1 , (5.68)∫ 2π

0

dφ D−2 =
2πγλ2q

γ′ (1− ζ)2

[x (γ−1 + γ′−1)− (1 + ζ)]

(x2 + ω2)3/2
, (5.69)∫ 2π

0

dφ D′−2 =
γ′

γ

∫ 2π

0

dφ D−2 . (5.70)

The Compton scattering kernel in equation (5.34) may now be rewritten as

σs (γ → γ′, ζ, τ) =
3ρσT

8γ2

∫ ∞
λ+

dλ
f(λ)

λ5
S (γ, γ′, ζ, λ) , (5.71)

where

S (γ, γ′, ζ, λ) =

[
2γγ′

q
+R (γ + λ)−R (γ′ − λ)

]
, (5.72)

contains the photon-electron scattering information, with the function R(x)

defined as

R(x) =
w − ζ

(1− ζ)2(x2 + ω2)3/2
+

[
−γγ′ + 2

1− ζ
+

2

γγ′(1− ζ)2

]
1

(x2 + ω2)1/2
,

(5.73)

where w ≡ w(x) = [x (γ−1 + γ′−1)− 1]. The scattering kernel, as it is writ-

ten in equation (5.71), is the sum of three terms: the first is independent of

electron energy, and the second and third terms represent the photon-electron

interaction immediately before and immediately after collision, respectively.

The interaction term is defined in equation (5.73).
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Fig. 5.1: Plot of λ+ as a function of ζ for an incident photon of energy 100 keV. For

outgoing photon energies of 95 keV and 90 keV, λ+ has a minimum and thus the integration

over λ must be divided into two regions. For outgoing photon energies of 60 keV and 70

keV, λ+ does not have a minimum value between λ+(−1) and λ+(1), hence the integration

over λ is simply taken between λL and infinity.

5.6 Angular Moments of the Compton Cross Section

In solving the full radiative transfer equation with Compton scattering, a

generalised Eddington approximation (Eddington 1926; Rybicki and Lightman

1979) to evaluate successive angular moment integrals of σs may be employed

(Thorne 1981; Fuerst 2006; Wu et al. 2008). In this section, angular moments

of the form ζn (e.g. Shestakov et al. 1988, and references therein) are used to

define the moment expansion of the Compton scattering kernel. This requires

evaluating integrals of the form∫
dζ ζnσs (γ → γ′, ζ, τ) =

3ρσT

8γ2

∫ 1

−1

dζ ζn
∫ ∞
λ+

dλ
f(λ)

λ5
S (γ, γ′, ζ, λ) . (5.74)

However, as equation (5.74) stands, integrating over f(λ) is analytically impos-

sible. Rather than perform the λ integration first, it is more straightforward

to switch the order of integration. Not only does this enable the derivation

of analytic results, performing the λ integration after the ζ integration affords

the method greater generality, since the ζ integral is independent of the as-
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sumed electron distribution function (in the isotropic case). To change the

order of integration, first consider λ+(ζ), which must be inverted (i.e. ζ(λ+)

found) to change the order of integration. Since |ζ| ≤ 1, the left boundary λL

of integration over λ is found as

λ+(−1) ≡ λL =
γ′ − γ

2
+
γ′ + γ

2

√
1 +

1

γγ′
, (5.75)

whereas

lim
ζ→1

λ+(ζ) = +∞ , (5.76)

is the right boundary. Since λ+ is a function of ζ, the minimum value of λ is

found at

ζ1,2 = 1±
(
γ−1 − γ′−1

)
, (5.77)

which upon substitution into equation (5.48) yields

λmin = 1 +
1

2
[(γ′ − γ) + |γ′ − γ|] . (5.78)

Normally λmin < λL by definition. However, λL ≤ λmin if the following condi-

tion is satisfied: ∣∣γ−1 − γ′−1
∣∣ ≥ 2. (5.79)

Rearranging λ+ to find ζ as a function of λ yields

ζ± =
1

γγ′

[
1 + (γ + λ) (γ′ − λ)±

√
λ2 − 1

√
(λ+ γ − γ′)2 − 1

]
. (5.80)

It immediately follows that the order of integration may be reversed as

∫ 1

−1

dζ

∫ ∞
λ+

dλ =

∫ ∞
λL

dλ

∫ ζ+

−1

dζ +

∫ λL

λmin

dλ

∫ ζ+

ζ−

dζ , (5.81)

at the expense of evaluating two different integrals. However, if λL ≤ λmin

then λmin = λL and the second term in equation (5.81) vanishes, necessitating

evaluation of the first double integral only (see Figure 5.1).



5.7. Performing the Angular Moment Integrals 120

5.7 Performing the Angular Moment Integrals

In evaluating equation (5.74) with (5.81), three different types of moment

integral arise, namely

Qn(γ, γ′) =

∫
dζ

ζn

q
, (5.82)

Rn(x) =

∫
dζ ζn

(1− ζ)2
(
x2 + 1+ζ

1−ζ

)3/2
, (5.83)

Sn,m(x) =

∫
dζ ζn

(1− ζ)m
(
x2 + 1+ζ

1−ζ

)1/2
, m = 0, 1, 2 . (5.84)

Note the identity dSn,2/dx ≡ −xRn. With the aforementioned definitions the

angular moment function of order n, Mn, may be written as

Mn =

∫
dζ ζn S (γ, γ′, ζ, λ)

= An(γ, γ′) +Bn (γ + λ)−Bn (γ′ − λ) , (5.85)

where

An(γ, γ′) = 2γγ′Qn , (5.86)

is independent of x and

Bn(x) = [wRn(x)−Rn+1(x)] +

[
2Sn,1(x) +

2

γγ′
Sn,2(x)− γγ′Sn,0(x)

]
.

(5.87)

In equations (5.83) and (5.84), the integrals have an x-dependence which is

crucial to their evaluation. The evaluation of these integrals yields different

results depending on whether x2 < 1, x2 = 1 or x2 > 1.

The moment integrals may be integrated analytically, although the resul-

tant expressions are algebraically cumbersome. The n = 0, 1, 2 moments for

An are as follows:

A0 = −2q , (5.88)

A1 =
A0

3γγ′
(
q2 + 3γγ′ζ

)
, (5.89)

A2 =
A0

5

[
ζ2 − 2

(
A1

A0

)
ζ + 6

(
A1

A0

)2
]
. (5.90)
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Similarly, the n = 0, 1, 2 moments for Bn are given by

B0 = b

[
2− x

(
γ−1 + γ′−1

)
+

2 (1 + γγ′)

x2 − 1
+ γγ′ (1− ζ) +

2

γγ′
(
x2 + ω2

)]
+

2 (2x2 + γγ′ − 1)

1− x2
C (x) , (5.91)

B1 =
b

1− x2

{
x
(
1 + x2

) (
γ−1 + γ′−1

)
− (7 + ζ) + 2x2 (ζ − 2)

+
[(

1 + x2
)

+
(
1− x2

)
ζ
] [4 (1− x2)− γ2γ′2 (1− ζ2)

2γγ′ (1− ζ)

]}

+

[
2 (w − 2x2)

x2 − 1
+

(2− γγ′) (2x2 + 1)

(x2 − 1)2 +
4

γγ′

]
C (x) , (5.92)

B2 =
b

(1− x2)2

{
−w

[
2 + ζ + x2 (3− ζ) + x4

]
+
[
1 + ζ + x2 (1− ζ)

] [
x2 (3 + ζ)− ζ

]
+

6

x2 − 1

{(
4 + 9x+ 2x4

) (
3 + 3x2 + γγ′

)
+
(
x2 − 1

) [
3 (γγ′ − 1) + 2x2 (γγ′ − 6)

]
ζ

+
(
x2 − 1

)2
(2γγ′ − 3) ζ2

}
+

2 (1− x2) [(1 + ζ) + x2 (1− ζ)] (2− x2 − ζ)

γγ′ (1− ζ)

}

+
1

1− x2

{
2 [w (2x2 + 1)− (2x4 + 1)]

1− x2

+
3 + γγ′

[
5 + 6 (x2 − 1) + 2 (x2 − 1)

2
]

(1− x2)2 (5.93)

+
4 (1− 2x2)

γγ′

}
C (x) , (5.94)

where

b =
1√

ω2 + x2
, (5.95)

and the function C (x) is defined as

C(x) =


1√

1−x2 arctan
(
b
√

1− x2
)
, if x2 < 1 ;

1√
1−x2 arcsinh

(√
x2−1

√
1−ζ√

2

)
, if x2 > 1 .

(5.96)
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In the special case x2 = 1 the expressions for Bn are considerably simpler

B0 =

√
1− ζ

2

[
4

γγ′(1− ζ)
− 4− w +

2γγ′(1− ζ)

3
+

2 + ζ

3

]
, (5.97)

B1 =

√
1− ζ

2

[
4(2− ζ)

γγ′
(1− ζ)− 4

3
(2 + ζ)− w(2 + ζ)

3

+
2γγ′(1− ζ)(2 + 3ζ)

15
+

8 + 4ζ + 3ζ2

15

]
, (5.98)

B2 =

√
1− ζ

2

[
4(8− 4ζ − ζ2)

3γγ′(1− ζ)
− (4 + w)(8 + 4ζ + 3ζ2)

15

+
2γγ′(1− ζ)(8 + 12ζ + 15ζ2)

105
+

16 + 8ζ + 6ζ2 + 5ζ3

35

]
. (5.99)

In principle equations (5.82)–(5.84) may be integrated for arbitrary n, but,

as seen in equations (5.88)–(5.99), the resultant algebraic expressions become

extremely cumbersome. Moreover, the expressions for An must be evaluated

either two or four times per scattering event, and Bn either four or eight

times per scattering event. Given the inherent algebraic complexity, and the

number of calls required per scattering event, this will lead to significant loss

of precision, in particular between cancellations of terms of similar value or of

particular smallness (e.g. Poutanen and Vurm 2010).

Using equations (5.85)–(5.87) the n-th angular moment expansion of the

Compton scattering kernel may be written more compactly as

σsn (γ → γ′, τ) =
3ρσT

8γ2

(∫ ∞
λL

dλ
f(λ)

λ5
Mn

∣∣ζ+
−1

+

∫ λL

λmin

dλ
f(λ)

λ5
Mn

∣∣ζ+
ζ−

)
,

(5.100)

where, as noted before, the second term in brackets in (5.100) vanishes when

λL ≤ λmin, saving significant computational expense. In the case of x2 = 1,

the moment integrals simplify significantly. This is as far as it proves possible

to proceed analytically. Integrations over λ need to be performed with an

appropriate numerical scheme.

Naturally, the question arises as to whether the integrals in equation

(5.100) can be evaluated analytically. As it stands, the method presented thus

far would require arbitrary precision arithmetic to evaluate, and therefore be

computationally expensive and time consuming. In the following section, the

evaluation of integrals (5.82)–(5.84) is demonstrated analytically and in closed
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Fig. 5.2: Numerical Fortran evaluation (in double precision) of the moment integrals

Qn, Rn and Sn,m, through recursion, for x = 10 keV (left) and x = 100 keV (right). The

same colour scheme is employed for Rn and Sn,m. For Qn numerical round-off errors occur

beyond n = 20. For Rn and Sn,m numerical round-off errors dominate beyond n = 30.
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Fig. 5.3: As in Figure 5.2, but now with Qn, Rn and Sn,m evaluated directly through the

numerical hypergeometric function method, for x = 10 keV (left) and x = 100 keV (right).

Qn is now numerically very stable, even beyond n = 100 (not shown). However, for Rn and

Sn,m there is no improvement compared to the recurrence relation method.
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form, for arbitrary moment order.

5.8 Evaluating Moment Integrals for Arbitrary Order

The previous section derived analytic expressions for the first three moments of

the Compton scattering kernel. As the moment order increases, the algebraic

complexity of the resultant expression grows rapidly. Clearly the method,

as it stands, does not lend itself readily to the evaluation of higher-order

moments. These are necessary for a more accurate treatment of radiation

transport problems. A much faster method is to evaluate equations (5.82)–

(5.84) recursively. Firstly, consider equation (5.82) for Qn. By employing the

identity
dq

dζ
= −γγ

′

ζ
, (5.101)

upon integrating Qn by parts, the following recurrence relation immediately

follows

γγ′ (2n+ 1)Qn =
(
γ2 + γ′2

)
nQn−1 − q ζn . (5.102)

With the seed Q0 =
(√

γ2 + γ′2 − q
)
/γγ′, Qn may be evaluated for arbitrary

n. Next consider equation (5.83) in the form

Rn = − 1

2
√

2

∫
duu−1/2 (1− u)n (1− c u)−3/2 , (5.103)

where the substitution u = 1− ζ has been employed, and c ≡ (1− x2)/2. By

expanding in series the term (1 − u)n =
∑n

k=0(−1)k
(
n
k

)
uk, equation (5.103)

may be written as

Rn =

√
2

4

n∑
k=0

(−1)k+1

(
n

k

)∫
du

uk−1/2

(1− c u)3/2
. (5.104)

Defining the integral

I
R

(k) =

∫
du

uk−1/2

(1− c u)3/2
, (5.105)

a recursion relation for equation (5.105) may be found by integrating by parts

2 (k − 1) c I
R

(k) = (2k − 1) I
R

(k − 1)− 2uk−1/2

√
1− c u

. (5.106)
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The value I
R

(0) immediately follows, but to perform recursively the seed value

I
R

(1) is also needed

I
R

(1) =
2
√
u

c
√

1− c u
− 2

c3/2
arcsin

(√
c u
)
. (5.107)

Therefore Rn may now be defined as

Rn =

√
2

4

n∑
k=0

(−1)k+1

(
n

k

)
I
R

(k) , (5.108)

which can be solved for arbitrary n. Similarly, for Sn,m

Sn,m =

√
2

2

n∑
k=0

(−1)k+1

(
n

k

)
I
S

(k,m) , (5.109)

where

I
S
(k,m) =

∫
du
uk−m+1/2

√
1− c u

. (5.110)

After some working, the recursion relation for I
S
(k,m) is obtained as

(k −m+ 1) c I
S

(k,m) = (k −m+ 1/2) I
S

(k − 1,m)− uk−m+1/2
√

1− c u .

(5.111)

This identity requires four different seed values for the cases m = 0, 1 and 2:

I
S
(0, 0) =

u

2c
I
S
(0, 2) +

1

2c
I
S
(0, 1) , (5.112)

I
S
(0, 1) =

2 arcsin (
√
c u )√

c
, (5.113)

I
S
(0, 2) = −2

√
1− c u√
u

, (5.114)

I
S
(1, 2) = I

S
(0, 1) . (5.115)

The numerical evaluation of these recursion relations in Fortran95 is shown

in Figure 5.2 for Qn, Rn and Sn,m. For Qn it is clear the method is inaccurate

for n > 20, regardless of the cosine of the scattering angle, ζ. For Rn the

method is numerically unstable for n > 30 for ζ = −1, as well as slowly

convergent, regardless of the value of x. However, for ζ > −1 the method

appears both numerically stable and rapidly convergent, even for n = 50.

Similar results are obtained for Sn,m as forRn, with the exception that for lower

energies, Sn,0 is numerically unstable both for extreme backward scattering and

extreme forward scattering beyond n = 30. More accurate evaluation would
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require the implementation of arithmetic precision beyond that of standard

double precision.

Thus equations (5.102), (5.108) and (5.109) enable (5.85) to be solved

iteratively. In computing angular moments of the Klein-Nishina cross-section

this will greatly reduce the computational time and resources required. Each

moment integral can be computed recursively using the stored numerical value

of the previous moment. Unfortunately, as the order increases, there will

inevitably be loss of numerical precision through differences between terms in

the recursion relations. Further, it is impossible to perform the final integral

over the electron distribution function without either an algebraic expression

for each moment, or an appropriate closed-form expression for each moment

in terms of more generalised functions. The following sections detail a method

based on such a closed-form representation of each moment.

5.9 Evaluating Moment Integrals - Hypergeometric

Functions

In this section the moment integrals in equations (5.82)–(5.84) are evaluated

in terms of ordinary hypergeometric functions. In terms of these functions,

the problem of relativistic Compton scattering is greatly simplified (see Aha-

ronian and Atoyan 1981). Hypergeometric functions are a very general class of

functions which contain many of the known mathematical functions as special

or limiting cases.

The ordinary hypergeometric function of one variable, or Gauss hyperge-

ometric function, is defined by the following infinite series

2F1 (a, b; c; z) =
∞∑
n=0

(a)n (b)n
(c)n n!

zn , (5.116)

where the notation

(a)n ≡
Γ(a+ n)

Γ(a)
, (5.117)

is the rising factorial or Pochhammer symbol. The series is absolutely conver-

gent for |z| < 1, and terminates after a finite number of terms if either a or b

is a negative integer. The case |z| ≥ 1 may be solved by analytic continuation

(Zhang and Jin 1996). Although z may take complex values, in the Compton
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Fig. 5.4: Numerical evaluation of the moment integralMn as a function of n. Same colour

scheme as Rn and Sn,m in Figures 5.2 and 5.3. In all plots the incident photon energy

is 10 keV. Left plots show Compton scattering resulting in an outgoing photon energy

of 1 keV, for (top to bottom) electron velocities of βe = 0.01, βe = 0.99 and λ = 106

(βe ' 0.9999999999995) respectively. Right plots show inverse Compton scattering for an

outgoing photon of energy 100 keV.
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scattering problem z is always real. With this definition the integrals Qn, Rn

and Sn,m may be evaluated. Having written Rn and Sn,m in summation form

in equations (5.108) and (5.109) simplifies things considerably. Using the se-

ries expansion of (1 − u)n and equation (5.116), the following expressions for

(5.82)–(5.84) are found

Qn =
ζn+1

(n+ 1)
√
γ2 + γ′2

2 F

(
1

2
, n+ 1, x1

)
, (5.118)

Rn = −(1− ζ)1/2

√
2

n∑
k=0

(
n
k

)
(ζ − 1)k

2k + 1
F

(
3

2
, k +

1

2
, x2

)
, (5.119)

Sn,m = −(1− ζ)
3
2
−m

√
2

n∑
k=0

(
n
k

)
(ζ − 1)k

k −m+ 3/2
F

(
1

2
, k −m+

3

2
, x2

)
, (5.120)

where

F (a1, a2, x) = 2F1 [a1, a2; a2 + 1;x] , (5.121)

and

x1 ≡
2γγ′

γ2 + γ′2
ζ , (5.122)

x2 ≡
1

2

(
1− x2

)
(1− ζ) . (5.123)

The continuity of expressions (5.118)–(5.120) is of paramount importance in

accurate numerical calculation of the moments. Qn is always within the con-

vergence region, and only lies on the boundary in the case of a perfectly elastic

collision i.e. Thomson scattering. Equations (5.119) and (5.120) can be di-

vided into two cases: those which lie within the convergence region (|z| < 1)

and those that lie on the boundary or outside it (z ≤ −1). The case z ≤ −1,

i.e. ζ ≥ (x2 + 1)/(x2 − 1), may be solved by analytic extension with the

following expression

2F1 [a, b; b+ 1; z] = (1− z)−a2F1

[
a, 1; b+ 1;

z

z − 1

]
, (5.124)

which brings Rn and Sn,m into the convergence region. The Gauss hyperge-

ometric function is well documented in the literature and there exist several

codes in Fortran which can evaluate it both accurately and rapidly (e.g.

Forrey 1997; Zhang and Jin 1996), in addition to handling all cases of differ-

ences of parameters and values which can give rise to numerical problems (e.g.

Zhang and Jin 1996).
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In the special case x2 = 1 the expressions for Rn and Sn,m reduce to

Rn = −(1− ζ)1/2

√
2

F

(
−n, 1

2
, 1− ζ

)
, (5.125)

Sn,m = −
√

2 (1− ζ)
3
2
−m

3− 2m
F

(
−n, 3

2
−m, 1− ζ

)
, (5.126)

which are detailed in Appendix B.

Thus the moment integrals for all values of x have been defined in closed-

form. Results of the direct numerical evaluation of the moment integrals Qn,

Rn and Sn,m are presented in Figure 5.3. For Qn the direct hypergeometric

function method is a significant improvement. This is obvious since, in closed-

form, Qn only ever requires one function evaluation, irrespective of the moment

order. However, for Rn and Sn,m this method fares no better. This is due

to oscillating sums in the corresponding expressions. However, the closed-

form nature of these expressions is necessary to define the scattering kernel

analytically. Plots of the numerical evaluation of the moment integralMn as a

function of n, evaluated in Python to high numerical precision, are shown in

Figure 5.4. For very low scattering angles the angular moments are oscillatory,

as can be seen in the ζ = −1 case. However, this is not a numerical issue, but

rather an issue inherent to the form of the Compton scattering kernel itself.

Recall equation (5.42), which was derived in taking the direction of photon

momentum transfer as the z -axis of integration. This choice fixes q to be

uniquely defined by equation (5.42) and so the method is innately oscillatory

for ζ close to −1, i.e. scattering angles close to 0.

In Figures 5.5 and 5.6,Mn is plotted as a function of ζ for low order and

high order, odd and even moments n. Odd and even moments are plotted

separately to emphasise the change in shape and decrease in size of Mn as

the order increases. Odd and even moments have a distinct shape which

flattens and decreases in magnitude as the order increases. Clearly as the

moment order increases, Mn becomes less sensitive to moderate scattering

angles and remains unchanged over an increasingly large range of ζ. The

effect of increasing electron velocity is to shift the maximum of Mn towards

ζ = 1, i.e. back scattering, as well as reducing the absolute magnitude ofMn.
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In subsequent sections the hypergeometric function method is employed,

with the aforementioned numerical considerations in mind. The final step in

computing the Compton scattering cross-section is evaluating the integral over

the relativistic electron distribution function.

5.10 Computing the Scattering Kernel

In the general case, in all of the literature at present, only integration over ζ or

λ has been performed analytically — generally a choice must be made between

performing integrals of the angular moments or integrating over the electron

distribution function. The sixth and final integration over photon energy can

be performed numerically during the radiative transfer calculations at each

point along a ray. Regardless, with the methods at present, one is left with

at best two further sets of integrals to evaluate. Further, the problem as for-

mulated in the current literature (Prasad et al. 1986; Nagirner and Poutanen

1993; Poutanen and Vurm 2010) is algebraically cumbersome. It is common

to resort to Monte-Carlo methods to solve the multi-dimensional integrals. To

have a closed-form solution to the first five integrals, including the electron dis-

tribution function, would eliminate the need for evaluating multi-dimensional

integrals and entail solving only the photon frequency integral along the ray,

as is common in ray-tracing.

5.10.1 Integrating over the electron distribution function

To evaluate the full Compton scattering kernel, in full generality, there are two

expressions of importance, namely equations (5.86) and (5.87). Computing the

Compton scattering kernel involves evaluating the following expression:

T = T1 + T2 , (5.127)

where

T1 =

∫ ∞
λL

dλ e−λ/τ [An +Bn(γ + λ)−Bn(γ′ − λ)]
∣∣ζ+
−1

, (5.128)

T2 =

∫ λL

λmin

dλ e−λ/τ [An +Bn(γ + λ)−Bn(γ′ − λ)]
∣∣ζ+
ζ−
. (5.129)

The second term in equation (5.127), namely equation (5.129), vanishes if

the condition given by equation (5.79) is satisfied, as mentioned previously.
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Solving for T1 and T2 in equation (5.127) necessitates the definition of the

following seven integrals

I1,n(ζ, λ1, λ2) = 2γγ′
∫ λ2

λ1

dλ e−λ/τ Qn(ζ) , (5.130)

I2,n(ζ, x, λ1, λ2) =

∫ λ2

λ1

dλ e−λ/τ Rn(ζ, x) , (5.131)

I3,n(ζ, x, λ1, λ2) = (γ−1 + γ′−1)

∫ λ2

λ1

dλ e−λ/τ λRn(ζ, x) , (5.132)

I4,n(ζ, x, λ1, λ2) =

∫ λ2

λ1

dλ e−λ/τ Rn+1(ζ, x) , (5.133)

I5,n(ζ, x, λ1, λ2) = γγ′
∫ λ2

λ1

dλ e−λ/τ Sn,0(ζ, x) , (5.134)

I6,n(ζ, x, λ1, λ2) = 2

∫ λ2

λ1

dλ e−λ/τ Sn,1(ζ, x) , (5.135)

I7,n(ζ, x, λ1, λ2) =
2

γγ′

∫ λ2

λ1

dλ e−λ/τ Sn,2(ζ, x) , (5.136)

where the dependence of ζ and x on λ has not been explicitly shown, i.e.

ζ ≡ ζ(λ) and x ≡ x(λ), for the sake of brevity. Consider the functions

f(ζ, x, λ1, λ2) =
γ

γ′
I2,n + I3,n − I4,n − I5,n + I6,n + I7,n , (5.137)

g(ζ, x, λ1, λ2) =
γ′

γ
I2,n − I3,n − I4,n − I5,n + I6,n + I7,n

= f(ζ, x, λ1, λ2)−
[(

γ

γ′
− γ′

γ

)
I2,n + 2I3,n

]
. (5.138)

where the dependence of I on ζ, x, λ1 and λ2 has been suppressed for the

sake of brevity. The Compton scattering kernel may then be expressed as the

composition of the following ten terms:

t1 = I1,n(ζ+, λL,∞)− 2γγ′τ Qn(−1) e−λL/τ , (5.139)

t2 = I1,n(ζ+, λmin, λL)− I1,n(ζ−, λmin, λL) , (5.140)

t3 = f(ζ+, γ + λ, λL,∞) , (5.141)

t4 = f(−1, γ + λ, λL,∞) , (5.142)

t5 = g(ζ+, γ
′ − λ, λL,∞) , (5.143)
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t6 = g(−1, γ′ − λ, λL,∞) , (5.144)

t7 = f(ζ+, γ + λ, λmin, λL) , (5.145)

t8 = f(ζ−, γ + λ, λmin, λL) , (5.146)

t9 = g(ζ+, γ
′ − λ, λmin, λL) , (5.147)

t10 = g(ζ−, γ
′ − λ, λmin, λL) , (5.148)

where Qn(−1) is equivalent to Qn evaluated at ζ = −1. Recall ζ± ≡ ζ±(λ), as

given in equation (5.80). Terms t1 (pre-collisional) and t2 (post-collisional) are

independent of x. With the above ten terms T1 and T2 may now be written as

T1 = t1 + t3 − t4 − t5 + t6 , (5.149)

T2 = t2 + t7 − t8 − t9 + t10 , (5.150)

where, as noted before, T2 vanishes if condition (5.79) is satisfied. With T1 and

T2 expressed as shown, one may now evaluate equation (5.127) numerically. It

is easily shown that the number of numerical integrals scales linearly with the

moment order n and is given by 48n+ 51 or 24n+ 25, depending on whether

T2 need be evaluated. However, this is assuming the independent evaluation of

each moment. In reality, in evaluating a moment n, all lower-order moments

must also have been evaluated, and so the order of the method at each order

n is given by (n+ 1)(24n+ 51) or (n+ 1)(12n+ 25).

The angular moments of the full Klein-Nishina Compton scattering kernel

may now finally be written as:

σKN(γ → γ′, τ) =

∫
dζ ζn σsn(γ → γ′, ζ, τ)

=
C

γ2 τ K2(1/τ)
T (γ, γ′, τ) , (5.151)

where T (γ, γ′, τ) ≡ T , as given in equation (5.127) and C = 3ρσT/32πme.

5.10.2 Numerical implementation

In implementing the formulation in the previous subsection numerically, sev-

eral considerations and modifications of the formulae need to be employed. A

prominent problem is the magnitude of the τ−1/K2(τ−1) term in the expres-

sion for the scattering kernel at electron temperatures below 10 keV. For an
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electron temperature of 10 keV its value is 4.378 × 1024, at 1 keV its value

is 7.717 × 10225 and moving down to temperatures of 1 meV, the lower-end

of temperatures we will investigate numerically, the corresponding value is

1.649×10221924493. On this basis alone, any numerical computation of the scat-

tering kernel would immediately require very high numerical precision indeed,

particularly at temperatures below 1 keV. Accordingly, all of the numerical

integrals in equations (134)–(140), particularly in the case of nearly elastic

collisions, will be of corresponding numerical smallness so as to cancel such

large terms, since the value of the scattering kernel in this case is generally

of the order of unity. Consequently, these numerical integrals will also require

substantial numerical precision in memory storage alone.

Another issue is the need to define an efficient algorithm which com-

putes the integrals and sums in equations (5.130)–(5.136) with the minimum

of computational overhead. Some integrals are repeated and consequently we

introduce a new notation to make the formulation and its numerical imple-

mentation more transparent. Consider the following integral definition:

Fk(a, b, α) =

∫ λ2

λ1

dλ e−(λ−1)/τ λα (1− ζ)b2F1 [a, b; b+ 1;x2] . (5.152)

We may now rewrite equations (5.130)–(5.136) as follows

I1,n =
2γγ′(n+ 1)−1√

γ2 + γ′2

∫ λ2

λ1

dλ e−(λ−1)/τ ζn+1 F

(
1

2
, n+ 1, x1

)
, (5.153)

I2,n =
1√
2

n∑
k=0

D(n, k, 1)Fk
(

3

2
, k +

1

2
, 0

)
, (5.154)

I3,n =
(γ−1 + γ′−1)√

2

n∑
k=0

D(n, k, 1)Fk
(

3

2
, k +

1

2
, 1

)
, (5.155)

I4,n =
1√
2

n+1∑
k=0

D(n+ 1, k, 1)Fk
(

3

2
, k +

1

2
, 0

)
, (5.156)

I5,n =
√

2 γγ′
n∑
k=0

D(n, k, 2)Fk
(

1

2
, k +

3

2
, 0

)
, (5.157)

I6,n = 2
√

2
n∑
k=0

D(n, k, 1)Fk
(

1

2
, k +

1

2
, 0

)
, (5.158)

I7,n =
2
√

2

γγ′

n∑
k=0

D(n, k, 0)Fk
(

1

2
, k − 1

2
, 0

)
, (5.159)
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where,

D (n, k, l) =
(−1)k+1

2k + 2l − 1

(
n

k

)
. (5.160)

Note that the integrals in equations (5.154) and (5.156) are identical, thus

only the integral Fn+1 (3/2, n+ 3/2, 0) need be computed in I4,n. With this,

the scattering kernel may be written as

σKN(γ → γ′, τ) =
C e−1/τ

γ2 τ K2(1/τ)
T (γ, γ′, τ) , (5.161)

where T (γ, γ′, τ) is now defined in terms of equations (5.153)–(5.159), which

is far less expensive to compute numerically. Now, the modified term

τ−1e−τ
−1
/K2(τ−1), at an electron temperature of 10 keV has the value of

2.811 × 102, at 1 keV its value is 9.183 × 103 and at 1 meV its value is now

9.217×1012. This method is readily parallelised, with each integral, or group of

integrals, performed per CPU. Additionally, if the array D (n, k, l) is populated

prior to runtime, and care is taken to handle positive and negative terms, then

just one subtraction need be performed at the end. This method can be made

very accurate. In the following subsection a numerical investigation of a code

written in Python to evaluate angular moments of the Compton scattering

kernel is detailed.
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Table 5.1: Relative errors for the first 6 moments of the Compton scattering kernel, evalu-

ated at an electron temperature of 1 meV. Numbers between brackets denote multiplicative

powers of 10. Absence of a double precision value indicates a relative error at double preci-

sion of greater than unity.

γ δ Precision εn=0 εn=1 εn=2 εn=3 εn=4 εn=5

1 meV 10−6 DD 1.11[-04] 2.39[-04] 3.95[-04] 8.94[-05] 2.68[-04] 3.55[-03]

TD 1.80[-20] 6.13[-20] 5.64[-20] 8.14[-20] 5.33[-20] 6.37[-21]

10−4 DD 1.25[-06] 3.22[-05] 8.43[-05] 8.13[-05] 1.17[-04] 3.38[-04]

TD 2.10[-21] 4.80[-21] 4.77[-21] 1.33[-20] 1.52[-20] 4.04[-19]

1 eV 10−6 DD 7.35[-14] 2.94[-14] 2.06[-14] 7.74[-13] 2.01[-13] 7.24[-13]

DD 7.35[-14] 2.94[-14] 2.06[-14] 7.74[-13] 2.01[-13] 7.24[-13]

TD 1.17[-30] 4.60[-30] 8.05[-29] 1.39[-29] 3.92[-29] 3.62[-29]

10−4 DD 6.63[-15] 2.25[-14] 8.62[-14] 6.66[-14] 1.30[-13] 3.40[-13]

TD 1.40[-30] 6.21[-30] 4.73[-30] 1.28[-29] 1.89[-29] 3.38[-29]

1 keV 10−6 D 4.97[-05] 6.77[-05] 4.27[-06] 4.71[-04] 1.27[-03] 3.09[-03]

DD 4.90[-21] 1.99[-21] 7.07[-21] 1.18[-21] 6.33[-21] 1.27[-20]

10−4 D 2.76[-03] 2.89[-03] 3.01[-03] 3.12[-03] 3.23[-03] 3.32[-03]

DD 2.76[-03] 2.89[-03] 3.01[-03] 3.12[-03] 3.23[-03] 3.32[-03]

TD 2.76[-03] 2.89[-03] 3.01[-03] 3.12[-03] 3.23[-03] 3.32[-03]

QD 8.52[-31] 3.15[-18] 1.01[-10] 3.20[-10] 6.78[-10] 1.20[-09]
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Table 5.2: As in Table 5.1, but now evaluated at an electron temperature of 1 keV.

γ δ Precision εn=0 εn=1 εn=2 εn=3 εn=4 εn=5

1 meV 10−6 DD 4.18[-02] 2.42[-01] 6.15[-02] 5.40[-01] 9.72[-01] 5.24[-01]

TD 9.27[-18] 5.83[-17] 2.12[-17] 1.97[-17] 6.83[-18] 1.46[-16]

10−4 DD 1.47[-02] 3.75[-02] 2.48[-02] 4.83[-02] 3.08[-02] 5.19[-02]

TD 1.24[-18] 3.22[-18] 2.27[-18] 3.25[-18] 2.53[-18] 3.85[-18]

10−2 DD 3.53[-04] 1.32[-03] 7.55[-04] 1.86[-03] 1.13[-03] 2.42[-03]

TD 8.67[-21] 1.31[-20] 4.06[-21] 4.40[-20] 1.88[-20] 5.94[-20]

1 DD 5.47[-06] 1.12[-04] 1.18[-04] 5.39[-05] 1.08[-04] 9.49[-04]

TD 6.25[-21] 7.72[-21] 3.13[-21] 6.42[-21] 9.38[-21] 4.30[-20]

1 eV 10−6 DD 9.24[-11] 3.06[-10] 7.12[-11] 4.13[-10] 1.61[-10] 7.85[-11]

10−4 DD 2.35[-12] 2.78[-12] 1.27[-12] 6.32[-12] 2.89[-12] 9.84[-12]

10−2 DD 2.37[-14] 2.05[-14] 1.54[-14] 3.02[-14] 1.04[-13] 4.93[-14]

1 DD 4.39[-13] 1.23[-14] 2.77[-14] 4.07[-13] 3.44[-13] 3.88[-14]

1 keV 10−6 D 1.75[-03] 5.55[-03] 2.98[-03] 1.80[-03] 2.40[-03] 7.01[-03]

DD 7.19[-20] 4.63[-19] 5.24[-19] 7.15[-19] 1.85[-19] 7.73[-19]

10−4 D 1.65[-05] 2.15[-05] 2.30[-05] 3.74[-05] 1.07[-05] 3.07[-05]

DD 2.35[-12] 2.78[-12] 1.27[-12] 6.32[-12] 2.89[-12] 9.84[-12]

10−2 D 1.71[-07] 4.90[-07] 7.27[-08] 2.18[-07] 6.10[-07] 1.34[-07]

DD 2.00[-24] 1.31[-23] 2.81[-23] 1.29[-22] 1.80[-23] 1.17[-22]

1 DD 8.16[-25] 3.83[-23] 8.84[-23] 1.92[-22] 2.66[-22] 6.29[-22]

1 MeV 10−6 D 6.15[-11] 1.17[-11] 5.47[-11] 2.94[-11] 7.44[-11] 5.20[-11]

DD 1.25[-27] 4.58[-27] 6.01[-27] 9.13[-27] 4.43[-27] 9.32[-27]

10−4 D 3.47[-13] 5.52[-13] 3.74[-13] 1.56[-13] 1.94[-13] 2.49[-13]

DD 2.10[-28] 2.01[-28] 2.44[-28] 2.11[-28] 1.97[-28] 2.59[-28]

10−2 D 4.24[-14] 5.83[-14] 5.84[-13] 6.21[-12] 2.84[-11] 7.30[-11]

DD 4.52[-30] 3.25[-30] 4.36[-30] 5.11[-30] 4.25[-30] 3.95[-30]

1 GeV 10−6 D 5.70[-09] 5.70[-09] 5.70[-09] 5.70[-09] 5.70[-09] 5.70[-09]

DD 1.22[-23] 1.22[-23] 1.22[-23] 1.22[-23] 1.22[-23] 1.22[-23]

10−4 D 2.81[-01] 2.81[-01] 2.81[-01] 2.81[-01] 2.81[-01] 2.81[-01]

DD 2.81[-01] 2.81[-01] 2.81[-01] 2.81[-01] 2.81[-01] 2.81[-01]

TD 5.99[-08] 5.99[-08] 5.99[-08] 5.99[-08] 5.99[-08] 5.99[-08]

QD 1.25[-30] 1.02[-17] 2.04[-17] 3.06[-17] 4.08[-17] 5.10[-17]
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5.10.3 Numerical tests

The computation of the angular moments of the Compton scattering kernel is

based on the solution of many integrals of the form given in equations (5.152)

and (5.153). I have written a code using the arbitrary-precision mathematics

package mpmath in Python 2.7.3 from the Enthought Python Distribution

7.3-1 (64 bit). All calculations were performed on a Mid-2009 MacBook Pro

with a 3.06GHz Intel Core 2 Duo CPU with 8GB of 1067 MHz DDR3 RAM

- no computer-specific optimisations were performed. The code was designed

and tested on Mac OSX 10.8.2, compatible with any OS with Python and

mpmath installed.

To illustrate the functionality of the method and its accuracy in numer-

ical computations, the relative error, ε, is calculated for the first six angular

moments of the Compton scattering kernel. This is done for a broad range of

photon energies, from γ = 1 meV to γ = 1 GeV. The relative error is calcu-

lated with respect to an arbitrary precision code written in Mathematica.

Consequently, ε is defined with respect to the exact numerical value. Values

of σKN of magnitude less than 10−100 are neglected. The code is evaluated first

with 53 bits of numerical precision (double precision - D). If the relative error

is not less than 10−12 then σKN is evaluated with 106 bit precision (double-

double - DD), 159 bit precision (triple-double - TD) and, if necessary, with 212

bits of precision (quad-double - QD). Two electron temperatures are chosen

for numerical testing, 1 meV and 1 keV. The outgoing photon energy, γ′, is

iterated as γ′ = (1 + δ)γ, with δ taking the values 10−6, 10−4 and 10−2 (for

δ & 1, σKN is negligibly small).

There are no freely available codes in the literature which can compute

successive angular moments of the Compton scattering kernel. Consequently, I

have written a code in Mathematica 9 which computes the angular moments

to arbitrary order. The results from Mathematica are compared with those

obtained from the arbitrary precision Python code, evaluating the relative

error ε between the two.

In Table 1 the relative errors are computed for an electron temperature

of 1 meV. It is clear that at low incident photon energies, namely 1 meV and
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1 eV, double precision arithmetic is insufficient. Further, at γ = 1 meV, even

the errors at double-double precision are not sufficiently small, so the result for

triple-double precision is displayed. By photon energies of γ = 1 keV double

precision results become no worse than a few parts in 103.

In Table 2 the relative errors are computed for an electron temperature of

1 keV. As before, at sub-keV double-double, and even triple-double arithmetic

precision becomes necessary. However, by photon energies of 1 keV, double

precision arithmetic is again sufficient. In those regions where γ is large and

the relative error at double precision is of the order of 10−3 or greater, the

value of the scattering kernel is significantly less than unity, generally of the

order of 10−50 or less. As the electron temperature increases still higher the

results become even more accurate at double precision, following the same

underlying trends.

Clearly the method presented does not fare so well at low photon energies

(γ, γ′ � 1), as well as in regions where |γ−γ′| � 1 and τ � 1 and so we must

resort to numerical precision greater than that of standard double precision.

Regarding computation time, at double precision the numerical results can

take from a few tenths of seconds to a few tens of seconds. Computation time

increases drastically with increased numerical precision. It is important to

stress that the system architecture these calculations were performed on was

a laptop, and there is tremendous scope to improve the implementation of the

method itself.

Central to the method is the solution of specific definite integrals, allowing

straightforward parallelisation of the numerical scheme. Further, by careful

consideration of positive and negative terms, only one subtraction need be

performed per moment evaluation, greatly reducing round-off error (since the

integral in equation (5.152) is always positive). The terms D (n, k, l) may be

tabulated prior to runtime and all values of Fk can be stored in an appropriate

array. In addition, the integrals themselves could be pre-calculated on a stan-

dard grid of cases, with interpolation performed on this grid at run-time. In

the regions where double precision accuracy is insufficient, asymptotic series

expansions may be employed, particularly where τ → 0, (γ, γ′)→ 0, γ/γ′ → 1
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and γ fixed with γ′ → 0 (and vice-versa). The aforementioned refinements

would make the Compton scattering code very robust across a much broader

energy range, specifically at lower energies (in the eV range and below).

However, in most regions of astrophysical interest, particularly in the situ-

ations investigated in this thesis, electron and photon energies are of the order

of keV energies or greater. In this energy range the numerical scheme pre-

sented performs well at standard double precision and becomes more accurate

as energy increases. Whilst this method is already applicable in high-energy

astrophysical situations, the aforementioned refinements will not only make it

more reliable in the & keV range investigated in this thesis, but also extend

its application to the eV range and below.

5.11 Numerical Results

The method presented in this Chapter can easily be generalised to include the

evaluation of moments of the cross-section in terms of more general functions

of ζ, such as Legendre polynomials. This is shown in Appendix C.

The computed moments of the Compton scattering kernel (in arbitrary

units, i.e. C = 1) are plotted as a function of scattered photon energy in

Figures 5.7–5.11. Figures 5.7 and 5.8 illustrate the dependence of the zeroth

moment of the scattering kernel on the electron temperature, for various inci-

dent photon energies. Figure 5.9 shows the dependence of the 1st, 2nd, 3rd,

4th and 5th moments of the scattering kernel for an incident photon energy

of 40 keV and an electron temperature of 1 keV (top) and 20 keV (bottom).

Figure 5.10 is similar to Figure 5.9, except that the incident photon energy is

100 keV. Figure 5.11 is as in Figure 5.10, except the incident photon energy

is now 300 keV.

The parameters for the plots in these figures were chosen to enable compar-

ison with previous numerical calculations by Pomraning (1972, 1973) in which

the angular moments are expanded in terms of Legendre polynomials Pn(ζ).

Without a closed-form expression for the scattering kernel, Pomraning (1972,

1973) employed a fully numerical approach in his calculations. Although Pom-

raning employed a Legendre polynomial moment expansion, different functions
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for the moment expansions have been considered in this work. In the classical

limit, the zeroth order terms in both calculations are identical, enabling direct

comparison.

Figures 5.7 and 5.8 indeed show that the zeroth order moments obtained

by the closed-form expression I derived are the same as those obtained by

the Legendre polynomial expansion of Pomraning (1972). The zeroth or-

der moments of the kernel that were computed for various electron temper-

atures are consistent with Monte-Carlo simulations of Compton scattering of

monochromic emission lines shown in Pozdniakov et al. (1979) and Pozdnyakov

et al. (1983).

In practical radiative transfer calculations, the full radiative transfer equa-

tion with scattering can in principle be decoupled, in a truncated moment ex-

pansion, into a series of coupled ordinary differential equations (Thorne 1981;

Fuerst 2006; Wu et al. 2008). In solving the full radiative transfer equation in

curved space-times, a covariant generalisation of the Eddington approximation

may be employed. Coupled with the aforementioned closed-form expressions

for the angular moments, this yields a semi-analytic approach, necessitating

the evaluation of two numerical integrals over λ and γ (or γ′, by detailed bal-

ance). The inclusion of this formulation into a truncated moment expansion,

as well as its subsequent solution, is left for future study. The work presented

in this Chapter has been published in Younsi and Wu (2013).
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Fig. 5.7: Zeroth moment of the Compton scattering kernel (as a function of scattered

photon energy) evaluated at an electron temperature of 1 keV. Top: incident photon energies

of 5 keV, 10 keV, 20 keV, 40 keV and 60 keV. Bottom: incident photon energies of 80 keV,

100 keV, 150 keV, 200 keV and 300 keV.
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Fig. 5.8: Zeroth moment of the Compton scattering kernel (as a function of scattered

photon energy) evaluated at an electron temperature of 20 keV. Top: incident photon

energies of 5 keV, 10 keV, 20 keV, 40 keV and 60 keV. Bottom: incident photon energies of

80 keV, 100 keV, 150 keV, 200 keV and 300 keV.
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Fig. 5.9: The 1st, 2nd, 3rd, 4th and 5th moments of the Compton scattering kernel (as a

function of scattered photon energy) evaluated at an incident photon of energy of 40 keV.

Top: electron temperature of 1 keV. Bottom: electron temperature of 20 keV.
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Fig. 5.10: The 1st, 2nd, 3rd, 4th and 5th moments of the Compton scattering kernel (as a

function of scattered photon energy) evaluated at an incident photon of energy of 100 keV.

Top: electron temperature of 1 keV. Bottom: electron temperature of 20 keV.
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Fig. 5.11: The 1st, 2nd, 3rd, 4th and 5th moments of the Compton scattering kernel (as a

function of scattered photon energy) evaluated at an incident photon of energy of 300 keV.

Top: electron temperature of 1 keV. Bottom: electron temperature of 20 keV.
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Chapter 6

Time-Dependent Radiative Transfer

Previous calculations presented in Chapter 4 of the emission from accretion

disks and accretion tori assumed that variability in the source emission was

sufficiently low to calculate an image of the entire emitting region, as well as its

corresponding spectra. Changes in the size and shape of the emitting region,

as well as its emission properties, were neglected as a first approximation. In

reality, particularly close to the event horizon of a rapidly spinning Kerr black

hole, dynamical timescales can become very short indeed. For example, the

orbital period of a material particle in an accretion disk at 2 rg around a Kerr

black hole is roughly 24 rg/c. For a ∼ 106M� black hole (e.g. Sgr A*) this

would correspond to an orbital period of roughly 8 minutes, which is very short

(compared to the integrated observation times of current telescopes). However

for a ∼ 109M� black hole (e.g. the SMBH in M87), this corresponds to an

orbital period of over five-and-a-half days. Observations of variability in black

hole systems therefore depend strongly on the mass of the central object.

Black holes show variability across multiple bands, and it is known that

much information is contained in this time-varying emission, particlularly close

to the black hole event horizon where the inner-edge of the accretion disk is

determined by the spin of the black hole alone. Fundamental information

about the black hole is lost through degeneracy (i.e. smeared out) in observed

and calculated spectral profiles. A time-dependent spectrum, or spectrogram,

must instead be constructed. This spectrogram may be integrated at the

relevant points in time to give spectra similar to those seen in Chapter 4. By
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integrating over photon energy, the net flux may be obtained as a function

of time, i.e. a light curve. It is of practical interest to study light curves of

time-varying features as they are an important probe of dynamical features in

these systems and very sensitive to key black hole parameters like the mass

and spin, as well as the inclination angle.

In this Chapter, I extend the formalism developed in Chapters 3 and 4 to

perform radiative transfer calculations where variability is high and both the

spatial distribution and radiative properties of the emitting medium fluctuate

rapidly.

6.1 Calculating Time-Delayed Emission

A first step in calculating time-dependent emission is accounting for the dif-

ferences in photon arrival times from different locations on an emission source

at a particular observer time. Consider an observer making an observation

of a time-varying source. In numerical computations the observer effectively

observes all photons instantaneously and the observation time window is zero.

In reality a source is observed over a certain time interval, with the detector

having a particular time resolution. In time-dependent radiative transfer cal-

culations, an observation is made for a particular time window. Photon arrival

times must be binned, with the fineness of temporal bins corresponding to the

time resolution of the observation.

The observation time ttotal (∼ 1 orbital period in all calculations) is divided

into n (typically 100) equally spaced time intervals. At each interval tobs,i,

where i denotes the i-th such interval (i ∈ [0, n]), the spatial position of

the plasmoid, along with its emissivity profile, is specified. Ray-tracing is

then performed and for all rays which originate from the plasmoid, their 4-

momentum, redshift and time delay are recorded and the emissivity of each

ray is calculated. Thus n+ 1 images of the plasmoid’s position as it performs

one full orbital period are calculated.

Since the observer image plane is located considerably far from the black

hole, there are two time delays to account for: the time delay for photon travel

time from the point of emission to the point it is received at the observer, and
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Fig. 6.1: Time delay images of geometrically thin, optically thick accretion disks viewed

at inclination angles of i = 0◦ (top), i = 60◦ (middle) and i = 75◦ (bottom). The black hole

spin parameters are a = 0 (left) and a = 0.998 (right). The inner and outer radii of the

disk are the ISCO and 20 rg respectively. Solid black lines indicate constant-time contours.

Contours of equal time have different radial locations in different spin black holes viewed at

the same inclination angle, due to the differing Keplerian rotational velocities in the disk.

The effects of frame-dragging can be seen in the innermost time contour of the bottom right

(a = 0.998, i = 75◦) image. The images are normalised such that the brightness of the

brightest pixel in each image is the same (see accompanying text).
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the relative time delay between neighbouring photons as a consequence of the

differing gravitational redshifts they experience. In order to remove the effects

of photon arrival time delay between the emitter and the observer, in the first

image (tobs,0) the photons are sorted by arrival time and stored in an array

ti. The arrival time of the first photon to be received is then subtracted from

all other photon arrival times for that image, i.e. t0 − MIN {t0}. In this

way, only the relative time delay between photons in the image is considered,

and the distance of the observer from the black hole has a negligible effect

on the observed emission. This process is then repeated for all subsequent

images, with the time between each interval tobs,i added to every pixel in the

corresponding i-th image. Thus, the recorded arrival time for each photon,

trec,i, is calculated as

trec,i = ti −MIN {ti}+ tobs,i . (6.1)

Received photons are then binned by time, with those received after a time

ttotal (typically ∼ 1 orbital period) omitted from further calculations.

The basic algorithm is demonstrated in Figure 6.1, which shows plots of

steady geometrically thin, optically thick accretion disks coloured by the time

delay of each photon relative to its neighbours. All arrival times trec,i are

normalised into the range [0, 1] by evaluating (trec,i −MIN {trec,i}) /∆t, where

∆t ≡ MAX {trec,i} − MIN {trec,i}. This is indicated by the accompanying

colour bar in Figure 6.1. This normalisation is applied to all calculated images

in this Chapter.

6.2 Orbiting Plasmoid

The orbiting plasmoid/hot spot/blob model had been employed by several

authors in the context of Sgr A* (e.g. Broderick and Loeb 2005; Meyer et al.

2006; Doviak et al. 2006; Noble et al. 2007; Zamaninasab et al. 2011). It is

shown here as a test of the new formulation, and to discuss qualitatively the

important features of time-dependent emission from black hole systems.

Ray-tracing from the image plane to the accretion disk, each ray bundle

is labeled with a distinct position, 4-momentum and time delay. Using this

information, time-dependent images of the disk are constructed from time-
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varying emission models. The plasmoid is modelled as a spheroidal overdensity

of non-thermal electrons centered at a point on the accretion disk orbiting at

the local Keplerian velocity. Since x2 + y2 + z2 = r2 + a2 sin2 θ, for high black

hole spins the plasmoid becomes oblate spheroidal in shape (i.e. compressed in

the z-direction). The plasmoid is taken to be optically thick and the emissivity

on its surface is modelled as a Gaussian in the z-direction, given by

jν (z, t) ∝ exp

{
− [z − zp(t)]2

r2
p

}
, (6.2)

where zp (t) is the plasmoid position at time t and rp is the plasmoid radius.

The position z ≡ r cos θ in BL co-ordinates. In all subsequent calculations,

emission that is located outside of 5 rp of the initial geodesic trajectory (i.e. the

first ray to reach the observer) is truncated. In all subsequent calculations the

plasmoid radius is fixed as rp = 0.5 rg. The resultant normalised lightcurves

and spectrograms are weakly dependent on the plasmoid radius.

All matter in the plasmoid is assumed to be moving at the same 4-velocity

as the initial trajectory. Tabulating the plasmoid trajectory as a function of

time, the observing region is divided into n equally spaced time intervals, with

n = 100 taken for all calculations. Employing the prescription in equation

(6.1), static images of the plasmoid at each time interval are ray-traced. This

is done for one full orbit of the plasmoid.

Two different cases are considered: a plasmoid orbiting a non-rotating

(a = 0) black hole, at a distance of rc = 6.5 rg
1 (i.e. at the ISCO). The second

case places the plasmoid in orbit around an a = 0.998 Kerr black hole at a

distance of rc = 2.5 rg, i.e. within 0.8 rg of the ISCO. The plasmoid is orbiting

in an anticlockwise direction (as seen from above) with a Keplerian angular

velocity.

Time delay images of a plasmoid orbiting a black hole with spin parameter

a = 0 (left panels) and a black hole with spin parameter a = 0.998 (right

panels) are illustrated in Figures 6.2–6.5. When viewed from directly above

(i = 0◦), there is no change in apparent shape as the plasmoid orbits the black

hole. The ultra-relativistic velocities close to the event horizon (in the right

1This distance is chosen so that the inner radius of the plasmoid coincides with the ISCO
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Fig. 6.2: Snapshot images of a plasmoid orbiting black holes with spins of a = 0 (left)

and a = 0.998 (right). The plasmoid is orbiting in the eφ-direction, i.e. anticlockwise as

viewed from above. From top to bottom: orbital phases φ = 0◦, φ = 90◦, φ = 180◦ and

φ = 270◦. The observer inclination angle i = 0◦ in all images. For a = 0, the plasmoid

deviates only slightly from its spherical shape, as Doppler effects are moderate at rc = 6.5 rg.

For a = 0.998, at rc = 2.5 rg gravitational lensing is significant and the plasmoid appears

elongated in its direction of propagation. Arcs of emission are higher-order images from the

plasmoid that orbit the black hole multiple times before reaching the observer. Same colour

coding as Figure 6.1.
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Fig. 6.3: As in Figure 6.2, but now viewed at an observer inclination angle i = 45◦. At

φ = 180◦, i.e. when the plasmoid is directly behind the black hole, the direct image and

opposite first-order images are more elongated and larger in surface area.
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Fig. 6.4: As in Figure 6.3, but now viewed at an observer inclination angle i = 75◦. Now

when the plasmoid is directly behind the black hole, the direct image and opposite first-order

images are even more pronounced as gravitational lensing starts to dominate.
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Fig. 6.5: As in Figure 6.4, but now viewed at an observer inclination angle i = 89◦.

When the plasmoid is directly behind the black hole, in the case of an a = 0 black hole

a near-complete Einstein ring forms (this would be complete at i = 90◦). The direct

image and opposite first-order image merge into one bright ring of emission. At the highest

inclination angles, gravitational lensing is the dominant effect. No corresponding Einstein

ring is observed for the a = 0.998 black hole when the plasmoid is directly behind. This

is because the point of maximum blueshift has been shifted away from φ = 180◦ by the

frame-dragging of the Kerr black hole.
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Fig. 6.6: Smoothed frequency-integrated lightcurves of a plasmoid orbiting a black hole for

different observer inclination angles: i = 0◦ (black), i = 15◦ (yellow), i = 30◦ (magenta),

i = 45◦ (cyan), i = 60◦ (green), i = 75◦ (blue), i = 85◦ (orange) and i = 89◦ (red).

Roughly one period of emission is shown (top axis). The plasmoid is initially at φi = 90◦

and is orbiting in the eφ-direction, i.e. anticlockwise as viewed from above. Top: plasmoid

orbiting an a = 0 black hole at rc = 6.5rg. Bottom: plasmoid orbiting an a = 0.998

Kerr black hole at rc = 2.5rg. At high inclination angles relativistic beaming causes the

light curves to become sharply peaked as the plasmoid approaches the observer. Beyond

inclination angles of 80◦ gravitational lensing creates an Einstein ring when the plasmoid

moves behind the black hole. The lightcurves become asymmetrical due to time delays from

ring images, the spin of the black hole, and the Doppler shift of the plasmoid itself.
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Fig. 6.7: Time-dependent lightcurves (spectrograms) of orbiting plasmoids around spin

a = 0 black holes (left) and spin a = 0.998 black holes (right). Top panels: observer

inclination i = 45◦. Bottom panels: observer inclination i = 85◦. The plasmoid is initially

at φi = 90◦. The spectrogram profile shape is very sensitive to both inclination angle

and spin. Black hole spin serves to increase the energy width of each temporal bin (i.e.

gravitational redshift/blueshift). Observer inclination angle affects the absolute amplitude

of the spectrograms, due to the Doppler beaming effects becoming more powerful at higher

inclinations. Each pixel is coloured by the total flux for that photon, normalised as in Figure

6.1.
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panels) cause significant gravitational lensing of the primary plasmoid image,

appearing elongated in the direction of propagation. The gravitational lensing

effect becomes more severe as the observer’s inclination angle increases. Arcs

of emission from multiple images form, and at high inclinations even trace

the shadow of the black hole event horizon. The effect of black hole spin is

pronounced, shifting the point of maximum blueshift.

For a Newtonian plasmoid, the point of maximum blueshift as seen by

an observer would correspond to φ = 270◦. In Figure 6.5 for a = 0.998

and φ = 270◦ an Einstein ring is not observed, unlike in the corresponding

image for the non-rotating black hole. The plasmoid appears to be located at

an azimuthal position beyond 270◦, owing to severe gravitational lensing and

Doppler effects.

The primary distinction between plasmoids located at different radii is

the variability time-scale of the total flux. This is illustrated through the nor-

malised frequency-integrated lightcurves in Figure 6.6. These lightcurves are

smoothed to remove numerical noise, owing to the finite number of numeri-

cal photons available for calculations. Emission from the disk is subtracted

in all calculations so only the variable component is presented. Emission

from higher-order lensed images of the plasmoids are also neglected. Such

higher-order photons orbit the black hole multiple times, with the image order

specifying the number of orbits of the photon before escaping to reach the ob-

server. These photons arrive much later than neighbouring photons, distorting

the shape of the calculated spectrograms and lightcurves by contributing ex-

tra emission in time bins where the observed flux form the primary image is

negligible. In the numerical scheme these photons are neglected since in a real

physical situation such photons traverse vast distances through the accretion

flow close to the event horizon and are highly redshifted. They are likely to

be strongly attenuated and absorbed by the surrounding medium and their

flux contribution to the observed spectrograms and lightcurves is negligible, if

they escape at all.

The top panel of Figure 6.6 shows the frequency-integrated lightcurves

for a plasmoid orbiting a black hole with a spin parameter of a = 0. At a
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distance of rc = 6.5 rg the orbital period ≈ 104 rg/c. At i = 0◦ the observer is

looking directly down the black hole spin axis, implying an absence of trans-

verse Doppler shifts. This is reflected in the flatness of the corresponding

lightcurve. As inclination angle increases, the peaks in the lightcurves be-

come much stronger. Relativistic Doppler beaming shifts the peaks of the

lightcurves as the location of the point of maximum blueshift moves. Be-

yond inclinations of 80◦ the light curve becomes double peaked. This occurs

when the flux emitted from the Einstein ring overpowers the flux from the

region of maximum blueshift. As the observer inclination angle moves to 89◦

the azimuthal positions of the maximum blueshift region and the Einstein ring

formation region increase in separation, giving two distinct peaks. This means

that at the highest inclinations the effects of gravitational lensing dominate

over relativistic effects. That is to say, at large inclinations general relativistic

effects overpower special relativistic effects.

Similar features appear in the bottom panel of Figure 6.6, for a plasmoid

orbiting an a = 0.998 Kerr black hole. At this distance the plasmoid orbital

period is ≈ 31 rg/c. Observational features are qualitatively similar at low to

moderate inclination angles to those observed for the non-rotating black hole.

In this case the formation of the Einstein ring does not affect the observed

integrated flux so strongly. This is because the orbital period of the plasmoid

is much shorter and the magnification/de-magnification of the plasmoid im-

age which causes the shift in the two peaks is much faster. The presence of

separated double peaks could potentially distinguish between black holes of

differing spins.

In Figure 6.7, time-dependent spectra (spectrograms) are plotted for black

hole spins of a = 0 and a = 0.998, and observer inclinations i = 45◦ and

i = 85◦. Spectrogram profile shape is very sensitive to black hole spin and

observer inclination angle.

6.3 Plasmoid Ejection

As discussed in Chapter 1, jets are ubiquitous in accreting AGN. Intermittent,

episodic outflows associated with flare emission are also observed in these
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systems. Such flaring has been observed in Sgr A* in the X-ray, IR and radio,

with several episodes occurring every day (Eckart et al. 2006; Genzel et al.

2003), showing delays in the peaks of the light curves at different wavebands

(Yusef-Zadeh et al. 2006). The observed delays in these peaks, combined with

the sharp rise and slow decay in the brightness and polarisation of these flares,

are attributed to the ejection and expansion of plasmoids from the accretion

flow (e.g. van der Laan 1966; Marrone et al. 2008).

X-ray and radio observations of the active galaxy 3C120 over a three-

year period show episodic ejections in the form of bright superluminal knots

(Marscher et al. 2002). Knots are very common in radio-loud AGN like M87,

and are sometimes interpreted as decollimation shocks. Similar plasmoid

ejecta have been observed in microquasars, e.g. GRS 1915+105 (Mirabel and

Rodŕıguez 1994; Mirabel et al. 1998). Short but powerful radio flares, along

with X-ray flares (and in the case of GRS 1915+105 IR flares also), are ob-

served in the hard to soft X-ray spectral state transition. Such flares have also

been associated with plasmoid ejection. Observations of Sgr A* show multiple

simultaneous light curves at different wavebands, from which plasmoid ejecta

are inferred.

GRMHD simulations of the accretion flow near the black hole event hori-

zon show, even under the assumption of a weak initial magnetic field, that

rapid mass ejections embedded within continuous jet-like outflows can occur

(Machida et al. 2000; De Villiers et al. 2003). In these simulations, the time

interval between successive episodes was found to be ∼ 1600rg/c.

In solar physics, two-component magnetic outflows and ejections are well-

known and understood in terms of rapid solar winds and coronal mass ejections

(CMEs). The similar morphologies and attributes found in the outflow compo-

nents of accreting black holes as well as the Sun hint at a common underlying

physical mechanism. To this extent, a solar CME-like outflow model for the

accretion flow is employed, as in Yuan et al. (2009).

Observational implications aside, there are many compelling theoretical

reasons as to why the magnetic processes operating in black hole environments

and in the Solar corona are morphologically similar. Numerous GRMHD simu-
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Fig. 6.8: Diagram of plasmoid configuration. The plasmoid (flux rope) is indicated by the

red circle. The current sheet is denoted by the yellow line. The footprints of the magnetic

field are indicated by a pair of blue circles. The x-axis indicates the accretion disk surface.

The key parameters in the model are the flux rope starting position p(t), end position q(t)

and the plasmoid height above the accretion disk surface, h(t). A fourth quantity, namely

the plasmoid mass, m(t), is also of importance. Adapted from Lin and Forbes (2000).

lations of hot accretion flows demonstrate remarkable similarity with the solar

atmosphere. An accreting black hole is essentially a dense disk enveloped by

a corona (De Villiers et al. 2005).

Accretion disks are permeated by magnetic fields, with their angular mo-

mentum transport regulated by magneto-rotational instability (MRI). Conse-

quently, accretion disks are highly turbulent (Balbus 2003; Balbus and Hawley

2003). Magnetic field loops emerge from the accretion disk into the corona,

their footprints fixed in place in the disk. Differential rotation and turbulence

within the disk means that magnetic reconnection (and shortly thereafter flar-
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Fig. 6.9: Plot of calculated plasmoid height as a function of time. These values are

normalised from the data in Yuan et al. (2009) to units of rg. The plasmoid does not

accelerate immediately after loss of equilibrium, taking ∼ 100rg/c to accelerate from rest

to ∼ 0.02c. Shortly thereafter, magnetic reconnection in the form of a huge Lorentz force

feeds current into the plasmoid, accelerating it to & 0.8c in ∼ 50rg/c, reaching a height of

∼ 60rg. Thereafter the plasmoid decelerates, tending to a roughly constant velocity.

ing through CMEs) can occur. Reconnection alters the topology of the mag-

netic field, redistributing helicity, of which most is stored in the corona in a flux

rope (essentially a plasmoid prior to ejection). The magnetic field continues

to evolve after forming a current sheet and eventually loss of equilibrium oc-

curs, rapidly expelling the plasmoid, whilst still connected by a current sheet.

Meanwhile, magnetic reconnection occurs in the current sheet, and the pow-

erful Lorentz force accelerates the plasmoid away from the disk. In principle,

this process should be more prominent, and violent, closer to the black hole.

I consider the data from the MHD model from Yuan et al. (2009). In their

model the upward motion of the plasmoid is governed, to first order, by the

following approximation

m
d2h

dt2
= |I×Bext| − Fg , (6.3)
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Fig. 6.10: Illustration of the ejected plasmoid motion (orange spheres) at different times

(not to scale) around a black hole (black sphere). The plasmoid follows a helical trajectory

(red curve) on the surface of a cylinder of radius rc. The plasmoid height (vertical dashed

blue line), h(t), is interpolated from Figure 6.9. At each time step the plasmoid radial

distance (solid blue line) is calculated as a function of time. Subsequently the change in

azimuth is calculated from equation (6.8).
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where m(t) is the total mass within the plasmoid, h(t) is the height of the

plasmoid above the accretion disk, Fg is the gravitational force, I is the inte-

grated current density j inside the plasmoid, and Bext is the total magnetic

field from all sources except I. The current and magnetic field interior to and

outside of the plasmoid satisfy the following conditions (at zeroth order):

j×B = 0 , (6.4)

j =
c

4π
∇×B . (6.5)

To determine the plasmoid velocity as a function of time, equation (6.3) must

be solved, along with three other parameters. In total, five coupled ODEs

must be solved (for h, ḣ, p, q and m). Details may be found in Yuan et al.

(2009).

The plasmoid is initially located at rc = 5 rg from the black hole, with

the density with the plasmoid ρ0 = 105 cm−3 and the initial magnetic field

set to B0 = 16 G. The initial configuration of the plasmoid is illustrated in

Figure 6.8. The density and magnetic field distributions within the corona are

poorly understood. For simplicity, they are assumed to be similar to those

found in the solar corona. This is an acceptable approximation since results

will not change very much unless the local Alfvén speed near the current sheet

decreases drastically with height within the plasmoid ejection region (Lin et al.

2006). This is unlikely given the planar configuration of the accretion disk

corona. The solution of equation (6.3) for the aforementioned initial conditions

is plotted in Figure 6.9 as a function of time.

The model presented is two-dimensional and accounts neither for the vari-

ation in azimuthal position of the plasmoid, nor for changes in distance from

the spin axis of the disk. In reality, it is expected that the plasmoid will follow

helical field lines, and turbulence and shocks will also cause the plasmoid to

deviate from motion just in the z-direction. This second effect is harder to

treat, so as a first approximation only azimuthal motion is considered. This

is modelled as a relativistic particle under the influence of the black hole’s

gravitational field. The initial x-position of the plasmoid (rc) remains fixed,

with the plasmoid motion confined to the surface of a cylinder (Figure 6.10)
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Particle motion in the Kerr space-time was discussed in Chapter 3.2, where

expressions for ṫ and φ̇ were given in equations (3.48)–(3.49). From these, the

orbital velocity of a particle in the flow is given by

vφ (r, θ) =
φ̇

ṫ

=

√
2r2 − Σ(

Σ
√
r + a sin θ

√
2r2 − Σ

)
sin θ

. (6.6)

The plasmoid is initially centred on the equatorial plane. Assuming a helical

magnetic field, and remaining a fixed radial distance rc from the black hole,

the plasmoid velocity may be parameterised as a function of r

vφ(r) =
r2 + a2

rc

{
√
r

[
(r2 + a2)

2 − a2r2
c√

r4 + a2r2
c − a4

]
− arc

}−1

. (6.7)

The change in azimuth for the plasmoid may now be calculated by integrating

equation (6.7) between its initial and final radial position

∆φ =

∫ r(ti+1)

r(ti)

dr vφ (r) , (6.8)

where r(ti)
2 = R +

√
R2 + a2h(ti)2 , 2R = (r2

c + h(ti)
2 − a2) and h(ti) is the

height of the plasmoid as a function of time. It follows from equation (6.8) that

the change in φ is weakly-dependent on black hole spin, but depends strongly

on rc. Plasmoids ejected close to the black hole event horizon experience much

stronger gravitational forces, since a particle orbiting in the equatorial plane

has a velocity vφ ∝ 1/
(
a+ r3/2

)
.

As for the orbiting plasmoid calculations in the previous subsection, two

cases are investigated, namely rc = 6.5 rg for a non-rotating black hole and

rc = 2.5 rg for an a = 0.998 Kerr black hole. For a = 0 the corresponding

value for ∆φ = 131.5◦, whereas for a = 0.998, ∆φ = 387.5◦. At each time-step

the (r, θ, φ, t)-location of the plasmoid is determined. This is used to specify

its location for the ray-traing calculation, exactly as in Chapter 6.2. As such,

light curves and spectrograms of the ejected plasmoid may be calculated.

Figures 6.11–6.14 show the un-smoothed calculated lightcurves for

magnetically-driven plasmoid ejection. The spurious oscillations at longer

times are due to the finite number of photons used in calculations. These may
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be smoothed by increasing the resolution at each time step in the numerical

algorithm and applying an appropriate noise filter to the data. Regardless,

the qualitative features of the lightcurves are not compromised, and several

conclusions can be drawn from the data.

In Figure 6.11 the sharp rise in flux is attributable to the rapid plasmoid

acceleration phase at t ≈ 100 rg/c, lasting until t ≈ 150 rg/c. For the a = 0

lightcurves, the flux increases monotonically with inclination angle, steadily

decaying once the acceleration phase is over. For the a = 0.998 lightcurves,

the flux rises and falls rapidly during the plasmoid acceleration phase. This is

because of the rapid change in φ over the same time period, corresponding to

the plasmoid’s transition from the blueshifted region to the redshifted region.

At late times, the lightcurves slightly increase in flux due to the plasmoid

again approaching the observer along the line-of-sight.

Lightcurves in Figure 6.12 are qualitatively similar to those in Figure

6.11. For a = 0 the acceleration phase of the plasmoid is less rapid, whereas

for a = 0.998 it is more pronounced, but the subsequent dip in observed flux

at t ≈ 125 rg/c is less sharp.

For an initial plasmoid position of φ = 180◦ in Figure 6.13, the lightcurves

are now drastically different. In both panels, at high inclination angles the

flux drops sharply. For the spin a = 0.998 black hole the drop in flux is more

pronounced due to stronger transverse Doppler shifts away from the line-of-

sight and the shorter orbital period of the plasmoid. For a = 0 the rapid

acceleration phase is almost completely suppressed, and strongly suppressed

for a = 0.998, particularly at lower inclination angles. The initial rapid drop

in flux dominates the emission from both models.

In Figure 6.14 both sets of lightcurves show a steady emission of flux

for the first 80–100 rg/c. For a = 0 a sharp drop in flux is seen, corre-

sponding to the rapid acceleration phase. Thereafter the emitted flux shows

little variability. For the a = 0.998 black hole there is an increase in flux at

t ≈ 80 rg/c, as the plasmoid passes through the region of maximum blueshift.

At t ≈ 100 rg/c the sharp drop in flux again corresponds to redhshifted emis-

sion as the plasmoid accelerates away from the observer. After this, the flux
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from plasmoids viewed at higher inclination angles increases at a nearly linear

rate until t ∼ 165 rg/c, due to strong transverse Doppler shifts.

6.4 Discussion

The radiative transfer formulation in Chapters 3 and 4 was extended to prop-

erly account for the differences in photon arrival times, to investigate time-

dependent emission and dynamical effects in the accretion flow around a black

hole. As a simple first test of how well the code accounts for time delay,

images of accretion disks overlaid with constant photon arrival time contours

were presented (Figure 6.1), showing the effects of black hole spin and observer

inclination angle.

As a second test of the formulation, images of a plasmoid orbiting close

to the ISCO for black holes with spin parameters of a = 0 and a = 0.998 in

Figures 6.2–6.5 were calculated. For a = 0.998 the gravitational lensing effect

is strong, and emission from the plasmoid is smeared and beamed forward

in the direction of propagation. The effects of gravitational lensing are also

much stronger closer to the black hole, magnifying all images of the plasmoid

and resulting in a greater projected surface area. At very high inclinations

the effects of gravitational lensing are so pronounced that an Einstein ring

forms, magnifying the projected emission surface of the plasmoid by a factor

of ∼ 10–100 as the inclination angle approaches 90◦.

The frequency-integrated lightcurves of plasmoids orbiting a black hole

for one orbital period were then computed. In all cases the plasmoid was

initially located at φi = 90◦, i.e. the point of maximum redshift. At low in-

clination angles the lightcurves are symmetrical and not strongly peaked. As

inclination angle increases the lightcurves become more sharply peaked and

skewed. These results are in strong qualitative agreement with previous cal-

culations with different orbital parameters (e.g. Schnittman and Bertschinger

2004; Schnittman and Rezzolla 2006; Broderick and Loeb 2005, 2006; Dex-

ter and Agol 2009).

At inclination angles above i = 80◦, gravitational lensing through the am-

plified emission from an Einstein ring dominates, causing the light curves to
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become double-peaked. This effect is less marked for the rapidly rotating black

hole due to the much shorter orbital period of the plasmoid, limiting the time

this effect can manifest and therefore dominate over the total observed flux.

These effects at inclination angles above i = 80◦ have not been demonstrated

previously in the literature. Variability in the plasmoid spectra was also char-

acterised in the spectrograms in Figure 6.7. Unlike the spectra in Chapter

4, these spectrograms are easily distinguishable in terms of the black hole

spin and inclination angle, which are also visible in the frequency-integrated

lightcurves of Figure 6.6.

Finally, a more physically realistic dynamical model of episodic outflows

from the accretion disk was considered. Since the vertical motion of the plas-

moid is governed through magnetic turbulence in the flow, a solar CME flaring

model from Yuan et al. (2009) was employed. This is a suitable first approxi-

mation because the accretion disk is linear to first order and the solar corona

and accretion disk corona are morphologically similar. The ejected plasmoid

height was then calculated as a function of time. For the azimuthal motion,

the magnetic field was assumed to be helical, confining the plasmoid motion

to the surface of a cylinder2. A parameterised form for the plasmoid velocity

was derived, allowing its change in azimuth to be calculated as a function of

its height.

With the plasmoid dynamics specified, light curves of the plasmoid for

the first 100 rg of its vertical motion were calculated. Aside from varying the

spin parameter of the black hole, azimuthal position of the plasmoid was also

considered. The corresponding light curves (Figures 6.11–6.14) are completely

different to those in Figure 6.6. Ejected plasmoid lightcurves are qualitatively

similar across all inclination angles, in contrast to the case of an orbiting

plasmoid. However, they are far more sensitive to the black hole spin than

their orbiting counterparts, exhibiting completely different profiles between

a = 0 and a = 0.998. Azimuthal position also significantly affects the ob-

served lightcurves, with those ejected at φi = 180◦ demonstrating significantly

2The assumption of a helical magnetic field is supported by polarisation observations and jet-

launching models.
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suppressed emission, most notably during the rapid ejection phase of the plas-

moid. The rapid acceleration at ∼ 100 rg is almost universally prominent and

consistent in duration. Since this is essentially dependent on the assumed ini-

tial magnetic field in the accretion disk, measurements of this timescale also

offer insight into magnetic activity in the corona, as well as kinematic and

dynamical properties of the flow itself.
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Fig. 6.11: Frequency-integrated lightcurves of magnetically-driven plasmoid ejection from a

black hole accretion disk. Only flux associated with variability is considered: all lightcurves

are disk emission subtracted. Viewed at inclination angles: i = 15◦ (yellow), i = 30◦

(magenta), i = 45◦ (cyan), i = 60◦ (green), i = 75◦ (blue) and i = 85◦ (orange). The

plasmoid is initially at φi = 0◦ and is orbiting in the eφ-direction, i.e. anticlockwise as

viewed from above. Top: plasmoid ejection from an a = 0 black hole at rc = 6.5rg. Bottom:

plasmoid ejection from an a = 0.998 Kerr black hole at rc = 2.5rg. The rapid increase in

flux at t ≈ 100 rg/c corresponds to the rapid acceleration phase of the plasmoid (cf. Figure

6.9), ending when t ≈ 150 rg/c.



6.4. Discussion 173

0 50 100 150 200 250 300 350

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t Hr �cL

N
o
rm

al
is

ed
F

lu
x
Ha

rb
it

ra
ry

u
n
it

sL

a=0

Φi=90°

0 50 100 150 200 250 300 350

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t Hrg�cL

N
o
rm

al
is

ed
F

lu
x
Ha

rb
it

ra
ry

u
n
it

sL

a=0.998

Φi=90°

Fig. 6.12: As in Figure 6.11, but now with initial azimuth φi = 90◦. As seen for φi = 0◦,

the black hole spin strongly affects the observed lightcurves, increasing the amplitude and

duration of the observed flux during the acceleration phase.



6.4. Discussion 174

0 50 100 150 200 250 300 350

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t Hr �cL

N
o
rm

al
is

ed
F

lu
x
Ha

rb
it

ra
ry

u
n
it

sL

a=0

Φi=180°

0 50 100 150 200 250 300 350

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t Hrg�cL

N
o
rm

al
is

ed
F

lu
x
Ha

rb
it

ra
ry

u
n
it

sL

a=0.998

Φi=180°

Fig. 6.13: As in Figure 6.12, but now with initial azimuth φi = 180◦. The plasmoid is

initially moving towards the region of maximum blueshift, but its vertical motion overpowers

this, leading to a rapid decrease in flux until t ≈ 100 rg/c. For a = 0 the rapid acceleration

phase is almost completely suppressed. For a = 0.998 a modest increase in flux is seen for

i = 60◦, i = 75◦ and i = 85◦ at t ≈ 135 rg/c.
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Fig. 6.14: As in Figure 6.13, but now with initial azimuth φi = 270◦. In both panels the

observed flux remains steady for the first ∼ 100 rg/c for a = 0 and for the first ∼ 80 rg/c for

a = 0.998. Again, this is due to the relatively weak Doppler boosting as the plasmoid exits

the region of maximum blueshift at φ ∼ 270◦. Due to the location of the plasmoid during

the rapid acceleration phase, its emission is strongly redshifted for a = 0, and redshifted

followed by blueshift at high inclination angles for a = 0.998.
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Chapter 7

Conclusions and Implications

In this thesis I have developed a numerical radiative transfer formulation to

calculate the emission from accretion and outflows around a black hole self-

consistently. I have used this formulation to investigate three different aspects

of AGN physics: calculating the emission from different models of the ac-

cretion flow; deriving a formalism to calculate Compton scattering in strong

gravity correctly and self-consistently; and investigating variability in the flow

by studying the time-dependent emission properties of sporadic jets in the

form of plasmoid outflows.

7.1 Equations of Motion and Radiative Transfer

In Chapter 3, a covariant radiative transfer formulation was derived. This

formulation also incorporates the effects of particle mass into the flux prop-

agation. It is completely general, incorporating all relativistic and general

relativistic effects self-consistently, and is applicable to studies of radiation

transport and spectral formation in AGN environments where the effects of

space-time curvature may be important. The equations of motion for particles

with and without mass in the vicinity of a spinning black hole were also de-

rived. These are used to determine the kinematic properties of the accretion

flow, as well as to calculate the trajectories emitted radiation follows.

The derived relativistic form of the radiative transfer equation is a general-

isation of the classical version. It includes a Lorentz transformation factor and

replaces the specific intensity and opacity with their corresponding Lorentz-

invariant forms. The presence of particle mass is also included, manifesting



7.2. Emission from Translucent Tori 177

as an additional multiplicative abberation factor. The ray-tracing algorithm

follows individual ray trajectories along their paths from observer to emit-

ter. Using the equations of motion, these trajectories are determined from the

Euler-Lagrange equations of motion for the Kerr metric.

The equations of motion for particles that orbit outside of the equatorial

plane were also derived, describing the motions of three-dimensional flows

like the accretion tori discussed in Chapter 4 and the orbiting and ejected

plasmoids studied in Chapter 6. These equations of motion were used to

derive key critical surfaces for the Kerr black hole, including the location of

the marginally stable orbits for material particles as a function of r and θ.

These critical surfaces were used to specify the inner and outer radii of the

accretion disks and tori investigated in Chapter 4.

7.2 Emission from Translucent Tori

In Chapter 4, a model for an optically thick accretion torus was constructed.

The 4-acceleration coupled with a parametric velocity field was used to derive

a pair of coupled ODEs describing the torus surface as a function of r and θ.

After solving for the torus surface, ray-tracing was employed to calculate im-

ages of these tori, as well as using radiative transfer to calculate their emission

lines.

The line profiles from these optically thick accretion tori were compared

with line profiles from thin accretion disks with the same inner and outer

radii. There were significant differences between both models. As the torus

is not geometrically thin, at high inclinations its inner surface is obscured,

rendering emission from the fastest moving matter closest to the event horizon

unobservable. As a consequence, torus emission spectra have narrower red

and blue wings compared to thin disks. Torus spectra resemble broad humps

centred around the line rest frequency, whereas disk spectra have sharply-

defined red wings. It is very hard to determine the geometry of the flow and

key black hole parameters from these profiles, as both disks and optically thick

tori are capable of reproducing the observed red and blue wings.

With this in mind, accretion tori with internal structure were constructed.
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Using the general relativistic hydrodynamic equations with a relativistic poly-

tropic equation of state, the density distribution within the torus, including

the effects of radiation pressure forces was derived. Two different scenarios

were presented.

The first scenario considered only density-driven line emission from an

optically thin torus. Surface brightness images of these tori were generated

and their emission line profiles were calculated. These lines were found to be

quite dissimilar to opaque accretion tori, as the entire emitting volume of the

torus contributes to the emission and is unobscured. However, these lines still

bear resemblance to the lines from thin disks. Optically thick and optically

thin torus images show several differences. Optically thin tori are translucent,

meaning higher-order images are not obscured and merge with the primary

image to form a more intricate emission structure.

Emission line profiles from optically thin tori for two adjacent emission

lines were also calculated. As an illustrative example, the lines were taken

to have the same relative emissivities as Fe Kα and Fe Kβ lines, finding that

while the two lines are still discernible, their wings are entangled. The optically

thin torus line profiles also differ from both thin disks and optically thick tori

in that the observed emission originates from the entire volume of the torus.

This adds considerably more flux to the red and blue wings of the line profiles

since the inner edge of the torus is not obscured. These profiles resemble those

from disks. The presence of a second emission line added an extra peak to the

profile, to the right of the blue wing. The red wing and most of the rest of

the line remained unchanged. Relativistic Doppler smearing was not powerful

enough to blend these lines together and they remained distinct even at the

highest inclination angles.

In the second scenario, a model for the continuum was incorporated,

including a thermal Bremsstrahlung-like component and a free-electron

scattering-like process that converts photons with different energies indiscrim-

inately into a power-law energy distribution, mimicking electron scattering.

This was in addition to density-driven multiple emission lines. Surface bright-

ness images of these quasi-opaque tori were then calculated. Limb-darkening
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is clearly visible towards the edges of these tori. The Bremmstrahlung emis-

sion is dominant, being proportional to ρ2 as well as T 1/2. Tori viewed at

low inclination angles appear brighter as incident rays penetrate deeper into

the hotter sub-surface layers. In these tori, self-occultation is apparent due

to their high optical depth, and higher-order images are almost completely

obscured.

The possibility of gravitationally induced line resonance was also demon-

strated. In the extreme gravitational field around black holes, radiation expe-

riences strong gravitational redshifts and blueshifts. Resonant feedback cycles

may form between neighbouring lines with different rest-frame energies. Al-

though this resonant phenomenon cannot occur in 2D flows like accretion

disks, it can occur easily in 3D flows like the accretion tori discussed in this

thesis. This is a uniquely general relativistic effect.

7.3 General Relativistic Compton Scattering

In Chapter 5, a new formulation to evaluate the general relativistic Compton

scattering kernel and its angular moments for arbitrary moment order was

derived. This is crucial for a proper treatment of general relativistic radiative

transfer that incorporates the effects of scattering, such as close to the event

horizon where the flow may become optically thick.

This is the first derivation of a closed-form expression for the general rela-

tivistic Compton scattering kernel. This method has the following advantages:

(i) it is fast and highly parallelisable; (ii) it is accurate and able to handle ar-

bitrary electron distributions as no underlying assumptions are made; (iii) it is

not restricted by energy range, and is especially fast and accurate over keV en-

ergy ranges and above, as is found in most astrophysically relevant situations,

including in AGN.

The general relativistic Compton scattering kernel was first expressed in

covariant form. Convolving this with a relativistic electron distribution func-

tion, an expression for angular moments of this kernel was derived. The resul-

tant multi-dimensional nested integrals required to calculate the kernel were

reduced to a double integral over electron velocity and scattering angle. This
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was then simplified further and re-expressed in terms of three different types

of integral. These integrals are readily represented in terms of Gauss hyperge-

ometric functions, which are rapidly convergent (and for which many accurate

numerical routines already exist). Angular moments of the kernel in terms of fi-

nite sums of integrals over these hypergeometric functions were then expressed,

essentially reducing the problem to one of quadratures (Chapter 5.10.2).

No freely-available codes exist to compute angular moments of the general

relativistic Compton scattering kernel. To test the accuracy of the formulation

and the numerical scheme a code was written in Mathematica to compute

angular moments of the scattering kernel with arbitrary numerical precision.

The numerical scheme presented in Chapter 5, written in Python, was tested

at four different numerical precisions ranging from double to quad-double. It

was found that quad-double precision was always sufficient. At the meV1 en-

ergies where this was necessary a simple non-relativistic treatment would have

been sufficient. For the keV energies and greater (where relativistic effects

become relevant), double precision arithmetic was almost always sufficient.

Several ways to solve regions of particular numerical difficulty were also de-

scribed.

These results were found to be identical to semi-analytic calculations and

Monte-Carlo simulations of Compton scattering of monochromatic emission

lines by various other authors.

7.4 Time-Dependent Radiative Transfer

In Chapter 6, the radiative transfer formalism derived in Chapter 3 was ex-

tended to include the effects of photon time delay. An algorithm was developed

to assign a proper relative arrival time for each photon and sort the corre-

sponding times and associated positions and four-momenta. This algorithm

was first tested by plotting images of accretion disks coloured by normalised

photon arrival time and overlaid with contours of constant time.

A simple model of variability in the accretion flow given by a plasmoid

1Such low temperatures may occur in the intergalactic medium. The principal reason for choos-

ing such a low temperature was to test the energy range of the code. In practice, a non-relativistic

treatment of Compton scattering would suffice.
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sphere on a Keplerian orbit around the black hole was considered. Background

emission from the accretion disk was subtracted, and only time-varying emis-

sion was considered. This plasmoid was prescribed a Gaussian emissivity

profile in the z-direction. Images of the plasmoid at various stages in its or-

bital motion were calculated, varying the black hole spin parameter, plasmoid

radial position and observer inclination angle. For plasmoids closer to the

black hole, the emission is smeared over the sky due to gravitational lensing.

At high inclination angles, gravitational lensing can produce an Einstein ring,

magnifying the emission from the plasmoid by factors of ∼ 10− 100.

In the corresponding frequency-integrated lightcurves, as inclination an-

gle increases the emission becomes sharply peaked due to relativistic beaming

and gravitational lensing. This also causes the lightcurves to be skewed to-

wards later times. At the highest inclinations, gravitational lensing dominates

over relativistic beaming, and the lightcurves becomes double-peaked. The

lightcurves are very sensitive to the orbital period of the plasmoid, and hence

the spin of the black hole, as well as inclination angle, much more so than

the emission line profiles for accretion disks and tori in Chapter 4. The pres-

ence of separated double peaks in the observed lightcurves could potentially

distinguish between black holes of differing spins.

A dynamical and kinematic model of accretion disk outflows in the form

of magnetically-driven plasmoid ejection was then considered. A solar CME

model is a good first approximation for the dynamical formation and acceler-

ation of episodic jets from the accretion disk. Using this model, the motion of

the ejected plasmoid as a function of time was calculated and used to calculate

the observed time-dependent emission. For simplicity, a helical magnetic field

was assumed, centred around the spin axis.

Using these data, the plasmoid position and momentum at each point in

time was then specified, and the observed lightcurves during the first 100 rg

of its vertical motion were calculated. In these synthetic lightcurves, in ad-

dition to spin and inclination angle, the effects of azimuthal position of the

plasmoid at the time of ejection were also investigated. These lightcurves

were completely different to those of orbiting plasmoids, and found to be even
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more sensitive to black hole spin, since this determines the amount of az-

imuthal precession the plasmoid experiences during its vertical motion, caus-

ing rapid changes in redshift and blueshift and enhancing variability further.

These lightcurves were also extremely sensitive to initial azimuthal position,

either greatly enhancing or suppressing the appearance of the rapid accelera-

tion phase of the plasmoid. The rapid acceleration phase timescale was found

to be consistent across all lightcurves and independent of intrinsic black hole

parameters. Measurements of this timescale can potentially be used as an in-

dependent probe of magnetic activity in the corona and dynamical properties

of the accretion flow.
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Chapter 8

Future Work

The general relativistic Compton scattering kernel derived in this thesis is

straightforward to implement numerically and massively parallelisable, along

with the ray-tracing formulation. The mathematical formalism derived to

calculate the kernel is not limited by energy ranges, and as such is extremely

general in its applicability. Compared to previous methods for relativistic

Compton scattering, this is a significant advance.

I propose incorporating this new formulation into a general relativistic mo-

ment formalism. This moment formalism can decompose the integral general

relativistic radiative transfer equations into a set of decoupled ODEs which

describe the intensity evolution along the ray. This will enable proper cal-

culations of the emission from scattering-dominated accretion flows in AGN.

Combining emission, absorption and scattering self-consistently will enable the

production of proper continuum spectra, permitting direct comparison with

observations.

I have already derived a radiative transfer formulation that incorporates

particle mass. The remnant neutron torus formed after neutron star-neutron

star or neutron star-black hole mergers is a powerful source of neutrino flux.

By applying my formulation to calculate the emission from these objects, the

relationship between the black hole mass and spin, and that of its progenitors

may be investigated.

As already mentioned, synchrotron emission in relativistic jets and IC

emission from the accretion disk are highly polarised. Polarisation gives addi-
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tional information about the geometry, the flow structure and the magnetism

in the intervening medium. The general relativistic radiative transfer for-

mulation presented in this thesis may be generalised to include polarisation.

By parallel-propagating the polarisation vector as a new variable (in addi-

tion to the intensity) this may be accomplished. The calculated polarisation

can constrain the vectorial quantities of the flow, probing jet dynamics and

composition, magnetic fields, and radiative processes.

In order to study the global physics as well as the detailed microphysics

near the black hole event horizon, general relativistic absorption, emission and

scattering must be treated properly. The formalism presented in this thesis is

completely modular and additional radiation processes are easily incorporated

as additional modules within the numerical scheme.

Through the combination of all of these approaches, I plan to address the

following fundamental questions concerning the physics of astrophysical black

holes:

i. How big is a massive black hole and what shadow will its event horizon

cast on the sky?

ii. What are the properties of the accretion flow when approaching the event

horizon: what are the observational signatures?

iii. How do the disk and jet and event horizon interact with one another?

Through my collaboration on the Greenland telescope (GLT) for submm-

VLBI, along with other projects including the Event Horizon Telescope (EHT),

the black hole shadows of the SMBHs in M87, Centaurus A and Sgr A* will

be imaged. These projects also possess enough angular resolution to image

the base of the jet, if present, in these black holes. Data from future X-ray

observatories including the Large Observatory for X-ray Timing (LOFT) and

ATHENA+ can be combined with radio data to address these questions.

I also propose developing an interface for my general relativistic radiative

transfer code with the GRMHD and GRPIC codes of my collaborators. This

is the only way to treat the complex dynamics near the event horizon prop-

erly, as well as answering key questions regarding jet formation and content.
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The results of these simulations are essential input in general relativistic ra-

diative transfer calculations. This interface must properly correct for photon

propagation from aberration, geometry and frequency shifts. It will treat all

relativistic aspects properly and self-consistently. As such, I can make reliable

predictions, enabling meaningful comparison with observations.

Further challenges include generalising to the case where the geometric

optics approximation breaks down (discussed in Chapter 2.1.1), incorporating

atomic processes, and deriving the correct plasma response tensor for the dif-

ferent radiation processes being considered. This latter challenge is necessary

for polarised radiative transfer: in order to obtain the correct absorption and

emission coefficients, as well as the Faraday rotation and conversion coeffi-

cients.
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Appendix A

Christoffel Symbol Components

The Christoffel symbol components for the Kerr metric are as follows

Γttr =
M (r2 + a2) (2r2 − Σ)

Σ2∆
, (A.1)

Γttθ = −a
2Mr sin 2θ

Σ2
, (A.2)

Γtrφ = −aM [4r4 − (r2 − a2) Σ] sin2 θ

Σ2∆
, (A.3)

Γtθφ =
2a3Mr sin3 θ cos θ

Σ2
, (A.4)

Γrtt =
M∆ (2r2 − Σ)

Σ3
, (A.5)

Γrtφ = −aM∆ (2r2 − Σ) sin2 θ

Σ3
, (A.6)

Γrrr =
(1 + ∆/Σ) r −M

∆
, (A.7)

Γrrθ = −a
2 sin 2θ

2Σ
= Γθθθ = −Γθrr

∆
, (A.8)

Γrθθ = −r∆
Σ

= ∆Γθrθ , (A.9)

Γrφφ = −∆ [rΣ2 − a2M (2r2 − Σ)] sin2 θ

Σ3
, (A.10)

Γθtt = −a
2Mr sin 2θ

Σ3
, (A.11)

Γθtφ =
aMr (r2 + a2) sin 2θ

Σ3
, (A.12)

Γθφφ = −sin 2θ

2Σ3

{(
r2 + a2

)
Σ2 + 2a2Mr

[
Σ +

(
r2 + a2

)]
sin2 θ

}
,(A.13)

Γφtr =
aM (2r2 − Σ)

∆Σ2
, (A.14)
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Γφtθ = −2aMr cot θ

Σ2
, (A.15)

Γφrφ =
rΣ2 −M

[
2r2Σ− (2r2 − Σ) a2 sin2 θ

]
∆Σ2

, (A.16)

Γφθφ = cot θ +
a2Mr sin 2θ

Σ2
. (A.17)

In the limit of non-rotating flat space (a = 0 and M = 0) it is clear these

components reduce to the Christoffel symbols for the Minkowski metric in

spherical polar co-ordinates.
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Appendix B

Appell Hypergeometric Functions

The Appell F1 hypergeometric function is one of a set of four hypergeometric

series of two variables (Appell 1880; Appell and Kampé de Fériet 1926). It is

a very general class of special function, containing many other special func-

tions as particular or limiting cases, including hypergeometric functions of one

variable like the Gauss 2F1. The Appell F1 function is defined by the series

expansion

F1 (a; b1, b2; c; z1, z2) =
∞∑
k=0

∞∑
l=0

(a)k+l(b1)k(b2)l
(c)k+l k! l!

zk1 z
l
2 , (B.1)

This series is absolutely convergent for |z1| < 1, |z2| < 1. Cases outside

of the unit disc of convergence can be calculated through analytic extension

(Olsson 1964), hence an algorithm can be constructed to evaluate the function

numerically (e.g. Colavecchia et al. 2001; Colavecchia and Gasaneo 2004).

Consider Rn and Sn,m in Chapter 5, as given in equations (5.103) and

(5.109). After an appropriate substitution, Rn may be expanded into a double

infinite series as

Rn = α−3/2

∫
dζ ζn(1− ζ)−1/2

(
1 +

β

α
ζ

)−3/2

= − 1

2
√

2

∫
duu−1/2

[
∞∑
k=0

(−n)k
k!

uk

][
∞∑
l=0

(
3
2

)
l

l!

(
β

2

)l
ul

]

= − 1

2
√

2

∞∑
k,l=0

(−n)k
(

3
2

)
l

k! l!

(
β

2

)l ∫
duuk+l−1/2

= −
√
u√
2

∞∑
k,l=0

(−n)k
(

3
2

)
l

k! l!(2k + 2l + 1)!
uk
(
β

2
u

)l
, (B.2)
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where α ≡ 1+x2, β ≡ 1−x2 and u ≡ 1−ζ. Performing the integral over u and

using the identity (2k+ 2l+ 1)! = (3/2)k+l/(1/2)k+l the following closed-form

expression for the moment integral Rn is obtained:

Rn = −u
1/2

√
2

∞∑
k=0

∞∑
l=0

(
1
2

)
k+l

(−n)k
(

3
2

)
l(

3
2

)
k+l

k! l!
uk
(
β

2
u

)l
= −(1− ζ)1/2

√
2

F1

[
1

2
;−n, 3

2
;
3

2
; 1− ζ, 1

2
(1− x2)(1− ζ)

]
. (B.3)

By the same process, a closed-form expression for the moment integral Sn,m

also follows

Sn,m = − (1− ζ)
3
2
−m

(3
2
−m)

√
2

F1

[
3

2
−m;−n, 1

2
;
5

2
−m; 1− ζ, 1

2
(1− x2)(1− ζ)

]
.

(B.4)

In the case x2 = 1 these expressions simplify to Gauss hypergeometric func-

tions of one variable through the following identity:

F1 (a; b1, b2; c;x, 0) = 2F1 (a, b1; c;x) . (B.5)

As expected from the integral expressions for the moment integrals in equa-

tions (5.83) and (5.84), equations (B.3) and (B.4) are identical in argument

and differ only in their parameters (a, b2, c). For both of these expressions the

parameter b1 = −n, and are hence absolutely convergent, since (−n)k = 0

for k ≥ n. That is to say, by writing the Appell hypergeometric function as

a single sum over Gauss hypergeometric functions (Srivastava and Karlsson

1985) the series always converges in n+ 1 terms.

Although it may appear profitable to compute the scattering kernel in

terms of Appell hypergeometric functions, since these simplify to finite sums

of Gauss hypergeometric functions, it is not computationally cheaper and so

the results in Chapter 5.9 are expressed in terms of the latter.
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Appendix C

Generalised Moment Expansion

As has already been observed (see Figure 4.6), a moment expansion in terms

of ζn, although convenient, is not strongly convergent for very small scatter-

ing angles. The expansion is inherently oscillatory in this instance, since even

moments will always yield strictly positive results for the Compton scattering

kernel, and odd moments are both positive and negative. The question natu-

rally arises as to how the behaviour changes if a different moment formalism

is chosen. This method can also be applied if the electron distribution is no

longer isotropic, introducing a ζ–dependence in the electron distribution func-

tion. Consider a generalised function of ζ, F(ζ), which can be represented as

a Taylor series:

Fn (ζ) =
n∑
k=0

c (n, k) ζk. (C.1)

Defining tilde variables as those which represent a moment expansion in terms

of Fn(ζ), it is readily shown that the generalised moment integrals may be

written in terms of the usual Qn, Rn and Sn,m as

Q̃n =

∫
dζ
Fn(ζ)

q

=
n∑
k=0

c (n, k)Qk , (C.2)

R̃n =

∫
dζ Fn(ζ)

(1− ζ)2
(
x2 + 1+ζ

1−ζ

)3/2

=
n∑
k=0

c (n, k)Rk , (C.3)
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S̃n,m =

∫
dζ Fn(ζ)

(1− ζ)m
(
x2 + 1+ζ

1−ζ

)1/2

=
n∑
k=0

c (n, k)Sk,m , (C.4)

from whence it follows

M̃n =
n∑
k=0

c (n, k)Mk . (C.5)

Therefore

σ̃KN(γ → γ′, τ) =

∫
dζ Fn(ζ)σS(γ → γ′, ζ, τ)

=
C

γ2 τ K2(1/τ)

n∑
k=0

c (n, k)T (γ, γ′, τ) . (C.6)
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List of Acronyms

AGN active galactic nuclei

BL Boyer-Lindquist

BLRG broad-line radio galaxy

BZ Blandford-Znajeck

CCD charged-coupled device

CME coronal mass ejection

EHT Event Horizon Telescope

FR Fanaroff and Riley

FSRQ flat spectrum radio quasar

FWHM full-width-half-maximum

GLT Greenland telescope

GRB gamma-ray burst

GRMHD general relativistic magnetohydrodynamics

GRPIC general relativistic particle-in-cell

IC inverse Compton scattering

ISCO innermost stable circular orbit

ISM interstellar medium

LOFT Large Observatory for X-ray Timing

LTE local thermodynamic equilibrium

MRI magnetorotational instability

NLRG narrow-line radio galaxy

ODE ordinary differential equation

OVV optically violent variable quasar

QSO quasi-stellar object

Sgr A* Saggitarius A*



193

SMBH supermassive black hole

SSC synchrotron self-Compton

SSRQ steep-spectrum radio quasar

VLBI very-long-baseline interferometry

ZAMO zero angular momentum observer



194

Bibliography

Abramowicz, M. A. (2005), Super-Eddington black hole accretion: Polish

doughnuts and slim disks, in A. Merloni, S. Nayakshin, & R. A. Sunyaev

(ed.), Growing Black Holes: Accretion in a Cosmological Context, pp.257–

273.

Abramowicz, M. A., Calvani, M. and Nobili, L. (1980), Thick accretion disks

with super-Eddington luminosities, ApJ 242, 772–788.

Abramowicz, M. A., Czerny, B., Lasota, J. P. and Szuszkiewicz, E. (1988),

Slim accretion disks, ApJ 332, 646–658.

Abramowicz, M., Jaroszynski, M. and Sikora, M. (1978), Relativistic, accreting

disks, A&A 63, 221–224.

Adams, T. F. (1977), A Survey of the Seyfert Galaxies Based on Large-Scale

Image-Tube Plates, ApJS 33, 19.

Aharonian, F. A. and Atoyan, A. M. (1981), Compton scattering of relativistic

electrons in compact X-ray sources, Ap&SS 79, 321–336.

Anderson, J. M., Ulvestad, J. S. and Ho, L. C. (2004), Low-Luminosity Active

Galactic Nuclei at the Highest Resolution: Jets or Accretion Flows?, ApJ

603, 42–50.

Anderson, M., Lehner, L., Megevand, M. and Neilsen, D. (2010), Post-

merger electromagnetic emissions from disks perturbed by binary black

holes, Phys. Rev. D 81(4), 044004.

Antonucci, R. (1993), Unified models for active galactic nuclei and quasars,

ARA&A 31, 473–521.



Bibliography 195

Appell, P. (1880), Sur une classe de polynomes, Ann. Sci. Ecole Norm. Sup.

9 (2), 119 .
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Eckart, A., Baganoff, F. K., Schödel, R., Morris, M., Genzel, R., Bower, G. C.,

Marrone, D., Moran, J. M., Viehmann, T., Bautz, M. W., Brandt, W. N.,

Garmire, G. P., Ott, T., Trippe, S., Ricker, G. R., Straubmeier, C., Roberts,

D. A., Yusef-Zadeh, F., Zhao, J. H. and Rao, R. (2006), The flare activity of

Sagittarius A*. New coordinated mm to X-ray observations, A&A 450, 535–

555.

Eddington, A. S. (1926), The Internal Constitution of the Stars, Cambridge

University Press: Cambridge.

Eracleous, M. and Halpern, J. P. (2003), Completion of a Survey and Detailed

Study of Double-peaked Emission Lines in Radio-loud Active Galactic Nu-

clei, ApJ 599, 886–908.

Fabian, A. C., Iwasawa, K., Reynolds, C. S. and Young, A. J. (2000), Broad

Iron Lines in Active Galactic Nuclei, PASP 112, 1145–1161.

Fabian, A. C., Rees, M. J., Stella, L. and White, N. E. (1989), X-ray fluores-

cence from the inner disc in Cygnus X-1, MNRAS 238, 729–736.

Falcke, H. and Biermann, P. L. (1999), The jet/disk symbiosis. III. What the

radio cores in GRS 1915+105, NGC 4258, M 81 and SGR A* tell us about

accreting black holes, A&A 342, 49–56.

Fanaroff, B. L. and Riley, J. M. (1974), The morphology of extragalactic radio

sources of high and low luminosity, MNRAS 167, 31P–36P.



Bibliography 200

Fanton, C., Calvani, M., de Felice, F. and Cadez, A. (1997), Detecting Accre-

tion Disks in Active Galactic Nuclei, PASJ 49, 159–169.

Farris, B. D., Li, T. K., Liu, Y. T. and Shapiro, S. L. (2008), Relativistic radi-

ation magnetohydrodynamics in dynamical spacetimes: Numerical methods

and tests, Phys. Rev. D 78(2), 024023.

Fishman, G. J. and Meegan, C. A. (1995), Gamma-Ray Bursts, ARA&A

33, 415–458.

Forrey, R. (1997), Computing the Hypergeometric Function, Journal of Com-

putational Physics 137, 79–100.

Fowler, W. A. (1964), Massive Stars, Relativistic Polytropes, and Gravita-

tional Radiation, Reviews of Modern Physics 36, 545–554.

Fowler, W. A. (1966), The Stability of Supermassive Stars, ApJ 144, 180.

Frank, J. and Rees, M. J. (1976), Effects of massive central black holes on

dense stellar systems, MNRAS 176, 633–647.

Frank, J., King, A. and Raine, D. J. (2002), Accretion Power in Astrophysics:

Third Edition, Cambridge: Cambridge University Press.

Fuerst, S. V. (2006), General Relativistic Radiative Transfer, PhD thesis, Uni-

versity College London.

Fuerst, S. V. and Wu, K. (2004), Radiation transfer of emission lines in curved

space-time, A&A 424, 733–746.

Fuerst, S. V. and Wu, K. (2007), Line emission from optically thick relativistic

accretion tori, A&A 474, 55–66.

Fuerst, S. V., Mizuno, Y., Nishikawa, K.-I. and Wu, K. (2007), General rela-

tivistic radiative transfer and general relativistic mhd simulations of accre-

tion and outflows of black holes, Astrophys.J. .

Galama, T. J., Vreeswijk, P. M., van Paradijs, J., Kouveliotou, C., Augusteijn,
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