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Abstract

Multiple imputation is a �exible technique for handling missing data that is widely used in

medical research. Its properties are understood well for some simple settings but less so for

the complex settings in which it is typically applied. �e three research topics considered

in thesis consider incomplete continuous covariates when the analysis model involves

nonlinear functions of one or more of these.

Chapters 2–4 evaluate two imputation techniques known as predictive mean matching

and local residual draws, which may protect against bias when the imputation model is

misspeci�ed. Following a review of the literature, I focus on how to match, the appropriate

size of donor pool, and whether transformation can improve imputation. Neither method

performs as well as hoped when the imputation model is misspeci�ed but both can o�er

some protection against imputation model misspeci�cation.

Chapter 5 investigates strategies for imputing the ratio of two variables. Various ‘active’

and ‘passive’ strategies are critiqued, applied to two datasets and compared in a simulation

study. (‘Active’ indicates the ratio is imputed directly within a model; ‘passive’ means it

is calculated externally to the imputation model.) Without prior transformation, passive

imputation a�er imputing the numerator and denominator should be avoided, but other

methods require less caution.

Chapter 6 proposes techniques for combining multiple imputation with (multivariable)

fractional polynomial methods. A new technique for imputing dimension-one fractional

polynomials is developed and nested in a chained-equations procedure. Two candidate

methods for estimating exponents in the fractional polynomial model, using Wald statistics

and log-likelihoods, are assessed via simulation. Finally, the type I error and power are

compared for model selection procedures based onWald and likelihood-ratio type tests.

Both methods can out-perform complete cases analysis, with the Wald method marginally

better than likelihood-ratio tests.
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1 Introduction

1.1 missing data

Missing data are any values that were intended to be recorded in a study but, for one reason or

other, were not.

Missing data are a pervasive problem in medical research. In clinical trials, we fail to fully

follow up all patients. In observational studies, we fail to record all the covariate data needed

and then fail to fully follow up all patients. Ignoring observations with some missing items is

wasteful of the resources invested to collect the observed items. Bias and ine�ciency are likely

consequences. �ere is no single answer to dealing with the issues arising from missing data

and we are le� with incomplete datasets that are di�cult to analyse as intended.

Multiple imputation is a popular and �exible technique for handling missing values in

partially observed datasets. Missing data are imputed in a way that fully re�ects the uncertainty

about them. To obtain valid estimates of variance, imputation must be performedM > 1 times.

Each of the imputed data sets must be analysed identically and the results combined using a

simple and general set of rules known as Rubin’s rules[1].

In any analysis with missing data it is important to consider the way/s in which items of data

might have become missing. �ere are three important assumptions in thinking about the

process by which data go missing[2]:

Missing not at random (MNAR)
�e probability of data being missing depends on unobserved information, such as the value of

the missing datum itself, or an unmeasured variable.

Missing at random (MAR)
�e probability of data being missing does not depend on unobserved information, such as an

incomplete or unmeasured variable.

Missing completely at random (MCAR)
�e probability of data being missing does not depend on any observed or unobserved infor-

mation. (MCAR is a special case of MAR.)

MCAR is a special case of MAR, and it is possible to distinguish between MAR and MCAR in

partially observed datasets, for example by �tting a logistic regression model for an incomplete

variable’s missingness indicator on complete variables. It is not possible to determine whether

data are MNAR in a partially observed dataset without access to information external to the

data at hand, other than by making untestable modelling assumptions[3]. Any analysis with

missing data relies on untestable assumptions.
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In practice the likely mechanism by which data might go missing should be proposed

by research workers, ideally those involved ‘on the ground’ in collecting the data, such as

nurses who conduct baseline interviews. It is also critical that any analysis based on the posited

assumption is supplemented by further analyses under alternative plausible assumptions about

the missing data. �is provides an assessment of the sensitivity of results to the assumptions

about missingness.

1.2 multiple imputation

1.2.1 Notation

A full list of the notation used in this thesis is given at this point, which readers are advised

to refer back to. �e list is arranged in order of Greek letters (alphabetically), Roman letters

(alphabetically), analphabetic characters and diacritics. Bold face denotes a vector or matrix.

α Parameter/s of the imputation model

β Parameter/s of the analysis model

γ Parameter/s of a logistic model used to simulate MAR data

δ Matching distance used PMM and LRD

ε Residual error

ρ A correlation

σ Standard deviation

a1 Numerator of a ratio

a2 Denominator of a ratio

B Between-imputation variance: the squared standard deviation of βm

c Indexes the covariates in the analysis model

D Selected dimension of FP

Dmax Maximum dimension of FP considered

d Indexes the FP dimensions 1, . . . ,Dmax

E �e expectation

f (x) Normalising transformation of covariates

g(x) Transformation of covariates used in the analysis model

h Indexes individuals with observed x

i Indexes all individuals with observed or missing data

j Indexes individuals with missing x

k Size of donor pool in PMM and LRD

l Indexes replicates in simulation studies

M Number of imputed datasets

m Indexes theM imputed datasets

N A normal distribution

n Number of individuals in the dataset

14



nh Number of individuals with observed data

n j Number of individuals with missing data

p [chapters 2 and 5:] Number of covariates in analysis model

[chapter 6:] ‘Exponents’ or ‘powers’; parameter for transformation of x

q Number of variables with missing data

R2 Proportion of explained variation

s Total number of simulation replicates

S �e set of exponents considered for fractional polynomial transformation

U A uniform distribution

Var(−) �e variance (of −)

Var(β̂) Total variance of β̂, calculated from (1 + (1/M))B +W

Wm Variance in the mth imputed dataset

W Within-imputation variance: the mean of theWm

w Fully observed covariate(s), if a distinction between incomplete and complete x is being
made

x Covariate(s) in the analysis model; x = (w , z)

y Outcome of the analysis model, assumed to be complete

z Partially observed covariate(s), if a distinction between incomplete and complete is being
made

′ Used to indicate ‘not’; x c′ denotes the variables in x that are not xc
∗ A draw from some distribution. A draw of the imputation model parameters is denoted

α∗; an imputed value of x j is denoted x∗j
ˆ Denotes an estimate of the parameter it sits above

f (.)g Increments of size . between f and g; 0(1)10 means ‘from 1 to 10 in increments of 1’.

1.2.2 Imputation

As introduced by Rubin[1], missing values should be imputed by draws from the posterior

predictive distribution of a Bayesian model. Schafer de�nes imputation as Bayesianly proper
if imputed values are ‘independent realisations of the posterior predictive distribution under

some complete-data model and prior’[4]. �is means allowing for all sources of uncertainty

implicit in the model used to impute missing values, the ‘imputation model’.

An example of proper imputation in a simple setting is as follows[5, 6]. Let y and x denote
two continuous variables, and in truth (y, x) ∼ BVN (meaning their joint distribution is

bivariate normal). Assume that with complete data the analysis of interest would be a linear

regression of y on x, but some values of x aremissing (assumed to beMCARorMARconditional
on y).
To impute missing values x j , a linear regression for (xh ∣ yh) is �tted to the individuals

with observed data using noninformative prior distributions, returning posterior estimates α̂
with covariance matrix V̂ar(α̂) and root mean squared error σ̂ . Values of α∗ and σ∗ are drawn
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from their posterior distribution as follows. A draw of σ is taken as

σ∗ = σ̂

√
nh − b
e∗

(1.1)

where e∗ is a random draw from a χ2 distribution on (nh − 2) degrees of freedom. Next, α∗ is
drawn from

α∗ = α̂ + (
σ∗

σ̂
)u1V

1
2 (1.2)

where u1 is a vector of 2 independent draws from a standard normal distribution. Independent
realisations of x∗j for individuals with missing values of x are given by

x∗j = α∗z j + u2 jσ∗ , (1.3)

where u2 j is a draw from a standard normal distribution.
�e linear regression of x on y is the appropriate conditional model for x derived from the

bivariate normal joint model. �e analysis of interest can also be derived from the bivariate

joint normal model.

1.2.3 Multiple imputation inference: Rubin’s rules

Having createdM imputations Rubin’s rules are applied as follows. Each imputed datasets is
analysed identically using whatever model would have been used in the absence of missing

data (the ‘analysis model’); here, a linear regression of y on x. Parameter estimates β̂m for all

M imputed datasets are obtained with corresponding covariance matrices Ŵm . �e overall

estimate of β is

β̂ =
1

M

M

∑
m=1

β̂m . (1.4)

Its variance is estimated by

V̂ar(β̂) = (1 +
1

M
) B̂ + Ŵ , (1.5)

where B̂ =
1

M − 1

M

∑
m=1

(β̂m − β̂)2 (1.6)

and Ŵ =
1

M

M

∑
m=1

Ŵm . (1.7)

B̂ is designated the between-imputation variance and Ŵ the within-imputation variance.
Hypothesis tests and con�dence intervals are based on the t distribution[1]

β̂ − β
0
∼ tv , (1.8)

where v = (M − 1)
⎛

⎝
1 +

Ŵ
(1 + 1

M ) B̂
⎞

⎠

2

. (1.9)

�ese rules are very general and can be used to combine estimates of population parameters,

but not statistics that are not estimators, such as the log-likelihood. See White, Royston and

Wood for examples of quantities that can and cannot be combined using Rubin’s rules[6].

16



Despite imputations being drawn from a Bayesian model, the combining rules can provide

valid frequentist inference[1, 7], meaning estimators are asymptotically unbiased with variance

estimation such that the coverage rate of con�dence intervals is equal to its stated value. �ere

are a number of subtleties to be aware of that can thwart this in practice. For example, the

following are required:

○ �e imputation model uses noninformative priors.

○ �e imputation model is speci�ed correctly.

○ �e imputation and analysis models are ‘compatible’ (implying that the analysis model is

correctly speci�ed).

1.2.4 Multivariate imputation

Section 1.2.2 above outlined an approach to imputing a single incomplete variable.Withmultiple

incomplete variables, if the missing data pattern is monotone (that is, if ordering variables from

least to most missing data yields a dataset where the cth variable only contains missing values
if variable c + 1 is missing), variables can be imputed using sequential univariate models, going
from the least to the most missing, and conditioning on the complete and previously imputed

variables at each stage. If the pattern of missing data is not monotone, the ideal approach would

be to impute from a joint model for the incomplete covariates. If the incomplete variables are all

continuous, a multivariate normal model may be a sensible choice; if they are all binary, a log-

linear model might be used. However, in many real scenarios identi�cation of an appropriate

joint model to impute from may be impractical.

Van Buuren, Boshuizen and Knook introduced an alternative approach to multivariate

imputation that is more practical and intuitive[8]. With q incomplete variables, it would usually
be necessary to specify a q-variate imputation model. Instead, the suggestion of van Buuren et
al. was to specify q univariate models, one for each of the incomplete variables. Imputation of
xc is performed on each variable in turn, conditioning on the previously imputed values of all
other incomplete variables, and continuing for a few ‘cycles’ until the imputation models are

thought to be stable in some sense.

�e method is most commonly termed to as ‘multiple imputation by chained equations’

(mice), but is variously referred to as ‘fully conditional speci�cation’ (FCS)[9], ‘sequential
regression’[10] or ‘switching regression’[11].

�e method has been met with enthusiasm by applied researchers because of its �exibility

and the scope to specify relatively simple univariate models as desired: ordinal logistic regres-

sions for an ordered categorical variable; linear regression for a continuous variable, and so

on.

When mice was introduced there were some concerns about the theoretical lack of equiva-

lence to any multivariate model. For example, with two incomplete variables, one continuous

and the other binary, imputed by linear and logistic regression respectively, the two conditional

distributions from which mice draws are incompatible; in this scenario mice is not Bayesianly

proper in Schafer’s sense[4]. While these concerns are not irrelevant, they appear to cause

negligible problems in practice[12], and so mice will be considered to be a method of proper

imputation.
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1.3 contexts

Missing data cause problems in a vast number of studies and this thesis necessarily restricts

focus to settings in which applied methodological research is thought to be required. �e

contexts considered in this thesis are:

1. Item missingness. �is means that all individuals have at least some observed data. �is is the
setting to which MI is most suited. In medical research item missingness is the type of missing

data most commonly seen.

2. Incomplete covariates. �is is a common problem to which multiple imputation can be well
suited and is commonly used.

3. Missing at random. While MNAR is interesting and may be realistic, it complicates exploration
of the main issues addressed in this thesis. MI usually comes with a guarantee that inference

will be valid under MAR. �is claim will be untrue for some of the problems considered in

this research if standard imputation methods are used. However, see section 7.4.3 for a note on

extensions to MNAR.

1.4 research topics

�e speci�c research topics I consider are outlined brie�y in the subsections below. All three

are concerned with imputation, while the third also considers methods for building models in

multiply imputed datasets.

1.4.1 Research topic 1: Partially parametric techniques for imputation (chapters 2–4)

It is well known that when the assumptions underlying a parametric imputation model are

incorrect, multiple imputation inference can su�er. Two techniques known as predictive mean
matching (PMM) and local residual draws (LRD) relax some of the parametric assumptions of
imputation. �ese are reviewed and further investigated. Both methods involve identifying,

for an individual with a missing value, the k closest matches from individuals with observed
values, and ‘borrowing’ some information from one of these donors.

Chapter 2 introduces themethods and reviews their development in themultiple imputation

literature, with a focus on the method for de�ning ‘closest matches’ and on how large the pool

of potential donors should be. Chapter 3 aims to assess how matching should be done and how

large the pool of donors should be in simulation studies with a single incomplete covariate.

�e best versions of PMM and of LRD are taken forward to chapter 4, which compares the

performance of the favoured versions in a simulation study with multiple covariates, some

complete and some incomplete, with a complex missing data pattern.

1.4.2 Research topic 2: Multiple imputation for an incomplete covariate which is a ratio (chapter 5)

�e use of ratios is common in medical research; examples are BMI, waist–hip ratio, and the

ratio of total-to-HDL cholesterol. When the value of a ratio is missing, this may be because

the numerator, the denominator or both are missing. If both are not missing it seems sensible

to make use of the value that was observed. One such strategy, termed ‘passive imputation’, is
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to choose an imputation model that imputes the numerator and denominator separately, and

calculate the ratio from the two imputed values externally to the imputation model. Another

possibility is to impute the ratio ‘actively’, explicitly within the imputation model, and ignore the

observed component if its counterpart is missing. �ese strategies for imputing ratio covariates,

and some that lie between, are critiqued and evaluated. Although attention focuses on the use

of a ratio covariate, the same issues arise when the outcome is a ratio and it is assumed that the

same results would apply.

1.4.3 Research topic 3: Combining multivariable fractional polynomials with multiple imputation
(chapter 6)

Fractional polynomials (FP) and multivariable fractional polynomials (MFP) are commonly

used in prognostic research. �e MFP model selection algorithm aims to select the best-�tting

model for multiple continuous covariates from a restricted set of simple but �exible power

transformations[13]. With complete datasets the algorithm proceeds on the basis of likelihood

ratio tests. �e kind of dataset in which MFP model selection is typically applied will have

missing covariate problems, and so it is important to adapt the algorithm to work with MI data.

In combining MI with MFP methods it is important to be able to impute missing values in

a way that acknowledges uncertainty about the �nal analysis model, which is unknown at the

point of imputation. Two existing imputation methods are therefore adapted in an attempt to

perform this task.�e next di�culty arises from the fact that likelihood ratio tests will be invalid:

MI data do not have a likelihood that can be used for formal inference and model selection

cannot therefore proceed on the basis of likelihood ratio tests. While Wald tests have proved

useful for variable selection problems[14], they cannot be used for testing the signi�cance of,

say, a fractional polynomial vs. linear term. Two new strategies, based on a modi�ed likelihood

ratio tests[14] and on the di�erence in Wald statistics, are evaluated in simulation studies.

1.5 datasets

�ree real datasets are analysed in this thesis. �e �rst, a dataset based on trauma registries,

motivated some of the research of chapters 4 and 6.

1.5.1 Dataset 1: Trauma registry

�e trauma registry data come from one to two years of trauma admissions (5,693 in total)

from the registries of �ve large trauma centres: Amsterdam (n = 649), Cologne (n = 1, 705),

London (n = 788), Oslo (n = 2, 167) and San Francisco (n = 384). �e primary publication[15]
of these data had two aims:

1. To explore the association between death and the number of red cell packs received; particu-

larly whether there was any evidence behind the notion of a transfusion threshold (‘massive

transfusion’) at which point there is a leap in the odds of death.

2. To develop a multivariable prognostic model for ‘massive transfusion’, de�ned as >10 red cell

transfusions, to improve the planning and delivery of red cells from blood banks.
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Table 1.1: Summary of variables in the trauma dataset relevant to this work, n = 5, 693

Mean (SD) or

Frequency frequency (%)

Variable missing (%) in observed data

Massive transfusion 0 (0%) 518 (9%)

Age (years) 0 (0%) 40 (20)

Sex: male 0 (0%) 4,161 (73%)

Injury type: penetrating 23 (0.4%) 580 (10%)

Time to emergency dept. (mins) 2,396 (42%) 65 (40)

Systolic blood pressure (mmHg) 425 (7%) 126 (29)

Base de�cit 868 (16%) 3.4 (5.1)

Prothrombin time 1,648 (29%) 17 (8)

�e second aim is of interest in this project. �e analysis model was a logistic regression of

massive transfusion on covariates identi�ed as important.

�e planned analysis was complicated by missing data in the covariates considered as

(potentially) prognostic for massive transfusion. A summary of the variables involved and the

extent of missing data is given in table 1.1.

Missing values were multiply imputed under missing at random using mice. Fi�y imputed

datasets were created a�er 100 cycles of chained equations. Each variable being imputed used

a univariate model that included all other variables in table 1.1 as imputation covariates, in-

cluding the binary outcome. Injury type was imputed using logistic regression. Due to highly

skewed distributions in some variables, all other incomplete continuous variables were initially

transformed towards normality as far as possible using shi�ed-log transformations and then

imputed using PMM[6]. What will be referred to as type 1matching was used to identify the
three closest matches for each individual with a missing value, of which one observation was
selected at random and imputed. (Details on PMM will be clari�ed in chapter 2.)

In the absence of missing data, the aim would have been to build a prognostic model for

massive transfusion using multivariable fractional polynomials (MFPs). However, at the time

of publication there was no methodological work on how to impute data for MFP models, or

how MFP models should be built in multiply imputed data. Due to concerns about compati-

bility of the imputation and analysis models, the prognostic model used the same shi�ed-log

transformations of continuous covariates that were used for imputation.

�is dataset provided motivation for the work in chapters 4 and 6. Niggling questions

remained about whether the use of MFP methods could have improved the performance of the

prognostic model. It was obvious that imputation would need to be tailored to allow covariates

to have nonlinear e�ects in the imputed data, and also that the standard likelihood ratio tests

could not be used in imputed data.

�e trauma dataset is explicitly used to inform a simulation in chapter 4 and later as an

illustrative analysis in chapter 6.
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Table 1.2: Aurum summary of variables; n = 1, 348

Mean (SD) or

Frequency frequency (%) Categories

Variable missing (%) in observed data used in [17]

Death 0 185 (14%)

Age (years) 0 37 (9) 18–29, 30–34, 35–39

30–49, 50–70

Sex: male 0 542 (40%) n/a

Hæmoglobin (g/mL) 143 (11%) 11.4 (2.3) <8, 8.1–9.9,

10–11.9 (–12.9 for men)

>11.9 (>12.9 for men)

*Viral load (copies per mL) 162 (12%) 4.8 (0.8)† <4, 4–5, >5

*cd4 count (cells per µL) 94 (7%) 8.9 (4.5)† 0–49, 50–99

100–200, >200

BMI (kg/m2) 381 (28%) 21.9 (4.9) <18.5, 18.5–25, >25

‡Weight (kg) 376 (28%) 58 (12)

‡Height (m2) 275 (20%) 2.7 (0.3)†

*Transformation used for viral load is log
10
(vl); transformation used for cd4 count is

√
cd4.

�ese are standard transformations in HIV research.

† Summarised on transformed scale.

‡ Only enters into the analysis model via BMI.

1.5.2 Dataset 2: Aurum cohort

[Note – some of the below information is repeated in chapter 5, which was published by Statistics
in Medicine online in August 2013[16].]

�eAurum institute in South Africa specialises in research and health systemsmanagement,

focusing primarily on the prevention, treatment and care of TB and HIV.

Beginning in 2005, the Aurum Institute conducted a cohort study, recruiting 1,350 HIV-

infected individuals beginning antiretroviral therapy. Participants were recruited from 27

centres in �ve provinces between February 2005 and June 2006, and followed up to March 2007.

Information was recorded on several baseline characteristics and participants were followed

up for death (time to death is the primary outcome). Of the recruited participants, 1,348 had a

recorded time of death/censoring. One hundred and eighty �ve deaths occurred within the

follow-up period. (Analysis is restricted to these 1,348 individuals for this project.) Table 1.2

summarises the variables involved.

�e work by Russell et al. aimed to identify risk factors for mortality using a Cox propor-

tional hazards model[17]. �e authors showed that of the risk factors considered, cd4 count

and hæmoglobin appeared to be associated with mortality, with the report focusing on the

hæmoglobin result, the more novel of the two[17]. �e multivariable model reported as the

primary analysis was based on the individuals with complete covariate data. �e model was

selected using a process of backwards elimination with the signi�cance level for rejection set at
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0.1. Continuous covariates were categorised according to the groups given in table 1.2.

�e article explains brie�y how missing BMI measurements were imputed 10 times, and

that this had no appreciable impact on the adjusted hazard ratios for BMI (the con�dence

intervals based on multiple imputation are not given).

Note that the variable with the largest proportion of missing data is BMI, a ratio, and over

100 participants had observed height but missing BMI. �is dataset is used for topic 2 (chapter

5).

1.5.3 Dataset 3: Epic-Norfolk cohort

[Note – some of the below information is repeated in chapter 5, which was published online in

August 2013[16].]

�e Epic (European Prospective Investigation of Cancer) study is a European study that

investigates associations between dietary factors and cancer. One centre of this study has

recruited over 30,000 participants living in Norfolk (details can be found in [18]). �e data

used from Epic-Norfolk come from a subset of 22,754 of these individuals. �e outcome in

this particular analysis is time to death, and there are several non-dietary baseline covariates,

summarised in table 1.3.

Part of the motivation for topic 2 was the controversial publication of the initial Q-risk
cardiovascular risk score in 2007, where the imputation of the ratio of total-to-HDL cholesterol

went very wrong[19]. �e Epic-Norfolk dataset is of particular interest because it contains the

same ratio, which is also incomplete. �e proportion of missing data is far smaller than in

Q-risk but the pattern of missingness within total cholesterol and HDL is similar.

�e e�ect of cholesterol ratio has previously been estimated from a Cox proportional

hazards model[20]. �e variables considered in that publication were not all available in the

dataset used for this work, and so a suitable proportional hazards model was selected from

the available variables. Rather than categorising cholesterol ratio for analysis, it is included as

linear in our analysis model.

1.6 themes

Di�culties with multiple imputation tend to arise if the imputation model is misspeci�ed.

(While problems can also occur when the analysis model is misspeci�ed, this problem is not

speci�c to multiple imputation.) Two approaches to imputation model misspeci�cation, based

on transformations prior to imputation, appear in all three topics. �e �rst is to transform

continuous covariates towards normality; the second is to transform to achieve compatibility.

1.6.1 Normality

Standard imputation for a continuous covariate drawsmissing values from anormal distribution.

If the incomplete variable in fact follows a lognormal distribution, the imputed values will look

fairly di�erent to the observed. An obvious solution is to �nd a transformation f (x) of x such
that the observed values of f (x) are normally distributed. Imputation can then be done on
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Table 1.3: Epic-Norfolk summary of variables; n = 22, 754

Mean (SD) or

Frequency frequency (%)

Variable missing (%) in observed data

Death 0 830 (4%)

Age (years) 0 59 (9)

Sex: male 0 10,145 (45%)

Smoking status: ever smoked 0 11,971 (53%)

Systolic blood pressure (mm Hg) 52 (<1%) 135 (18)

Diastolic blood pressure (mm Hg) 52 (<1%) 82 (11)

Cholesterol ratio 2,155 (9%) 4.7 (1.6)

†Total cholesterol (mg/dl) 1,514 (7%) 6.2 (1.2)

†HDL (mg/dl) 2,155 (9%) 1.4 (0.4)

† Only enters into the analysis model via cholesterol ratio

this scale and the inverse transformation performed before �tting the analysis model. �is of

course requires f (x) to be an invertible function.
�is approach is noted as an option in [6]. Eddings and Marchenko see comparison of the

observed and imputed values as the appropriate approach to imputation diagnostics, noting that

‘problems with the imputation model can be corrected before the imputed data are analysed’[21].

When imputed values do not closely resemble the observed data it is not necessarily a cause

for concern; this is to be expected somewhat under departures from MCAR. Schafer �nds

that imputation via a multivariate normal distribution can be remarkably robust to incor-

rect distributional assumptions[4]. With this in mind, the rationale for an entirely di�erent

transformation is given below.

1.6.2 Compatibility and congeniality

�e term compatibility is used throughout this thesis to describe the relationship between the
imputation and analysis models. �e working de�nition is a joint model exists that implies both
the imputation and analysis models as conditionals.
To put it another way, the imputation model and analysis model can be thought of as being

embedded in a single (hypothetical) model.�is hypothetical model does not need to be known

or �tted, but its existence is important: Rubin’s combining rules assume that the imputation

and analysis models are correctly speci�ed, and compatibility is a necessary condition for this.

Problems may arise when the models are incompatible, though it has been shown more

than once that certain incompatible imputation models can improve inference[22, 23, 24].

(In these examples compatibility or incompatibility is related to parameter restrictions rather

than covariate transformations.) Considering these examples, I de�ne two departures from

compatibility:
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Semi-compatibility
�ere is a special case of the imputation model that is compatible with the analysis model.

Incompatibility
�ere is no special case of the imputation model that is compatible the analysis model.

Liu et al. came up with these de�nitions separately[25], and my designations follow theirs.

Incompatibility implies that the imputation and analysis models cannot together represent

any model from which data might have been generated. Semi-compatibility implies that the

imputation model might represent a realistic data generating model, while the analysis model

places restrictions on certain parameters of this model; the imputation model captures all the

features in the analysis model, plus some more.

�e concept of congeniality, introduced by Meng[22], is closely related to compatibility.
Meng’s formal de�nitions consider a Bayesian imputation model, a frequentist analysis proce-

dure, and a Bayesian full probability model[22]. ‘Congeniality’ holds if:

1. �e posterior predictive distribution for missing values is identical for the imputation

model and the Bayesian model.

2. �e posterior mean and variance for a parameter of interest from the Bayesian model

are asymptotically equivalent to the estimate and variance from the frequentist analysis

procedure (given complete or incomplete data).

Congeniality and compatibility are closely related concepts. Meng notes that uncongenial
‘essentially means that the analysis procedure does not correspond to the imputation model’.

Meng’s Bayesian model is a hypothetical joint model in which the imputation and analysis

models can be considered as embedded or not. However, Meng’s de�nitions require that the

researcher’s incomplete and complete data analysis procedures be speci�ed. Bartlett et al. also

chose the term compatible rather than congenial, and state their rationale for this choice[26].

�e above note highlights that there is di�culty in de�ning these terms and how they relate

to each other. My preference is for the term compatibility, but readers who prefer to can read

‘congenial’ in place of ‘compatible’ in this thesis.

1.7 aims and principles

1.7.1 So�ware

�is project aims to provide applied statisticians with better approaches to dealing with MI

when covariates have a nonlinear e�ect on outcome. It is important that methods suggested are

practical to statisticians working under time pressures. Dembe et al. note that Stata and Sas

are by far the most commonly used so�ware in health services research[27]. For analysis with

missing data, R also deserves a mention for its well-developed routines.

From a so�ware perspective we regard Stata’s ice and mim commands and the mi suite

as ‘practical’; all are in common use in medical research and are used for most of this thesis.

Alternative so�ware, notably Winbugs and MLwin & Realcom, may in theory have the
�exibility to provide superior results, but it is assumed that the majority of researchers use more
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general purpose so�ware the majority of the time, and that such users are unlikely to change

so�ware simply to deal with missing data. In any applied problem missing data are unlikely

to be the only di�culty; if for example the analysis model involves multivariable fractional

polynomials then Stata, R or Sas would be more feasible than Winbugs or MLwin & Realcom.

1.7.2 �e identities of ‘the imputer’ and ‘the analyst’

Rubin developed MI with the speci�c context of public use databases in mind[23]. Two distinct

entities, working independently, are assumed to be involved: an imputer and an end-user. Rubin

intended the burden of dealing with missing data to fall on the imputer, who is responsible

for making realistic assumptions about the missing data and imputing values accordingly. �e

imputation model must be rich enough to ensure that it is not incompatible with the analysis

model: it should allow for any reasonablemodel the analystmay be able to dream up.�e analyst,

who is assumed to have limited knowledge of missing data, is only required to �t his/her analysis

model to each of the completed-and-released datasets and to combine parameter estimates

using Rubin’s rules (section 1.2.3)[23]; a fairly simple task.

�e scenario Rubin invokes poses many di�cult problems for the imputer but makes life

simple for the analyst. While the approach is undoubtedly helpful for users of publicly available

data, this is a more complex scenario than is usually seen in medical research, where the entities

of ‘imputer’ and ‘analyst’ are likely to be the same person, or possibly two people working

closely. It is assumed that one is not blind to what the other is doing, and the imputation model

can be tailored to the analysis and further augmented if desired.

1.7.3 Estimation

In general, I focus on estimation. In assessing methods our key concerns about their frequentist

properties are:

1. Consistency. As n →∞, β̂ → β.
2. Coverage. A (1 − α)% con�dence interval should have the property that it advertises, that

(1 − α)% of intervals constructed identically from repeated samples will contain β. �is is a
function of consistency and of the discrepancy between the estimated and true variance of β̂.
Coverage that is greater than its stated value is sometimes seen in multiple imputation work.

�is is not necessarily a problem, and the property is termed ‘con�dence validity’[23]. Coverage

levels lower than the stated value are more of a cause for concern.

3. E�ciency. Assuming two competing methods are unbiased and have nominal (or greater than

nominal) coverage, the method yielding the shortest con�dence intervals is preferable. �is

method is the most precise and thus powerful.

Note that some of the simulation work in chapter 6 departs from the focus on estimation,

concentrating rather on the type I error rate and power of model selection procedures.

It is o�en suggested that a�er producing imputations, researchers inspect the imputed

values and compare them to observed data; see for example White, Royston and Wood[6], or

Eddings and Marchenko[21].

An important point about MI is that its aim is not to recreate the missing values but to

provide a way of estimating the parameter/s of interest in a way that fully allows for missing
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data uncertainty. �is should be the main consideration in evaluating methods. As Rubin

emphasises[23]:

Judging the quality ofmissing data procedures by their ability to recreate the individual
missing values (according to hit rate, mean square error, etc.) does not lead to choosing
procedures that result in valid inference, which is our objective.

Referring to this quote is not intended to disparage the practice of inspecting imputed values.

Doing so will be useful for �agging poor imputation models, but alone it is insu�cient to

demonstrate the adequacy of an imputation model. For example, a variable may be imputed

with no covariates in the imputation model. �e marginal distribution of imputed values may

match the observed, but associations with other variables will be biased towards the null in

imputed data.
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2 Introduction to partially parametric
imputation

2.1 fully parametric imputation

For a partially observed normally distributed continuous covariate x the standard imputation
method described by White, Royston andWood[6] is to �t a normal errors model for observed

xh on covariateswh and impute from thismodel.�emethod for drawing x∗j has been described
already in section 1.2.2.

�is relies on distributional assumptions which can be problematic if incorrect. With

complete x, speci�cation of its probability distribution would not be required by the analysis
model. However, when x is incomplete some speci�cation is necessary; incorrect assumptions
may introduce more problems than they solve when attempting to account for missing data.

�e regression of xh ∣yh for the imputation model should correctly specify the mean and
variance structures. If the analysis model were y i = β0 + β1x i + β2x2i + ε i where ε i ∼ N(0, σ 2),
then there would be no obvious model for x j ∣y which respects (i) the shape of the association
between y and x assumed by the analysis model, and (ii) the fact that x2 is a deterministic
function of x. Further, the regression of xh ∣y in the imputation model is assumed to correctly
specify the variance structure, assuming by default homoscedasticity and ε i ∼ N(0, σ 2α).
For missing continuous x, an imputed item x∗j drawn from the posterior predictive dis-

tribution could take any value if the distribution of x is assumed to be normal. Observable
measurements of xmay be be constrained to take certain values, for example x > 0, but posterior
draws carries the risk of imputing unobservable values.

Some of the above problems can be overcome: if x is constrained to be greater than zero,
log(x j) can be imputed. ‘Passive’ imputation of x∗j = exp[log(x∗j )] would then guarantee
imputed values of x∗j are greater than zero. However, this will not overcome all problems – in
particular, the imputation model now assumes the log(x)–y relationship to be linear, which is
incompatible with an analysis model that assumes the y–x relationship is linear.

2.2 partially parametric imputation

I now consider three less parametric methods of imputation based on matching[28]: hot deck,

predictivemeanmatching (PMM) and local residual draws (LRD), with focus on the imputation

of a single incomplete covariate from multiple complete covariates. �ese methods usually

impute values with greater face validity, but do not have the same theoretical basis as posterior

draws and so application of Rubin’s rules does not guarantee valid inference.
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For the remainder of this chapter w is assumed to contain y.

2.2.1 Hot deck

Hot deck is a non-parametric method of imputation[29], traditionally used in survey research.

Strata are de�ned from p complete variablesw i , a�er continuousw i have been categorised. For

all j, an individual h in the same stratum is selected at random and x∗j imputed as xh .

2.2.2 Predictive mean matching

PMMmimics the �rst step of posterior draws by �tting an imputation model for (xh ∣wh , y)
to estimate the mean for missing values. Missing observations are matched to k ≥ 1 potential
donors with observed values of x with the closest predictive mean, where the di�erence in
predictive means is denoted δh j (some di�erent ways to calculate δh j are described in section

2.4). One of these k individuals is randomly selected and its value imputed.

2.2.3 Local residual draws

As with PMM, missing observations are matched to k ≥ 1 potential donors xh who have the
closest predicted mean δh j . LRD then imputes by adding an empirical residual, selected at
random from the donor pool, to a draw from the predictive mean[28]. �at is x∗j for individual
j with match h is imputed as

x∗j = αw j + (xh − αwh). (2.1)

(See section 2.4 for de�nitions of αwh and αw j).

2.3 choice of k in pmm and lrd

It is not obvious what values of k are sensible choices for imputation by PMM and LRD, but it
is clear that some values are not sensible; useful choices will be a trade o� between the obvious

problems arising with very large or very small k. �e reasoning for why these extremes will be
problematic follows.

For PMM, k = nh e�ectively ignores the imputation model and implies that any xh is as
likely as any other to be close to the missing value, forcing x∗j –w j associations towards the null

in the imputed data. Meanwhile, k = 1 imputes identical values (or at least very similar values;
see section 2.4 below) for each of the m imputations, except when there are ties in δh j (see note

in section 2.5). �is can produce imputed datasets with B̂ = 0 (for type 0 and type 2 matching;

see section 2.4). �is will lead to underestimation of standard errors, con�dence intervals that

are too short (i.e. coverage is less than nominal) and hypothesis tests that overstate statistical

signi�cance. In combining estimates, all β̂m will be equal, and β̂ will be too variable because it
is the mean of one observation rather thanM observations.
For LRD, k = nh might not be a poor choice and should in fact be comparable to posterior

draws. However, this is of no real interest: any problems assumed for posterior draws will also

exist for LRD. A theoretical basis exists for using Rubin’s rules a�er imputation by posterior

draws, but does not for LRD (this is equally true for PMM and hot deck). While there is equally
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no guarantee of Rubin’s rules working for k < nh , there are other perceived advantages. For

LRD, k = 1 is likely to su�er from the problems outlined above for PMM.
Between the extremes above lie the default values of k = 3 used by the ice command in

Stata[30] and k = 5 used by Stata’s mi impute pmm and the mice library in R[31] (the default in

mice was k = 3 until 2014).
In preference to a �xed value of k, some authors have identi�ed matches based on the

match quality by de�ning donors as individuals for whom δh j < δmax[28, 32]. �e value of δmax
then needs to be speci�ed for each variable to be imputed in any multiple imputation analysis,

which is no small task. As with hot deck imputation, it is possible that some j with no h where
δh j < δmax can be identi�ed and so δmax would then need to be increased, compromising the
matching quality for other j. Setting k to a �xed value thus has real practical advantages, while
it can still be altered from problem to problem and so remains reasonably �exible.

2.4 matching metric in pmm and lrd

Matching is de�ned by a scalar prediction of the missing value for each individual j (usually the
linear predictor where there is more than one independent variable in the imputation model).

�e method used to de�ne a distance δh j has been inconsistent in the literature. While there

has been no explicit disagreement, authors have de�ned δh j in at least three ways, all of which

were introduced by Little (in references [33] and [34]). �e donor for individual j is chosen
from the k individuals h with the smallest values of:

Type 0 δh j = ∣α̂w j − α̂wh ∣ (2.2)

Type 1 δh j = ∣α∗w j − α̂wh ∣ (2.3)

Type 2 δh j = ∣α∗w j − α∗wh ∣ (2.4)

for all j, where ( j = 1, . . . , n j) are missing and (h = n j + 1, . . . , n) are observed. (Note that this
designation corresponds to the order in which they were introduced and to the number of

* symbols appearing in the calculation; these names are used by the ice command in Stata

and aregimpute in the R package hmisc.) δh j can be considered to be a measure of matching

quality, where smaller values indicate a better match.

In the algorithm for de�ning the match pool it is possible to have tied δh j when selecting the

donor pool. If the kth and (k + 1)th closest matches (or more on either side) are tied this causes
problems. Allowing k to be increased would reduce the expected match quality for individual j.
Instead, one or more of the ties for the kth closest match are randomly selected until the donor
pool equals k.
Type 0 matching was used by Rubin[35], David et al.[36] and Little[33]. Type 2 has been in

common use in the literature, for example byHeitjan and Little[34] and Schenker and Taylor[28].

It was the default value used by R’s mice package until 2010. Type 1 was initially proposed by

Little[33] but disappeared from the literature until the thesis of Meinfelder in 2009[37] and a

tutorial paper by White, Royston and Wood in 2011[6]. Type 1 matching has always been the

default metric used by Stata’s ice command for multiple imputation by chained equations[11].

Since 2010 it has also been the implementation in the R package mice and is the default for the

aregimpute function of the R package hmisc.
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For LRD the use of α∗ and/or α̂ for h and j in equation (2.1) need not be the same as the
chosen matching metric. A local residual analogous to type 2 matching would be de�ned as

x∗j = α∗w j + (xh − α∗wh). (2.5)

However, it is not obvious that this is a sensible choice. Both PMM and LRD should aim to

draw from a distribution centred at α∗w j , but the residuals (xh − α∗wh) do not have zero

mean. Rather, the draws of x∗j obtained by (2.5) are centred at α̂w j . �is problem can be solved

by replacing the residual in (2.5) with (xh − α̂wh), regardless of the type of matching. Both

Schenker and Taylor[28], and Barnes, Lindborg and Seaman[38] use (2.5), without justi�cation.

�is type 1 residual is used throughout simulation studies presented in chapters 3 and 4.
Simulations using of a type 2 residual for LRD were also run and in fact give very similar results,

but the type 1 residual has a �rmer basis.

When the variance of α̂ is low, the three matching metrics will tend to select similar donor
pools (that is, the donor pools are likely to overlap). Conversely, when the variance of α̂ is high,
donor pools will tend to be di�erent.

�is point is demonstrated in �gure 2.1, where α∗w is plotted against α̂w in a single simulated
dataset. �e selection of the two closest matches for type 0 (orange), 1 (purple) and 2 (blue)

matching are shown. For each solid line, there is no other observation for which a parallel line

using a di�erent donor would be closer to the dashed line, according to that metric.�e contrast

in this example is stark: the three metrics select donors pools with no shared observations, and
for each metric the donors selected by other metrics are poor matches.

To explore behaviour of PMM and LRD when the imputation model is poorly speci�ed,

I take an extreme example of imputation model misspeci�cation (type 0 matching is not

considered here because it is identical to type 2 in this scenario). Figure 2.2 plots M = 30

imputations of x for two individuals with missing values using posterior draws, PMM, and
LRD, where yh is linear in x2h and the imputation model uses a linear regression of xh on yh .
Posterior draws does an appalling job of preserving the shape of the association in imputed

values. Both PMM and LRDmanage to impute from a bimodal distribution, which is the correct

imputation distribution, and preserve the bivariate relationship to some extent (with type 2

appearing to do so better than type 1). �e example is very arti�cial in having such a strong

association between x and y, but it illustrates the type of situation where PMM and LRD may
be useful alternatives to fully parametric imputation. It remains to be seen whether they will be

useful in less extreme cases.

2.5 some situations where hot deck, pmm and lrd may break down

Below, I describe and contrast some of the advantages and issues with using posterior draws,

hot deck, PMM and LRD.

Imputation using posterior draws can easily handle many covariates in the imputation

model. When the imputation and analysis models are correctly speci�ed Rubin’s rules provides

consistent parameter and variance estimation. However, posterior draws can impute unobserv-

able values, and when the imputation model is misspeci�ed the Rubin’s rules estimator will fail

to some degree.
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Figure 2.1: Types 0, 1 and 2 matching donor pools with k = 2. �e × represents the missing
observation; all other points are potential donors. �e two closest matches are shown type 0 in

orange, type 1 in purple and type 2 in blue.
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In hot deck imputation x∗j are imputed from individuals with similar values of the imputa-
tion model covariates w. (Technically there is no explicit ‘model’ for imputation, though David
et al. note the hot-deck approach as being analogous to �tting a ‘fully interactive’ model to

de�ne a predictive mean before adding an empirical residual[36].) Hot deck solves some of the

problems of posterior draws: an observable value is always imputed and the mean and variance

of the imputed data should be similar for observed and imputed data under MAR.

Hot deck imputation not is without its own problems: it is not proper according to Schafer’s
de�nition (see 1.2.2)[4],meaning the Rubin’s rules variance estimatormay be invalid; continuous

variables must be categorised before strata can be de�ned; once de�ned, strata will di�er in

the number of observed and missing values; strata may, in extreme cases, contain all missing

values and no observed values, particularly under departures fromMCAR; variables used to

de�ne strata may themselves be partly missing (though this issue might be solved by using a

mice-type approach); and the number of variables that can be used to de�ne strata (e�ectively

imputation model covariates, despite the lack of a parametric model) is restricted because strata

quickly become sparse.

PMM retains some advantages of hot deck, such as imputing observable values, but some

key disadvantages are absent. �e imputation model is used by PMM only to identify the k
potential donors, and is not involved at any further point in producing imputations. However,

it is not clear whether parameter and variance estimation based on Rubin’s rules will work.

Figure 2.2 leads us to expect that under imputation model misspeci�cation PMMmay reduce
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Figure 2.2: Imputation of missing x j , where x ∼ U(−4.5, 5.5) and the true model is y i ∣ x i ∼
N(x2i , 1). Grey dots are observed values; ×’s in the margins show the observed y j values where
x j are missing; purple dots showM = 30 imputations of x∗ for each j.
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Assume δh j is a usefulmetric for de�ningmatches. ‘Poor quality’matches are then thosewith

large values of δh j . For PMM we would expect poor quality matches to yield false relationships

between x and y in the imputed data. LRD may be immune to this disadvantage.
LRD lacks the key cosmetic feature of PMM and hot deck: imputed values may not be

observable and can lie outside the range of observed measurements. �is perhaps explains its

lack of popularity with applied statisticians in comparison with PMM. LRD will guard against

heteroscedasticity in the same way as PMM because the local variance is approximated by using

local residuals. LRD di�ers from PMM in its explicit use of the predictive mean to generate

imputations. For PMM, poor quality matches will tend to attenuate x–w relationships (consider
the extreme case above of k = nh); meanwhile LRD may be forgiving of poor quality matching,

particularly if the imputation model mean is only moderately misspeci�ed. While LRD may

appear at �rst glance to be more parametric and thus less robust than PMM, it may in fact be

more robust to (i) departures fromMCAR and (ii) misspeci�cation of the imputation model.

A visualisation of the above point is given in �gure 2.3. Forty x and y observations are
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Figure 2.3: Potential bias in PMM when missing values are in the tails. �e × symbols represent

missing x values and observations with x observed are in grey.�e imputationmodel is correctly
speci�ed but the sign of δh j is the same for all j, introducing bias.
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simulated from a bivariate normal distribution. Given complete data, the analysis model would

be y i ∼ N(β0 + β1x i , σ 2y). However, two x values are missing so this analysis is not an option.
Instead the two values are imputed by PMM with k = 1 a�er �tting the imputation model

xh ∼ N(α0 + α1 yh , σ 2x), which is correctly speci�ed. Note that both the y j lie beyond the
observed yh range, meaning the sign of δh j is the same for all possible h given an individual j.
�e regression of y on x is contrasted for complete data (dashed grey line) and the imputed
dataset (dashed blue line). �e problem with the slope comes from the imputed values lying

beyond the range of y for which x was observed, giving them high leverage. PMM is unable to
impute outside the xh range and so some bias is introduced. �is does not cause problems for
LRD.

Figure 2.3 is exaggerated to make a point, and such a strong relationship along with such a

strong and speci�c type of MAR is unlikely in practice. However, it raises a concern about the

potential for upwardly biased regression coe�cients a�er PMM.�is is possible under MCAR

but is more likely under departures fromMCAR, where missing values in the tails of the α̂w
distribution would be more likely under certain MAR processes.

2.6 a review of imputation by pmm

�e following is a review of the literature on PMM since the concept was introduced by Rubin

in 1986[35]. A Web of Knowledge search for articles containing the phrases predictive mean
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matching and imputation in title and/or keywords was initially run in October 2010 and updated
in December 2011. All articles were read in full; those which developed, reviewed or evaluated

some aspect of PMM are outlined below.

�e existence of LRD was only noted during the course of this review and because of its

similarity to PMM a further search was done on LRD, using the terms local residual draws or
local random residual along with imputation.
Having read the articles returned by the above search, any work cited that appeared to be

relevant were also obtained and, if relevant, added to the review. Figure 2.4 shows as a timeline

the articles included.

�e main focus of the review was to �nd

⋅ �e justi�cation for PMM and LRD, and situations where authors advocate their use.

⋅ Research on varying k in PMM and LRD.
⋅ Comparisons of types 0, 1, 2 matching (and any other de�nition of δh j).

�e review is divided up as follows: articles which give de�nitions of themetric for matching

(that is, type 0, 1 or 2) are in section 2.6.1 along with relevant evaluations; those which outline

a way of de�ning the donor pool are in section 2.6.2 along with relevant evaluations; articles

which describe methods of sampling from the pool of potential donors are in section 2.6.3

along with relevant evaluations; general evaluations of PMM (not the speci�c aspects given

above) are in section 2.6.4; case studies are in section 2.6.5 and the remaining articles are in

section 2.6.6.

2.6.1 De�ning the matching metric δh j

Rubin planted the seed for PMMby suggesting the use ofMI as a way of improvingmatching[35].

His interest was in the situation where two variables, aiming to measure the same construct,

are recorded in one cohort each, but are never simultaneously observed. �e matching Rubin

describes seems to be type 0. David et al[36] also used type 0 matching in what seems to be

the origin of the LRD. Little then suggested the use of matching as a means of improving

imputations[33], and wrote down the calculation of a matching metric δh j , which was type 0. In

the same article it is noted – following Rubin’s work on hot deck imputation[1] – that variances

are underestimated if the parameters of the imputation model are treated as known. As an

attempt to correct for this problem in PMM a modi�cation to δh j was proposed, which was

type 1 matching.

Heitjan and Little[34] suggested type 2 matching, using the argument Little[33] had used

previously, that it would account for uncertainty about parameters in the imputation model.

Draws of α∗ are obtained by drawing a bootstrap sample from the complete cases and �tting
the imputation model to this sample (the approximate Bayesian bootstrap, ABB). Matching of
h to j is then done on the linear predictor from this model. In a small simulation study (100
replications) based on sampling without replacement, type 2 matching gave arguably better

coverage than type 0 matching (tending to err on the conservative side). �e argument for

type 2 does however seem to have been persuasive: since this paper authors describing PMM

have outlined type 2 (although in most articles the description is not clear enough to identify

the type of matching used).
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Figure 2.4: A timeline of articles included in review of PMM and LRD

1986 2011
● ●
⋅ 1986 Rubin[35]

⋅ 1986 David et al.[36]

⋅ 1988 Little[33]

⋅ 1991 Heitjan& Little[34]

⋅ 1994 Heitjan& Landis[39]

⋅ 1996 Schenker& Taylor[28]

⋅ 1997 Landerman et al.[40]

⋅ 1997 Heitjan[41]

⋅ 1998 Schulte Nordholt[42]

⋅ 1999 van Buuren et al.[8]

⋅ 2001 Zhou et al.[43]

⋅ 2001 Horton& Lipsitz[44]

⋅ 2003 Moriarity& Scheuren[45]

⋅ 2005 Tang et al.[46]

⋅ 2005 Durrant[47]

⋅ 2005 Durrant[48]

⋅ 2006 Durrant& Skinner[49]

⋅ 2006 Barnes et al.[38]

⋅ 2006 Hsu et al.[50]

⋅ 2007 Yu et al.[51]

⋅ 2007 Horton& Kleinman[52]

⋅ 2008 Siddique& Belin[32]

⋅ 2009 Siddique&Harel[53]

⋅ 2009 He& Raghunathan[10]

⋅ 2009 Di Zio& Guarnera[54]

⋅ 2009 Ayuyev et al.[55]

⋅ 2010 Marshall et al.[56]

⋅ 2010 Qi et al.[57]

⋅ 2011 White et al.[6]

⋅ 2011 Long, Zhang&Hsu[58]
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Hsu, Taylor, Murray and Commenges used imputation to try and recover information from

censored patients in survival analysis[50] by imputing failure times. Type 2 matching was used

to de�ne a donor pool, termed the ‘imputing risk set’, taken from individuals still at risk (those

who have not failed or been censored) at time t. Simulation studies focusing on a Kaplan–Meier
estimator a�er bootstrap demonstrated better results for type 2 matching than type 0, with

coverage being too low under the latter. Neither method was adequate with time-dependent

covariates and dependent censoring, but PMM was the best of the methods investigated.

White, Royston and Wood’s paper was a tutorial on mice and discussed PMM[6]. �e

authors’ de�ne their calculation of δh j , corresponding to type 1. Other calculations of δh j

are not mentioned. A graphic justifying why PMM might be useful for protecting against

misspeci�cation of the imputation model is also given in [6]. Prior to this most articles had

used δh j as type 0 or type 2 (for example [28, 34, 36, 38, 39, 43, 46, 57]), the only exceptions

being Little[33] and Meinfelder[37].

2.6.2 De�ning the donor pool

�ere are two broad approaches to de�ning the donor pool. �e �rst is to use a �xed k; the
second to use a �xed δmax.
David et al.[36] initially imputed using global residual draws, but found this did not work

particularly well. �ey replaced this with a set matching distance of $2,000 ensuring E(δh j)

was equal for all j.
�e idea of selecting one from a pool of several potential donors in PMMwas not apparently

present in the initial work of Rubin[35] and Little[33], who both matched to the nearest donor

only (k = 1). Heitjan and Little[34] introduced a pool of potential donors with k = 5, though no
justi�cation for this change was given. Since this paper authors have largely used �xed k > 1
(e.g. [39, 47]).

Schenker and Taylor suggested an adaptive method for choosing k based on ‘the density of
available donors in the vicinity of the incomplete case’[28]. Some δmax was de�ned within which
potential donors lie and k is always greater than 1 and less than the number of observations
with observed x (δmax is increased if k < 2).

2.6.3 Sampling from the donor pool

Heitjan and Little[34] only identi�ed the pool of potential donors once and randomly sampled

with replacement �ve times to obtain m = 5 imputations. Under the type 2 matching used this

may be a computationally e�cient way to generate imputations. However, for any imputation

model with more than one covariate the imputed data sets cannot be regarded as independent

under this sampling scheme (a single draw of α∗ is shared across all m). When there is only
one covariate in the imputation model type 2 is identical to type 0 and therefore also fails to

account for any uncertainty about α̂. �e di�erent imputations are not independent given the
model and so are improper.

Using type 2 matching, Schenker and Taylor drew α∗ and selected one of the potential
donors at random separately for each imputed dataset[28]. �is is more computationally in-

tensive than Heitjan and Little’s method[34] but draws of α∗ are independent across imputed
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datasets, as they should be. Following this article, others seem to have followed Schenker and

Taylor’s method.

Moriarity and Scheuren[45] suggested the use of ‘constrained matching’ to build on Rubin’s

idea of imputation for statistical matching. While Rubin’s method could impute the same

individual h’s value many times – unconstrained matching – constrained matching requires
imputation of each observed value once, while ‘slightly constrained’ matching applies a penalty

to any donor who has already donated (see section 7.4.1 for a remark on constrained matching).

�e description is unclear but this seems to apply within each imputed dataset, and the authors

imply that not all missing values will be imputed under constrained matching. �eir aim was to

preserve the marginal distributions in the imputed data. In a simulation study they found MI

with univariate- and with multivariate-constrained matching improved upon Rubin’s method.

Durrant described various imputation techniques in a technical report[47]. PMM was

compared to other imputation procedures via simulation and apparently tended to outperform

the others provided multiple, not single, imputations were used. �ere is very little description

of the simulation study in this report. It was however described more fully in a later article[49].

Interest was in imputing hourly pay, where the ‘direct’ variable (hourly pay measured without
error) was partially observed but an indirect variable (hourly pay measured with error) was
always available. A simulation study compared matching based methods including PMM

with varying k, ‘class-based’ methods, and a version of PMM which imposes a penalty on
a donor each time it is selected by reducing the probability of being selected as donor for

another j (‘slightly constrained’ according to Moriarity and Scheuren’s de�nition). Some small
bias was observed for the class-based methods but not for the penalised method. PMM with

k = 1 was seen to have the largest standard errors. PMM with k = 10 was then compared to
propensity score weighting where the imputation model was correct, slightly misspeci�ed and

very misspeci�ed. Both methods performed well under the correct imputation model, getting

worse when the models were misspeci�ed, but propensity score weighting deteriorated far faster

than PMM. A brief simulation under MNAR was presented, which demonstrated increased

error in both methods, but this was not enough to render them unusable.

Siddique and Belin imputed missing covariates and outcomes for a randomised trial using

a form of PMMwith �xed k = 10 but with the probability of donor selection inversely related to
δh j [32]. A ‘closeness parameter’ ≥ 0 was used which could be altered to increase or reduce the

probability of selecting the nearest donors. When imputing data from their trial it was observed

that small values of the closeness parameter led to a larger estimate of the regression coe�cient

of interest. A simulation study motivated by the same trial demonstrated that smaller closeness

parameters led to upwards bias, while larger closeness parameters led tomore variable estimates.

Imputation was done using something similar to a forwards–backwards type approach (rather
than including measurements at all time points)[9], the reason for which was not given. �ey

found that, more than the imputation method used, the order of imputation was important for

the analysis model: imputing the least-missing variable �rst gave better results than imputing in

a random order or chronological order, which were similar and tended to be biased away from

the null. It seems unlikely this would have occurred if all other variables had been used when

imputing each partially missing variable. Although not explicitly stated, the authors appear to
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have used a mice approach (without chained equations the order for imputing variables would

not have been noted).

2.6.4 Other comparative evaluations of PMM or LRD

David et al.[36] had access to a second databasewhich contained 61% of themissing observations

they had been imputing, and so were able to compare how well imputation methods performed.

Unfortunately there was no comparison of inferences a�er di�erent methods and instead the

‘average deviations’ from the true values were summarised by imputation methods. While hot

deck was found to have the lowest prediction error – probably implying important interactions

in the imputation model – Rubin’s quote (1.7.3) tells us that this does not necessarily make it

the best imputation method. For example, drawing imputations conditional on α̂ rather than
α∗ may reduce the average deviation but provide estimates of variance that fail to allow for
missing data uncertainty.

Schenker and Taylor performed an extensive evaluation of PMM for imputing outcomes

under MCAR[28]. In a fully factorial setup they varied the true model for the data, sample size,

proportion of incomplete cases, the quantity to be estimated and the imputation method, with

primary interest in which imputationmethods provided valid inference.When the assumptions

of posterior draws were correct, both PMM and LRD were passable, although their MSE

was always higher than posterior draws and coverage tended to be slightly too low. When

the assumptions of posterior draws were incorrect PMM and LRD tended to retain their

performance even when posterior draws began to fail: coverage of 95% con�dence intervals

was around 92–94% for PMM and LRD even when the proportion missing was large and the

sample size was small.

Zhou, Eckert and Tierney assessed the performance of PMM for imputing outcomes and

then covariates, motivated by two real examples[43]. Type 2 matching was used with α∗ drawn
via the approximate Bayesian bootstrap, following Heitjan and Little’s recommendation, along

with k = 5 and m = 5[34]. In a simulation study the authors aimed to compare the e�ect

of matching on more vs. fewer covariates in the imputation model, but it appears the only

variables included in the imputation model were those being matched, and so the comparison

was e�ectively of larger vs. smaller imputation models, and matching was not compared to

anything else. Two incompatible and two compatible imputation models were used: all gave

reasonable results for bias, but coveragewas lower than nominal, improvingwhenmore variables

were included in the imputation models. A ‘large’, semi-compatible imputation model, using a

total of 74 variables for imputation (many of which were auxiliary), consistently gave the best

results.

Horton and Lipsitz investigated di�erent so�ware implementations of multiple imputation

available in 2001, mainly discussing them from a usability point of view[44]. PMMwas available

in Solas, S-Plus andR but not Sas. In an example analysis of a single large (n = 10, 000) simulated
dataset PMM was seen to perform very similarly to multivariate normal imputation, arguably

having slightly larger bias and slightly smaller variance. PMM in S-Plus and R performed well

when x was MAR and its value predicted by other covariates excluding outcome y, but poorly
when x was predicted by y.
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Tang, Song, Belin andUnützer compared a PMMmethod toMI under amultivariate normal

model, CC and LOCF formissing responses in the Impact clinical trial[46].�emethod referred
to as ‘hot deck’ was PMM with type 2 matching (with approximate Bayesian bootstrap used to

draw α∗, as in [34]) with ‘classes’ formed based on the predicted mean. A simulation study was
done based on Impact. �is used sampling without replacement: allowing replacement could

have favoured PMM by allowing missing items to be matched to their original observation.�e

sole focus of this simulation was coverage (which I regard as a very poor choice: as the number

of observations sampled approaches the original sample size coverage must approach 100%,

and so is meaningless under this simulation method). Using their coverage measure, PMM

appeared to be the best technique (implying that its true coverage might have been too low),

followed by multivariate normal imputation, complete cases and �nally last observation carried

forward.

Barnes, Lindborg and Seaman compared posterior draws, PMM and LRD for imputing

outcomes with the variance structure of the imputation model misspeci�ed[38]. In describing

matching methods, k = 1 is described for PMM, while a donor pool is mentioned for LRD.

In simulation studies k = 1 is used for both methods, along with type 2 matching. Two sets

of simulations were suited to the assumptions of posterior draws (with di�erent strengths

of correlation). A third simulation used a mixture of the two correlation matrices from the

�rst and second studies. �is violates the posterior draws assumptions because the variance

structure is misspeci�ed. Unsurprisingly posterior draws were excellent in the �rst two studies.

Surprisingly the standardised bias and coverage remained best for posterior draws even when

the variance structure was misspeci�ed. PMM and LRD were more biased than posterior draws

but far less than LOCF. LRD gave coverage close to 95% in all cases, and the con�dence intervals

were generally shorter than posterior draws. PMM returned the shortest con�dence intervals

but gave coverage which was too low. �e comparison between PMM and LRD is of course

potentially confounded if a k = 1 was used for PMM but k > 1 was used for LRD.
Yu, Burton and Rivero-Arias mentioned PMM’s availability in certain so�ware[51]. A simu-

lation study looked at how well various implementations retained the marginal distributions

of variables, where these were slightly or very non-normal. Bias, standard errors and mean

squared error are calculated compared to the complete dataset. R and Stata implementations of

PMM performed equally well. Coverage was seen to be slightly poor for PMM implementations

but this was still better than any of the others. �e type of matching was not explicitly described

but R’s mice package was used (default type 2 with k = 5), while the ice command in Stata had
type 1 matching and k = 1 as the only available option for PMM at this time (see �gure 1 of

reference [59]), so the coverage results for Stata may be surprising.

He and Raghunathan were interested in imputingmissing values by chained equations when

the assumption of normal errors was false[10], and so posterior draws were expected to break

down. PMM, LRD and two other potentially robust imputation methods (global residual draws

and Tukey’s g and h distribution tomodel non-normal errors parametrically) were compared by
simulation. LRD and PMM tended to have good performance with non-normal error variances.

Some problems appeared with biased analysis model coe�cients when the covariate being

imputed followed a log-normal distribution. In some cases this produced under-coverage of
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con�dence intervals.

Di Zio and Guarnera described a PMM method that should be more robust to model

misspeci�cation than than the standard one, based on a Gaussian mixture model[54]. �ey had

already suggested using Gaussian mixture models for MI by posterior draws, and this paper

developed the idea for PMM.�e justi�cation was that standard PMM relies to some extent

on a linearity assumption, and mixture models can relax this. In a small simulation study (100

replications due to the computationally intense model-�tting), non-normal data were generated

along with a MAR pattern of nonresponse (the generation of MAR was not described). �e

preservation of the mean and variance structure for a multivariate dataset was investigated.

Both seemed relatively well preserved by the new method, but it appeared to o�er no great

advantage over ‘nearest neighbour donor’ (an unclear and unreferenced method but described

as a general form of PMM), predicted mean imputation based on a Gaussian mixture model or

posterior draws based on a Gaussian mixture model. �e latter is recommended by the authors

for most situations, unless there is a requirement to imputed observable values.

Ayuyev, Jupin, Harris and Obradovic compared PMM to a new imputation method which

they called ‘dynamic clustering-based imputation’[55]. �e implementation of PMM used was

WinMICE; it is not clear what the matching metric or default value of k is in this package. In
a simulation study they �rst assessed the quality of imputation methods on the proportion

of correct imputations (categorical variables) and relative imputation accuracy (continuous

variables). Both these measures are solely interested in how close multiple imputations come to

the true value. It is a shame there was no focus on how close the resulting inferences were to

those obtained on the dataset prior to deletion. However, by their hit-rate measure, dynamic

clustering-based imputation was superior to posterior draws, PMM, linear regression and

multilevel linear regression, with PMM coming a close second in terms of relative imputation

accuracy for various proportions of missing data. Next, they looked at the proportion of correct

classi�cations in a classi�cation tree (a similar measure to the relative imputation accuracy);

results were the same as for the previous study. �is was all done under MCAR and the authors

seem unaware of the existence of other missingness mechanisms. �is paper is by computer

scientists who seemed largely unaware of other literature on missing data.

Meinfelder compared several forms of PMM in simulation studies[37]. Amethod designated

parametric predictive mean matching was described and noted to relate to Little’s method, which
would indicate type 1 matching, although the description of how the method was implemented

points to type 2, highlighting the confusion that exists. A second method, designated Bayesian
bootstrap predictive mean matching was also described. �e description also corresponds to
type 2 matching. In simulation studies, both methods were observed to have low bias but to

underestimate variances and thus lead to low coverage. �is is possibly due to the use of type 2

matching, or because k = 1 is used for both methods.
Marshall, Altman, Royston and Holder investigated the handling of missing data for prog-

nostic modelling studies[56]. Survival time data were simulated with MAR missingness in

the covariates. Complete cases and single imputation by PMM were compared to various

MI methods, including MI by PMM with transformation towards marginal normality, MI by

PMM without transformation and MI using �exible additive imputation models with PMM.
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Simulations used R’s mice package for the �rst two methods, so probably used k = 5 with

type 2 matching, although this is not stated. For the �exible additive models, R’s aregimpute

package was used which by default uses k = 1 with unknown type 1 matching, but also has

an option for using an adaptive technique based on Siddique and Belin[32]. Marshall et al. do

not describe the option used. CC gave the least bias for regression coe�cients under MAR

and approximately nominal coverage, but was also ine�cient. MI by PMM without covariate

transformation was the second least biased and had generally acceptable coverage, certainly

o�ering an improvement on the other imputation methods, and also had smaller bias than CC.

PMM with covariate transformations tended to return similar results to imputation methods

with stronger assumptions. Further simulations, where the missingness mechanism wasMNAR,

showed PMM without transformation to be the least biased of the methods investigated.

In a related paper, Marshall, Altman and Holder[60] performed a simulation study based

on resampling with replacement. �ey compare CC, single imputation by PMM, MI by PMM,

posterior draws using chained equations and �exible additive imputation models. Unlike the

previous paper, CC was very poor compared to any imputation method. As in the previous

paper, mice using PMM was the most useful.

Qi, Wang and He compared MI to their ‘fully-augmented weighted estimator’ (augmented

inverse probability weighted) for handling a missing covariate in the Cox model[57]. �is

estimator is doubly robust and does not require a parametric model for the missingness proba-

bility or the distribution of missing covariates given the observed data. �e PMM approach

described suggests type 0 matching with k = 1. A simulation scenario involved one covariate
which was MAR given two other covariates and outcome. PMM performed poorly compared

to the fully-augmented weighted estimator when the imputation and analysis models were

incompatible (some bias and under-coverage) but was acceptable otherwise. A second simula-

tion study investigated problems when the censoring time depended on the missing covariate.

PMM was biased in this situation (as were posterior draws) but coverage and e�ciency were

acceptable to the authors. In a third study the strength of correlation between missing and

observed covariates was altered, showing bias barely changed as the correlation changed, while

precision decreased as correlation increased.

Andridge and Little reviewed hot-deck related imputation methods and outline predictive

mean matching, noting that matching on the linear predictor may be more fruitful than using

the Mahalanobis distance, and that PMM is a more parsimonious method than the ‘adjustment

cell’ method (standard hot deck)[61]. A simulation study compared various hot deck methods,

including a ‘proper’ version of PMM based on the Bayesian bootstrap. Unfortunately it is not

possible to tell what the type of matching is or the number of donors used, but the method had

fair coverage properties and returned acceptable length con�dence intervals, though it was not

always the best method.

Long, Zhang and Hsu investigated MI of biomarker values which were MAR[58]. Interest-

ingly, type 0 and type 2 matching were compared in two situations via simulation. While there

was little di�erence in terms of bias, coverage tended to be closed to 95% under type 2 matching

and they note that their estimators are ‘further improved through a bootstrap set’[58].
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2.6.5 Non-comparative evaluations of PMM and case studies

Landerman, Land and Pieper performed simulations motivated by problems with imputing

income, a covariate in their analysis model[40]. Income was problematic because of its skew

and the requirement that imputed values are non-negative. PMMwas investigated with 5, 10 and

20% of observations missing under a MAR missingness pattern (although the MAR that was

imposed is unclear). Bias in standard errors was small for all variables. Bias in point estimates

and t statistics was slightly higher for one or two variables but essentially acceptable. PMM was
not compared to any other method so it is unclear how alternatives would have fared. k = 1
was apparently used throughout. It was noted that ‘weak’ imputation models provided poor

results when they were ‘smaller’ than the substantive model (incompatible); further, imputation

models which were larger than the substantive model (semi-compatible) gave better results.

Schulte Nordholt describes hot deck in the context of longitudinal data as imputing a value

observed in another individual from the same wave[42]. ‘Cold deck’ is described as imputing a

value observed in the same individual on a di�erent wave. In a simulation study PMM was not

included but a short description of the method was given. In the examples of real data analysis

the only comment was ‘PMM gives similar results but is more computationally intensive’.

Van Buuren, Boshuizen and Knook �rst introduced the idea of MI by chained equations[8].

PMM was not previously feasible for non-monotone missing data problems and so this article

opened up new possibilities for PMM. Although the article was not speci�cally about PMM

the authors did use the method throughout (termed the ‘closest predictor’) apparently using k
= 1 and type 0 matching.

2.6.6 Miscellanies

Heitjan and Landis[39] used PMM in the way described by Rubin[35]. �ey aimed to assess

changes in underlying blood pressure over time. More recent participants had generally had

high blood pressure treated to lower their blood pressure. Treated blood pressure and untreated
blood pressure were to be imputed. Since these were never simultaneously observed Rubin’s
general approach is followed (performing sensitivity analyses to assumptions about the variables’

partial correlation). �ere is no evaluation of the usefulness of PMM compared to any other

imputation method, but it is the imputation method of choice for the sensitivity analysis in this

paper. A nice explanation is given of potential advantages of PMM vs. hot deck, similar to that

of David et al[36].

Heitjan[41] wrote to praise and criticise some authors who used MI in an applied paper[62].

MI by posterior draws is described in simple terms and it is noted brie�y that PMMmay be

preferable if posterior draws provide cosmetically poor imputations, for example beyond the

range of the observed data.

Durrant developed a method of imputation by data augmentation, which involved PMM

using type 2 matching instead of posterior draws[48].�is was developed for univariate missing

data problems where there is a complete surrogate version of the incomplete variable, but the

surrogate is measured with error.�e notation and descriptionmakes up the entire paper.�ere

is no evaluation of the method or any mention of its implementation.
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Horton and Kleinman were interested in missing covariates and describe the main methods

for dealing with problems[52].�eir main aim was to compare so�ware available in 2007. �ere

is little o�ered on PMM, the only comment noting that some of the so�ware available at that

time could impute by PMM as an alternative to posterior draws.

Siddique and Harel describe the midas Sas macro used for Siddique’s earlier paper[53].

�is was a �exible implementation of PMM which allowed for user speci�ed imputation

equations with PMM. However, it is unclear how sensible the combination of PMM with

forwards–backwards imputation was (see [32]).

2.6.7 What is already known about PMM and LRD?

PMM and LRD seem to be considered as tools for dealing with imputation model misspeci�ca-

tion. Under a correctly speci�ed imputation model, posterior draws appear to provide superior

inference; under a poorly speci�ed imputation model, PMM and LRD may have a degree of

robustness to misspeci�cation that posterior draws does not.

Beyond these conclusions, the literature on PMM is fragmented. �ere has been no sys-

tematic exploration of how the number of donors k or di�erent matching methods in�uence
the analysis model estimates when one or more covariates are partially observed. Choices of k
and δh j appear to have been largely chosen ad-hoc, or as so�ware defaults. Some articles did

vary k [28, 50], while others did something producing a similar e�ect[32]. Results seemed to
show that smaller k produced more variable β̂, while larger k could lead to bias. One article
contrasting di�erent types of matching favoured type 2 over type 0 but a small simulation study

did not demonstrate much di�erence[34]. While this did not seem to justify the general uptake

of type 2, two more recent articles have noted a more pronounced di�erence in coverage for

type 2 as compared to type 0[50, 58]. No articles have ever compared type 1 to types 0 or 2.

Intuitively, PMM should help protect against misspeci�cation of the imputation model, as

supported by �gure 2.2. Chapter 3 describes and reports simulation studies investigating how k
and the type of matching in�uences bias, e�ciency and coverage of PMM and LRD. Chapter 4

takes the best form of each method forward to a multivariable simulation study based on the

trauma dataset described in section 1.5.1.

DrawSuit
A study with bivariate normal y and x (section 3.1). �e aim is to see how well various forms of
PMM and LRD perform in a scenario which is ideally suited to posterior draws.

J-thwart & U-thwart
Two studies set up to thwart posterior draws (section 3.2). For both, the true model for y is
linear in x2. ‘j’ and ‘u’ describe the true shape of y–x association in the simulated datasets.
Trauma
A multivariable simulation study in which the transformation which best predicts outcome

may not be the most appropriate transformation towards normality (section 4). �e two most

favoured forms of PMM and LRD from J-thwart (3.2.2) and U-thwart (3.2.1) are used.
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3 Univariable simulation studies assessing
PMM& LRD

3.1 simulation study designed to suit posterior draws: drawsuit

�is study uses simulation to evaluate PMM and LRD for missing x when the assumptions
underlying posterior draws are correct. Data are generated from x i ∼ N(0, 1) and y i ∣ x i ∼
N(βx i , 102). �e mean and variance structure of the imputation models are correctly speci�ed
and the missing data mechanism is MCAR or MAR. For this investigation, several imputation

methods are investigated: posterior draws, PMM with type 1 and 2 matching and k = 1, 3, 5 and
10, and LRD with type 1 and 2 matching and k = 1, 3, 5, 10 and 20. It is of interest to know if
these methods perform adequately in this scenario, and if not, what and how bad any problems

are.

�e factors to be varied are split into those which are a part of the analysis method to be

compared (*) and those which are a part of the data generating model and may in�uence the

comparison of analysis methods (○):

* Imputation method. �e two matching-based methods are of central interest, while posterior
draws are included for comparison (as well as the complete case and complete data analyses).

* Type of matching. Match types 1 and 2 will be investigated. Notice that type 0 is identical to type
2 matching when the imputation model includes only one covariate.

* Size of potential-donor pool. �e number of donors is varied for imputation by PMM and LRD.
○ Strength of association. Di�erent values of β will be used in the imputation model.
○ Missingness mechanism. It is expected that MAR will be a stronger test of PMM and LRD
because of di�erent expected matching distances for di�erent values of observed y i . Further,
missingness under MAR will be in the tails of the distribution, which may introduce bias for

PMM (see �gure 2.3).

○ Sample size. It is plausible that a larger donor pool is less of a problem for larger sample sizes,
where it represents a smaller proportion of the dataset.

○ Proportion of missing values. Any issues with PMM or LRD are likely to be magni�ed with a
larger proportion of missing values, partly because the analysis relies more on the imputed data

and partly because there are fewer close matches.

�e study is not fully factorial. In particular, the factors not varied factorially with one

another are sample size and proportion of missing values.
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Table 3.1: Factors and levels to be varied in DrawSuit simulation study

Factor Variations

Imputation method Posterior draws, PMM and LRD

Match types 1 and 2

Donor pool k = 1, 3, 5, 10
Strength of association β† = 0, 3.33 and 10
Missingness mechanism MCAR, Weak MAR, strong MAR

Sample size 100, 500, 6000

Proportion of missing values 0.25, 0.5, 0.75

†Values of β are chosen to correspond to R2 = 0, 0.1 and 0.5, termed ‘zero’, ‘weak’ and ‘strong’
association respectively.

3.1.1 Simulation procedures

Stata 11.2 is used for all aspects of these simulations. �e ice command is used to impute

missing data and mim to analyse imputed datasets and combine estimates using Rubin’s rules.

�e number of replications s used for each scenario, is 1000. For each replication, x i are
simulated from a normal(0,1) distribution. y i are then simulated from

y i ∣x i ∼ N(βx i , 102), (3.1)

implying a bivariate normal distribution for x and y.
Vectors R indicating whether x i are observed are then simulated. For MCAR, R i = 1 if

U i < π where U i ∼ uniform(0, 1) and π is the desired proportion of missingness. For MAR,

logit[P(R i = 1∣y i)] = γ0 + γ1 y i . (3.2)

For weak MAR, γ1 is set to 0.05 (a log-odds ratio of 0.5 per standard deviation change in y); for
strong MAR, γ1 is set to 0.1. γ0 is then altered to achieve the desired π. To achieve 25% missing
x, −1.15 and −1.3 work well for weak and strong MAR respectively.

�e imputation model will be

xh ∣yh ∼ N(α0 + α1 yh , σ 2) (3.3)

for all imputation methods. Note that the normality of residuals for y means match quality will
vary for di�erent j.

�e same analysis model, y i ∼ N(β0 + βx i , σ 2), is �tted for each scenario (the intercept β̂0
is estimated even though E(β̂) = 0).
Before imposing missingness, the parameters of the analysis model are estimated in the

complete data. �e response indicator, R, is then applied to x (deleting those values where
R = 0) and the complete case analysis is �t. �e various imputation methods are applied m = 5

times in turn to the partially observed dataset. Rubin’s rules are used to obtain the estimate β̂
and its standard error.
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Table 3.2: Strength of MAR in univariable simulations

Missingness Area under

ROC curve

MCAR 0.50

Weak MAR 0.65

Strong MAR 0.75

�e dependence of missingness mechanism on y was of interest and so upon generating R,
the area under the ROC curve was calculated for each missingness mechanism in each dataset

and summarised.

By applying di�erent missingness mechanisms to one dataset, and di�erent analysis strate-

gies to each of the missingness patterns, there is a moderate dependency between the results of

related simulation runs. �is makes simulations particularly sensitive to di�erences between

methods.

3.1.2 Evaluating the performance of methods for di�erent scenarios

Bias in a point estimate is assessed by calculating

1

s

s

∑
l=1

β̂ l − β, (3.4)

where β is the true parameter for the analysis model (used in the data generating model) and
β̂ l are the estimated values of β from the lth replication.
Empirical standard errors are de�ned as

SEemp =
1

s − 1

s

∑
l=1

√

(β l − β̂)
2
, (3.5)

the standard deviation of β̂ over the s replications.
Coverage is assessed as the percentage of times the 95% con�dence interval for β̂ l contains

the true β.
Results are presented graphically with point estimate for a simulation parameter, along with

95% Monte Carlo con�dence intervals[63], on the vertical axis and the method of imputation

on the horizontal axis.

3.1.3 DrawSuit results: n = 500, 25% missing x

Table 3.2 shows the area under the ROC curve for each of the three missingness mechanisms

used. �ese values will be the same for other univariable simulation studies with larger and

smaller sample sizes as well as more missing values and non-linear associations. Although these

values on their own may lack meaning, this area under the ROC curve is given for simulation

studies throughout this thesis so as to provide a standardised degree of MAR across simulation

studies.

Posterior draws provides estimates which are unbiased with correct coverage in these cases

(�gure 3.1). �ese are provided for reference. None of the matching methods perform as well as
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Figure 3.1: DrawSuit: Bias in point estimates, n = 500 (Error bars are ±2×Monte Carlo standard
errors)
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posterior draws, regardless of the number of donors or the type of matching. However, there are

indications in these �gures as to which forms of imputation by matching methods are worthy

of further study.

PMM appears to give very similar results to complete data, complete cases and posterior

draws when type 1 matching is used under MCAR. Under MAR a slight downward bias ap-

pears with larger values of k. �is is expected: consider k = the number of observations with
nonmissing x (global instead of local matching). �is would not distinguish between good
and bad donors, drawing at random any value of x from the observed data. �us, increasing
k for PMMmay be viewed as introducing a degree of incompatibility to the imputation and
analysis models. Although the results do demonstrate this bias, it is very small. Recall that the

true values of β are 0 (black), 3.3 (blue) and 10 (green).
For type 2 matching, PMM is always unbiased when R2 = 0. Under MCAR there is a slight

downward bias for R2 = 0.1 and a slight upward bias for R2 = 0.5. �is is una�ected by k. For
MAR, both of these biases move slightly downwards overall with this shi� more pronounced

as k increases.
LRD appears to be unbiased when type 1 matching is used, regardless of the strength of

association in the data or the strength of the missingness mechanism (clearly there is then no

e�ect of changing k). With type 2 matching there appears to be a small upwards bias associated
with LRD when R2 = 0.5. �ere is also a hint of a downwards bias when R2 = 0. Although
present, it is worth noting that the magnitude of these biases are tiny. �ere is no e�ect of k on
bias because LRD explicitly uses the predictive mean in imputation, unlike PMM which only

uses it to identify suitable donors.

Empirical standard errors are similar for PMM and LRD and broadly similar for type 1 and

type 2 matching (�gure 3.2). Imputation methods with smaller k tend to have lower precision
than counterparts with larger k. With the largest values of k precision is comparable to posterior
draws. �is is less true as the strength of MAR increases. For type 1 matching, standard errors

are highest for R2 = 0. Standard errors a�er type 2 matching are much less sensitive to the
strength of association than a�er type 1.

Figure 3.3 shows nominal 95% con�dence intervals under type 1 matching come close to

giving nominal coverage under MCAR, except when R2 = 0.5 with PMM, when it is around
93–94% and also R2 = 0 for LRD. As the strength of missingness mechanism is increased,
coverage is lower (between 90 and 95%), and consistently slightly worse for LRD than PMM.

Larger k improves coverage somewhat for LRD and PMM.
For type 2 matching the coverage is generally far worse than type 1, especially with small k.

�e coverage increases, approaching 95% with larger values of k. In contrast to type 1, larger
values of R2 always have coverage closer to 95% than the smaller values. As with type 1 matching,
coverage is pushed downwards slightly by stronger missingness mechanisms.

Taking all these results together, PMM with k = 10 and LRD with k ≥ 10 appear to provide
the best alternative to posterior draws for n = 500. Type 1 matching provides slightly superior
results in the case explored here. However, neither method is as good as posterior draws in

terms of its minimal bias, small standard error and nominal coverage of con�dence intervals.
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Figure 3.2: Drawsuit: Empirical standard error, n = 500 (Error bars are ±2× Monte Carlo
standard errors)
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Figure 3.3: DrawSuit: Coverage of nominal 95% ci, n = 500 (Error bars are ±2×Monte Carlo
standard errors)
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Figure 3.4: DrawSuit: Bias in point estimates, n = 5000 (Error bars are±2×Monte Carlo standard
errors)
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3.1.4 DrawSuit results: n = 5000, 25% missing x

It was of interest to see whether the same patterns occur for much larger datasets, where it is

possible that the performance of PMM and LRD would improve due to improved matching

quality on average. Further simulations were run for n = 5000, with all other factors identical
to the above scenarios. Plots of the results are again presented side by side for type 1 and 2

matching. In general these results showed similar patterns to n = 500 and n = 100, with minor
di�erences in places.

Bias in point estimates is very small and never estimated as greater than ±0.02 (�gure 3.4).

Although sometimes theMonte Carlo error bars do not cross the line of zero bias, themagnitude
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Figure 3.5: DrawSuit: Empirical standard error, n = 5000 (Error bars are ±2× Monte Carlo
standard errors)
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is once again minuscule relative to the values of β used. Perhaps surprisingly, PMM still has
increasing downwards bias for larger k. �is is again a larger problem for type 1 matching than
type 2.

Standard errors (�gure 3.5) are relatively similar, contrasting methods, to the n = 500 case,
with one important di�erence: under type 1 matching and R2 = 0 the empirical standard errors
are markedly larger than in any similar cases. With type 2 matching and other values of R2

empirical standard errors are unsurprising. Standard errors decrease with increasing k but even
in the best cases are still around 20% larger than those for posterior draws. Standard errors

are higher and become less comparable to posterior draws as the strength of MAR increases,

regardless of the matching type or k. As with the two smaller sample sizes, type 1 matching has
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Figure 3.6: DrawSuit: Coverage of nominal 95% ci, n = 5000 (Error bars are ±2×Monte Carlo
standard errors)
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larger standard errors than type 2 in the worst situations.

Coverage results shown in �gure 3.6 are very similar to the n = 500 case. In the best cases,
coverage for PMM and LRD sometimes reaches 95%. Again, type 1 matching seems to give

more appropriate coverage than type 2 for smaller values of k. As R2 and strength of MAR
increase the coverage of both methods is pulled down below 95%.

3.1.5 DrawSuit results: n = 100, 25% missing x

For n = 100 with 25% missing x, results regarding PMM, LRD, the type of matching and k are
broadly similar to results for n = 500 and n = 5000. �e main di�erence is that any problems
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are exaggerated. �ese results are presented in appendix B.

3.1.6 DrawSuit results: Increasing the proportion missing

Two variations away from the base case of 25% missing were investigated: 50% and 75% missing,

with a sample size of 500 only. Results are not shown for these simulations as they are a simple

extension of the results with 25% missing. Problems observed with 25% missing follow similar

patterns but are exaggerated (since a larger proportion of the data in each analysis depends on

the imputations used and δh j will generally be larger). No substantial di�erences are present

that would alter conclusions about choice of k or the type of matching.

3.1.7 DrawSuit: Conclusions regarding matching metric and size of donor pool

�e results for this simulation study based on a very simple model are complicated. While the

factors chosen for an analysis – type of matching and size of donor pool – can be chosen, others

cannot and may be unknown. �is makes it di�cult to recommend a speci�c method when

faced with a dataset. In this situation, some of the factors that were varied in this simulation will

be known, such as sample size. To some extent, the expected strength of association in a dataset

could be assumed ‘known’ from the observed data, which may help to choose an imputation

method, but this could be a�ected by the missing data and may in turn a�ect which imputation

method is chosen. It is also possible to verify the strength of MAR from the observed data, but

ideally any method would be robust to di�erent missingness mechanisms.

With respect to PMM and LRD:

○ Larger k is almost always sensible. For PMM increasing k does result in a bias towards the null
but this was tiny for the case investigated here. For LRD the bias is not present and the value of

20 is uniformly better than any others considered. In the situation considered here a global

residual draw would be very similar to posterior draws and in the presence of heteroscedasticity

larger k may not provide adequate imputations. Since this sort of situation is one reason to
investigate alternatives to posterior draws, global residual draws will not be considered here,

and k is restricted to 20 for LRD.
○ Type 2 matching seems to be better than type 1 in terms of point estimates – these are less biased

and more precise. �e model standard errors a�er type 2 matching are also more accurate.

However, coverage is poor compared to type 1, particularly when k is small. For k ≥ 10, coverage
for type 1 and 2 matching is very similar.

It remains unclear is how these methods will perform in more complex settings – speci�cally

where posterior draws is expected to perform poorly.

3.2 simulation studies designed to thwart posterior draws

�e following two simulation studies are very similar in set up to 3.1 except that the data

generating model for y is linear in x2 instead of x. �e imputation model is (3.3) as in section
3.1.1, imputing missing x (not x2) in exactly the same ways as before, making the naïve and
false assumption that x is linear in y. It is then expected that posterior draws will produce poor
imputations, as demonstrated in the example of �gure 2.2. Issues around the choice of analysis
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Figure 3.7: Typical simulated datasets in U-thwart
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model are not considered here. �roughout, x ∼ N(0, 1) and the data generating model and
analysis model is y i ∼ N(β0 + β1x + βx2 , σ 2y). Although E(β0) = E(β1) = 0 both parameters
are estimated. Interest is in the estimation of β.
Two di�erent non-linear scenarios are investigated: in the �rst, the expected minimum

value of y is set to the mean of x, while in the second the expected minimum of y is set to
one standard deviation below the mean of x, giving ‘U’ and ‘J’ shaped curves (styled U-thwart
and J-thwart respectively). �e same strengths of association and missingness mechanisms are
simulated as in DrawSuit.

Figures 3.7 and 3.8 show typical simulated data over six di�erent settings. Observed values

are represented by purple dots, and the true value for missing values by blue dots. �e R2 = 0.1
setting is shown to the le� and R2 = 0.5 to the right; R2 = 0 is omitted because (y, x) ∼ BVN
with correlation 0, which does not require visualisation. �e complete datasets in the le�-side

panels are identical, as they are in the right-side panels.�e top panels showMCAR, the middle

panels ‘weak’ MAR and the bottom panels ‘strong’ MAR. Notice that under MAR x is more
likely to be missing for higher values of y, meaning missing values tend to occur in the tails.
�is provides a di�cult test for matching methods.

U-thwart is assumed to be less realistic than J-thwart: it seems unlikely that in real datasets

the estimated maximum or minimum of one variable would be at the exact mean of a covariate.

InU-thwart, the imputationmodel, a linear regression of x on y, is null in expectation regardless
of the strength of association. �is provides a particularly tough test for type 1 matching,
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Figure 3.8: Typical simulated datasets in J-thwart
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explained below.

When there is a non-null association in J-thwart, α̂ and α∗ will tend to have the same sign
because the regression of x on y is non null. However the symmetry of U-thwart means that
even if y i is deterministically equal to x2i , the regression of x on y is null. �ere is then a strong
possibility that the signs of α̂ and α∗ will di�er, implying matches may be extremely poor
quality even with very small δh j . Figure 3.9 demonstrates this point, with arrows indicating the

type 1 matching algorithm. In general, type 1 matching will provide poor quality imputations

whenever the sign of α̂ and α∗ di�er.
�e DrawSuit simulation study above (section 3.1) showed consistency across di�erent

sample sizes and proportions of missing values. For the following simulations these factors

are not varied and it is assumed results would remain consistent: results are presented only for

n = 500 and 25% missing x throughout.

3.2.1 U-thwart results

As expected, imputation by posterior draws proves very poor and introduces bias in this scenario

when R2 ≠ 0 (�gure 3.10). PMM and LRD also appears to have �aws, which was less expected.
Bias observed in point estimates is large under type 1 matching as was anticipated (see �gure

3.9) and no method provides anything close to unbiased estimation of β. �e magnitude of bias
is roughly proportional to the size of the true parameter. Bias is slightly reduced by increasing
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Figure 3.9: Issue with type 1 matching for U-thwart. Grey dots are fully observed data; grey

crosses are observations with x missing and y observed; dashed lines show how α̂w is matched
to α∗w to select a donee (hollow blue circle) and impute that value (�lled blue circle)

αz

α∗
z

^

k for MCAR and weak MAR, but even then parameters are underestimated by around 20%.
For strong MAR, increasing k seems to have no e�ect, and increases bias if anything. Posterior
draws are always more severely biased than PMM and LRD.

Type 2 matching is unbiased under MCAR. Under both MAR scenarios there is an upwards
bias for R2 = 0.5, no bias for R2 = 0 and a slight downwards bias for R2 = 0.1. �e upwards bias
for R2 = 0.5 is understandable: both PMM and LRD are imputing values in the tails donated
from observed individuals at or near to xhmin and xhmax, which will induce upwards bias in β̂
(similar to that seen in the le� panel of �gure 3.14, coming later).

Empirical standard errors are larger when type 1 matching is used than type 2 (�gure 3.11).

�is is most pronounced when R2 = 0.5, but is also larger under MAR than MCAR. Type 2
matching always gives less variable point estimates than type 1. As k increases the standard
errors reduce.

Despite the severe bias, low precision, and poorly estimated standard errors, coverage of

con�dence intervals obtained by type 1 matching is not as far from 95% as might be expected

(�gure 3.12). Coverage is too high under MCAR but is o�en closer to 95% under MAR. Inter-

estingly, con�dence intervals for R2 = 0.1 always have better coverage than for R2 = 0 and
R2 = 0.5. Coverage is always lower for R2 = 0.1 than for other values of R2.
Con�dence intervals a�er type 2 matching tend to have worse coverage than type 1, the
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Figure 3.10: U-thwart: Bias in point estimates (Error bars are ±2×Monte Carlo standard errors)
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Figure 3.11: U-thwart: Empirical standard errors (Error bars are ±2×Monte Carlo standard

errors)
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Figure 3.12: U-thwart: Coverage of nominal 95% ci (Error bars are ±2×Monte Carlo standard

errors)
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Figure 3.13: J-thwart: Bias in point estimates (Error bars are ±2×Monte Carlo standard errors)

-5

0

5

-5

0

5

-5

0

5

C
C

C
om

pl
et

e 
da

ta

D
ra

w

PM
M
: k

 =
 1
k 
= 

3
k 
= 

5

k 
= 

10

LR
D
: k

 =
 1
k 
= 

3
k 
= 

5

k 
= 

10

k 
= 

20 C
C

C
om

pl
et

e 
da

ta

D
ra

w

PM
M
: k

 =
 1
k 
= 

3
k 
= 

5

k 
= 

10

LR
D
: k

 =
 1
k 
= 

3
k 
= 

5

k 
= 

10

k 
= 

20

MCAR, Type 1 MCAR, Type 2

Weak MAR, Type 1 Weak MAR, Type 2

Strong MAR, Type 1 Strong MAR, Type 2

R
2
=0 R

2
=0.1 R

2
=0.5

B
ia

s 
in

 p
o
in

t 
es

ti
m

at
e

only exception being under MCAR. Under MAR, coverage is almost always below 95%. Again,

the poorest performance occurs when R2 = 0.5 and this is mainly due to the bias. R2 = 0 and
0.1 give coverage which is relatively much higher but o�en still well below 95%. LRD gives

consistently slightly better coverage than PMM with a corresponding k.

3.2.2 J-thwart results

Bias in J-thwart is shown in �gure 3.13. Interestingly, this is not just a slightly attenuated version

of U-thwart as might be expected. �e bias in posterior draws is very similar, but there are

few similarities to U-thwart when it comes to the matching methods. �ere seems to be no

di�erence between type 1 and 2 matching, which may be because there are fewer cases than
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Figure 3.14: J-thwart: understanding the biases for PMM and LRD

PMM LRD

Observed Missing

y

x

U-thwart where the sign of α̂ and α∗ di�er (see �gure 3.9). �e main contrast is now between
LRD and PMM. Bias is seen to be close to 0 for R2 = 0 and 0.1 but with R2 = 0.5 point estimates
are biased upwards for PMM by up to four (strong MAR), and downwards for LRD by as much

as �ve (weak MAR). Under weak MAR, this bias increases with k for both PMM and LRD, as
well as for LRD under strong MAR.

Figure 3.14 helps to understand the biases observed in �gure 3.13. (�e simulation scenario

corresponds to the bottom right panel of �gure 3.13.) Observed (purple) values are plotted

beneath imputed (blue) values for PMM (le� panel) using k = 1 and type 2 matching. PMM
cannot impute outside the range of observed data, and the censoring of imputed values at

(xhmax) means an upwards bias is introduced. For LRD (right panel), imputed values lie
parallel to α̂1, the slope of the imputation model. Beyond the range of observed values, this
linear function leads to attenuation of the curve, creating downward bias in the coe�cient for

x2. Results are not shown for type 1 matching because of the close similarity.
Type 1 and 2 matching again give very similar results in terms of empirical standard errors

(�gure 3.15). �e main di�erences are again for cases where R2 = 0.5. LRD has larger standard
errors than PMM under MCAR, and increasing k causes the standard errors to increase further.
Under weakMAR, the standard errors for PMM and LRD increase dramatically for R2 = 0.5 but
PMM still returns smaller SEs than LRD. Under strongMAR, standard errors for PMM become

larger than those for LRD. Under MAR larger values of k reduces the empirical standard error.
Although there are few apparent di�erences between type 1 and 2 matching in terms of bias

and standard errors, there are more pronounced di�erences in coverage rates (�gure 3.16). In

particular, type 2 matching seems to be a better choice for LRD, while type 1 matching performs

better for PMM. It is worrying that when R2 = 0.5 the coverage is consistently well below 95%
and in any given set up there may be no method which gives coverage close to 95%.
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Figure 3.15: J-thwart: Empirical standard errors (Error bars are ±2× Monte Carlo standard

errors)
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Figure 3.16: J-thwart: Coverage of nominal 95% ci (Error bars are ±2×Monte Carlo standard

errors)
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3.2.3 U-thwart and J-thwart conclusions

�e results of these simulation studies are awkward: it is not easy to say that a certain value of k,
a certain type of matching and one of PMM or LRD are the best imputation strategies to use in

practice.

Choice of a method depends heavily on:

○ �e strength of association in the complete data and

○ �emissingness mechanism.

Both are unknown, but researchers can make educated guesses through knowledge of the study

design and subject area, and inspection of the observed data.

On balance, my preference is for PMM with k = 10 and type 1 matching.
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4 Multivariable simulation: imputation
transformations, PMM and LRD

4.1 motivation

�e above studies are useful but the simple designs do not re�ect situations typically dealt with

by applied statisticians.�e following simulation study is designed with the aim of investigating

imputation by PMM and LRD in a more realistic scenario.

A further complication considered considered here is that an analysismodelmay not involve

�tting untransformed continuous covariates x but use a transformation of the covariates x,
denoted g(x). �ere may also be di�erent transformations f (x) towards marginal multivariate
normality.

�e simulation procedure involves generating f (x) as (marginal) multivariate normal, and
then simulating binary outcome as linear-logistic in g(x). �ree potential imputation strategies
which may be considered are[6]:

1. Impute untransformed x using a linear imputation model and passively impute g(x).

2. Impute f (x) using a linear imputation model and passively impute g(x). �is strategy
aims to impute from the correct marginal distribution[6].

3. Impute g(x) directly using a linear imputation model. �is may mean the marginal
distributions are poorly approximated, but aims for compatibility with the analysis

model[64, 65, 22].

�e study is designed such that all three imputation approaches are misspeci�ed. �e aim is to

compare the covariate-transformation strategies, and to investigate whether the use of posterior

draws, PMM or LRD is most robust.

4.2 description of trauma data

�e motivating example comes from the analysis of a trauma registry dataset reported by

Stanworth et al[15]; the data were introduced in chapter 1. �e authors aimed to produce a

prognostic model to predict the probability of a patients requiring ‘massive transfusion’ (≥ 10

units of packed red blood cells). Data were collected from �ve geographical locations: London,

Oslo, Germany, Amsterdam and San Francisco, resulting in a dataset of 5,693 patients. Candidate

predictors were those available on, or shortly a�er, arrival to emergency department. A good

model would enable trauma departments to notify blood banks early if a patient is likely to
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require large amounts of blood. �e dataset includes patient age, sex, type of injury (blunt or

penetrating), time from injury to arrival at emergency department, systolic blood pressure at

admission, base de�cit, prothrombin time and injury severity score. Of these variables, only

sex and type of injury are categorical, while the remainder are continuous. Most variables have

some values missing and the missingness pattern is non-monotone (see section 1.2.4). Table 4.1

summarises these variables.

Although missingness is not strictly monotone in the dataset, some of the commonest

patterns are monotone. For the variables with the largest proportion of missing data – time

to emergency dept., prothrombin time, base de�cit and systolic blood pressure – the most

commonmissingness patterns are represented in table 4.2. Although most variables had a small

amount of missing data, this study only involves missingness in these four variables.

In the publication of this study[15], the f (x) transformations of covariates were taken for
the imputation model, the aim being to produce imputed values with approximately the same

marginal distributions as observed values.�ese same transformations were used in the analysis

model because of concerns about incompatibility under any other transformation. However,

the f (x) transformations would not necessarily be the strongest predictors of response and so
may reduce the prognostic ability of the model.

4.3 simulation procedures

Imputation by posterior draws, PMM with type 1 matching and k = 10, and LRD with type

2 matching and k = 20 are compared. �e values of k and matching types chosen are used
because on balance these seem to give the best results in J-thwart. Note that any di�erences

between methods cannot then be ascribed to PMM or LRD because they are confounded by k
and the type of matching.

�e parameters from a complete data analysis of the trauma dataset are unknown. �e �rst

imputed dataset used in the published analysis is therefore used as one possible representation

of the complete data, taken as the basis of this simulation study, providing what are regarded as

the complete data parameters for simulating data. For the covariates listed in the top section

of table 4.1, a transformation towards marginal normality was taken (using Stata’s lnskew0

command) giving f (x). �e correlation matrix Σ̂ for f (x) was then estimated (table 4.3).
A multivariable fractional polynomial (MFP) logistic regression model was �t to the com-

plete dataset[13], allowing a single function of each covariate, giving the transformations g(x)
which best predict massive transfusion. Table 4.1 shows the speci�c transformations used in

f (x) and the powers used in g(x). Prothrombin time and base de�cit have powers for g(x)
that are di�erent to both x and f (x), along with non-trivial proportions of missing data (see
table 4.1). Estimated analysis-model coe�cients for these variables are of primary interest in

this study. Prothrombin time will be particularly interesting as the two transformations are

nothing like each other (in that if ln(x) is normal then x−2 will be severely skewed), while the
logarithmic and square-root transformations for used base de�cit are less dissimilar. Figure 4.1

shows the distributions of three transformations for prothrombin time and base de�cit. Note

that when variables have a large coe�cient of variation all transformations would be essentially

the same.
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Table 4.2: Six most common patterns of missing values in trauma registry data

Systolic Base Prothrom- Time to Frequency

blood de�cit bin time emergency

pressure dept.

✓ ✓ ✓ ✓ 2,451 (43%)

✓ ✓ ✓ . 1,133 (20%)

✓ ✓ . ✓ 562 (10%)

✓ ✓ . . 461 (8%)

✓ . . . 323 (6%)

. . . . 152 (3%)

Figure 4.1: Kernel densities for base de�cit and prothrombin time, shown on the x, f (x) and
g(x) scales, in a single simulated dataset.

Base deficit Prothrombin time

f(Base deficit) f(Prothrombin time)

g(Base deficit) g(Prothrombin time)
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In generating the covariates, resampling and simulation approaches were both considered.

Simulation was favoured due to the potential for ties in δh for PMM and LRD under the

resampling approach. Resampling with replacement might also have given PMM and LRD

with type 2 matching an unfair advantage since observations to be imputed would o�en be

matched to their ‘original’ observations, as noted by Tang et al.[46]. Simulation has an added

advantage that the data generating model for the covariates is known and so the distribution of

f (x) is multivariate normal.
For each replication, f (x) are drawn from a multivariate normal distribution with cor-

relation Σ (see table 4.3). x and g(x) are then calculated. Binary outcome, y i , is simulated
as 1 if expit(β[g(x i)]) > U and 0 otherwise. U is a uniform (0,1) random variable and β are
parameters from the MFP logistic regression model �t to the complete cases, which was used

to determine g(x).
�e correctly speci�ed imputation model for covariates might appear to be to impute

f (x) from a multivariate normal model, because covariates were generated on the f (x) scale.
However, note that because theMFPmodel includes non-zero regression coe�cients imputation

of covariates must condition on y[66]. Although f (x) is generated from a multivariate normal
marginal distribution this does not imply multivariate normality conditional on y (this would
not even be true if be if y were generated including f (x) linearly as covariates). �e correct
speci�cation of the imputation model is therefore not standard.

In keeping with the earlier simulation studies, three di�erent strengths of association are

involved: all coe�cients equal to the ‘truth’ (table 4.1); all coe�cients half the magnitude; and

all double the magnitude. For the ‘halved’ and ‘doubled’ scenarios the intercept term is iterated

until the correct proportion of y = 1 is achieved.
As with the earlier simulation studies, three di�erent missingness mechanisms are con-

sidered: MCAR, the observed strength of MAR and a stronger version of MAR, where the

coe�cients predicting missingness are all doubled. �e dataset had a complex missing data

pattern which the simulations aim to reproduce. MCAR is therefore incorporated into simula-

tions by merging the observed matrix of missingness indicators R with the simulated data and
deleting any values where the indicator is 0. �is preserves the observed pattern of missingness
and does not depend on any observed or unobserved variables, as required by MCAR.

As shown by table 4.2, some of the commonest missingness patterns in the trauma dataset

are monotone. �e imputed dataset used as a possible representation of the complete data was

merged with a dataset containing indicators for whether a variable was actually observed.�ese

indicators were �t as the response in separate logistic regression models and estimates saved.

To simulate missing at random, response for each incomplete variable was simulated using

parameters estimated from its logistic regression on outcome and fully observed covariates.

Although there are alternative ways to simulate MAR (see for example [67] and [68]), these

methods are not used here because in calibrating this simulation study the method used gave

an adequate representation of the missingness patterns in the observed data.

Stata version 11.2 is used for all aspects of these simulations. �e ice command is used

to impute missing values and mim to analyse the m completed datasets. For each simulation
scenario 1,000 replications are used.
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�e simulation process is as follows. For each of the 1,000 datasets of covariates simulated,

response is simulated according to the three strengths of association. Complete data analysis

is run on each. �ree missingness mechanisms are then imposed on the dataset with the

observed strength of association, and the ‘observed’ MAR mechanism on the doubled- and

halved-association datasets. Complete cases analysis is run on these �ve datasets. For each of

these incomplete datasets, MI is performed in nine ways: three transformations f (x), x and
g(x) are then performed, and for each, imputation by posterior draws, type 1 PMMwith k = 10,
and type 2 LRD with k = 20. Each imputation involves 10 cycles of chained equations andm = 5

imputations. Passive imputation of g(x) is used where the active imputation is on f (x) or x.
�e analysis model is �tted to each imputed dataset and estimates are combined using Rubin’s

rules[1].

As with the above simulations, point estimates±2×Monte Carlo error are plotted graphically

across the imputation strategies and methods.

In a change from the various univariable studies, per cent bias is now presented. �is is

favoured because it gives a common scale for the two variables, which have di�erent true

coe�cients. In the univariable studies this was not possible because a zero association case was

included, for which per cent bias would be in�nite for all methods and settings.

4.4 trauma study results

Analysis of complete data and of complete cases is unbiased for both prothrombin time and

base de�cit. With multiple imputation there is some bias, of varying magnitude, for the two

variables: MI introduces more bias for prothrombin time than for base de�cit.�emagnitude of

bias is proportional to the strength of association, with stronger associations displaying greater

relative bias. Bias is worst under MCAR, and shrinks under observed MAR and again under

strong MAR. �is seems to be because missing values occur more in the tails and the imputed

values overstate the curvature of the x−2 function.
�ere are surprisingly few di�erences between the various transformations or imputation

methods, with the exception of posterior draws on x. �is strategy is erratic: for prothrombin
time this is the most biased imputation strategy; for base de�cit it returns lower bias than

other methods under MCAR and observed MAR, but higher under strong MAR. �ere are

no important di�erences between PMM and LRD. As with previous results, there is a large

di�erence between weaker and stronger associations, where the relative bias is proportional to

the true strength of association.

�e complete cases standard error is in most cases larger than any other method, as might

be expected. Complete data would be expected to have the smallest empirical standard errors,

but for both variables most of the imputationmethods are seen to have lower empirical standard

errors. �is is due to their bias towards the null seen in �gure 4.2.

Again, there is little to choose between the three transformations and imputation methods.

For prothrombin time, posterior draws on x are ine�cient, but this e�ect is much smaller for
base de�cit.

Empirical standard errors are very similar across missing data mechanisms. Standard

errors across associations are not compared; a stronger association will return a more variable
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Figure 4.2: Trauma study: Per cent bias in point estimates. Observed association results are

in blue, halved associations in purple, and doubled associations in orange. Error bars are ±2×

Monte Carlo standard errors.
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parameter estimate.

Coverage of con�dence intervals is nominal for both complete cases and complete data for

both variables across all settings.

Coverage a�er MI is less impressive. Due to the large biases for prothrombin time, coverage

of con�dence intervals is generally lower than 95%; underMCAR it is pitifully low for all imputa-

tion strategies. Imputation of x by posterior draws remains the most erratic method – note how
the half and double strengths of association have worse coverage than the observed strength.

For other methods, coverage tends to be slightly low at best. Again, coverage performance is

similar across all transformations and imputation methods except for posterior draws of x.
For base de�cit the biases were smaller than for prothrombin time, and results for coverage

a�er MI tend to be better. Coverage is a little too low for the various imputation approaches

under some settings. Posterior draws on x, always gives nominal or high coverage; the method
is biased and so to achieve this coverage the Rubin’s rules variance has to be overestimated.

Posterior draws on g(x) also achieves slightly better coverage tha other methods. Coverage
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Figure 4.3: Trauma study: Empirical standard errors. Observed association results are in blue,

halved associations in purple, and doubled associations in orange. Error bars are ±2×Monte

Carlo standard errors.
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is at its worst under (1) double-strength association, and (2) MCAR. �e poorest coverage

corresponds to situations with most bias. For base de�cit the safest imputation approach in

terms of coverage seems to be to impute x or g(x) by posterior draws.

4.4.1 Note on complete-case analysis

�e results for complete cases are initially surprising and confusing: with a complex missing

data pattern and a large proportion of missing values, it is unbiased with nominal coverage

rates for all settings (but with low e�ciency).

�is result is in fact not by chance, but is speci�c to the general simulation scenario: the

probability of being a complete case depends on outcome, and the analysis model is logistic

regression. �is mimics case–control sampling. It is well known that the intercept for logistic

regression is biased in case–control studies, but the coe�cient for the exposure of interest is

not, meaning the disease–outcome association can be estimated consistently even though the
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Figure 4.4: Trauma study: Coverage. Observed association results are in blue, halved associations

in purple, and doubled associations in orange. Error bars are ±2×Monte Carlo standard errors.
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incidence of disease cannot. In this study an additional complexity exists because the probability

of being a complete case further depends on fully observed covariates. �is is likely to induce

bias in the complete-cases coe�cients relating to the fully observed covariates, but not those

relating to partially observed covariates.

Although this is a quirk relating to logistic regression, it is worth noting for any studies

similar in design, assuming only the incomplete covariates are of substantive interest. Because

estimates from complete cases are consistent, an MI-based estimate that is di�erent may ratio-

nally be taken as somewhat biased.�e imputation model may then need calibrating to provide

a result close to complete cases.

4.5 trauma study conclusions

�e di�erences between results for base de�cit and prothrombin time are very interesting.

�ere are large disparities which are presumably related to the speci�c g-transformation (the
relationship between f (x) and x was similar for both). For base de�cit this is

√
x, which is not
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dissimilar to its f -transformation, ln(x). However for prothrombin time the g-transformation
is x−2, which is an extremely skewed distribution if ln(x) follows a normal distribution.
Despite the arguments for PMM and LRD being potentially useful in this sort of scenario,

the results of this study seem to go against intuition: posterior draws are rarely much worse

than an equivalent PMM or LRD method and can sometimes provide better inference. �is is

a surprising contrast to the earlier simulation studies described in section 3.2.2, where both

methods appeared to be more robust than posterior draws when the imputation model was

misspeci�ed and incompatible with the analysis model.
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5 Multiple imputation for an incomplete
covariate which is a ratio

�e following chapter has been published as a research article by Statistics in Medicine[16]. �e
authors are myself, my supervisors and my advisors. �is chapter is the same as the accepted

manuscript and so should stand alone. �e notation is similar to the rest of the thesis but note

that p here denotes the number of covariates in the analysis model; this is di�erent to its use in
chapter 6.

5.1 abstract

We are concerned with multiple imputation of the ratio of two variables, which is to be used

as a covariate in a regression analysis. If the numerator and denominator are not missing

simultaneously it seems sensible to make use of the observed variable in the imputation model.

One such strategy is to impute missing values for the numerator and denominator, or the

log-transformed numerator and denominator, and then calculate the ratio of interest; we call

this ‘passive’ imputation. Alternatively, missing ratio values might be imputed directly, with or

without the numerator and/or the denominator in the imputation model; we call this ‘active’

imputation. In two motivating datasets, one involving body mass index as a covariate and

the other involving the ratio of total to high density lipoprotein (HDL) cholesterol, we assess

the sensitivity of results to the choice of imputation model, and as an alternative explore fully

Bayesian joint models for the outcome and incomplete ratio. Fully Bayesian approaches were

unusable in both datasets due to computational problems when estimating them inWinbugs. In

our �rst dataset, multiple imputation results are similar regardless of the imputation model; in

the second, results are sensitive to the choice of imputation model. Sensitivity depends strongly

on the coe�cient of variation of the ratio’s denominator. A simulation study demonstrates that

passive imputation without transformation is risky because it can lead to downward bias when

the coe�cient of variation of the ratio’s denominator is larger than about 0.1. Active imputation

or passive imputation a�er log-transformation are preferable.

5.2 introduction

Missing values of covariates are a common problem in regression analyses. Missing data are

classi�ed as beingmissing completely at random (MCAR) if missingness does not depend on
observed or unobserved data,missing at random (MAR) if missingness does not depend on
unobserved data given observed data, ormissing not at random (MNAR) if missingness depends
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on missing data even given the observed data[2]. Amongst methods that attempt to deal with

missing data, rather than discarding them,multiple imputation (MI) can provide valid inference

under MAR, and has become popular in practice since its inception over 30 years ago[69].

Brie�y, MI works as follows. Missing values are replaced with imputed values, drawn from

their posterior predictive distribution under a model given the observed data. We term this

model the imputation model. �e process is repeatedM > 1 times, givingM imputed datasets
with no missing values. Each imputed dataset is analysed using the model that would have

been used had the missing values been observed. We call this model the analysis model. �eM
estimates of each parameter of interest are then combined using ‘Rubin’s rules’[1]. When the

imputationmodel is correctly speci�ed Rubin’s rules can provide standard errors and con�dence

intervals that fully incorporate uncertainty due to missing data.

MI is an attractive tool for analyses with missing data: the nuisance issue of modelling

missing data is neatly separated from the analyses of substantive interest; the imputation model

can make use of auxiliary variables that it would be undesirable to include as covariates in the

analysis model (such as post-baseline measurements in a randomised controlled trial); the

sameM imputed datasets can be used for a variety of substantive analyses; and the imputation
model can be tailored to re�ect possible departures from MAR, which is helpful for sensitivity

analysis.

Ratios are commonly used as covariates in regression based analyses; examples are body

mass index (BMI =Weight in kg ÷ (Height in m)2)[17], waist–hip ratio[70], urinary albumin-

to-creatinine ratio (Albumin concentration in mg/g ÷ Creatinine concentration in mg/g)[71],

and what we refer to as ‘cholesterol ratio’ (Total cholesterol in mg/dL ÷HDL in mg/dL)[20].

An individual’s ratio measurement may be missing for one of three reasons:

1. �e denominator is missing

2. �e numerator is missing

3. Both components are missing

For both 1 and 2 the ratio is semi missing rather than fully missing; that is, one of the two

components is observed. Ratio missingness due to more than one of these reasons for di�erent

observations in the same dataset means it is not obvious how best to impute the ratio. Amixture

of reasons 1 and 2 is particularly awkward.

One reasonable question at this stage is, ‘Why use a ratio covariate?’�ere are mathematical

arguments against their use[72]. Senn and Julious claim ratios are always poor candidates

for parametric analysis unless the components, and therefore the ratio, follow a lognormal

distribution, or the ratio’s coe�cient of variation is small[73]. We make three points. First,

applied researchers do use ratios and we are unlikely to persuade them to stop, especially since
the use of certain ratios is well established; we should be pragmatic and try to guide practitioners

on how to analyse datasets involving incomplete ratio covariates. Second, arguments against

ratios assume that a ratio is not the correct functional form for a covariate, but it may be. �ird,

ratios are not used by accident: a ratio may be of genuine substantive interest when its separate

components are not. For example, BMI is widely used because it measures weight-for-height
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and as such is regarded as a proxy measure of body fat. Substantive interest is in the in�uence of

body fat on outcome, not weight or height. Weight alone may be considered a measure of body

fat but BMI is measured with less error since it aims to remove the e�ect of height (although

it may not do so completely or accurately). It is our opinion that when researchers propose a

relationship they believe, such as the in�uence of a ratio on outcome, this should not be cast

aside lightly. �e substantive question should not be altered for statistical convenience unless

we have little choice.

We assume the aims of analysis are unbiased estimation of a parameter describing the

association between a ratio and some outcome, con�dence intervals with the ascribed coverage

and fully e�cient parameter estimation. �ere may be other covariates in the analysis model,

and primary interest may be in one of these, but the properties of the ratio parameter estimator

are important nonetheless. �ere has been no previous methodological work on MI for a ratio

covariate, although [6] and [26] allude to the issue, but practitioners are imputing ratio covariates

nonetheless[19]. We aim to highlight issues with imputing an incomplete ratio covariate and to

identify imputation strategies that are sensible practicable for applied statisticians.

Despite the positive features listed above, MI is not the only approach to dealing with

missing covariates, nor is it necessarily the best approach for any given analysis. Joint models

for the outcome and covariates may be superior because they make use of the full likelihood in

a coherent way. In this paper, we also investigate results for fully Bayesian joint models.

�e remainder of this paper is as follows. In section 5.3 we introduce and describe our

two motivating datasets; in section 5.4 we consider candidate models for imputing incomplete

ratios; section 5.5 presents two case studies, contrasting the di�erent imputation models (for the

datasets introduced in section 5.3); section 5.6 presents a simulation study in a simpler setting

than our case studies; section 5.7 is a discussion.

5.3 datasets: aurum and epic-norfolk

For both of our datasets, regression analyses involving a ratio as a covariate have previously

been published[17, 20]. �e analysis models used in our example analyses are not the same as

the original articles because (i) we want to keep the analysis models and imputation models

relatively simple and (ii) we do not wish to make any substantive claims about these data.

�erefore we have chosen to use analysis models resembling but not matching those used in

the earlier publications[17, 20].

For both datasets the analysis model is the Cox model,

h i(t ∣ x i) = h0(t)exp(
p

∑
c=1

βcxc i) , (5.1)

where h0(t) is the nonparametric baseline hazard function at time t, h i(t ∣ x i) is the hazard

for the ith individual and xc i is the value of the cth covariate in the ith individual. Survival (or
censoring) times are assumed to be fully observed.
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Table 5.1: Aurum summary of covariates and of the analysis model and components of BMI;

n = 1, 348

Covariate Frequency Mean (SD) or

missing (%) frequency (%)

x1 Age (years) 0 (0%) 37 (9)

x2 Sex: male 0 (0%) 542 (40%)

x3 Hæmoglobin (g/mL) 143 (11%) 11.4 (2.3)

x4 *Viral load (copies per mL) 162 (12%) 4.8 (0.8)†

x5 *cd4 count (cells per µL) 94 (7%) 8.9 (4.5)†

x6 = a1/a2 BMI (kg/m2) 381 (28%) 21.9 (4.9)

a1 ‡Weight (kg) 376 (28%) 58 (12)

a2 ‡Height (m2) 275 (20%) 2.7 (0.3)†

*Transformation used for viral load is log
10
(x4); transformation used for cd4 count is

√x5.
�ese are standard transformations in HIV research, and we use them in the imputation models

and the analysis models.

† Summarised on transformed scale.

‡ Only enters into the analysis model via BMI

5.3.1 �e Aurum cohort

�eAurum dataset comes from a South African cohort study of 1,350 HIV infected participants

starting antiretroviral therapy. Participants were recruited from 27 centres in �ve provinces

between February 2005 and June 2006, and followed to March 2007. Information was recorded

on a range of baseline characteristics and participants were followed up for death. �e aim of

the work by Russell et al.[17] was to estimate the in�uence of hæmoglobin on mortality using a

Cox model. 1,348 of the participants had a recorded time of death/censoring, with 185 deaths

occurring within the follow-up time. We restrict our analysis to these 1,348 individuals.

�e analysis model is (5.1) with p = 6, where x1 , . . . , x6 are age in years, sex, hæmoglobin
in g/mL, viral load in copies per mL, cd4 count in cells per µL and BMI. Table 5.1 provides a
summary of these covariates and of weight and height. Any transformation of the covariate used

in the analysis model is given, and the transformed measure is summarised in the �nal column.

Note that 381 (28%) patients are missing a weight and/or height measurement, but only �ve of

these have height missing when weight is observed. Five of the covariates are continuous and

one (sex, which is complete) is categorical. Hæmoglobin, weight, height2 and BMI appear to be

approximately normal on the transformed scale, while (log) viral load and (square root of) cd4

count do not. We focus on the estimation of β3 and β6, the log hazard ratios for hæmoglobin
and BMI respectively (hæmoglobin was the focus of the original publication[17]).

5.3.2 �e Epic-Norfolk cohort

�e Epic (European Prospective Investigation Into Cancer and nutrition)-Norfolk study is a

large cohort study designed to investigate the link between dietary factors and cancer. Dietary

and non-dietary factors were collected at baseline and participants were followed up for cancer
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Table 5.2: Epic-Norfolk summary of covariates of the analysis model and of components of

cholesterol ratio; n = 22, 754

Covariate Frequency Mean (SD) or

missing (%) frequency (%)

x1 Age (years) 0 (0%) 59 (9)

x2 Sex: male 0 (0%) 10,145 (45%)

x3 Smoking status: ever smoked 0 (0%) 11,971 (53%)

x4 Systolic blood pressure (mm Hg) 52 (<1%) 135 (18)

x5 Diastolic blood pressure (mm Hg) 52 (<1%) 82 (11)

x6 = a1/a2 Cholesterol ratio 2,155 (9%) 4.7 (1.6)

a1 †Total cholesterol (mg/dl) 1,514 (7%) 6.2 (1.2)

a2 †HDL (mg/dl) 2,155 (9%) 1.4 (0.4)

† Only enters into the analysis model via cholesterol ratio

and non-cancer outcomes. We use some of the non-dietary characteristics as covariates and

time to death as the outcome.

�e analysis model is (5.1) with p = 6, where x1 , . . . , x6 are age, sex, smoking status, systolic
blood pressure, diastolic blood pressure and cholesterol ratio. �ese six covariates and total

cholesterol and HDL are summarised in table 5.2; no transformations are used. In total, 2,155

(9%) participants are missing a total cholesterol and/or HDL measurement. Total cholesterol

is always missing when HDL is missing. Incomplete covariates are all continuous and appear

approximately normal, except for HDL, which is positively skewed. We focus on the estimation

of β6, the log hazard ratio for cholesterol ratio.

5.4 methods and models

5.4.1 Model for analysis

�e analysis model is the Cox model (5.1) with p covariates (x1 , . . . , xp)made up of the ratio
xp = a1/a2 and p − 1 other covariates (x1 , . . . , xp−1), which we denote (z ,w) where z are
incomplete and w are complete (in both example datasets we have z and w).

5.4.2 Models for missing data

Candidate models for the covariates are listed in table 5.3 (note the Label column, which we
henceforth use to refer tomodels). ForMI the outcomemust be explicitly included as a covariate

in the imputation model[66]. In table 5.3 we denote outcome by f (y i). For the Cox model
f (y i) involves a censoring indicator and the Nelson–Aalen estimate of the cumulative hazard
function to the survival time (an approximation to the cumulative baseline hazard function

H0(t)[74]), included as separate covariates in the imputation model. When the analysis model
is linear or logistic regression f (y i) = y i .
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Table 5.3: Candidate imputation models for x i

Imputation model Label Relationship to

analysis model

(z i , xpi ∣ f (y i),w i) ∼MVN m1 Compatible

(z i , xpi , a1i ∣ f (y i),w i) ∼MVN m2 Semi-compatible

(z i , xpi , a2i ∣ f (y i),w i) ∼MVN m3 Semi-compatible

(z i , xpi , a1i , a2i ∣ f (y i),w i) ∼MVN m4 Semi-compatible

†(z i , a1i , a2i ∣ f (y i),w i) ∼MVN m5 Incompatible

‡(z i , ln(a1i), ln(a2i) ∣ f (y i),w i) ∼MVN m6 Incompatible

† Passive imputation of xpi = a1i
a2i
is required

‡ Passive imputation of xpi = exp[ln(a1i) − ln(a2i)] is required

5.4.3 Compatibility in relation to active and passive imputation

Multiple imputation can provide an approximation to �tting a joint model if the models for

imputation and analysis are compatible[75], where a joint model may be either maximum

likelihood or Bayesian (if the joint model is Bayesian, compatibility also requires that priors are

non-zero over the entire parameter space). Considering whether or not the models m1–m6 are

compatible with the analysis model helps us to formulate hypotheses and understand future

results.

By ‘compatible’, we mean a joint model exists that implies both the imputation model and

the analysis model as conditional models.�is does not mean the joint model is correct, but that

the analysis model and imputation model are both implied by it and so the multiple imputation

procedure is coherent. Appendix C.1 describes how to tell if models are compatible, and works

through two examples of imputation models where one is compatible and the other is not (C.1.1

and C.1.2 respectively).

Non-compatibility of models is not always problematic; Meng[22] and Rubin[23] have

both shown that there can be some bene�t to using imputation models that correctly draw
on information not used by the analysis model. Collins, Schafer and Kam demonstrate via

simulation that auxiliary variables (i.e. variables that are in the imputation model but not

the analysis model) are unlikely to be harmful, and may be of bene�t by making the MAR

assumption more plausible, while ‘restrictive’ imputation strategies can lead to problems[24].

We therefore distinguish between two types of non-compatibility: if there is a special case of

the imputation model that is compatible with the analysis model, as when it includes auxiliary

variables, then the imputationmodel is termed ‘semi-compatible’ (following Liu et al[25]); other-

wise the imputationmodel is simply termed ‘incompatible’. In previouswork, imputationmodels

that are compatible or semi-compatible appear to perform well even when misspeci�ed[65, 64],

but this is not necessarily true for imputation models that are incompatible[64, 24]. We hypoth-

esise that imputation models that are compatible or semi-compatible will be more robust to

modest degrees of misspeci�cation than models that are incompatible.

Imputation of a ratio is done either actively or passively. Of the imputation models listed
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in table 5.3, only m1 is compatible with the analysis model. Of the remaining models m2–m4,

which use active imputation, are semi-compatible because they include a1 and/or a2, which do
not appear in the analysis model, as auxiliary variables in the imputation model; models m5

and m6, which use passive imputation, are incompatible with the analysis model because xp is
present in the analysis model but not in the imputation model, while a1 and a2 are present in
the imputation model but not in the analysis model. We expect models m5 and m6 to be prone

to bias and poor coverage, despite making use of all the observed data when imputing the ratio.

5.4.4 Motivation for missing data models

�e choice of a model listed in table 5.3 might be motivated by the way it makes use of observed

information in a1 , a2, which will depend on the pattern of missingness. Model m1 may be a
good approach when a1 , a2 are missing simultaneously. If a1 is only missing when a2 is missing,
m2 may be used, because model m2 makes use of observed a1 values when imputing the ratio,
and there is no information in a2 about missing values of a1 that might be used to improve
imputation of xp . (Conversely, if a2 is only missing when a1 is missing, m3 may be attractive.)
Note that m2 and m3 do not respect the deterministic relationship xp = a1/a2.
Model m4 makes use of information on a1 , a2 by imputing both alongside xp ; this may be

motivated by having a1, a2 or both missing. �is is similar to the approach advocated by von
Hippel[65], which has been termed just another variable (JAV)[6, 64]. As with m2 and m3, the
model ignores the deterministic relationship xp = a1/a2 and assumes multivariate normality.
�is will appear a bizarre assumption; it is clearly wrong because the distributions of two of

these variables must de�ne the distribution of the third, yet so�ware does not know this and

will sample without complaint. If the assumption made by m4 is uncomfortable, we may be

attracted to m5 or m6.

Model m5 is incompatible with the analysis model (see appendix C.1.1), and requires xp to
be imputed passively from imputed values of a1/a2. �e components a1 , a2 are not auxiliary
but completely determine the values of xp . �e ratio of a1 and a2, which are both normal, is
expected to be heavy tailed.

m6 alters the problem by transforming xp into a linear function of its logged components
and passively imputing it. Model m6 guarantees that imputed values of a1 , a2 are positive, as
with all observed ratios. While this may be desirable it is important to remember that our

primary goal is valid inference, and we are not trying to recreate the missing values[23, 76]. �e

cosmetics of this model should therefore be a secondary consideration.

We have omitted from table 5.3 the imputation model (z i , ln(xpi) ∣ f (y i)) ∼MVN. We do
not consider this because ln(xp) = ln(a1) − ln(a2) where ln(a1) and ln(a2) are normal, and
the sum of two normal distributions is normal. Model m6 is therefore equivalent to imputing

ln(xp), but makes more use of the observed data when components are not simultaneously
missing. �e only setting where modelling ln(xp) alone is appropriate is if (a1 , a2) are always
either both observed or both missing. In this case the model would then be equivalent to m6.

To summarise our discussion of the models in table 5.3, there are conceptual problems with

each one: Model m1 is compatible with the analysis model, but does not use information on

observed a1 or a2 when the other component is missing; m2–m4 are likely to be misspeci�ed;
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and m5 and m6, the two models which make use of all the observed information on a1 and a2
and respect the relationship xp = a1/a2, are incompatible with the analysis model.

5.4.5 So�ware and details of imputation

Weused Stata 12’s mi suite forMI in our case studies and simulations in section 5.6[77, 78].Mul-

tiple imputations were produced using mi impute mvn and Rubin’s rules were implemented

using mi estimate.

Advice on the number of imputations typically suggests a small number (fewer than 10) is

su�cient[79]. �is idea comes from comparing the length of con�dence intervals based on

M imputations to intervals based on∞ imputations. Our view on choosing the number of
imputations, described in White, Royston andWood[6], is slightly di�erent, being based on

the reproducibility of analyses. To achieve negligible Monte Carlo error from our MI analyses,

we useM = 300 imputations for the Aurum case study, andM = 100 for EPIC-Norfolk. Note

that we are not advocating such large values ofM in general.
Our imputation models, all of which are based on a multivariate normal model, used a

burn-in of 1,000 iterations of the MCMC chain. �erea�er, imputed datasets were stored at

every 10th iteration of the chain.

5.5 case studies

�is section presents the results for multiple imputation. However, in analyses with missing

data, Bayesian models are widely regarded as a sensible alternative if there is reason to be

suspicious of MI results. Bayesian analyses of the Aurum and Epic datasets, corresponding to

the MI approaches presented in this section, are outlined and presented in appendix C.2.

5.5.1 Imputing body mass index in the Aurum cohort

Figure 5.1: Results from analyses of Aurum data under di�erent models for imputing BMI. �e

estimated fraction of missing information (FMI) is given next to MI analyses.
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�eMI procedures took between 2min 7sec (m1) and 2min 44sec (m6) to impute 300 times,

�t the analysis model in each imputed dataset and use Rubin’s rules to combine estimates.

Figure 5.1 shows estimates resulting from di�erent imputation models. �ere is very little

di�erence in the point estimates or width of con�dence intervals; all returned essentially the

same result.�e number of imputations meantMonte Carlo error was negligible, at a maximum

reaching 1/50th of the estimated standard error.�e relative e�ciency vs. in�niteM was > 0.999
for all models. For both hæmoglobin and BMI, theMI estimates gave a slight change in the point

estimate and a small reduction in the width of con�dence intervals as compared to complete

cases.

5.5.2 Imputing cholesterol ratio in the Epic-Norfolk cohort

Figure 5.2: Results from analyses of Epic-Norfolk data under di�erent models for cholesterol

ratio. �e estimated fraction of missing information (FMI) is given next to MI analyses.
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For MI of the Epic-Norfolk data, M = 100 was used. We used a smaller number of im-

putations than in Aurum because only 9% of individuals were missing cholesterol ratio. MI

took between 19min 2sec (m1) and 21min 0sec (m5) to impute 100 times, analyse each imputed

dataset and combine estimates using Rubin’s rules. �e relative e�ciency vs. in�nite M was
> .999 for all models except m5, where relative e�ciency was .991.

�ere was consistency between estimates frommodels that impute cholesterol ratio directly

(�gure 5.2). Monte Carlo error for point estimates was negligible (around 0.0005, less than

1/50th of the standard error) for all models except m5 where it was 0.003. MI models are less

consistent than in the AurumMI analyses but would in 5 of 6 cases give similar substantive

conclusions. �ese estimates are also very similar to complete-cases analysis and, interestingly,

the imputation model that passively imputes cholesterol ratio through log-total-cholesterol and

log-HDL. However, the estimate a�er the standard passive imputation approach (m5) is much

closer to the null, with wider con�dence intervals.

Figure 5.3 demonstrates the problem with model m5 in the Epic-Norfolk data, plotting

imputed values of cholesterol ratio from a single, typical, imputed dataset under models m1–m6

alongside 2,155 randomly selected observed values. �e largest observed value of cholesterol

ratio was 15.7. Note that for model m5 some imputed values were very large or very small;

plotting these extreme values distorted the y-axis and so we have censored the y-axis below
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Figure 5.3: Dotplot of imputed cholesterol ratio for single (typical) imputed datasets in Epic-

Norfolk undermodelsm1–m6. Imputed values of xp < 3 or xp > 20 are not plotted but represented
according to rank; imputed values of (xp , a1) are listed.

−3 and above +20, ranking and listing the values of imputed HDL and cholesterol ratio values

outside of this range.

�e problem with m5 arises because the mean and SD of HDL are 1.42 and 0.42 respectively,

meaning its coe�cient of variation (CV) is 0.30, resulting in a danger of a2 being imputed close
to zero or even negatively. �is CV is far larger than in the Aurum data, where CV(height2) =

0.11 and imputed values are never close to zero (data not shown).

Figure 5.3 also highlights the di�erence between the other imputation models. Imputation

on the log scale (m6) is the only model to guarantee a1 , a2 and xp are positive. Further, the
imputed values closely resemble the observed. m1–m4 can and did impute some xp < 0; these
models all assume xpN and so the distribution of imputed values is symmetrical about its mean.
By looking at �gure 5.3, model m6 appears to be appealing, while from a statistical inference

perspective (�gure 5.2), there appears to be little to choose between m6 and m1–m4. From all

perspectives m5 is a poor choice.

5.5.2.1 Predictive mean matching

A natural question about model m5 that arises from �gure 5.3 is whether removing the high-

leverage points could reduce the bias. For example, a truncated normal imputation model could

be used to invoke the constraint xp > 0, which would remove the negative outliers of model m5.
A better alternative, which can also remove the positive outliers, is predictive mean matching

(PMM)[33, 28, 6]. Brie�y, the imputation model is �tted and, for each individual with a missing

value, the k individuals (‘donors’) with observed values with the closest predicted mean are
identi�ed. One of these is selected at random and their value ‘donated’ as the imputed value.

�is ensures that imputed values are within the range of observed values.

To improvemodelm5, PMMismost easily implemented in a chained equations procedure[6].
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Imputation of a1 and a2 uses PMM, and xp is passively imputed. �e largest possible imputed
value of xp is then the ratio of the largest observed value of a1 to the smallest observed value of
a2 (and vice versa for the smallest imputed value of xp).
We used this imputation model on the Epic-Norfolk data, using k = 10 and storing imputed

values a�er 10 cycles of chained equations. �is reduced the bias of model m5, giving an

estimated log-hazard ratio of .119 (95% CI .079–.159). See appendix C.3 for the full results.

5.6 simulation study

5.6.1 Design

We performed a simulation study designed to investigate models m1–m6 in a simpler setting

than the two case studies. With xp as the only covariate and a continuous outcome y, we
investigated the performance of the imputation models and how this varied with the strength

of xp–y association and the coe�cient of variation of the ratio’s denominator, CV(a2). �is
a�ects the distribution of xp and we hypothesise that when CV(a2) is large model m5 will be
biased. An imputed value of a2i may be very small, meaning the corresponding value of xpi will
be large, and possibly outside the range of observed xp . �e xpi will thus have high leverage.
For such values, there are unlikely to be appropriately large or small y to preserve the true xp–y
relationship, which leads us to expect bias towards no association.

Scenarios investigated include two values of CV(a2): 0.1, taken from height2 in the Aurum
data, and 0.3, taken from HDL in the Epic-Norfolk data; these are varied factorially with

R2 values of 0.1 and 0.3. All simulations were performed using Stata 12[77]. Our simulation
procedures were as follows:

1. Simulate n = 500 complete values of ln(a1), ln(a2) to follow a bivariate normal distribu-
tion. In our �rst scenario the mean, standard deviation and correlation are taken from

ln(weight) and ln(height2) in the Aurum data: ln(a1) has mean 4 and SD 0.21, ln(a2)
has mean 0.97 and SD 0.11, and Corr(ln(a1), ln(a2)) = 0.22. �is gives CV(a2) = 0.1.

2. Generate complete xp = exp(ln(a1) − ln(a2)), meaning that xp follows a lognormal
distribution. For the ratios and components in our two example datasets the lognormal

distribution seems to be a suitable choice.

3. Simulate y ∼ N(β0 + β1xp , σ 2). We used the same value of β1 (arbitrarily 2) throughout
tomake bias comparable across all simulation settings. To vary the strength of association

we altered σ 2 to achieve the desired R2.

4. Simulate binary indicators of response, R1 and R2 for a1 and a2 respectively. Each R is
generated independently from the model logit{P(R = 1)} = γ0 + γ1 y. Under MCAR
γ1 = 0. UnderMAR, γ1 is chosen so that ROC analysis of y versus an indicator of response
R produces a mean area under the curve of 0.65. �is is to achieve the same degree of
MAR across scenarios. We then alter γ0 so that P(R1 = 1) = P(R2 = 1) = 0.75. Because
γ1 has the same sign for both R1 and R2 and both depend on y, the probability of a1 , a2
being missing simultaneously is slightly larger under MAR than MCAR. �is means
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the overall proportion of observations missing xp is slightly smaller under MAR (42%
missing xp) than MCAR (44% missing xp).

5. Set a1i to missing if R1i = 0 and a2i to missing if R2i = 0 and xpi to missing if R1i = 0 or
R2i = 0.

6. Impute xp �ve times using each of the models m1–m6 (table 5.3).

7. Fit the correct analysis model to each imputed dataset and combine results using Rubin’s

rules.

We used 5000 replicates of this process under each combination of simulation settings.

Interest is in β1. Bias, coverage of 95% con�dence intervals and e�ciency of β̂1 (expressed by
the empirical standard error, SD(β̂1) over all replications[63]) were calculated under models
m1–m6, with analysis of complete data (i.e. before any data are set to missing) and complete

cases (dropping observations with missing xp) also provided for reference.

5.6.2 Results

Table 5.4 summarises the results of our simulation study. Results of the complete data and

complete cases analyses are both as expected. Complete data is always unbiased with 95%

coverage and the smallest empirical standard error of all methods. Complete cases is unbiased

under MCAR but biased under MAR. Coverage is correspondingly low and e�ciency is lower

than complete data.

m1 is mainly unbiased, but there is a small upward bias under MAR and R2 = 0.3 and
coverage is slightly low when data are MAR.�is is perhaps because it assumes normality for

x when it is actually lognormal. m1 also tends to be ine�cient compared to other imputation
models, as would be expected, regardless of the missingness mechanism.

With this general pattern ofmissingness, m3 is usuallymore biased thanm2, though coverage

tends to be similar (except where CV(a2) = 0.3 and R2 = 0.3). E�ciency of the m2 and m3 seems
to depend on CV(a2) and R2. Model m4 has similar bias to m2 and m3; at worst this reaches
about 4% with both large CV(a2) and R2. Empirical standard errors for m4 are at least as small
as m2 and m3, while coverage tends to be good except when both CV(a2) and R2 are 0.3.
Model m5 performswell in the two scenarios whenCV(a2) = 0.1.�ere is a small downward

bias but e�ciency and coverage are both good compared with other methods. However, when

CV(a2) = 0.3 we observe unacceptable bias towards the null and lower e�ciency than other
methods, although coverage is still over 90%. When considered alongside bias this coverage

implies that while the empirical standard error is large, the estimated standard errors are even

larger, reducing the e�ect of the large bias on coverage and implying low power.

m6 is more biased than m5 when CV(a2) = 0.1, but much less so when CV(a2) = 0.3. Across
all of our settings, it is more e�cient than m1–m5 and with coverage close to 95%. If the small

bias seems acceptable then this is the best imputation model.
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Table 5.4: Simulation results: bias, coverage and e�ciency of di�erent imputation models

R2 CV(a2) Imputation Bias (β1 = 2) Empirical SE Coverage

model MCAR MAR MCAR MAR MCAR MAR

0.1 0.1 Complete data 0.000 0.273 95.2

Complete cases 0.003 –0.172 0.366 0.352 95.1 92.6

x m1 –0.005 –0.004 0.368 0.386 93.8 94.9

x , a1 m2 –0.001 0.002 0.333 0.345 94.6 94.7

x , a2 m3 –0.009 –0.003 0.363 0.383 94.6 94.9

x , a1 , a2 m4 –0.005 0.005 0.330 0.342 94.7 95.0

a1 , a2 m5 –0.017 –0.016 0.328 0.337 94.8 95.0

ln(a1), ln(a2) m6 –0.016 –0.034 0.329 0.332 94.9 95.1

0.1 0.3 Complete data 0.006 0.267 95.3

Complete cases 0.001 –0.168 0.359 0.351 95.3 92.9

x m1 –0.009 0.005 0.358 0.385 94.7 94.9

x , a1 m2 –0.007 0.014 0.348 0.372 94.9 94.9

x , a2 m3 –0.001 0.031 0.334 0.362 95.4 95.0

x , a1 , a2 m4 –0.001 0.038 0.325 0.346 95.0 94.7

a1 , a2 m5 –0.562 –0.665 0.350 0.334 94.3 92.6

ln(a1), ln(a2) m6 –0.038 –0.064 0.313 0.318 95.8 95.4

0.3 0.1 Complete data 0.003 0.137 95.2

Complete cases 0.001 –0.139 0.183 0.188 95.5 88.5

x m1 –0.005 0.031 0.171 0.187 95.3 94.0

x , a1 m2 –0.003 0.026 0.159 0.171 95.8 95.0

x , a2 m3 –0.007 0.029 0.170 0.188 95.2 93.8

x , a1 , a2 m4 –0.003 0.026 0.159 0.171 95.9 94.6

a1 , a2 m5 –0.016 0.000 0.158 0.168 96.1 95.3

ln(a1), ln(a2) m6 –0.016 –0.031 0.158 0.163 96.2 95.6

0.3 0.3 Complete data –0.002 0.137 95.0

Complete cases –0.006 –0.143 0.184 0.192 94.9 88.5

x m1 –0.009 0.054 0.174 0.196 94.2 93.0

x , a1 m2 –0.012 0.057 0.172 0.193 94.8 93.3

x , a2 m3 –0.010 0.076 0.170 0.191 94.3 91.5

x , a1 , a2 m4 –0.009 0.080 0.167 0.187 94.2 91.8

a1 , a2 m5 –0.580 –0.814 0.287 0.300 94.3 93.3

ln(a1), ln(a2) m6 –0.051 –0.070 0.162 0.164 95.1 94.6

89



5.7 discussion

We have presented the results of two case studies involving commonly used ratios and a

simulation study based in part on these datasets. A key message is the caution against passive

imputation of a1 and a2 without prior transformation. Super�cially, the approach appears to
make more use of the available data, however it is o�en ine�cient and can su�er from large

bias. Our analysis of the Epic-Norfolk data demonstrated this problem in practice. However,

in our Aurum case study, the use of passive imputation appeared to make little di�erence to

the substantive results compared to active imputation. Our simulation study con�rmed that

problems arise when CV(a2) is large. Note that a ratio with very small CV(a2) is unlikely to be
used in applied work (unless CV(a1) is also very small) because as CV(a2) → 0, xp becomes
a function of a1 divided by a constant. We therefore recommend that incomplete ratios be
imputed actively, or passively a�er log transformation as in model m6.

In considering models for missing data, joint models for the covariates and outcome are

attractive because they use the full data likelihood in a coherent way. In our two case studies

we attempted to �t fully Bayesian joint models and summarise posterior distributions for

parameters of interest. Computational problems prevented this approach from being useful. In

one dataset some of the models did not appear to converge to any true posterior distribution

(or if they did, results were extraordinarily sensitive to the choice of model for the ratio). In the

other dataset, it was not possible to load the observed data into Winbugs and so the attempt

was abandoned.

Compatibility is a useful concept for considering whether various imputation models

are sensible. We hypothesised that models m1 and m2–m4 would perform well due to being

compatible and semi-compatible respectively, while models m5 and m6 would perform poorly

because of being incompatible. In our simulations, m1–m4 did tend to perform well despite

being misspeci�ed, and model m5 did o�en perform poorly. In our Epic-Norfolk example,

where model m5 gave nonsense results, problems could be identi�ed by inspecting the imputed

values of xp .
Model m6 was surprisingly as good as any other model considered throughout. Despite

being more robust than m5, we know it is not completely ‘safe’. In our simulation study, the

imputationmodel assumed (log(a1), log(a2) ∣ y)N, and since log(xp) = log(a1)− log(a2), this
implies (log(xp) ∣ y)N.�e imputation model therefore has mean function log(xp) = α0 +α1 y,
while the analysis model has mean function y = β0 + β1xp . In further simulations, we noted
that m6 was still robust when R2 = .5 and CV(a2) = 0.3 (results not shown). We can provide no
guarantee for greater values other than that this model will eventually fall apart. However, it is

our experience that associations stronger than R2 = 0.5 are rare in medical applications.
�e imputation models considered in this work were all based on the multivariate normal

distribution. �is facilitated understanding of the relationship between the imputation and

analysis models. However, it would have been feasible to use mice-based approaches to cus-

tomise the imputation models. An example of such an approach might be to use the following
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equations as a cycle of chained equations:

a1 ∼ N(α(1)0 + α(1)1 a2 + α(1)2 x1 + . . . + α(1)(p−1)x(p−1) , σ
2(1)

)

a2 ∼ N(α(2)0 + α(2)1 a1 + α(2)2 x1 + . . . + α(2)(p−1)x(p−1) , σ
2(2)

)

[passively impute x∗p = a∗1 /a
∗
2 ]

x1 ∼ N(α(3)0 + α(3)1 x2) + . . . + α(3)p xp , σ 2(3))

While this does not represent a well de�ned imputation model, it may be superior inferentially

to some of the models that were used, particularly m5.

Some of the issues with model m5 could have been alleviated by using partly parametric

imputation techniques such as predictivemeanmatching (PMM)[33] or local residual draws[28].

In practice, this requires a switch to the chained equations approach rather than a multivariate

imputation model. Since a parametric model is used only to identify suitable donors, this

makes it impossible to think about compatibility. We investigated PMM in the problematic

Epic-Norfolk dataset and found model m5 much improved. PMMmay therefore be a useful

adjunct to a suitably chosen imputation model.

In evaluating methods we have focused on bias, coverage, and e�ciency. For those inter-

ested in accurate prediction, e�ciency may be more important and coverage less so or even

unimportant[80]. It is worth noting that precision is also lower for model m5. �erefore if

passive imputation is to be used for a ratio in prediction settings it should be done on the log

scale.

We have considered the imputation of ratio covariates. Some similar issues arise when the

analysis model contains any nonlinear function, for example interactions and squares. �e

di�erence is that in both cases the main e�ects and their interaction, or the variable and its

square, are included in the analysis model. In the case of squares, a measurement and its square

will also be observed or missing simultaneously. Imputation is then complicated by the fact

that the analysis model contains both the untransformed variable and a nonlinear function as

covariates, rather than just the nonlinear function, as in the case of ratios. �is makes issues

around compatibility somewhat more complicated. See von Hippel[65], Seaman, Bartlett and

White[64] and Bartlett et al[26] for recent work on imputation of squares and interactions.

Bartlett et al proposed the use of rejection sampling when producing imputations and

showed it to be useful for imputing squares and interactions; this may therefore be a good

approach for imputing ratios. By explicitly involving the analysis model in the speci�cation of

the imputation model, each imputation model used in the chained equations is compatible with

the imputation model[26]. However, the method is more time-intensive than any imputation

models investigated here and it is yet to become available in standard so�ware packages. It also

sacri�ces one of the advantages of multiple imputation: separation of missing data issues from

substantive analyses. However, this may be necessary, and has already been partly conceded

when we tailor imputation models that to be compatible with the analysis model.

91



6 Combining multivariable fractional
polynomial models with multiple imputation

Until now, this thesis has dealt with situations where the correct analysis model is �xed and

known, and evaluated alternative approaches to multiple imputation.�is chapter investigates a

very di�erent scenario, where the analysis model is (at least partly) unknown and to be chosen

using a semi-automatic model selection procedure. �e focus is on fractional polynomials but

combining MI with model selection using splines is also largely unresearched; I believe some

of the concepts presented in this chapter would be relevant to any such future research.

6.1 background

Fractional polynomial (FP) and multivariable fractional polynomial (MFP) models are a �exi-

ble but relatively simple method for modelling nonlinear e�ects of one or more continuous

covariates in regression analyses. �e type of datasets to which fractional polynomial models

are applied commonly have missing covariate data. �ere is currently no satisfactory approach

to handling missing data when using fractional polynomial methods. �is chapter aims to

extend MI to accommodate MFP and vice versa so that they can be combined e�ectively.

6.1.1 Single-variable fractional polynomials

For a regression model involving a single continuous explanatory variable x, a fractional
polynomial model of dimension D, termed ‘FPD’, has D terms in x and linear predictor

β0 +
D

∑
d=1

βdx pd . (6.1)

Possible values of the exponents p1 ≤ . . . ≤ pD are typically restricted to the set

S ∈{−2,−1,−0.5, 0, 0.5, 1, 2, 3},

which is a suggestion rather than a rule. By convention x0 = log(x). With D > 1 it is possible

that pd = pd′ ; the dth term is x pd log(x) rather than x pd . For D = 1, there are eight possible

models for x; for D = 2 there are 36, and so on. In practice, D > 2 is rarely considered.

Note that equation (6.1) is inclusive of conventional polynomials such as quadratics or

cubics, but is considerablymore general and therefore �exible. Conversely, fractional polynomial

functions are Box–Tidwell transformations[81], where the parameter space of p is restricted to
the set S, and so FP models are comparatively less �exible. Figure 6.1 plots a selection of FP
functions with D = 2, demonstrating the �exibility available.
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Figure 6.1: Example FP2 functions. Exponents p used to plot the curves are given in parentheses.
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6.1.2 Multivariable fractional polynomials

Multivariable fractional polynomials are the natural extension of fractional polynomials to the

setting with multiple x. �ere are C continuous explanatory variables with linear predictor

β0 +
C

∑
c=1

Dc

∑
d=1

βcdx
pcd
c . (6.2)

�e Dc indicates that the complexity D of FP function is allowed to di�er for di�erent c. A
variable suspected to have a u-shaped relationship with outcome would need at least D = 2.

Meanwhile D = 1 may be desirable for certain variables because it forces outcome to be a

monotonic function of x, which may be biologically plausible.

6.1.3 Model building with a single x and fully observed data

Assume there is a single covariate x. If the scalarD and vector p are known for a given dataset the
main task for an analyst is to estimate the vector β. Aside from the context of model validation,
such a scenario is very unlikely. It is usually necessary to estimate p. Further, Dc will o�en be

uncertain and so we require a method for selecting between models of di�erent dimension.

Ambler and Royston describe a procedure for selecting D from d = 1, . . . ,Dmax and esti-
mating p ∣ D[82]:

1. For d = 0, . . . ,Dmax (where d = 0 is a model omitting x) �t the models of dimension
d for all combinations of p ∈ S (6.2). For each d, the candidate models are of identical
complexity, and so the best �t is the model which maximises the log-likelihood, log(L).
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2. For the dimensions under consideration the best models are compared as follows using

likelihood ratio tests (this assumes that a null model is the least complex form considered

for x; in practice the least complex model considered might be a linear model for x):

a) Test the best FPDmaxmodel at the chosen α level against the null model using 2Dmax
d.f. If the test is not signi�cant the null model is chosen; if the test is signi�cant

continue.

b) Test the best FPDmax model at the chosen α level against the linear model on
2Dmax − 1 d.f. If the test is not signi�cant the linear model is chosen; if the test is
signi�cant continue.

c) Test the best FPDmax model for x at the chosen α level against the best �tting FP1
model on 2Dmax − 2 d.f. If the test is not signi�cant the FP1 model is chosen; if the
test is signi�cant continue.

d) . . .

e) Test the best FPDmax model for x at the chosen α level against the best �tting
FP(Dmax − 1) model on 2Dmax − (2Dmax − 2) df. If the test is not signi�cant the
FP(Dmax − 1) model is chosen.

f) If all tests are signi�cant, the FPDmax model is chosen (D = Dmax).

3. Estimate β ∣ D, p̂.

With complete covariate data, the above algorithm is the standard for fractional polynomial

model selection. It has the characteristic of a closed testing procedure[83], meaning the overall

type I error rate is maintained at the chosen signi�cance level (in this case slightly lower because

the df allocated to each pd is conservative; see 6.1.5). Having pre-edited data in preparation
for FP model building, for example deciding on how to deal with extreme values, important

tasks for the analyst are deciding on α, D and the values in S, although standard choices are
implemented as the defaults in Stata.

6.1.4 Model building with multiple x and fully observed data

In the context ofmultiple continuous covariates to be considered for FP functions, Royston
and Sauerbrei extend the model selection procedure as follows[13]:

1. �e c = 1, . . . ,C covariates are ordered in terms of decreasing signi�cance in a normal
errors model with all xc ’s included linearly.

2. x1 is subjected to the function selection procedure described in section 6.1.3, holding
x2 , . . . , xC as linear.

3. x2 is subjected to the function selection procedure, �xing the function(s) of x1 selected
at step (2) and holding x3 , . . . , xC as linear.

4. . . .
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5. A�er running the function selection procedure for xC the �rst ‘cycle’ is complete. Note
that correlations between x1 , . . . , xC will mean the best �tting functions for xc can depend
on the chosen functions for xc′ , so the process continues.

6. Function selection is repeated for x1, �xing the selected functions of x2 , . . . , xC chosen
in cycle 1.

7. . . .

8. �e process continues until all functions remain stable for a full cycle, indicating the

model has stabilised.

�e algorithms outlined above depend entirely on likelihood ratio testing to select models,

which poses problems in the multiple imputation setting.

6.1.5 Points to note on p and D

Even with fully observed datasets, some points related to the function selection procedure lead

to slight miscalibration of error rates. �e �rst two are related to the role of the parameters p,
and the lack of any estimate of Var(p̂). One point is concerned with testing procedures, and
the other with estimation of β.

1. �e parameters β are estimated conditional on p̂, thereby treating p̂ as �xed and known.
�is leads to precision of V̂ar(β̂) that is overstated for estimation.

2. �e parameter space for p̂ is discrete. In the testing procedure outlined above, the
allowance of 1df for each p̂ would be correct if the parameter space were continuous
in (−∞,∞). However, since this is not the case, the 1df used for each term in p is too
generous, leading to conservatism in the testing procedures.

A more obscure point is that in testing between models of di�erent dimension, D is esti-
mated, also with a discrete parameter space (typically 0, 1, 2). �e notion of D as a parameter
has not been considered in any previous literature on fractional polynomials or, to my knowl-

edge, variable selection. �e current work aims to integrate multiple imputation with current

multivariable fractional polynomial methods, and so I do not consider this further.

6.2 considerations for combining fractional polynomials with multiple

imputation

�is initial motivation for this work arose from the problem of model selection. �e standard

procedures outlined above depend entirely on likelihood ratio tests, but MI data do not yield a

meaningful likelihood for the purposes of inference.

It is clear that there is a second problem in combining MI with MFP: the statistical charac-

teristics of any model selection procedure will depend not only on the tests used but on the

method of imputation. It is critically important that imputation allows for the uncertain nature

of the analysis model, and leads to consistent and e�cient estimation of p.
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In the following sections, problems with extending MFP methodology to MI are separated

into three parts, described in sections 6.2.1, 6.2.2 and 6.2.3. Each is discussed and addressed in

turn in sections 6.3 to 6.8, and good methods from one step are carried into the subsequent

work.

6.2.1 Imputation allowing for the analysis model to include (unknown) FP functions

�e issue with imputation is ensuring (semi-)compatibility of the models for imputation and

analysis. An appropriate imputation method must allow for the uncertainty about both p and
β. Imputing x using a linear regression of x 1 on y would be wrong: this is compatible with
an analysis model where p = 1, but incompatible with other values of p considered by the
analysis model (unless p = 1 in truth, in which case there would be no sense in exploring FP
transformations). �is approach would bias estimation of p towards 1. �is issue is explored
in section 6.3, where I propose one proper imputation method and propose an extension to a

second.

6.2.2 Estimation of p from candidate FPd models

With complete data, p is estimated by comparing the �t of models based on the log-likelihood.
It is well known that the log-likelihood cannot be used for formal inference in multiply imputed

data. However, comparing models of identical complexity does not make reference to any

distribution, and so the use of log-likelihoods is acceptable for estimation of p. However, this
does not mean other methods are not possible, and estimating p by �nding the value which
maximises the Wald statistic is a feasible, and plausibly superior, alternative. �is issue is

addressed in section 6.4, where the performance of methods based on log-likelihoods andWald

statistics are compared to log-likelihoods based on complete data and on complete cases.

6.2.3 Tests in the function selection procedure

Hypothesis testing based on log-likelihoods does constitute formal inference, meaning that
standard likelihood ratio tests cannot be used. With multiply imputed data, it is usual to based

hypothesis tests onWald statistics constructed using Rubin’s rules. However, the testing involved

in selecting functions is non-standard: comparing a model including x as linear to an FP2
model (which does not contain x 1) is a di�cult problem for Wald tests because the models are
not nested.

6.2.4 Estimation of parameters from the selected model

Following model selection, inference will always be based on Rubin’s rules for β. �ere is
nothing controversial about this step so it is not considered further. �e only caution is related

to the point in 6.1.5, that by treating p̂ as �xed and known, Var(β̂) will be underestimated. �is
is a problem inherent to MFP methods and so is not of speci�c concern in combining MI with

MFP.
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6.3 multiple imputation in preparation for (m)fp

An imputation method appropriate for (M)FP models must:

1. Allow for the uncertainty about p implied by the analysis procedure.
2. Impute positive values of x j .

�e methods of imputation below have potential.

6.3.1 Predictive mean matching and local residual draws

Predictive mean matching has previously been proposed as a method for imputing when the

analysis model contains nonlinear functions of covariates[6], and local residual draws have

similar potential. �e rationale is that we wish to impute with minimal assumptions about the

functional form. PMM and LRD assume a functional form to identify donors but not to impute

missing values, and so there is less dependence on the functional form than in using posterior

draws.

�e results of chapters 3.2 and 4 showed that despite the potential, neither method was able

to impute nonlinear functions without introducing bias, particularly underMAR, although their

performance was fair when the functional form was approximately correct. Seaman, Bartlett

and White also demonstrated bias associated with PMM when the analysis model contained

nonlinear functions of incomplete covariates[64]. PMM and LRD without transformation are

not pursued further here.

One attractive feature of PMM (but not LRD) is that imputed values are always taken from

observed values, and so if observed values are positive, imputed values will also be positive.

Fractional polynomial transformations require that covariates only take positive values and so

PMMmay prevent strange imputation, particularly for variables with unusual distributions.

In chapter 5 it was noted and demonstrated that PMM can be a useful adjunct to a suitably

chosen imputation model, and it is used in this context below.

6.3.2 Imputing x for FP1 models via the approximate Bayesian bootstrap

Multiple imputation aims to draw missing values from their posterior predictive distribution,

which requires uncertainty in parameter estimates to be fully acknowledged. A method of

proper imputation in preparation for (M)FP1 analysis models is outlined below.

To draw values p∗ from the posterior, a method based on the approximate Bayesian boot-
strap (ABB) can be used[34]. �e Bayesian bootstrap is operationally similar to the bootstrap,

but rather than sampling observations with probability 1/nh , the probability of sampling any h
is random[84].�e probabilities are calculated by drawing (nh − 1) values from a uniform(0, 1)

distribution; these are ordered and the absolute di�erences (0 − u1), (u1 − u2), . . . , (un − 1)

calculated. �e vector of absolute di�erences are the vector of probabilities for sampling with

replacement, and form an improper non-informative Dirichlet prior[61]. Rubin shows that

this simulates a draw from the posterior distribution[84]. �e approximate Bayesian bootstrap

approximates the draws from a Dirichlet posterior distribution by drawing from a scaled multi-

nomial distribution, reducing the computational burden, but leading to a very slight loss of

e�ciency[61]. �e Bayesian bootstrap and approximate Bayesian bootstrap lead to similar
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inference to the frequentist bootstrap, particularly with large nh , greater than say 50[61]. In the

implementation below, what is referred to as ‘ABB’ is in fact based on a frequentist bootstrap,

but simulation results would be practically identical for the sample sizes considered.

Considering a single x, the following imputation procedure is compatible with FP1 functions
of x:

1. Draw an ABB sample of nh observations from the nh individuals with observed values

of x.

2. For p = −2(.)3, �t a linear regression of x p on y. �is is compatible with the assumption
that the analysis model is a regression model for y on x p for unknown p. Values in (.)
should at a minimum include the powers considered by the analysis, but could be far

less coarse. Increments of 0.2 are used in the present chapter.

3. Record the value of pwhich returns the largest value of log(L)+ J, where J is the Jacobian
for the transformation from x to x p (required in order to make the log-likelihoods

comparable). Denote this value p∗. (As the maximum from a bootstrap sample, p∗ is an
approximate nonparametric draw from the posterior of p.)

4. Restore the partially observed dataset.

5. Impute (x j)
p∗ once using the appropriate linear regression from step 2.

6. Passively impute x∗j by taking the p
∗th root of (x∗j )

p∗ .

7. Repeat steps 1–6 untilM imputed datasets exist.

As noted previously, it is important that x∗j are positive, so that the standard fractional
polynomial transformations can be calculated for all x∗j . Two options for imputation have been
implemented:

1. Impute using a truncated regression imputation model. Specify a (lower) truncation

bound for x 1 at some value > 0. �is is transformed to a bound for x p∗ in step 5 (a lower

bound for p∗ ≥ 0 and an upper bound for p∗ < 0).

2. Perform the imputation in step 5 using PMM. Provided the observed values of x are
positive, the imputed values will be.

A Stata command implementing this method of imputation for a single FP1 variable has

been written (tuni), with options to impute by truncated regression or PMM. It is relatively

straightforward to see how the method could be generalised to multiple incomplete covariates

by nesting it within a chained-equations type procedure to handle C > 1. �e only subtlety

to note in the extension is that steps 2 and 5 should condition on the current draw of p∗c′ in
imputing xc . �is has also been implemented in Stata as icet.
However, the approach is partially limited by its incompatibility with FP models involving

D > 1. �e D = 1 case is justi�ed by the fact that when the analysis model is a linear regression

of y on x p , linear regression of x p on y is a compatible imputation model. For D > 1 the model

for x∣y is not a linear regression.
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6.3.3 Imputing x for MFP models via ‘substantive-model-compatible fully-conditional-speci�cation’

Bartlett et al. developed and evaluated a method of proper imputation when the analysis

mode contains nonlinear functions of covariates: substantive-model-compatible fully-conditional-
speci�cation (SMC FCS)[26]. �e simulation studies presented by the authors demonstrated
that the method tends to have good properties in terms of bias, e�ciency and coverage.

Bartlett et al. write the analysis model as f (y ∣ x , β). �eir method is motivated by the fact
that for a partially observed covariate x, the conditional distribution f (x ∣ y) can be expressed
as

f (y, x)
f (y)

∝ f (y ∣ x) f (x) (6.3)

by Bayes’ theorem. In SMC FCS a model for xc is speci�ed as f (xc ∣ xc′ , α) – whereas mice
would also condition on y. �e imputation model that is implied by this xc model together
with the analysis model then involves densities proportional to

f (y ∣ x , β) × f (xc ∣ xc′ , α). (6.4)

�is imputation model does not o�en belong to a standard parametric family of distribu-

tions. However, Bartlett et al. show that if it is easy to draw from f (xc ∣ x−c , α), it is possible to
use rejection sampling to draw from the distribution speci�ed in (6.4). �is involves repeatedly

drawing from a ‘proposal distribution’ f (xc ∣ xc′ , α) and rejecting proposed draws of x∗c unless
a certain criterion is satis�ed, where the acceptance probability is proportional to f (y ∣ x , β).
�e criteria for rejection / acceptance of a proposal draw are described for linear regression,

discrete outcomes and proportional hazards models in [26]; for full details, see Bartlett et al[26].

In joint work with Jonathan Bartlett, this method has been coded in Stata as smcfcs, and

an article describing it submitted to the Stata Journal.

SMC FCS was developed with the aim of imputing incomplete covariates x where the
analysis model contains nonlinear transformations of x. �e scenarios considered restricted
attention to cases where the analysis model was known and correctly speci�ed. For fractional

polynomials, the analysis model is not known, and specifying the imputation model is more

di�cult.

�e natural way to extend SMC FCS for FP models is via a model that is at least as general
as any analysis model that might be selected. For a single x, imputation could therefore include
all eight FP transformations of x as analysis model covariates for rejection sampling. Following
imputation, whatever FP1 model is actually selected will be semi-compatible with the analysis

model speci�ed by SMC FCS.

Technically x plog(x) should also be imputed for each p in S if the analysis model considers
FP2 functions, since these repeated powers may be selected for the �nal model. �is implies

that for FP2 each variable x should specify, for purposes of imputation, an analysis model with
16 transformations of x. �is could lead to hugely complex imputation models that sometimes
fail to converge, and the suggestion is unlikely to be met with enthusiasm in practice. In the

interests of pragmatism we suggest omitting the repeated-power transformations.
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6.3.4 Choice of imputation method

Despite the promise of SMC FCS, in early runs of the simulations in section 6.5, the method

sometimes performed extremely poorly. In particular, problems occurred when the coe�cient

of variation of the variable being imputed was high and/or when the marginal distribution of a

covariate was misspeci�ed. Appendix D gives a brief graphical overview of some issues that

arise with fractional polynomials.

�e di�culties with SMC FCS led to the incorporation of the univariate tuni command

described in section 6.3.2 in a mice-type procedure (icet).

�e simulation studies presented in this chapter are entirely based on data imputed by tuni

or icet. However, SMC FCS remains a promising method that may be superior to icet when

certain issues have been resolved.

6.4 estimation of p: simulation study

�e fractional polynomial function-selection procedure which considers maximum dimension

Dmax requires null, linear, and the best-�tting FPd models for d = 1, . . . ,D. With complete
data, ‘best-�tting’ for any given d is de�ned by the model returning the largest value of the
log-likelihood. �is section considers methods for estimation of the best-�tting models in MI

data. �e two methods below are considered.

6.4.1 Candidate methods

In a simulation study, two methods of estimating p are compared.

Log-likelihoods. �eM imputed datasets are stacked and each FPd model is �tted, treating the data
as a single dataset of n ×M observations, and p is selected to maximise the log-likelihood.

Wald statistics. β̂p and V̂ar(β̂p) are estimated using Rubin’s rules and the square of the zp statistic is
calculated:

z2p =
⎛
⎜
⎝

β̂p
√

V̂ar(β̂p)

⎞
⎟
⎠

2

, (6.5)

with p selected to maximise z2p .

Although it is unusual to use likelihoods in MI data, problems with using the likelihood

arise from referring the quantity to distributions: twice the di�erence in the log-likelihoods

for two models does not follow a χ2 distribution. However, when attempting to determine the
optimum exponents for x, the use of log-likelihoods does not refer the statistics obtained to any
distribution. Here, the likelihood is used to compare the �t of models of identical complexity,

and so the method is uncontroversial.

Wald statistics have not previously been used for MFP in complete data, but it is not clear

that the method would estimate p poorly. Further, Wald statistics based on Rubin’s rules have
been shown to be the ideal basis for variable selection methods in MI data[14], which provides

motivation for their use with MFP models.
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If log-likelihoods andWald statistics are unbiased, as expected, the method which estimates

p with greatest precision would be favoured. If bias and precision of both methods are com-
parable then both will be carried forward to the stage of testing between models of di�erent

complexity (sections 6.5–6.8). As usual, analysis of the complete data will be included as a

gold-standard. Analysis of complete cases is also of interest as a benchmark; if the MI methods

cannot outperform complete cases then they are not worth using in practice because CC is

practically the more convenient method.

6.4.2 Simulation design

To compare our candidate methods, a simulation study based on FP1 is used. �e true model

involves linear regression of a continuous outcome y on an FP1 function of a single continuous
covariate x. Because we aim to compare bias and precision of log-likelihoods vs. Wald statistics
for estimating p, for estimation we use a set of Box–Tidwell transformations rather larger than
the usual eight transformations in the set S usually used in fractional polynomials. �is does
not impact on the methods themselves, but provides a �ner picture of bias and precision for

the purpose of comparing methods.

�e general simulation procedure is as follows.

1. Complete data are simulated on n = 300 observations under the bivariate normal distri-
bution with parameters

(y, x p
) ∼ BVN
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. (6.6)

�is implies the true analysis model is a linear regression of y on x p . It is important

to produce a strong association between x and y, such that power for the true analysis
model is close to 100%. If Corr(y, x p) ≈ 0 in any simulated dataset the pro�le for p̂ will
be �at regardless of true p, and it becomes impossible to distinguish between good and
bad methods.

2. 40% of values of x are set to missing under a missing at random mechanism*: the
probability of x being missing is 0.2 when y ≤ 0 and 0.6 when y > 0.

3. Missing values are multiply imputed using the method outlined in section 6.3.2 (tuni);

see section 6.4.2.1 below.

4. For p′ = −2(.2)3, the linear regression analysis model for (y∣x p′) is �tted, and the log-

likelihood andWald statistics based onMI data recorded.�e log-likelihood for complete

data and complete cases analysis are also recorded.

5. p̂ is estimated as the value of p′ maximising the log-likelihood or Wald statistic.

(*�e step-MAR process breaks from the smoother linear-logistic MAR used in other chapters.

�is simulation study was originally run for two analysis models: normal errors with continuous

outcomes and logistic regression with a binary outcome. Results were very similar and so
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are not shown for logistic regression. �e step-MAR process was used in order to make the

interpretation of the two sets of results comparable.)

Four values of p are considered: 0, .5, 1 and 2. �is process is replicated a total of 10,000
times. �e mean and variance of p̂ over the replications are of interest, and results summarised
graphically.

6.4.2.1 Use of tuni in favour of smcfcs

For this simulation study it is useful to consider a parameter space for p that is closer to
continuous, since this provides a �ner view of the distribution of p̂ according to di�erent
methods. It would not be possible to impute using SMC FCS because using only the eight

standard FP1 transformations would favour these values of p, and it would be impossible to
�t imputation models that include all x p for p = −2(0.2)3. Further, since the data generating
model involves dimension-1 FP transformations, tuni can used for imputation (see section

6.3.2).

6.4.3 Simulation results

�e simulation results are displayed as a spikeplot in �gure 6.2. �e columns represent di�erent

true values of p; from le� to right p = 0, 0.5, 1 and 2. Rows represent di�erent methods for

estimating p; from top to bottom complete data using the log-likelihood (CD-ll), complete
cases using the log-likelihood (CC-ll), Wald statistics based on MI data (MI-Wald), and log-

likelihoods based on MI data (MI-ll). �e horizontal axes represent di�erent values of p̂, and
are labelled with the powers used in S. �e vertical axes display the frequency of a value being
selected over 10,000 replications. �e vertical axes all originate at 0 but the maxima are scaled

individually to make each sub-plot as clear as possible.

Note that across all methods it is apparent that the variance of p̂ increases with p. �is
is not important in of itself but is noticeable in �gure 6.2. To understand why, consider the

following: if p = 2 in truth, p̂ = 3 is closer to the true model than p̂ = 2 is when p = 1 in truth.
�at is, a cubic is closer to a quadratic than a quadratic is to a straight line. It is thus expected

that Var(p̂) will be di�erent for di�erent values of p.
With complete data, use of log-likelihoods is unbiased and e�cient, as expected. Data are

missing at random, and so there is some bias associated with complete-case analysis, as well as

low precision because the mean sample size with complete cases is 0.6 × 300.

�e MI-Wald method exhibits a slight upwards bias for p. �is bias is lowest for p = 0,

increasing slightly for each larger value of p. �eWald method is also less precise than using
complete-data log-likelihoods, but slightly more precise than complete-cases log-likelihoods.

�eMI log-likelihood method also exhibits a small upwards bias, and this is slightly greater

than the bias in the MI-Wald method. Again, precision is lower than for complete data and

higher than for complete cases.
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Figure 6.2: Simulation results: estimation of p̂ according to method (10,000 replicates)
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6.4.4 Conclusions

For the estimation of p the gold standard would be to have full data and estimate p based
on log-likelihoods. Since this is infeasible with incomplete covariate data, Wald statistics and

log-likelihoods based on multiply imputed data both o�er an improvement over analysis of

the complete cases. With imputed data, Wald statistics appear to do slightly better than log-

likelihoods in terms of both bias and precision. However, the di�erences are small, particularly

in relation to the set of powers in S typically used in fractional polynomial models. In this
example, complete cases was the worst method, although o�en only slightly worse. It is worth

noting that its performance will degrade further with multiple incomplete covariates.

Both the log-likelihood and Wald methods will be carried forward to the following section,

which focuses on hypothesis testing. �is is because the two methods for MI data under

consideration in section 6.5 are again based onWald statistics and log-likelihoods.�e negligible

di�erences between the two methods in this section mean that the two methods considered in

the next section can be coherent: Wald statistics for estimating p and Wald statistics for model
selection, or log-likelihoods for estimation of p and log-likelihoods for model selection.
Note that it is possible that bias in estimating p will be more problematic for multivariable

fractional polynomials, where each covariate is addressed in turn. Selecting the wrong values

of pc for xc may have knock on e�ects on exponents for x c′ , magnifying problems.
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6.5 methods for (m)fp model selection in mi data

�e candidate methods we consider for selecting between fractional polynomial models of

di�erent dimension are outlined below. �e method which most closely resembles analysis

with complete data in simulations will be recommended, provided it is superior to analysis of

complete cases.

6.5.1 Likelihood ratio tests based on ‘stacked’ data

Wood, White and Royston[14] proposed new methods for hypothesis testing in multiply im-

puted data based on log-likelihoods, which extend naturally to multivariable fractional polyno-

mial models. �e methods, designated ‘stacking’, involved treating theM imputed datasets as
one dataset of n ×M observations, as in section 6.4. �e best stacking method explored, which
the authors designated W3, involved weighting the observations by wc = (1 − fc)/M, where
fc is the fraction of missing data for the cth covariate[14]. Equal weights are assigned to all
observations for each test, but the weight changes according to the covariate being tested.

�e use of the fraction of missing data for calculating weights is an attempt to weight each

variable back to the correct amount of information; fc is an approximation to the fraction of
missing information. When the approximation holds, stacking will work well. �is requires a
fully observed outcome, missing values to be MCAR, and the covariate with missing values to

be uncorrelated with other covariates. �ese conditions are extremely unlikely to be met in

practice.When they are not met, stacking will perform less well, but it is of interest to investigate

how quickly it degrades under departures from these conditions.

6.5.2 Wald and ∆Wald tests

Wald tests based on Rubin’s rules are a valid and powerful test for the signi�cance of regression

coe�cients[14]. �ere are two subtleties related to fractional polynomial model selection that

will stretch this validity.

Consider a single covariate x. For each model considered that includes x in some form,
the Wald test vs. a null model for the parameters β1 . . . βD is calculated following Rubin’s rules.

�is is a standard Wald test.

It is not possible to calculate aWald statistic to test between non-nested models. It is instead

proposed to use the di�erence between two models’ Wald statistics; the method is therefore
designated ‘∆Wald’.�is is motivated by the similarity to calculating the di�erence between two

models’ χ2 based on log-likelihoods. With complete data the two methods are asymptotically
equivalent.

�ere is no guarantee that the ∆Wald statistic will be positive. In one sense this is not a

problem for testing – a negative Wald Statistic is not signi�cant at any level – but this behaviour

in one tail of the distribution could �ag unusual behaviour in the tail we are interested in.

It is proposed that model selection proceeds on the basis of Wald tests where possible and

∆Wald otherwise. �e χ2 reference distributions and their degrees of freedom are the same as
those used in the function selection procedure with complete data.
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Consider the test of FP1 vs. a null model. �eWald statistic is calculated is from βc1 and

tested using χ22 as the reference distribution. �e df come from the two extra parameters, βc1

and pc1, as compared with the null model, but the Wald statistic is calculated only from βc1,

a single parameter. �ere is thus reason to expect tests to be conservative. Conversely, recall

from section 6.1.5 that V̂ar(β̂) will be underestimated because it assumes p̂ = p. �is results in
the Wald statistic for β being too large. It is possible that these two wrongs will cancel out to
some extent. �is holds for the test of any model vs. the null; that is, the �rst test of the standard

model selection procedure outlined in section 6.1.4.

For the remainder of this chapter, Wald tests with a genuine null and tests calculated from

the di�erence in Wald statistics will be designated ∆Wald

6.5.3 Other methods

Two other approaches to this problem might have been evaluated but were not a�er considera-

tion. A brief description and justi�cation of their omission is given below.

�e �rst approach is Meng and Rubin’s likelihood-ratio test for multiply imputed data[85].

�is is derived from the asymptotic equivalence of Wald and likelihood-ratio tests, and was

developed as a convenience tool to avoid calculation and inversion ofM variance–covariance
matrices in high-dimensional datasets. By aiming to approximate Wald tests, it will at best

perform as well as Wald tests. In unpublished work, Patrick Royston has found the test to

have extremely low type I error rates for fractional polynomials (Patrick Royston, personal

communication). I do not therefore consider this approach further.

�e second approach is that of Robins and Wang[7]. Readers are referred to [7] for details.

While their approach is theoretically strong, there are several practical di�culties. A short

description and the reasons it was deemed impractical in the context of MFP model building is

given below.

Robins and Wang take a di�erent approach to imputation: imputed values are drawn

conditional on the observed data and the observed-dataMLE α̂ rather than drawing α∗ from the
posterior.�e imputermust save datasets containing the score function of the imputationmodel

and the derivation of the score function with respect to the parameters of the imputation model.

�e analysis model is then applied to theM stacked imputed datasets assuming observations
are independent. �e analyst must then save a dataset and matrix containing the estimating

equations of the analysis model and the derivative of these equations with respect to the

parameters of the analysis model. �e approach provides consistent variance estimation when

the imputation and analysis models are incompatible, although it is unimpressive at small

sample sizes.

While the Robins and Wang method has been implemented in some simple cases involving

monotone missingness, the demands are too great to attempt to apply to (M)FP problems. For

MFP even ‘standard’ imputation and analysis models tend to be complex. It is assumed that in

practice the above would be too much to ask of researchers looking to use MFP models with

incomplete data.
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6.6 fp model selection on a single incomplete variable: simulation study

�e aim of the following simulation study is to investigate the error rates of model selection by

complete cases, ∆Wald and stacking in the relatively simple context of univariable FP1 models,

as usual comparing these to complete data analysis as the gold standard. All scenarios involve a

continuous outcome and two covariates: x1, which is incomplete, and x2, which is complete.
�e outcome, y has regression function based on x2 and an FP1 function of x1. �roughout this
section it is assumed that x2 is known to be included in linear form.

6.6.1 Design

�e following general setup of simulation study is replicated 5,000 times. Two sample sizes are

used for all settings: n = 200 and n = 500.
Two continuous covariates are simulated from the model

(x−0.51 , x2) ∼ BVN
⎛
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⎜
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. (6.7)

�e parameters µ1 and σ1 must be chosen with care as FP transformations will have more or
less e�ect depending on the CV of the variable being transformed. FP transformations provide

a degree of nonlinearity for a variable with mean 5 and variance 1, in that �tting all FP1 models

may give fairly di�erent log-likelihoods. If the mean is increased but the variance remains the

same, FP transformations of the new variable will be closer to linear, in that the log-likelihoods

for the FP1 models will be less di�erent. �is is why the fracpoly, fp and mfp Stata commands

perform a preliminary scaling of FP covariates unless instructed otherwise. �e parameter

values used are µ1 = 0.6 and σ1 = 0.2, meaning x1 has mean 3 and variance 1 (approximately),
and µ2 = 3 and σ2 = 1. �is a�ords the opportunity for certain transformations to provide better
or worse �t than others. �e value of ρ is set to 0 or 0.5 depending on the scenario.

�e outcome y is simulated from

y i ∼ N(β0 + β1x−0.51i + β2x2i , σ 2y). (6.8)

�e linear predictor includes an FP1 function of x1 and a linear function of x2. �e same
value of p1 was used in (6.7) and (6.8) so that the joint distribution of the complete data is
(x−0.51 , x2 , y) ∼ MVN. For investigations of type I error, β1 is set to 0. For investigations of
power, β1 is chosen such that, with complete data, the test for inclusion of x1 has 90% power.
Note that this means β1 changes for di�erent values of ρ and n. �e true value of p1 was chosen
as −0.5 because this is relatively far from 1, meaning the test has a good degree of power. When

complete data analysis had 90% power for a test of FP1 vs. null, the test of FP1 vs. linear had

≈80% power.

�e parameters associated with x2 are not of particular importance.For consistency with
later simulation studies and with the x1 parameters, these are set to to µ2 = 3 and σ2 = 1, with
β2 chosen such that the likelihood-ratio test for inclusion of x2 would have 90% power with
fully observed data.

For the present study missingness is in x1, while x2 and y are complete. Two missing data
scenarios are investigated. �e �rst involves 30% of x1 values being set to missing completely at
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Figure 6.3: Type I error for test of nominal size 0.1 for FP1 vs. null on a single incomplete

covariate
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random. �e second involves 30% being set to missing at random conditional on y, according
to a linear-logistic model (equation 3.2, as used in sections 3.1.1 and 5.6). �e association of Rx1

with y is similar to that used for simulations in other chapters: the degree of MAR is set so that
the expected area under a ROC curve relating Rx1 to y is 0.65.
Missing x1 values are imputed using tuni with 10 cycles of chained equations, andM = 10

imputations are used.

�e function selection procedure is set up and run for complete data, complete cases, and

MI data using stacking and ∆Wald. �e nominal size of tests used is α = 0.1 throughout,

following Ambler and Royston[86]. D1max = 1 and x2 is always correctly included as a linear
term. �e most complex function considered is FP1. �is is �rst tested against the null model

and then against a model including x1 as linear. �e simulation summary of interest is the
rejection rate for each method. When β1 = 0, this should be as close to α as possible. When
β1 ≠ 0, this should be as close to 1 as possible.

�e scenario expected to best suit stacking is ρ = 0 with x1 MCAR, because the ‘FMI =
FMD’ approximation will hold in this case. Data being missing at random and ρ = 0.5 will

provide a sterner test for stacking.

�e test against a null model is based on a true Wald statistic. �e test of FP1 vs. linear will

provide a tougher test because it is based on ∆Wald.
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Figure 6.4: Type I error for test of nominal size 0.1 for FP1 vs. linear on a single incomplete

covariate
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6.6.2 Results: type I error

Figure 6.4 summarises the type I error of the test of the best-�tting FP1 model vs. a model that

excludes it, with a test of size α = 0.1.

Complete data analysis is seen to be close to this nominal value for both n = 200 and

n = 500, and both ρ = 0 and ρ = 0.5. Complete cases analysis appears to have very similar type

I error rates to CD, both under MCAR and MAR.

�e type I error rates for stacking are lower, at around 0.05–0.06. �is does not vary

according to n or ρ, but is slightly worse under MCAR than MAR.
∆Wald also has low type I error rates, around 0.06–0.07. Again, there appears to be little

e�ect of n or ρ. �ere is also slightly less contrast between MCAR and MAR scenarios.
Figure 6.4 gives results for the test of FP1 vs. a straight line, for the same simulated datasets

as shown in �gure 6.3. �is scenario tests the ∆Wald method. Note that results are based on

the same simulated datasets as used in producing �gure 6.3, but using a di�erent test.

Results are similar to those for the test of FP1 vs. null: type I error is close to the nominal

0.1 for complete data and complete cases, while it is lower for stacking and ∆Wald. For stacking,

the small e�ect of the missing data mechanism is again seen. ∆Wald performs surprisingly well,

with results close to stacking, but usually slightly closer to the nominal 0.1 level.
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Figure 6.5: Power of FP1 vs. null test of nominal size 0.1 with a single incomplete covariate
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6.6.3 Results: power

Figure 6.5 gives rejection rates for the FP1 vs. null test when there is an association between x1
and y. Outcome was simulated such that with complete data this test had 90% power. �is is
seen throughout, subject to slight Monte Carlo error.

Complete cases analysis has lower power, with rejection rates of between 0.7 and 0.75. �is

is lower under MAR than MCAR, and also appears to be slightly lower for ρ = 0.5 than ρ = 0.

Stacking and ∆Wald have very similar behaviour, although the rejection rates are even lower

than for complete cases. In this scenario they would be expected to have very similar power to

complete cases; the lower power comes because the type I error is also low, making both tests

conservative.

Figure 6.6 shows rejection rates for the FP1 vs. linear test for the simulations depicted in

�gure 6.5. �e choice of p1 = −0.5 for the true exponent meant that with complete data this test
had power of around 80%, although this was not calibrated specially. Results are based on the

same simulated datasets as used in producing �gure 6.5, but using a di�erent test.

Results are largely similar: complete cases has power of 10–20% lower than complete data

analysis, and this tends to be slightly worse under MAR than MCAR. Stacking and ∆Wald

again have lower power than complete cases, but not substantially lower.
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Figure 6.6: Power of FP1 vs. linear test of nominal size 0.1 on a single incomplete covariate
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6.6.4 Conclusions

�is simulation study has investigated rejection rates of two di�erent tests for x1, �rst under the
null and then under the alternative. Type I error is well calibrated with complete data and with

complete cases. For both stacking and ∆Wald the type I error is too low. �is serves to make

the tests conservative, which has a knock-on e�ect on power. If a single covariate is incomplete,

and this covariate is of interest, it may be desirable to use complete cases (with the caution that

this may lead to bias in the estimation of p). In other settings complete cases is likely to lose
power. I explore these settings in sections 6.7 and 6.8.

6.7 mfp model selection on two variables where a confounder is

incomplete: simulation study

�e following simulation study investigates the performance of methods whenMFP model
selection is used. In a change from section 6.6, x1 is complete and x2 is incomplete. If the
association between y and x1 is of interest but we wish to adjust for x2, we may lose power
despite observing all data on the variables that are of substantive interest.

6.7.1 Design

�e design is similar to the study presented in section 6.6, which was set up with the aim of

being consistent with the present and subsequent sections.
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Figure 6.7: Type I error of FP1 vs. null test of nominal size 0.1 with an incomplete confounder
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�e �rst di�erence in the data generating model is that x2 is subject to missingness rather
than x1. However, the proportion of missingness and MAR mechanism used are the same as
those for x1 in section 6.6.

�e second di�erence is in the analysis: methods for model selection are run on both x1
and x2; this is full MFP, rather than FP. �e parameter relating x2 to y is again set such that in
complete data, the test of FP1 vs. linear has 90% power.

�ese changes mean that x2 needs to be imputed rather than x1. Even though the true
regression function is linear in x2, the MFP model selection means imputation accommodates
the potential selection of an FP function. Further, because this involves FP terms for both x1
and x2, the draw of p∗2 is taken from the maximum of ll + J over possible values of (p1 , p2). To
reduce the computational burden, the candidate values of p1 are rather coarser than p2, using
the standard set S.
Although model selection is done on both x1 and x2, only the rejection rate for x1 is

summarised. It may be obvious, but under certain settings the rejection rates for x1 and x2 are
correlated, for example when ρ ≠ 0.

6.7.2 Results: type I error

Figure 6.7 gives results for the test of FP1 vs. null. For complete data the rejection rate is close to

0.1, although appears to be slightly higher with ρ = 0.5 than with ρ = 0. �is is because there is

a true relationship between x2 and y, but this test has 90% power and so x2 will be incorrectly
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Figure 6.8: Type I error of FP1 vs. linear test of nominal size 0.1 with an incomplete confounder
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omitted 10% of the time. When ρ = 0.5 this relationship will sometimes be mopped up by the

test on x1. Complete cases analysis gives results very close to complete data.
Stacking and ∆Wald have similar rejection rates across di�erent simulation settings, al-

though this is di�erent to complete data and complete cases analysis. With ρ = 0 the rejection

rate is close to 0.1, but it is higher with ρ = 0.5. �e e�ect is a little more pronounced under

MAR than MCAR, and more so for stacking than ∆Wald.

For stacking this happens because under MAR and/or ρ = 0.5 the FMI ≈ FMD assumption

is incorrect. Interestingly the e�ect of the value of ρ used here appears to be greater than the
e�ect of the MAR mechanism. It is less clear why this happens for ∆Wald tests.

Results for a test of FP1 vs. a straight line are given in �gure 6.8. For complete data and

complete cases analysis the increased type I error with ρ = 0.5 disappears, because now x2 is
always included, and its correct functional form is linear.

Stacking still has high type I error rates with ρ = 0.5. Meanwhile ∆Wald has better type I

error rates, comparable to complete data analysis, and the highest type I error rate is 0.11 and

the lowest 0.09.

It is interesting that the small problems with ∆Wald seen in �gure 6.7 disappear in �gure

6.8. �is demonstrates that using ∆Wald rather than a true Wald test is not actually a problem.
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Figure 6.9: Power of FP1 vs. null test of nominal size 0.1 with an incomplete confounder
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Figure 6.10: Power of FP1 vs. linear test of nominal size 0.1 with an incomplete confounder
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6.7.3 Results: power

Results for the test of FP1 vs. null are given in �gure 6.9. Complete data analysis has power of

around 0.8 for all settings. �ere is again a dramatic loss in power for complete cases. �is is

0.62 in the worst case and 0.69 in the best. Again, stacking has higher power comparable to

complete data. In some settings the power of stacking is higher than complete data; this is again

due to the high type I error rate. ∆Wald also has power that is comparable to complete data,

but never higher, due to the correctly calibrated type I error rates.

Results for the test of FP1 vs. a straight line are given in �gure 6.10. �ese are extremely

similar to results shown in �gure 6.9.

6.7.4 Conclusions

�is simulation study has investigated the rejection rates of two di�erent tests for x1 when x2 is
incomplete, �rst under the null and then under the alternative. �roughout, the methods have

been compared to analysis of complete data – a gold-standard – and complete cases. �e type I

error is well calibrated for complete data and complete cases. Stacking and ∆Wald can have

high type I error when the correlation between x1 and x2 is not zero, although the correlation of
0.5 used here may be higher than would be observed in many medical datasets. When the type

I error rates are high, ∆Wald is closer to the nominal 0.1. Power is encouragingly substantially

higher for both tests than for complete cases, and comparable to complete data.

�is simulation study has demonstrated that in principle both methods can be used to test

hypotheses with fairly good calibration of type I error and high power. Practically, the test of

FP1 vs. null is fairly unrealistic. A confounder would not usually be included in a model because

of its statistical signi�cance, but due to prior knowledge of the disease under study. However,

the test of FP1 vs. linear may be used for both variables in such a setting. It is encouraging

that the ∆Wald method performs as well for this test as for FP1 vs. null and has power close to

complete data for this test.

�e simulation scenarios presented in this section are further extended in section 6.8.

6.8 mfp model selection with two incomplete variables: simulation study

�e following simulation study aims to further extend the scenarios presented in sections 6.6

and 6.7. Missingness will be in both x1 and x2. Testing procedures are again full MFP with
Dmax = 1 for both variables.

6.8.1 Design

�e design is largely the same as in sections 6.6 and 6.7, which were designed to be consistent

with the present section.

�e �rst di�erence in the data generating model is that x1 and x2 are both subject to
missingness. �e proportion of missing values and degree of MAR used are the same as in the

earlier sections. Indicators of missingness, Rx1 and Rx2 are simulated independently. Under

MAR, these are associated since both depend on y, but they are conditionally independent
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Figure 6.11: Type I error of FP1 vs. null test of nominal size 0.1 on x1 with both covariates
incomplete
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given y. �e correlation means that the number of complete cases is slightly larger under MAR
than under MCAR.

�is change means that x2 needs to be imputed, and in the same way as x1 to allow for
FP functions of x2, even though the true regression function is linear in x2. �is means the
imputation now uses the mice-based extension of tuni: icet.

Again, full MFP is used. Interest is again in the rejection rate for x1 only.

6.8.2 Results: type I error

�e results of simulations investigating the type I error rate for tests of FP1 vs. null are given in

�gure 6.11.

�e type I error rate is slightly lower than 0.1 for complete data analysis in all scenarios.

With ρ = 0 and n = 500 type I error is closer to 0.1 than other settings. Complete cases analysis
has very similar type I error to complete data with ρ = 0 and slightly higher with ρ = 0.5

(closer to 0.1). Stacking and Wald tests have marginally lower type I error than complete data

or complete cases in all settings.

�e e�ect on stack and ∆Wald of varying n and MCAR/MAR is negligible. �e rejection
rate for ∆Wald is slightly closer to 0.1 than stack under MCAR but under MAR they are more

similar. For ρ = 0.5 the rejection rate is closer to 0.1 than for ρ = 0, and MAR results are

similarly better than MCAR.
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Figure 6.12: Type I error of FP1 vs. linear test of nominal size 0.1 on x1 with both covariates
incomplete
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Results for the test of FP1 vs. a straight line are given in �gure 6.12. Again the purpose of

considering this test is to bring the ∆Wald method under scrutiny.

Rejection rates are largely similar to those seen for the test of FP1 vs. null, and for all methods

are consistently slightly low, at around 0.08–0.09. Complete data analysis again tends to be

closest to the correct rejection rate of 0.1. Complete cases tends to have very similar rejection

rates to complete data. Stack and ∆Wald again have lower type I error rate, but are very similar.

Under MAR with ρ = 0.5 stacking comes slightly closer to the nominal 0.1 level. �e e�ects of

sample size and of the type of missingness are small.

Overall �ese results demonstrate that the use of stack or ∆Wald give us no cause for

concern about the type I error rate for a test of FP1 vs. null or of FP1 vs. linear. �ere is slight

miscalibration of type I error rates with both stacking and ∆Wald beyond that observed for

complete data and complete cases. �ere is little to choose between stacking and ∆Wald. In

absolute terms the performance of methods is generally good: in the worst of the scenarios

considered the rejection rate is as low as 0.05, which should not cause concern, but is never

higher than the nominal value of 0.1.

Having demonstrated that the type I error rate is well controlled, I now consider whether

stack and ∆Wald can o�er and improvement in power over complete cases.
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Figure 6.13: Power of FP1 vs. null test of nominal size 0.1 on x1 with both covariates incomplete

(

(

(

(

)

)

)

)

(

(

(

(

)

)

)

)

(

(

(

(

)

)

)

)

(

(

(

(

)

)

)

)

(

(

(

(

)

)

)

)

(

(

(

(

)

)

)

)

(

(

(

(

)

)

)

)

(

(

(

(

)

)

)

)

n = 200
ρ(x1, x2) = 0

n = 200
ρ(x1, x2) = 0.5

n = 500
ρ(x1, x2) = 0

n = 500
ρ(x1, x2) = 0.5

.5 .6 .7 .8 .9 1 .5 .6 .7 .8 .9 1

MCAR MAR

Complete data

Complete cases

Stack

∆Wald

6.8.3 Results: power

Results of simulations investigating the power of tests of FP1 vs. null are given in �gure 6.13.

Parameters of the data-generating model were chosen so that analysis of complete data would

have 90% power for this test on x1, and 0.9 is thus given as the reference line.
Complete data analysis has the highest power, as would be expected, and complete cases the

lowest. Again, di�erences between stacking and ∆Wald are small, with both o�ering improved

power over complete cases. Gains in power are between 9% and up to 20%. Compared to

complete data analysis MI always involves a loss in power of 10–20%.

�ere is little to choose between stack and ∆Wald, and the di�erences are predictable from

the results on type I error for this test.

Results for the power of the FP1 vs. null test are given in �gure 6.14. As in section 6.7 the

data-generating model was not calibrated to give any speci�ed power, but the test was applied

to the same simulated datasets summarised in �gure 6.13. On average, this was approximately

80%.

�e patterns that emerge in �gure 6.14 are similar to those seen in �gure 6.13. Again,

complete data is the most powerful method, and power can be woefully low for for complete

cases, sometimes below 0.5. Stacking and ∆Wald tests o�er increased power over complete

cases, but the relative advantages/disadvantages are more variable than for the test of FP1 vs.

null. Stacking seems to have an appreciable advantage over ∆Wald under MAR and ρ = 0.5,
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Figure 6.14: Power of FP1 vs. linear test of nominal size 0.1 on x1 with both covariates incomplete
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which is related to the di�erent type I error rates. With MCAR and ρ = 0 ∆Wald is slightly

more powerful. In the worst cases around 7% power is gained over complete cases, and in the

best cases the gain is over 20%.

6.8.4 Conclusions on model selection

�e above simulation studies have demonstrated that both the stacking and ∆Wald methods

can be used to build multivariable fractional polynomial models in multiply imputed datasets.

�e type I error is controlled to some extent by both methods. In the above simulation

studies the type I error rates are 0.05 at the lowest and 0.14 at the highest for a test of nominal

size 0.1. When a covariate of interest is incomplete but the outcome and confounder/s are

complete there may be little gain from using MI instead of complete cases analysis: the type I

error rates are lower and power is very similar (although under MAR complete cases will lead

to biased estimation of p; see section 6.4).
When a confounder is partially observed but the variable of interest is complete the gains

from using MI can be large. Type I error rates are higher than nominal in this setting, but

generally not by enough to cause concern. �e power gains of stack and ∆Wald over complete

cases can be large here, coming close to the power of complete data analysis in the best scenarios

(although given that type I error is too high, power is strictly not comparable.)

When both the covariate of interest and a confounder are incomplete, results are the average

of the two settings on their own. Again, stacking and ∆Wald have type I error rates that are too
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low – lower than complete data or complete cases. Power can be gained for one variable when

the other is subject to missingness.

�e simulation study described in section 6.8 is perhaps closest to the wayMFPmethods are

most typically used, which is for building prognostic models. In such settings there will typically

be several covariates with a complexmissing data pattern.�e results of section 6.8 demonstrate

that in such a setting, the use of MI and stack or ∆Wald will be bene�cial for variables with

smaller proportions of missing data, where complete cases may be useless. �is will lead to the

development of more accurate models of greater bene�t to the medical community.

6.9 illustrative example

�is section comparesMFPmodel selection using complete cases, stacking and ∆Waldmethods

in the trauma data described in section 5.3. �is is not intended to provide a comprehensive

or clinically meaningful analysis, but is a demonstration that the methods do work in a large

dataset containing variables of di�erent types with awkward distributions and varying degrees

of missing data, and that di�erent methods can and do give somewhat di�erent results.

Although the imputation approach described in section 6.3.4 has been implemented for

some simple settings, the implementation is as yet unsatisfactory for applying to these data.

�e focus of this chapter was initially on model building, rather than imputation, and so the

imputed data used in the analysis of reference [15] is used. �is comes with a caution about the

potential for bias towards the exponents used in the imputation model.

6.9.1 Analysis with complete data

Given complete data for all individuals, the analysis would involve a multivariable fractional

polynomial logistic regression of massive transfusion on the covariates sex (binary), age (contin-

uous), time to emergency department (continuous), blunt/penetrating injury (binary), systolic

blood pressure (continuous), prothrombin time (continuous) and base de�cit (continuous).

For the continuous covariates, Dmax = 2, except for time to emergency department, where
Dmax = 1 (it is implausible that particularly short or long waiting times would have more similar
probabilities of massive transfusion than medium times).

Because the aim of the analysis is to derive a prognostic model, and the number of candidate

variables is small, the analysis errs on the side of caution by performing the test of FPDcmax

vs. null with nominal signi�cance set at α = 0.5, meaning weak prognostic variables can be

included, but they will be excluded if signi�cance is extremely low. For the remaining tests, the

signi�cance level is set at α = 0.1.

Due to missing data on covariates the above analysis is not possible. �e dataset contains

2,456 complete cases (45%) of 5,693 individuals in total. �is will potentially lead to bias and

the tests losing power for all variables, particularly complete cases.

6.9.2 Selected models

Table 6.1 shows the variables and exponents selected by complete cases, stacking and ∆Wald.

For all three methods convergence was achieved a�er two cycles through the MFP algorithm.
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Table 6.1: Models selected in trauma data. �e numbers give the exponents selected for each

variable in the �nal model.

Complete cases Stack ∆Wald

Age −2 0.5, 1 1, 1

Time to emergency dept. 1 1 1

Systolic blood pressure 1 1 −2, 0.5

Base de�cit 1 −1 −0.5

Prothrombin time −0.5,−0.5 −0.5,−0.5 −0.5,−0.5

Injury† (blunt/penetrating) 1 1 1

Sex† – 1 1

†For binary variables an exponent of 1 indicates inclusion in the �nal model.

�e three methods all selected di�erent �nal models. Only time to emergency dept. pro-

thrombin time and injury type were included in the same form in all models. Complete cases

selected the simplest model overall, omitting sex, selecting linear functions for time to emer-

gency dept., systolic blood pressure and base de�cit, an FP1 for age and FP2 for prothrombin

time. Stacking included sex in the model and further included base de�cit as FP1 and age as FP2.

�e ∆Wald model was even more complex, selecting an FP2 for systolic blood pressure, which

was linear in both other models. Note that the FP model selected in complete cases di�ers from

that used in chapter 4 because there Dcmax = 1 for all c.
�e values of p̂c selected by the models were also sometimes di�erent even when D was

the same. For age, FP2 functions were chosen by both stacking and ∆Wald, pc = (0.5, 1) for

stacking and (1, 1) for ∆Wald. For base de�cit, pc = (−1) for stacking and (−0.5) for ∆Wald.

�is is unlikely to be due to di�erences in power between the methods, since these are very

similar. It is more likely that to be related to the result in section 6.4, where stacking was shown

to estimate p with slightly more bias than ∆Wald. With MFP, this can occur at any step of a
cycle, and if the wrong form is selected for one variable then this will have a knock-on e�ect on

the form for the next variables, unless these are uncorrelated.

�e three methods selected di�erent p̂ and D; because β̂ are only comparable conditional
on p̂ and D, comparing the values of β̂ from the three selected models would be meaningless.
Instead, �tted FP functions are compared for age and base de�cit from each of the three

models for two plausible individuals. �e data used are made up but are also realistic rep-

resentations of individuals within the dataset. �e covariate values used are given in table

6.2.

Figure 6.15 shows the comparison of �tted functions for these individuals across a range

of values of age (from 6–90 years) and base de�cit (from −5 to 20), both of which span most

of the observed range of the covariates. Stack and ∆Wald return very similar �tted functions

within the range considered, despite selecting slightly di�erent p̂. For both variables the �tted
functions for complete cases are a completely di�erent shape; in particular the e�ect below

age 10 seems fairly extreme. �e curves for the two individuals are also closer together for

complete cases, possibly indicating that the other variables provide a lower degree of prognostic

separation than for the models selected by stack and ∆Wald.
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Figure 6.15: Fitted functions for age and base de�cit according to method of model selection
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Table 6.2: Table of covariate values for two imaginary individuals.

Individual A B

Age in years *34 *24

Time to emergency dept. in minutes 63 73

Systolic blood pressure in mmHg 91 130

Base de�cit in mM *13.5 *5.4

Prothrombin time in seconds 16.8 14.4

Injury type Blunt Blunt

Sex Female Male

*Values of age are �xed when base de�cit is varied in �gure 6.15 and vice versa

6.10 discussion

�is chapter has attempted an attack on the problem of combining MI with MFP methodology,

splitting the problem into three components: imputation, estimation of exponents, and model

selection. �e results of each component have been utilised and carried forward to subsequent

components of work.

6.10.1 Imputation for fractional polynomials

Two approaches to imputation have been described that can considered proper for (M)FP

model building. �e �rst, based on the approximate Bayesian bootstrap, was useful for the

investigations presented in this chapter, though strictly it is limited to imputing for Dmax = 1.
�e Stata implementation could be made more general to allow for other variable types. �e

second method is a more general approach that should in principle work for larger values of

Dmax. �e method failed to perform adequately in this work, but tuning the implementation to
work with FP models is an area of planned development for smcfcs (see appendix D).

Neither method is controversial; both adapt existing methods to the task of fractional

polynomial model building. As such, neither was assessed formally for the purpose. It is

possible that there are other approaches to imputation that may be appropriate and could

improve on the approaches used here.

6.10.2 Model selection in multiply imputed data

�ere are two distinct component parts to building fractional polynomial models: estimating

the best exponents for a covariate, and selecting the appropriate complexity of FP function for

that covariate.

�e results of the simulations presented in section 6.4 indicate that for estimation of p,
using log-likelihoods or Wald statistics on MI data are both superior to using log-likelihoods

based on complete cases. �is was a single missingness mechanism and the performance of

complete cases could degrade further with di�erent mechanisms, but would be unbiased under

MCAR. Wald statistics appear to be slightly preferable, although di�erences appeared to be

small.
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Despite the slight advantage to using Wald statistics for estimation of exponents, both

methods were carried forward to model selection work, which assessed testing procedures

based on stacking and ∆Wald. It was judged to be advantageous to have a coherent method for

estimation of p and for variable selection: log-likelihoods before stacking, and Wald statistics
before for ∆Wald testing.

�ese methods were used in sections 6.6–6.8. Overall the type I error rates for ∆Wald and

stacking were less well calibrated than for complete cases, however, power could be higher even

with lower type I error rates. �e missing data mechanism and patterns in simulations were

relatively simple, but complete cases can become extremely ine�cient with complex missing

data patterns, so whenever the proportion of complete cases is low it is preferable to base

the analysis on MI. Stacking and ∆Wald based on proper multiple imputation represented an

improvement.

�ere is little reason to favour stacking over ∆Wald method, or vice versa. For estimation

of p, ∆Wald seems to be very slightly less biased. In some scenarios stacking is more powerful
while ∆Wald is in others. For analysis with incomplete covariates either method should be used

in preference to analysing complete cases.

Below is a practical suggestion for combining MI with MFP methods (6.10.3), and another

for MFP, which unfortunately does not generalise to multiple imputation (6.10.4).

6.10.3 Improve estimation by re-imputing and re-�tting the selected model

In using SMC FCS and the approximate Bayesian bootstrap method for use with FP, it was

noted that both methods make the imputation model/s semi-compatible with the analysis

model. For reasons of e�ciency, it may be preferable to use a smaller imputation model, and to

produce imputations that are fully- rather than semi-compatible with the analysis model.

Consider fractional polynomial models in complete data. Although p̂ is ‘estimated’, it is
subsequently treated as �xed and known. In the same spirit, it is possible to initially impute as

outlined in sections 6.3.3, select the model, then impute a second time, this time using a more

restricted imputation model.

For SMC FCS the restricted model would specify the selected analysis model at the second

imputation step, and �nally �t the selected model to the second set of imputations without

any further model selection. �is assumes in the imputation that p is �xed and known, which
is exactly how p is treated by fractional polynomials with complete data, and may increase
e�ciency.

With icet, the draws of p∗ might be replaced by imputing x p̂
j , where p̂ is the exponent

selected by FP.

Use of either method may have advantages for the analysis: if the selected exponents

are accurate, the restricted imputation strategies will result in supere�cient imputations[23].

Conversely, if the selected exponents are inaccurate the estimates a�er restricted imputation

will be misleading. It is up to researchers to decide whether they are willing to take this risk.
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6.10.4 Improving the reference distribution for test statistics

[Note – the below idea comes from discussions with Professor James Carpenter of the MRC

Clinical Trials Unit at UCL and the London School of Hygiene& Tropical Medicine.]
Section 6.8.2 demonstrated the type I error of MFP model selection procedures is not

necessarily equal to the signi�cance level ascribed to the tests. While the absolute di�erence

tended to be small, it may be possible to improve the error rate.

�e problem with the stack and ∆Wald methods is that the reference distributions used are

not quite correct under the null. However, it is possible to use the bootstrap to simulate the

distribution of the test statistics under the null. Two similar techniques are outlined below.

One possibility is to use the parametric bootstrap. For any parameter(s) considered, out-

comes can be simulated stochastically from a parametric model in which the parameter(s) of

interest is set to zero but all others are set at their observed value. Repeating this B times leads
to an empirical reference distribution obtained under the null, to which the observed value of

the test statistic can be referred.

A second possibility is to bootstrap residuals. �e null model is �tted, and the expected

outcome ŷ is calculated for all individuals. �e vector of residuals y i − ŷ i is also stored, and a
bootstrap sample of this vector taken. �is sample is merged with the vector ŷ i and the test
statistic of interest recorded. Repeating the process B times again leads to an empirical reference
distribution. �is method may be slightly better than simulating outcomes because it uses

the empirical distribution of residuals rather than making parametric assumptions about the

distribution.

With multiply imputed data neither bootstrap approach could be done prior to imputation

because both rely on fully observed covariates to be able to bootstrap under the null, and so a

bootstrap-then-impute approach is not possible. It is not clear how an impute-then-bootstrap

approach would work. Bootstrapping MI datasets independently would return a reference

distribution for the complete, rather than incomplete, datasets.

�is approach has not previously been explored for fractional polynomials with complete

data but is uncontroversial and so can be used in that context.
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7 Discussion

7.1 summary of thesis

�e problem of missing data is widespread in medical research, potentially leading to analyses

which are ine�cient and sometimes biased. While methods are available for dealing with

missing data, almost all such analyses rely inherently on untestable assumptions. �e best way

to deal with missing data is to avoid them, and e�orts to do so should be invested during data

collection. �is will minimise reliance on untestable assumptions.

Despite all e�orts, missing data will inevitably continue to plague medical research. When

missing data do occur it is important to approach analyses by considering plausible mechanisms

bywhich datamight have gonemissing, and to perform analyses which are valid under the stated

assumptions. �e ‘missing at random’ assumption is the most general for which analyses can be

performed without explicit modelling of the missing data mechanism, but this does not make

it plausible. Any important analysis based on the MAR assumption should be supplemented

with sensitivity analyses that make alternative relevant assumptions about departures from

MAR[87].

�is thesis has investigated statistical methods for dealing with missing data when they do

occur, with covariates either missing at random or missing completely at random.�e three

investigations have centred around incomplete covariates that are assumed to have a nonlinear

e�ect on outcome. In the absence of missing data (assuming covariates are measured without

error), it is unnecessary to specify a probability model for the covariates. When the analysis

model contains one or more nonlinear functions of covariates it can be di�cult to specify a

sensible model for the covariates, and inference may be invalid under missing at random.

Researchers are assumed to put less careful thought into specifying the imputation model/s

than analysis model, the missing data being a nuisance to the analysis of substantive interest.

�is implies that the imputation model is more likely to be misspeci�ed, or to have a greater

degree of misspeci�cation. In this work attention has been paid trying to �nd imputation

models that are compatible with the analysis model. �e MI approach used in Stanworth et

al[15], where the normalising transformations of covariates for imputation models determined

their form in the analysis model, seems to be an anomaly in the literature. Chapters 2–5 assume

rightly that the analysis model is correctly speci�ed, and consider di�erent approaches to

imputation.

7.1.1 Predictive mean matching and local residual draws

In chapters 2, 3 and 4, predictive mean matching and local residual draws were introduced,

reviewed and investigated via simulation.
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In chapter 2, PMM and LRD were introduced and the statistical literature developing and

using either method was reviewed. �e review initially focused only on PMM, but LRD was

discovered while reviewing articles and, due to largely similar promise, the scope of the review

was extended to LRD. LRD was noted to have more potential than PMM under (strong) MAR

mechanisms. �e speci�c MAR mechanism used was designed to stretch PMM and LRD to

their limits and so always involved missingness in the tails of the distribution. An alternative

MAR process could lead to more missingness at the centre of the distribution, which would

not cause the same problems for PMM and LRD.

�e review considered what was already known about PMM and LRD, and what had not

been investigated. Interest was particularly focused on methods for de�ning the matching

metric and on the choice of k (the size of the donor pool). Little’s article introducing PMM
had described two methods for de�ning the donor pool[33], designated type 0 and 1 in this

thesis. Heitjan and Little introduced a third method, designated type 2[34]. A small number of

authors, notably Schenker and Taylor[28], had considered whether donors should be selected

from a �xed value of k or according to whether they lie within a de�ned distance of the donee.
Few authors had compared the e�ect of varying k. Basing donor pools on a �xed donor–donee
distance was deemed impractical here, and simulation work instead considered di�erent �xed

values of k.
Univariable simulation studies in chapter 3 demonstrated that when the imputation model

is correctly speci�ed, both PMM and LRD could be biased upwards or downwards, but the bias

was miniscule and so of no practical concern. Increasing the value of k reduced the variance
and also improved coverage. With misspeci�ed imputation models posterior draws exhibited

large biases towards the null, which were usually attenuated but not resolved by PMM or LRD.

In certain cases both PMM and LRD could be upwardly biased. In univariable simulations it

was clear that larger values of k improved the statistical properties: k = 10 for PMM and k = 20
for LRD are recommended. For PMM, type 1 matching appeared to be better than type 2, while

type 2 appeared to be slightly better for LRD.

A multivariable simulation study with multivariate missingness in the covariates (chapter

4) used the recommended versions of PMM and LRD from the univariable simulation studies.

Simulation parameters and missing data were based on the trauma dataset described in section

1.5.1. Di�erent transformations of covariates prior to imputation were also investigated. Of

the imputation methods considered, all led to downwards bias, while analysis of the complete

cases was unbiased, despite data being simulated under MAR.�is was due to the missing data

mimicking case–control sampling for the covariates of interest. Further, while the variance of

imputation methods was lower than complete cases, coverage was also too low, while coverage

for complete cases was close to the nominal level.

It was concluded that while PMM and LRDwere promising, they performed best in settings

where posterior draws is a superior alternative. In other settings both methods usually outper-

formed posterior draws but were not necessarily superior to the analysis of complete cases.

Neither method should therefore be treated as a general solution to the problems associated

with misspeci�ed imputation. I advise making serious e�orts to specify the imputation model

correctly, although this may be extremely di�cult.
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7.1.2 Multiple imputation for a ratio covariate

�e ratio of two variables is a mathematically strange choice of covariate (see e.g. [72, 88]), but

its use is common in medical research, and one or both of the variables making up a ratio are

o�en incomplete. �is work was motivated by an infamous analysis where missing values of

a ratio were handled by imputing the two components separately and then calculating their

ratio passively[19]. �e association between the ratio and outcome was close to null with very

high precision. However, a non-null association of consistent magnitude had been repeatedly

observed inmultiple previous studies. Following some rapid-responses to the article, the authors

revised their imputation and the resulting estimate was in agreement with what was expected.

Six approaches to imputation were investigated, including the approach used by Hippisley-

Cox et al[19]. Each was based on a fairly simple imputation model that could be easily im-

plemented in general-purpose statistical so�ware. �e six approaches are recapped brie�y

below:

m1. Treat the ratio as missing if either of its components are missing, and impute it as normal

(compatible; active imputation; may not use all observed data).

m2. Impute ratio and the numerator as bivariate normal (semi-compatible; active; may not use all

observed data; ignores the deterministic relationship between numerator and denominator and

their ratio).

m3. Impute ratio and the denominator as bivariate normal (semi-compatible; active; may not use

all observed data; ignores the deterministic relationship between numerator and denominator

and their ratio).

m4. Impute the ratio, denominator and numerator as trivariate normal (semi-compatible; active;

makes use of all observed data; ignores the deterministic relationship between numerator and

denominator and their ratio).

m5. Impute the numerator and denominator as bivariate normal, and calculate the ratio (incompat-

ible; passive; makes use of all observed data; respects the deterministic relationship between

the numerator and denominator and their ratio).

m6. Log-transform the numerator and denominator, impute them as bivariate normal, and expo-

nentiate the di�erence to calculate the ratio (incompatible; passive; makes use of all observed

data; respects deterministic relationship between the numerator and denominator and their

ratio).

In the Aurum cohort, all methods for imputing the ratio led to similar substantive conclu-

sions about its e�ect on outcome. In the Epic-Norfolk cohort, approach m5 led to very di�erent

conclusions to the other �ve.

It was hypothesised that the di�erences were due to the coe�cient of variation of the

denominator, which was around 0.1 in the Aurum dataset and 0.3 in Epic-Norfolk. A simulation

study con�rmed that when the CV of the denominator was 0.3 the approach led to substantial

downwards bias and was grossly ine�cient. A key message was thus against passive imputation

without transformation. �e simulation study also showed that of the models considered,

approach m6 will tend to provide the best inference, though the active imputation approaches

are generally not bad.
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7.1.3 Combining multiple imputation with multivariable fractional polynomials

Chapter 6 considered the problem of using multivariable fractional polynomials when one or

more covariates are incomplete. �e di�culties in combining these techniques were broken

down into three parts:

1. Imputing covariates when their role and form in the analysis model is unknown.

2. Estimating the exponents p in multiply imputed data.
3. Selecting (multivariable) fractional polynomial models in multiply imputed data.

�e exponents are estimated in the analysis, and so multiple imputation must allow for

this uncertainty. A method for imputing (potentially multiple) FP1 functions based on the

approximate Bayesian bootstrap was proposed, coded in Stata and used in simulations. Bartlett

et al.[26] have developed a di�erent method – ‘substantive-model-compatible fully-conditional-

speci�cation’ – that was promising for imputing (possibly multivariable) fractional polynomials

with dimension > 1, but on applying smcfcs in simulations it returned very low type I error and

power, usually due to imputing outliers with high leverage. �e �rst method was thus extended

in Stata to impute multiple continuous covariates in a chained equations procedure.

For estimation of exponents two methods were compared to complete cases and complete

data. �e �rst used likelihoods in multiply imputed data and the second used Wald statistics.

Both methods were an improvement on complete cases, which estimated the exponents with

some bias. Wald statistics had lower bias and was more e�cient than stacking, though the

di�erences were minimal.

For model selection, two methods were investigated, and compared as before to complete

data and complete cases.

Stacking
selects exponents using likelihoods. It then treats theM imputed datasets as one large dataset
and, for each covariate, �ts the best model of dimension d with weights based onM and the
fraction ofmissing data for that covariate. Comparison of the bestmodels of di�erent dimension

proceeds by referring likelihood ratio tests to a χ2 distribution, as would be done in complete
data.

∆Wald
selects exponents by maximising the Wald statistic for each complexity of model considered.

Model selection then proceeds on the basis of Wald tests, when comparing the FPD model to
the null, and the di�erence between Wald statistics when comparing two non-null models.

In simulation studies the rejection rates of both methods were found to be worse (and of

inconsistent direction) than complete cases when only the variable of interest was incomplete.

However, both performed well when only a confounder was incomplete, giving type I error

rates close to the nominal level and power close to that achieved with complete data. When the

variable of interest and a confounder were both incomplete both methods had low type I error

but large gains in power over complete cases.
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7.1.4 �emes

�e three topics above were approached as separate pieces of research, but there are some clearly

linked ideas and themes. �e introduction noted that multiple imputation is a well developed

methodology for some simple settings, but less so for the sort of complex settings applied

researchers typically face. All three investigations considered speci�c, seemingly simple settings

with complex issues; for all, the analysis model included nonlinear functions of covariates

where one or more was incomplete.

¶Transformation towards marginal normality Chapters 4, 5 and 6 all used passive imputation
methods, sometimes a�er some initial transformation. In chapter 4 this approach worked as

well as any other when a marginally-normalising transformation was used before imputation.

Passive imputation without any transformation was the worst approach.

�e two passive imputation approaches used in chapter 5 re�ected these results. Taking

logs before imputing the denominator and numerator and passively imputing the ratio gave

good results. Passive imputation without prior transformation was the worst approach, as in

chapter 4.

In chapter 6 the tuni approach relied on automated passive imputation. A draw of p, p∗

was taken from a bootstrap sample, then in the original dataset x p∗

j was actively imputed and

x∗j passively imputed. �is approach performed well. (�is may be because in simulations
x p ∼ N and so draws of p∗ would be centred about the tansformation that was simultaneously
normalising and compatibilising.)

¶Transformation to improve compatibility A theme running through all three projects in this
thesis has been the compatibility of the models for imputation and for analysis. Rubin’s com-

bining rules for multiple imputation inference assume the imputation and analysis models are

correctly speci�ed[1]. Compatibility is a necessary (but insu�cient) condition for the models

to be correctly speci�ed, while incompatibility guarantees that at least one of the models is mis-

speci�ed (without reference to any data), placing Rubin’s rules on shaky ground. �is can lead

to bias, over- or under-estimation of variance or supere�ciency, and over- or under-coverage of
con�dence intervals. In analysing a dataset with missing data, the impact of model incompati-

bility is not usually clear. For the purposes of this thesis, compatibility or semi-compatibility of

the imputation and analysis models has been assumed to be desirable.

In chapters 4 and 5 compatibility appeared not to be the most important consideration in

developing an imputation model, and was o�en in tension with a normalising transformation.

However, compatibility is nonetheless desirable for imputation, provided it does not sacri�ce

all other desirable features of the imputation model.

An initial run of the simulation study in section 6.4 gave results that appeared to be a

mistake: log-likelihoods and Wald statistics estimated exponents with greater precision than

the complete data analysis! �is was not a coding error: it occurred because imputation initially

calculated x p using the true value of p and then imputed it.
�is is similar to the scenario described by Meng[22] and later Rubin[23], where the im-

putation model makes a correct assumption about the value of a parameter, resulting in the

phenomenon of supere�ciency. Rather than imputing with the correct amount of uncertainty,
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each imputed dataset is drawn conditional on the true parameter value p rather than condition-
ing on independent draws p∗m for each imputed dataset (the imputation model is incompatible
and improper for the analysis model, but the imputing assumption is correct). �is means the

between-imputation variance is low, implying high precision, but coverage that is higher than

stated. �ese are desirable properties, but they rely on the imputing assumption being correct.

In Rubin’s scenario with an ‘imputer’ and ‘analyst’, the imputer may have access to information

that the analyst does not or cannot hold, so it is plausible that the imputer can make a correct

imputing assumption that the analyst does not know. For the initial simulation on estimation of

exponents the imputing assumption was correct, but outside of a simulation study p would be
unknown.�e imputationmethod based on the approximate Bayesian bootstrap was developed

as a practical solution when p is unknown.

7.2 can we do better than multiple imputation?

Some of the work presented in this project is encouraging, but it is important to note that

multiple imputation is not the best solution in all scenarios and is not perfect for most scenarios.

For some work complete cases analysis did not perform too badly, or all methods performed

badly. It is important to acknowledge that multiple imputation is not always the best approach

to handling missing data.

Assume an outcome y is fully observed and a covariate x is partially observed. Let R denote
an indicator of response for x. �e correct analysis model is a linear regression of y on x.
If Rx depends on x but is conditionally independent of y given x, complete cases analysis
will be unbiased, while multiple imputation of x∣y will lead to biased (though more e�cient)
inference[89]. However, if Rx is conditionally independent of x given y, this is MAR and the
opposite will be true. If Rx depends on both x and y then neither method is appropriate. It is
thus important that multiple imputation is used only a�er an assessment that it is likely to o�er

an advantage over, say, complete case analysis under the assumed missing data mechanism.

�e likely utility of multiple imputation will also depend on the variable/s in which missing

data occur. For example, if missing data are in the outcome alone, multiple imputation is not

worthwhile unless the imputation model uses information external to that used by the analysis

model. If missing data are in the covariate of interest, it is also unlikely that much information

will be recovered (again assuming the imputation model does not include auxiliary variables).

If a confounder is incomplete, or the variable of interest is only partly observed, as in the cases

of ratios and interactions, multiple imputation can o�er advantages over complete cases.

An alternative to multiple imputation is to model the missing data and outcome using a

full probability model such as maximum likelihood or fully Bayesian methods. If the models

used are correctly speci�ed and will �t, these joint models should give equivalent inference

to correctly speci�ed multiple imputation withM = ∞. In chapter 5 it was demonstrated that

�tting fully Bayesian joint models is not trivial. Although specifying full probability models is

easier than correctly specifying the (corresponding) imputation model, �tting it is far more

computationally complex, and will be inaccessible to many applied researchers.

Whilemultiple imputationwill not always be the best approach, with adequate consideration

of the assumptions and careful choice of imputation model it will o�en be a better approach
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than complete cases and more practical than full probability models.

7.3 implications for the practical use of multiple imputation

PMM and LRD are less useful for dealing with nonlinear relationships than originally expected.

Both are slightly inferior to standard posterior draws when the imputation model is correctly

speci�ed, however, when the imputation model is misspeci�ed they can be superior. �is

implies it is necessary to think carefully about correct speci�cation of the imputation model,

but either method may be a helpful adjunct to this choice when there is uncertainty about its

adequacy. In using either method, I strongly caution against the combination of type 0 or 2
matching with k = 1 (at the time of writing k = 1 with type 2 matching is the default option for
Stata’s mi impute pmm). For PMM, I advise type 1 matching with k = 10 and for LRD, type 2
matching with k = 20. For datasets with a particularly small number of available donors (for
example nh = 30), smaller values of k will be necessary; for particularly large datasets it may be
preferable to use larger k. Note that the only so�ware either of these methods is available in is
ice[30]. In R, Sas and Stata’s mi suite, PMM with type 2 matching is the only option.

For analysis with incomplete ratios, I o�er a further strong caution: avoid the use of passive
imputation without prior transformation. Bayesian full probability models do not appear to
be viable for this problem, despite theoretical promise. Of the various imputation methods

explored, passive imputation a�er log-transformation of the numerator and denominator was

perfectly adequate. �is was unexpected because the imputation model is incompatible with

the analysis model, but the result held even for relatively strong associations.

In combining multivariable fractional polynomial models, the methods explored were, neces-

sarily, less simple to implement than the sort of methods considered in previous chapters. First,

special approaches to imputation were required to ensure the variable and function selection

procedures were not biased by the method of imputation. Compared with more standard

imputation, the methods I advocate are computationally intensive. Further, smcfcs can fail and

icet lacks generality. In this setting it is more important than ever to inspect imputed values,

comparing them graphically alongside observed values where possible. Where imputation is

unsatisfactory, researchers should proceed by making careful restrictions or additions to the

imputation model. Both methods described have been coded in Stata (smcfcs and icet).

For MFP model selection the ∆Wald method appears to be slightly preferable to stacking

for estimation of exponents, though there is little to choose between them for variable selection.

Both have have been coded as Stata commands with similar generality to the commands for

building MFP models in complete data, and so these are simple to apply once data have been

imputed satisfactorily. I hope that these methods, particularly ∆Wald, will begin to be used in

practice now that their validity and value has been established.

7.4 limitations and extensions

Aswith any research, these conclusions donot cover all settings. Some remarks on the limitations

of my investigations are given below, and potential extensions.
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7.4.1 Diagnostics for PMM and LRD

In Kazuo Ishiguro’s novel Never Let Me Go[90], the protagonists are given life and grown to
adults for the purpose of donating their vital organs to individuals fromwhom they were cloned.

Each donates two or three times before dying. �is bizarre idea suggests a diagnostic for PMM

and LRD: a variable detailing, for each individual with observed data, the number of times they

donate within each imputed dataset. Presumably a small number of individuals donating a lot

of the time would be a cause for concern, although it is possible that it simply indicates a strong

degree of MAR. An example of the use of such a diagnostic is in J-thwart; �gure 3.8 shows

clearly that one or two individuals have donated many times. While it is not this fact that leads

to the problems with PMM and LRD, it does indicate the strong MAR mechanism that leads to

them. If results of such a diagnostic were a cause of genuine concern, something like Moriarity

& Scheuren’s ‘constrained’ matching might be sensible, which makes repeated donation harder.
A second useful diagnostic could be envisaged for individuals with imputed data: the

number of donors that have been used across theM imputations (for each imputed variable). If
many individuals have a small number of donors providing data for most imputations this may

be a cause for concern. Again, some sort of constraint could be invoked that makes it harder

for a donee to receive repeatedly from any donor.

Both of these diagnostics may be useful additions to current implementations of PMM and

LRD. However, there are two cautions to note before deciding on an implementation of either

diagnostic.

1. Computationally, any implementation would increase the time taken to create imputations,

perhaps considerably. Further, an implementation of constrained matching would add to this

even further, since models would be required to record the number of donations per donor

and augment δh j accordingly.

2. Further thought is required on the interpretation of these diagnostics. Although they may

be interesting, it does not follow that the imputation model is wrong, or that a constraint

on matching will improve inference. Consider the data shown in �gure 3.8. If a constrained

matching method were used for PMM, the problematic imputed values of x would lie on the
vertical line at the right or to the le� of it, which would increase the bias further. Even so, the

diagnostic recording the number of times the observed value of x donates would be reduced.

�ese are strong reasons against the implementation of either of the above diagnostics

7.4.2 Generalisability

Some work has focused on concepts and howmethods work, for example chapter 3 and sections

6.4 and 5.4.3; other work has focused more on practical application of methods, for example

chapter 4 and sections 5.5 and 6.9.�ework on concepts demonstrates strengths andweaknesses

of di�erent methods in di�erent scenarios, but does not mean such scenarios will occur in

practice. It was therefore important to motivate work with real data examples. However, this

is in itself limited to the structure of the example datasets in use. For example, the outcome

of using imputation model M5 is very di�erent for the two datasets presented in section 5.5.
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With just the �rst dataset we may have concluded that M5 was adequate. It is possible that with

di�erent datasets very di�erent approaches would be necessary.

Continuous, normally distributed outcomes have primarily been used in simulation work.

In imputing missing covariate values it is unlikely that using di�erent outcomes would have

substantially changed conclusions about the di�erentmethods, but it is possible that the contrast

betweenmethodsmay be di�erent. It may be a useful extension to repeat some of the simulation

studies to consider binary, ordinal, count and survival outcomes. (�is does not apply to chapter

3; with a binary outcome there would only be two values of α̂ yh .)

7.4.3 Missing data and missing at random

�e introduction stated that this thesis would deal with data missing at random and missing

completely at random. Multiple imputation is usually assumed to provide valid inference under

these assumptions. It does notmean that the assumptions are plausible, and in any given analysis

the likely process by which data go missing must be considered. If this process seems to be other

than missing at random then imputation models will need augmenting (this remark sounds

innocuous but may be extremely di�cult to do in practice and imputation under missing not

at random is still a subject of active research).

Even where missing at random seems to be plausible it is critically important to assess the

sensitivity of conclusions to departures from the assumption. One approach that may be fruitful

is that of Carpenter, Kenward and White[91]. Brie�y, imputations are drawn under MAR, but

when Rubin’s rules are applied, imputed datasets are weighted by the magnitude of a parameter

estimate of interest. �e approach was developed assuming a single parameter of interest, but

research is ongoing for multiple parameters.

�ere are two cautions from the authors when using this approach[91]:

1. �e true MNAR inference must lie within the range of the various MAR estimates.

2. Although an attraction is that it is not necessary to produce imputations under MNAR, a

drawback is that estimates are o�en completely dominated by one imputed dataset, even

for a reasonable number of imputations. Hundreds or even thousands of imputations

may thus be required to tackle this problem. A high computational burden is then added.

7.4.4 Multi-level data

Many datasets in medical research involve some form of clustering, where an observed outcome

is ‘clustered’ with others within some larger unit[92]. A ‘cluster’ is some common measurement

shared across multiple units of observation. Common examples are studies in a meta-analysis,

multiple individuals in a longitudinal study, and clusters in a cluster randomised trial.

In certain settings it is important to allow for the clustering in the analysis, while in other

settings it will be desirable as a means of increasing precision. Indeed, individuals are clustered

within recruiting centres in both the trauma and Aurum datasets.

When the analysis model allows for clustering, for example using random treatment-by-

study interactions in a random-e�ects meta-analysis, it is important that the imputation allows

for this. �is is an area of active research. Two-level imputation models have been implemented
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as 2L.norm in R’s mice package. Winbugs and Realcom can also impute from general multilevel

models.

In a recent paper, Goldstein, Carpenter and Browne have worked on developing methods

for �tting multilevel models which may include interactions and nonlinear terms for covariates,

although their approach is completely di�erent to ours and it is unclear whether allowance for

nonlinear terms would extend to fractional polynomial models[93].

7.4.5 Closeness of the selected MFP model to the true model

In chapter 6 a simulation study considered bias and variance in the estimation of exponents for

fractional polynomial models according to di�erent methods. Following this, the type I error

and power of model selection procedures were considered. �e power work is a step beyond

much previous work on multivariable fractional polynomials. However, controlling the error

rates is not the only care of frequentist statistics.

It would be of interest to have somemeasure of closeness to the true model. It is not sensible

to summarise β̂ over repeated simulations because β̂ are only interpretable conditional on p̂,
making ‘closeness’ to the correct model di�cult to quantify. Royston and Sauerbrei advocate

summarising the results of MFP models graphically, or numerically at pertinent covariate

levels[13], asa in �gure 6.15. �e latter approach in simulations might be useful future work to

facilitate an exploration of closeness to the true model. However, there is no reason to believe

the conclusions would change.

7.4.6 Remark on simulation

�is thesis has relied heavily on simulation studies, some relatively complex, to evaluate the

performance of methods.

If a researcher were given any one of the simulated datasets, they may decide on a di�erent

approach to the analysis on inspection of the data. For example, with the simulation study

performed in chapter 3, if the association between observed values and outcome appears to

be approximately linear and x∣y appears to be approximately normal, posterior draws may be
used in preference to PMM.�e procedures blindly followed by simulation programs do not

involve any representation of the decisions that are used in analysing data.

�is is a strength in that simulation considers the statistical properties of a procedure

regardless of the data, but a weakness in that it does not mimic the operating characteristics of

the researcher’s approach. �is is true of the majority of Monte Carlo simulation studies but

is worth noting. In principle simulation studies could be designed to follow certain decision-

making procedures. Such a simulation may be interesting but focuses less on the method and

more on the researcher’s procedures.
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A initialisms

�e below section is a reference for the initialisms used in this thesis. �ese are listed alphabeti-

cally.

ABB Approximate Bayesian Bootstrap

BVN BiVariate Normal

CD Complete Data

CC Complete Cases

CV Coe�cient of Variation; the standard deviation divided by the mean

df Degrees of Freedom

Epic European Prospective Investigation of Cancer*

FMI Fraction of Missing Information

FP Fractional polynomial/s

FCS Fully Conditional Speci�cation (synonym for mice)

LRD Local Residual Draw

MAR Missing At Random

MCAR Missing Completely At Random

MFP Multivariable Fractional Polynomial/s

MI Multiple Imputation

mice Multiple Imputation by Chained Equations*

MNAR Missing Not At Random

MVN MultiVariate Normal

PMM Predictive Mean Matching

ROC Receiver Operating Characteristic

SD Standard deviation

SE Standard error

SMC Substantive-Model-Compatible

*Initialisms that are pronounced as a word rather than initials are set in lowercase.
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B drawsuit results: n = 100, 25% missing x

It is hypothesised that the performance of PMM and LRDwill degrade. In particular, increasing

k may provide worse results since �nding a good match is harder and k represents a larger
proportion of the observed data. �erefore, the simulations in 3.1.3 are repeated with n = 100.
Biases are very similar to n = 500, but are generally around double the magnitude of the

corresponding n = 500 cases. In relative terms, this is still very small and unlikely to matter in
practice. Again, PMM is increasingly biased with larger k, while LRD is una�ected. As with
n = 500, this bias is slightly stronger for type 1 matching than type 2. All biases present increase
with the strength of MAR.

Standard errors from PMM and LRD tend to be slightly better relative to posterior draws

than in the n = 500 case. Again larger k gives lower standard errors. Interestingly for PMMwith
type 1 matching, R2 = 0 is more precise than posterior draws when k > 3. Again, the relative
precision of both PMM and LRD is adversely a�ected by stronger missingness mechanisms.

Greater precision would be expected for methods which are biased towards the null, but

interestingly here the method least biased towards the null also has the lowest standard error.

Coverage showed similar patterns to n = 500, again slightly accentuated. As previously,
type 1 matching gives better coverage than type 2 and LRD tends to give slightly low coverage,

with PMM giving superior results under like-for-like matching and k. �e largest values of k
reduced problems for type 2 matching to a negligible size. In these cases there were no coverage

issues for R2 = 0.5; for R2 = 0 and R2 = 0.1 issues were small.
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Figure B.1: DrawSuit: Bias in point estimates, n = 100 (Error bars are ±2×Monte Carlo standard
errors)
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Figure B.2: DrawSuit: Empirical standard errors, n = 100 (Error bars are ±2× Monte Carlo
standard errors)
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Figure B.3: DrawSuit: Coverage of nominal 95% ci, n = 100 (Error bars are ±2×Monte Carlo
standard errors)
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C appendices relating to mi for ratios (chapter 5)

C.1 compatibility for a ratio covariate

[Note: as in chapter 5, the appendix below matches the appendix of the published article[16].]

Section 5.4.3 says that models are compatible if a joint model exists that implies both as

conditionals. How can we tell whether there is a joint model underpinning both the imputation

model and analysis model? Arnold, Castillo and Sarabia give a theorem that is restated here for

clarity[94].

�eorem 1 Given two conditional densities f (x∣y) and g(y∣x), a joint density exists if and only
if {(x , y) ∶ f (x∣y) > 0} = {(x , y) ∶ g(y∣x) > 0} and there exist functions u(x) and v(y) such
that, �rst,

f (x∣y)
g(y∣x)

= u(x)v(y), (C.1)

and second, u(x) is integrable.

Here u(x) is a marginal density for x and v(y) is a marginal density for y. Below, we posit an
analysis model and check compatibility against two di�erent imputation models using (C.1).

We distinguish between two kinds of non-compatibility:

semi-compatibility �ere is a special case of the imputation model that is compatible with the
analysis model.

incompatibility �ere is no case of the imputation model that is compatible with the analysis
model.

�at is, if setting certain parameters of the imputation model to 0 yields a compatible model,

the imputation model is drawing on more information than the analysis model, and so is

richer. If parameters of the imputation model cannot be set to 0 to identify a compatible model,

the imputation model is using di�erent information to, or less information than, the analysis

model. Previous work has shown that incompatibility can be harmless or bene�cial[22, 23, 24].

When the analysis model is correctly speci�ed, these are examples of using semi-compatible

imputation models, while incompatible imputation models can be harmful.

Appendices C.1.1 and C.1.2 work through two simple examples. For both, the analysis model

involves only the ratio as a covariate. C.1.1 uses model M5 and is shown to be incompatible;

C.1.2 uses model M1 and is shown to be compatible.

Instead of dividing the densities we subtract the log-densities. For clarity we omit the

intercept terms α0 and β0 from the imputation model and the analysis model respectively,
assuming both equal zero. Note that since neither parameter involves a1 , a2 or y this does not
impact on compatibility.
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C.1.1 Imputation model incompatible with the analysis model

Suppose the proposed analysis model is a linear regression of y on the ratio a1/a2. �e log-
density for this is

− ln(σy
√
2π) −

(y − β a1
a2
)
2

2σ 2y
. (C.2)

�e proposed imputation model is a bivariate normal model for a1 , a2 given y:

(a1 , a2 ∣ y) ∼ BVN
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⎠
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which has log-density

−ln(2πσ1σ2
√
1 − ρ2) −

1

2(1 − ρ2)
(C.3)

[(
a1 − α1 y

σ1
)
2

+ (
a2 − α2 y

σ2
)
2

− 2ρ (
a1 − α1 y

σ1
)(

a2 − α2 y
σ2

)] (C.4)

�e imputation model (C.4) is of the form b(a1 , a2) + c(y) + d1(a1 y) + d2(a2 y) and the
analysis model (C.2) is of the form b′(a1 , a2) + c′(y) + d3 ( a1

a2
y). Subtracting one from the

other, we cannot express the result as u(a1 , a2) − v(y), indicating that they are incompatible.

C.1.2 Imputation model compatible with the analysis model

�e proposed analysis model is as in (C.1.1), and so the log-density is given by (C.2). However,

the imputation model involves a linear regression of
a1
a2
on y. �e log-density is:

ln f (
a1
a2

) = −ln(σa
√
2π) −

( a1
a2
− αy)

2

2σ 2a
. (C.5)

Subtracting (C.5) from (C.2), we get

ln(σa
√
2π) +

( a1
a2
)
2

2σ 2a
+

α2 y2

2σ 2a
−
2α a1

a2
y

2σ 2a
− ln(σy

√
2π) −

y2

2σ 2y
−

β2 ( a1
a2
)
2

2σ 2y
+
2β a1

a2
y

2σ 2y
. (C.6)

By setting α/σ 2a = β/σ 2y we can express (C.6) without any terms involving both (a1 , a2) and y,
indicating that for any choice of α, σ 2a there is a value of β, σ 2y for which the proposed imputation
model is compatible with the analysis model.

C.2 bayesian models for an incomplete ratio

It is conceptually natural to model missing covariates using Bayesian methods. �e problem

discussed in section 5.4.3, that the imputationmodel and the analysismodelmay not correspond

to any joint model, does not exist for Bayesian models, where the model for missing data and

the analysis model are joint. �e compatibility between the missing data model and the analysis

model is thus assured.
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Table C.1: Candidate fully Bayesian models for x i

Model for covariates Label

(z i , xpi ∣ w i) ∼MVN B1

(z i , xpi , a1i ∣ w i) ∼MVN B2

(z i , xpi , a2i ∣ w i) ∼MVN B3

(z i , xpi , a1i , a2i ∣ w i) ∼MVN B4

(z i , a1i , a2i ∣ w i) ∼MVN B5

(z i , ln(a1i), ln(a2i) ∣ w i) ∼MVN B6

�e practical disadvantage of fully Bayesian models for an incomplete ratio and/or its

components is computation. Bayesian models are also in general more computationally de-

manding than MI. Further, the imputation models described above could be implemented

fairly automatically using a choice of so�ware, while the Bayesian models requires knowledge

of Winbugs and/or the ability to code the models manually in another package.

Here, we explore whether Bayesian models, by working with the full joint likelihood, will

provide more coherent results than MI. In our example datasets we aim to obtain posterior

means and credible intervals under various models.

C.2.1 Models, so�ware and priors

A Bayesian model combines model (5.1) with a model for the incomplete covariates given the

complete covariates. Candidate Bayesian models for the covariates are listed in table C.1 (again,

note the Label column, where the number corresponds to the imputation model with equivalent
motivation). Details of how the Cox model is �t are given in section 5.4.5 and appendix C.2.2.

In contrast to MI, no explicit conditioning on the outcome is required for Bayesian models.

Note that, except for the lack of issues around compatibility, the critique of the imputation

models given in 5.4.4 with equivalent labels applies equally to the Bayesian models given in

table C.1. �at is, models B1–B3 may ignore some of the observed data, while B2–B4 are likely

to be misspeci�ed to some degree.

To �t Bayesian joint models in our case studies, we used Winbugs 1.4.3[95]. Because we

are dealing with the Cox model, we used the method outlined in the Winbugs manuals (Leuk:
survival analysis using Cox regression in Examples Volume I) to specify the models[96].
Vague prior distributions were used for all parameters.

C.2.2 Details on Bayesian analyses

Below we give Winbugs code used to demonstrate the setup of the fully Bayesian Cox model

where xp is modelled and a1 , a2 are ignored (this is the model denoted B1 in table 5.3). Models
B2–B6 di�er only in that they simply specify the models for BMI, weight and height2 di�erently.

�e data �le is made up of the covariates age sex hb logvl sqcd4 bmi, a vector of length

N indicating death fail, a vector of length N of survival times for all individuals obst, and a
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vector of length T of distinct failure times t. Note that the data must be sorted in ascending

order of obst before being passed to Winbugs. All covariates are centred at their mean.

model

{

# Set up data

for(i in 1:N) {

for(j in 1:T) {

# risk set = 1 if obst >= t

Y[i,j] <- step(obst[i] - t[j] + eps)

# counting process jump = 1 if obst in [ t[j], t[j+1] )

# i.e. if t[j] <= obst < t[j+1]

dN[i, j] <- Y[i, j] * step(t[j + 1] - obst[i] - eps) * fail[i]

}

}

# Analysis model

for(j in 1:T) {

for(i in 1:N) {

dN[i, j] ~ dpois(Idt[i, j]) # Likelihood

Idt[i, j] <- Y[i, j] * exp(eta[i]) * dL0[j] # Intensity

}

dL0[j] ~ dgamma(mu[j], c)

mu[j] <- dL0.star[j] * c # prior mean hazard

}

c <- 0.1

r <- 0.1

for (j in 1 : T) { dL0.star[j] <- r * (t[j + 1] - t[j]) }

for(i in 1:N) {

eta[i] <- (beta1*age[i]) + (beta2*sex[i]) + (beta3*hb[i]) + (beta4*logvl[i])

+ (beta5*sqcd4[i]) + (beta6*(bmi[i]))

}

# Model for covariates.

# The specified univariate distributions imply marginal multivariate normality

for(i in 1:N) {

# model for augmenting bmi

bmi[i] ~ dnorm(mubmi[i],0.01)

mubmi[i] <- dabmi0 + (dabmi1*age[i]) + (dabmi2*sex[i]) + (dabmi3*hb[i])

+ (dabmi4*logvl[i]) + (dabmi5*sqcd4[i])

# model for augmenting cd4 count

sqcd4[i] ~ dnorm(mucd4[i],0.01)

mucd4[i] <- dacd40 + (dacd41*age[i]) + (dacd42*sex[i]) + (dacd43*hb[i])

+ (dacd44*logvl[i])

# model for augmenting hb

logvl[i] ~ dnorm(muvl[i],0.01)

muvl[i] <- davl0 + (davl1*age[i]) + (davl2*sex[i]) + (davl3*hb[i])

# model for augmenting hb
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hb[i] ~ dnorm(muhb[i],0.01)

muhb[i] <- dahb0 + (dahb1*age[i]) + (dahb2*sex[i])

}

beta1 ~ dnorm(0,0.01) # priors

beta2 ~ dnorm(0,0.01)

... [these priors are used for all parameters]

}

�e priors for regression coe�cients are ∼ N(0, 100). �e prior for dL0, the baseline
intensity, requires slightly more explanation. �is is modelled as dL0 ∼ Γ(cr{t( j+1) − t( j)}, c),
that is, a gamma distribution with mean r{t( j+1) − t( j)} and variance r{t( j+1) − t( j)}/c. �e
expression {t( j+1) − t( j)} is the time increment between the jth and j + 1th failure times; in the
Aurum data, the mean time increment was 8 days. Note that r is not invariant to the scale of t,
although c is. We used c = 0.1 and r = 0.1. A change of time scale would require r to be altered
to obtain an equivalent prior distribution.

C.2.3 Results

Fitting the Bayesian models in Winbugs was troublesome.

For the Aurum data, all MCMC chains ran slowly and some stalled persistently.�e simplest

models (for example B1) took 5–10 hours to produce 5,000 iterations of the MCMC sampler.

Model B5 took 10 days to produce 1,000 iterations and would only update under a very speci�c

set of initial values. Winbugs stalled repeatedly and the need to set the model updating again

in�ated the run time. We present results for model B5 but do not claim the MCMC sampling

converged to the true posterior distribution. Results for model B6 are absent because Winbugs

was unable to sample at all; the reason for this was unclear. Winbugs ran a lot faster when

�tting models that imputed missing values of xp actively, that is B1–B4.
Results for the Aurum data are given in �gure C.1 (contrasting with the results obtained via

MI in �gure 5.1). Posterior distributions obtained from di�erent fully Bayesian analyses give

diverse results. For hæmoglobin, posterior means for all models except B5 are slightly closer to

0 than any of the MI models, and the 95% credible intervals tend to be slightly shorter than

the MI con�dence intervals. �is may in part be the e�ect of the prior for the hazard, as seen

in the comparison of Bayesian and frequentist analysis of complete cases. Under model B5

the posterior distribution for the log hazard ratio had mean much closer to zero with smaller

posterior variance than under other models.

For BMI, posterior means from B1–B5 are very variable. B1 and B2 largely agree with the

MI and (Bayesian) CC estimates, although the intervals are longer than those obtained a�er

MI. Posterior means from B3 and B4 are closer to 0 and have shorter credible intervals than MI

models or the other Bayesian models. For B4 this perhaps re�ects the incorrect assumption

made about the joint distribution of xp , a1 , a2 (this is surprising because the issue does not
appear to a�ect model M4). Model B5 shows an e�ect in the opposite direction to all other
estimates. �is was the model that was very di�cult to run in Winbugs. As noted above we do

not claim B5 ever converged to the true posterior density.
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Figure C.1: Results from analyses of Aurum data under di�erent Bayesian models for BMI.
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Figure C.2: Results from analyses of Epic-Norfolk data under di�erent models for cholesterol

ratio using predictive mean matching. �e estimated fraction of missing information (FMI) is

given next to MI analyses.
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For the Epic-Norfolk data it was not possible to compile any of the fully Bayesian models in

Winbugs, even for complete cases. We tried compiling the complete cases model for subsets of

the data of gradually increasing size (starting with n = 1000); model compilation failed beyond
n > 4000. �e Epic-Norfolk dataset is too large for Winbugs and so attempts to �t the fully

Bayesian models were abandoned.�is is a setting where a fully Bayesian analysis is impractical

to any but the most dedicated.

C.3 predictive mean matching to impute cholesterol in epic-norfolk

As described in section 5.5.2.1, we re-ran the imputationmodels for Epic-Norfolk using predictive
mean matching. Figure C.2 gives the full results analogous to those given in �gure 5.2. Note that,
with the exception of model M5, there is less consistency between models than between the

models that did not use PMM. Note also that the fraction of missing information is uniformly

greater for the models that use PMM.
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D notes on smc fcs

D.1 smc fcs in chapters 4 and 5

�ework presented in chapters 4 and 5 involved scenarios where there was no standard approach

to imputation that would be considered satisfactory. In particular, this work threw up concerns

about the use of ‘passive’ imputation. At the time, the idea of SMC FCS and its implementation

as a Stata command were in the early stages of development and so its inclusion was not viable.

However, the method lends itself well to the set up of this work involved in both chapters.

In chapter 4 the simulation study was set up such that themarginal distribution of covariates

was easy to specify, but conditioning on outcome meant all imputation models considered

were incorrectly speci�ed. �is would have been the ideal setting for SMC FCS: the proposal

distribution would use f (x) ∼MVN and specify the analysis model as a logistic regression of
y ∣ g(x) for rejection sampling.
In chapter 5 the marginal distribution of covariates was simulated as (log(a1), log(a2)) ∼

BVN. �e analysis model then used the ratio a1/a2. Again, it is obvious that the SMC FCS
approach could be used in this setting by using the correctmarginal distribution of the covariates

as the proposal distribution and the correct analysis model for rejection sampling.

Any future work on these topics will include SMC FCS.

D.2 a visual exploration of issues with smc fcs for fractional polynomials

�e simulation work in chapter 6 shunned SMC FCS, despite its apparent promise. In prelim-

inary runs to calibrate the simulation studies the method performed extremely badly. �is

appendix provides a sketch of when and how failures arose. Future work will consider how best

to use SMC FCS in practice.

It is important to test SMC FCS in real datasets to understand when and how problems

arise; ongoing work is beginning to demonstrate how and when it succeeds and fails.

Below, I demonstrate the di�culties that can arise using simples plots of y vs. x for observed
and imputed data. In all cases the complete data are simulated andmissing values are introduced

completely at random in 40% of x observations.
Figure D.2 shows a dataset simulated as x ∼ N(2.9, 1) and y ∼ N(0.1x−1 +0.02x3 , 0.32). �e

horizontal lines at 0 and 6 are placed just outside the range of xh . SMCFCS is used for imputation
using x ∼ N for the proposal distribution, which is correct. �e rejection probabilities come
from �tting a linear regression of y on x−2 , x−1 , x−0.5 , ln(x), x0.5 , x , x2 , x3. For all imputed
datasets except m = 2 some values of x are negative.
To deal with the problem of negative imputed values in �gure D.2, an alternative would be

to use log(x) ∼ N for the proposal distribution. �is leads to problems of rare large positive
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Figure D.1: Simulated data where x ∼ N and y = 0.1x−1 + 0.02x3+ ∼ N(0, 0.3) along with �ve

SMC FCS imputations x ∼ N for the proposal distribution

0 6 0 6 0 6

Observed 1 2

3 4 5

Plotted by imputation number

values, which may introduce some bias to the estimation of exponents and coe�cients.

Figure D.2 plots simulated data mimicking the set up used in section 6.5, again with 40% of

x values MCAR.�e top row displays two imputed datasets using x−0.5 ∼ N for the proposal
distribution; the middle row displays two imputed datasets using log(x) ∼ N for the proposal
distribution; and the bottom row displays two imputed datasets using x−1 ∼ N for the proposal
distribution. While the top two rows appear to produce quite reasonable imputed values,

specifying x−1 ∼ N for the proposal distribution clearly causes problems, with extreme negative
outliers. Aside from these few values, the plot is very similar to the top two rows.

�e above problems meant that the SMC FCS method was not used for any of the results

shown in chapter 6.

�e various Stata commands forMFPmodels involve automatic scaling of x 1 before applying
FP transformations by using educated guesses based on the observed values, such that CV(x)
is high, but all x i are positive. �e above examples show that when CV(x) is high, negative
imputed values are more likely. �is causes problems for fractional polynomials because it

is a requirement that values of x 1 are positive; with negative values of x, it is impossible to
calculated the required transformations.

Rescaling x a�er imputation is an unsatisfactory solution, because this alters the �t of the
various models (as noted in chapter 6), meaning the rejection probabilities used by SMC FCS

will be invalid on this new scale.
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Figure D.2: Simulated data where x ∼ N and y = 0.1x−1 + 0.02x3+ ∼ N(0, 0.3) along with �ve

SMC FCS imputations log(x) ∼ N for the proposal distribution

0 6 0 6 0 6

Observed 1 2

3 4 5

Plotted by imputation number

Two practical solutions would be:

1. Perform scaling of x prior to imputation. �is will be more conservative than the default
with complete data. For example, in �gure D.2 a preliminary rescaling might be (x i + 1).

2. Use PMM to draw from the proposal distribution. PMM tends to be good at preserving

marginal distributions, which is the requirement of the proposal distribution. It also

forces imputed values to lie within the range of observed data, meaning that the scaling

used prior to imputation is the same as the scaling that would be chosen post-imputation.

Use of PMM seems to be the better solution, because it does not require alteration of

the analysis model to deal with missing data (this remark is not a scienti�c statement but

an opinion I hold on multiple imputation). �is is an area of current development for the

smcfcs command. However, before recommending its use, simulation studies similar to those

performed by Bartlett et al.[26] are required as a formal evaluation of its performance.
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Figure D.3: Simulated data using the setup of section6.5 along with two imputations for three

proposal distributions. Le� column uses identical (observed) data for all three rows. Top row

correctly uses x−0.5 ∼ N for the proposal distribution; middle row uses log(x) ∼ N; bottom
row uses x−1 ∼ N
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