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Abstract. The motion of an edge dislocation is analyzed for temperatures ranging from 10 K to 200
K and for stresses up to 5§ GPa. The dislocation velocity versus the applied shear stress curve can
be divided into four regimes corresponding to successively higher shear stresses. In the first regime,
the applied shear stress is below the Peierls stress and the dislocation velocity is nominally zero.
In the second regime, the dislocation velocity decreases with increasing temperature indicating the
presence of a drag due to thermal phonons. In the third regime, the dislocation reaches a sub-sonic
limiting velocity that can be predicted by a two-dimensional lattice-dynamics analysis. Such an
analysis predicts a limiting velocity for a moving defect when the phase velocity and the group
velocity are equal. If even higher shear stresses are applied, the dislocation travels with a transonic

velocity of v/2 times the shear wave speed.

INTRODUCTION

Improved understanding of the mobility of
dislocations is important to improved un-
derstanding of the mechanical behavior of
crystalline materials. While for many structural
alloys the motion of dislocations is limited
primarily by the presence of interstitials, solute
atoms, and precipitates, there are cases for which
the intrinsic resistance of the lattice plays a dom-
inant role in limiting the motion of dislocations.
Such cases include the plastic behavior of NizAl
with its L1y crystal structure! and the brittle
versus ductile failure of tungsten single crystals
at different temperatures®.  Although most
interest is in the subsonic motion of dislocations,
there are phenomena — such as martensitic
twinning and geophysical fault slip — where the
transonic or supersonic motion of dislocations
appears to be of interest. Several researchers
have simulated the dynamics of dislocations,
with particular emphasis on probing the high
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velocity regime®*5. In the present study®,
molecular dynamics is used to examine the
effects of applied stress and temperature on the
mobility of an edge dislocation in Al

METHODOLOGY AND

MODEL DESCRIPTION
The simulation cell geometry for modeling an
edge dislocation in Al is shown in Figure 1.
The crystal is oriented so that the X-axis is
along the slip direction (110), the Y-axis is
along the dislocation line (112) and the Z-
axis is oriented along the normal (111) to the
slip plane. The cell dimensions are 226.66A4 x
4.594 x 1374 or 40 x 2 x 60 atomic layers
in the X, Y and Z directions, respectively.
Periodic boundary conditions are imposed at cell
boundaries that are perpendicular to the X and
the Y directions. The cell is regarded as being
finite along the Z direction. Interaction forces
between atoms are described by the embedded
atom method (EAM)*, using potentials for
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FIGURE 1: Schematic of the simulation cell.

aluminum developed by Ercolessi and Adams’.

The simulation cell is constructed as a perfect
aluminum lattice. Two atomic half-layers are
removed from the lower half of the cell. The
remaining atoms are then displaced by the
Volterra displacements in order to introduce an
edge dislocation. The energy of the configuration
is minimized subject to the requirement that
the atoms in the top and bottom layers move
only in the X-Y plane. The energy minimization
results in dissociation of the edge dislocation into
two partials separated by a stacking fault. The
width of the stacking fault agrees well with that
obtained using lattice statics. The configuration
with the dissociated edge dislocation is used as
the initial configuration for all of the molecular
dynamics simulations.

Simulations have been carried out at four
temperatures: 10 K, 50 K, 100 K and 200 K,
and for shear stresses ranging from 1 MPa to
5000 MPa. At each temperature, the atoms
in the initial configuration are given random
initial velocities corresponding to the Maxwell-
Boltzmann distribution at the test temperature.
Temperature is maintained constant in the
simulations by applying the Nose-Hoover drag®.

The initial configuration is allowed to equili-
brate for 1 ps in order to achieve equipartitioning
of the energy. An equal and opposite shear stress
is then applied to the top and bottom surfaces
by applying forces to the atoms in the top and
bottom layers. The simulation is carried out for a
total of 100 ps under application of the constant
stress. The edge dislocation is observed to reach
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FIGURE 2: Dislocation velocity as a function
of applied stress and temperature.

a steady velocity within the first 20-40 ps. The
rise time corresponds to a few multiples of the
time, t5 ~ 4ps, taken by an elastic shear wave to
travel the thickness of the film.

COMPUTATIONAL RESULTS

The position of the edge dislocation as a func-
tion of time is determined from the location of
the peak in the slip distribution. It is clear from
plotting dislocation position vs. time for various
stresses and temperatures that the resistance to
the motion of the dislocation is higher at higher
temperatures, although at a shear stress of 500
MPa, the effect of temperature appears to be
negligible. At the highest temperature, 200 K,
and the lowest stress, 10 MPa, the dislocation
is even arrested momentarily. In all cases, the
dislocation approaches a steady velocity after
40 ps. The steady velocity reached for these
edge dislocations is shown in Figures 2 and 3
as a function of the applied stress at each of
the four temperatures. From the figures it is
evident that there are four distinct regimes. In
the first regime, the shear stress is sufficiently
small that the dislocation is stationary, or
essentially so. The behavior in this regime is
governed by the Peierls barrier. In the second
regime, the shear stress is large enough to
cause dislocation motion — at a velocity that
decreases with increasing temperature. In this
regime the behavior is strongly affected by the
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FIGURE 3: Tangent lines, drawn from
the origin, to estimate the dislocation drag
coefficient.

interaction of dislocations with thermal phonons.
At still higher stresses, say greater than 100
MPa, the curves in Figure 2 approach a plateau
corresponding to a temperature-independent,
limiting dislocation velocity of approximately
2.1nm/ps, or approximately 70% of the speed of
elastic shear waves in aluminum. An explanation
of this limiting velocity is provided in the final
section of this paper. Finally, at the highest
shear stresses shown, there is a fourth regime
in which the dislocation velocity jumps to a
transonic speed of approximately v/2c, where
c, is the elastic shear wave speed. Eshelby®
has established that — in continuum elasticity —
transonic, radiation-free dislocation motion can
occur only at a dislocation velocity of v/2c;.

DISLOCATION DRAG COEFFICIENT

The applied shear stress 7 and the dislocation
velocity v are often related by the linear relation

T = Bu/b, (1)
where b is the magnitude of the Burgers vector
and B is a dislocation drag coefficient.

In the simulations the dislocation velocity
does not increase proportionally with increasing
stress. However, the dislocation drag coeflicient
in such a relation can, for a given temperature,

be estimated by considering the slope of a line
radiating from the origin and becoming tangent
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FIGURE 4: Dislocation drag coefficient B as a
function of temperature.
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to the corresponding curve in Figure 3. Using
the tangent line to estimate B minimizes effects
from the Peierls stress regime as well as from
the regime in which the dislocation velocity is
at its subsonic limiting value. The dislocation
drag coefficient determined in this way has the
temperature dependence shown in Figure 4.
While it is tempting to regard Figure 4 as giving
a prediction of the temperature dependence of
the drag coefficient B for aluminum, one should
remember that the plot of dislocation velocity vs.
applied stress in Figure 3 is strongly nonlinear.
Thus, Figure 4 should be interpreted as a means
of characterizing the dependence of dislocation
mobility on temperature over a certain range of
stresses, not as support for the validity of the
linear drag relation of Eqn. (1).

LATTICE DYNAMICS PREDICTION
OF THE LIMITING DISLOCATION
VELOCITY

Groteleuschen'® and Gumbsch and Gao®
observed a relationship between dislocation
velocity and applied stress that is similar to the
one shown in Figure 2. The limiting velocity in
the third regime (about 70% of the slowest shear
wave speed) cannot be explained by continuum
elasticity. The lattice-dynamics model by Celli
and Flytzanis'! suggests a means for providing
a possible explanation.

Using lattice dynamics with nearest-neighbor
interactions, Celli and Flytzanis'! derived the
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relation between dislocation velocity and applied
strain for a screw dislocation in a two-
dimensional lattice . The Celli-Flytzanis analysis
suggests that the limiting dislocation velocity is a
phonon velocity having equal values for its phase
velocity and its group velocity, in the direction
of the motion of the dislocation. To obtain such
a limiting dislocation velocity for aluminum,
dispersion relations are obtained using the
EAM potentials. These dispersion relations are
represented as plots of the frequency w as a
function of the components k., k, and &, of the
wave number k of harmonic plane waves.

The equations of motion for atoms in a three-
dimensional lattice can be expressed as,

Miu(R) = ZD(R R)u(R’), (2)

where M is the mass matrix, u are the
displacements and D is the force-constant matrix
formed using the interaction between the atoms
of the lattice. Dispersion relations are obtained
by considering plane wave solutions for the
displacements u to obtain the characteristic
condition

D — Mw?1| =0, (3)

where D is the dynamical matrix. Eq. (3) can
be solved numerically to obtain the eigenvalues,
w? for given k. A numerical program, vibra,
developed at Sandia National Laboratories was
used for this purpose.

Based on the Celli-Flytzannis analysis,
phonons associated with the limiting dislocation
velocity, say v;, are expected to satisfy Ow/0k, =
0,0w/0k, = 0,0w/0k; = wvi. For a lattice
having fcc symmetry, and for the dislocation
orientation of Figure 1, the first two conditions
are satisfied for k, = 2v/2/(aopv/3) and k, =
21 /(aov/3). For these values of k, and k, Figure
5 shows the dispersion relation for aluminum
based on the Ercolessi-Adams potentials. The
group velocity and the phase velocity in the
x-direction are equal for the wave number at
which a radial line from the origin is tangent to
one of the dispersion curves. The wave number
and velocity at the first such tangent point are

Dispersion relation for Al with k, =k, k =27 x sqn(2)/sqn(3)ao
k, = 2nlsqn(3)a‘, usmg Ercolessi-Adams EAM potentials
0

f (psec’)

27 x Slope of (1) = 1.56 nm/ps
2m x Slope of (2) = 1.39 nm/ps

)

FIGURE 5: Dispersion relation for aluminum,
based on Ercolessi-Adams EAM potentials.

k, = 3.2887", v, = 1.56nm/ps. The velocity
vy is approximately 25% less than the velocity
at the plateau in Figure 2. Better agreement is
obtained as the computational effects of cell size
are reduced. For example, doubling and halving
the spacing of dislocations in the x-direction
leads to an extrapolated value for the plateau
velocity of approximately v; as the reciprocal of
the dislocation spacing approaches zero.
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