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Abstract

7he problems encountered designing very large scale integrated circuits (VLSI) are
fundamentally different from the problems encountered in the design of small scale
integrated circuits. The differences require a new methodology of design for the
new large scale circuits, and the new design methodology requires a new set of tools,
The computer aided design work al Caltech has progressed from a recognition of flm
inherent differences and has produced a new design methodology and a set of tools

which attack the new problems.in integrated circuit design.



This paper is intended to give the reader an introduction to the ideas and tools that
underlie VLS| design research at Caltech. These ideas and tools have evolved not
only from the faculty and students, who have been designing integrated circuits since
1970, but also from incdustrial representatives from Caltech's Silicon Structures
Project. This project, in existence since 1977, staffed in part by sponsor's
representatives on one year assignments at Caltech, has been a valuable source of

insight into the problems being faced and about to be faced by VLSI designers.

The paper is divided into three parts: a description of the design philosophy, a
summary of important tools built around this design philosophy, and a discussion of

results and conclusions.

1.0 Design Philosophy

VL31 technologies have the capability to produce chips containing a hundred thousand
transistors [Lattin 1981]. With current design techniques, it takes around 60 man
years to design, and another 60 to debug, such a chip. In the theoretical limits, VLS|
chips will contain nearly 10 million transistors. Without some method for reducing the
complexity of design, a 10 million transistor chip would take somewhere near 6000

man years to design.

These numbers clearly indicate that there is a widening gap between what VLSI
technolagies c¢an produce and what system désigners can design. At present, the
only chips that approach the available density are memory chips, and those only
hecause of their exiremely regular patterns. With less regular systems like

microprocessors, designers are having difficulty merely completing complex designs.

The structured design methodology of Mead and Conway [Mead 19807 in use at
Caltech is an approach to VLSI system design that attacks the problems of complex

designs. Elements of this structured style are apparent in many successful designs.



The structured design methodology has two major parts: hierarchy and regularity.
Hierarchical techniques have long been used to design complex systems [Simon
1962] [Koestler 1967]. Hierarchies are used to partition designs among the design
team members., Also, common parts of a design can be factored out and specified
only once. By introducing regularity into a system, the design problem is reduced in
complexity as subunits are replicated many times and connections between units are
simplified, Traditionally irregular control structures have their regular counterparts in

ROM and PLA. Wiring strategy and regularity are addressed from the start, eliminating
inefficient and costly routing.

The structured design methodology is similar in concept to structured programming
[Dahl 1972]: the design proceeds in a top-down manner in which the problem is
decomposed and refined. The designer is limited in the kinds of structures he may
use to implement a function. The advantage of restricting the structures is that the
design can bhe implemented more quickly and reliably. Proofs of correcthess are

easier to produce and more of the design can be automated.

In the words of E.J. Dijkstra [Dijkstra 1972]: "Testing can be used to show the
presence of bugs, but never to show their absence." A major goal of computer aided
design at Caltech is to produce correct designs without the need for checking. This
qgoal of correctness by construction permeates the design methodology and tools at
Caltech. Emphasis is placed on tools which generate designs to be correct in some
sense, rather than on tooils which check designs after they have been generated.
These tools can be very specific to the design methodology in use at Caltech. The
mating of the tools to the design style allows tools to be constructed which are much

maore powerful and leads to much greater productivity from the designers for whom
the tools work.

1.1 The Separated Hierarchy

Hierarchical design at Caltech is predicated on a restricted hierarchy called the
separated hierarchy [Rowson 1980]. The separated hierarchy, shown in Figure 1.1.1
has two different kinds of cells, feaf cells and composition cells. A leaf cell is
defined only in terms of primitives. No instances of other cells are allowed. A
composition cell contains only logical interconnections of instances of other cells, no

primitives allowed. The tools needed for manipulating these two kinds of cells are



vastly different.
Figure 1.1.1 The Separated Hierarchy.

Compaosition cells in the separated hierarchy form a representation independent
language for specifying a design. A representation is one particular view of a design.
There are many possible representations including mask geometry, stick diagram,
schematic diagram, English fanguage description, behavioral description and so on.
Leaf cells, containing only primitives, must be specified for each representation. The
same composition cells can be used for all representations because they contain no
primitives. In order to deal with a composition cell within a particular representation,
a composition rule for each representation is specified. A composition rule is just an
algorithm that will produce a definition of any legal composition in the corresponding

repfesentation. A legal composition could be as simple as "No two cutputs may drive

the same node."

A set of design tools built around the separated hierarchy provides mechanisms for
designing leaf cells in many different representations, a composition rule for each
representation, and a way to design composition cells. One problem inherent to a
multime representation system is that of consistency checking. If a designer
specifies a particuiar cell twice, i.e., as geometry and as circuit schematic, some
method for guaranteeing consistency between the two representations is needed.
Compuosition cells, being representation independent, need not be checked for
consistency. Composition rules must be consistent between representations, but this
consistency need only be checked once per representation. Leaf cells clearly need
to be checked. The hierarchical decomposition of the design leads to relatively

simple leaf cells, making consistency checking (even by eye) relatively simple,

1.2 Algorithmic Design

Large chips closely resemble large programs in their variety and complexity. The
need for powerful design systems to make these chips pushes us into the most
powerful forms we have: algoritbms represented by programming notations. The
algorithm may be very simple, such as a series of rectangle placements. The use of a
programming language allows placement of features to be done in a relative way, so

that if one item or cell moves or grows, others follow. The procedures may be very
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high level, such as routing of bus connections, deforming cells to interface without

routing, designing a PLA, or computing the width of power wires according to the
current required.

Cells can he parameterized so that they can adapt to the environment in which they
are instantiated. For example, a transistor may change size to react to a change in
load capacitance. The list of parameterizations is as long as the number of designhers
involved. Adaptable cells designed in this parameterized fashion will "live" longer and
be more useful as building blocks in later designs which may have different

requirements. They also aliow decisions about detailed characteristics of the cell to

be delayed until later in the design cycle.

As an example, consider a register cell in a duai-bus system. This register may be
required to read data from or write data to either of the two buses in the system
[Johannsen 1979]. Depending on intended use, the cell register may require refresh
and preset logic. These registers may be used many times on each chip, and each

usage, or instantiation, of the cell may require a different subset of the six available
functions.

Since the celis are programs, we need not design all 64 possible register
implementations and select the appropriate one as required. instead, we can
generate one register cell program that can remove unused circuitry and thereby
generate any particular register instance as it is required. Figure 1.2.1 illustrates
this technique. Figure 1.2.1a shows the six fuﬁction register cell described above.
It is possible for the same parameterized cell to be generated without the preset
capabhility and without access 1o the lower bus, in which case the smaller register is
produced, as shown in Figure 1.2.1b. The user of the register can specify its

configuration with a list of the desired functions for the register, a behavioral

description.

Figure 1.2.1. Algorithmically defined register cell. a) Register Cell with All Functions.
b) Minimal Register Cell.

The recognition that the difficullies of compiexity management overwhelm the
problems of geometry generation ieads to a new set of constraints on the design
tools. Design tools must address the probiems induced by the complexity of the.

design at all levels. Cells defined algorithmically can adapt to changes in their



neighbors, thereby restricting small changes in the design to small amounts of effort
by the designers as they incorporate those changes. Programming languages provide
the necessary versatility, although the precise characteristics of an ideal design

language have not been determined.

1.3 Descriptions of the Design

It is possible to identify three domains of design description [Buchanan 19807 which
must be addressed in a finished design. The three descriptions are: the behavioral,
the description of the function of the design; the structural, the description of the
form of the implementation; and the physical, the description of the physical
implementation of the design. There are many possiiale representations of a circuit in

each description, and judicious choice of representations is important in tool design.

1.3.1 Behavioral Description

Integrated circuit designers are in the business of building behaviors. A part which
does not have the desired behavior is not acceptable no matter how clever the
design. In this sense, designing integraled circuit hardware is simllar to designing

software and the problems associated with the two are often similar.

The global solutions to the problems in these two kinds of designs are similar.
Designs are structured, hierarchical, and divided functionally into meaningful pieces.
Tools are needed which help convert the high-level description of the behavior into a

low-level implementation description.

Since we are concerned with the behavior of the circuit, work on design tools is
influenced by rigorous disciplines and notations for describing circuits that can be
guaranteed to be correct in some sense. For example, the self-timed discipline
[Seitz 1980} can guarantee correct sequencing based on interconnection rules.
Another good example is signal restoration in CMOS, ordinarily assured by checking,

which can be guaranteed by rules of construction [Rem 1981].



1.3.2 Structural Description

A design is not merely a behavior. Designing integrated circuits is a mapping of a
behavior onto a physical structure. There are fundamental differences between
software design and integrated circuit design. One cannat blindly implement a
function as a chip without addressing physical implementation issues. Integrated
circuit design deals with inherent massive parallelism; software traditionally does not.
Traditional software solutions to problems may not be proper in silicon. The designs,

as well as the design methodology, must address the physical aspects of the medium.

Integrated circuit design has a severely limited communication space which shares
the computation space on the two-dimensional surface of the silicon. Thus,
communication costs are high in silicon, but very low in software. in order to
effectively use the silicon area, a design system must take into account these

properties of integrated circuits.

The structural description, is a description of the logical connection of blocks in the
system. Hierarchical decomposition of the behavior of the design into blocks is done
along both geometrical and functional lines. The functional and geometrical
herarchles must match, because the logical connection, the interface between

functional units, is precisely along the geometrical interfaces.

The hierarchical decomposition is driven by a very high-level part-behavioral,
part-physical floorpfan. The floorplan is a general functional decomposition strategy
which includes a wiring strategy as part of the decomposition. A good floorplan
recognizes the two-dimensional nature of the silicon chip and addresses physical

problems such as global wiring.

1.3.3 Physical Description

The physical characteristics of VLSI chips introduce new difficulties in complexity
management not present in programs: the production of a geometrical structure under
many constraints of topology and physics. Some systems have been built which
implement function on an integrated circuit without regard to the inherent
communication limitations of the silicon [Persky 1976] [Chen 1977]. These systems
work well for small scate designs, but are overburdened with communication overhead

with larger designs [Sutherland 19777]. For large designs, the physical constraints of



the silicon medium are so restrictive that they must be addressed early in the design.
Systems which deny the physical nature of the silicon implementation cannot hope to

effectively use the silicon medium in large designs.

Correctness by construction has been applied to the geometrical design task. Stick
diagrams are used to generate geometrical layouts without the need for design rule
checking. Designs can be produced much more quickly, and more iterations on a

design can be quickly done to obtain an acceptabiy optimized layout.

1.4 Design Process Flow

This section describes the design process as practiced at Caltech. This design
process embodies the structured methodology described above. This section also

provides a framework for the desigh tools described in section two.

The design process has two distinct parts: design and implementation. Design
proceeds top-down, with gicbal decisions made first. The implementation then
proceeds bottom-up, where constraints from low-level implementations are

propagated to higher levels in the design hierarchy.

The design process is divided into five pieces: architectural design, where the design
is partitioned into functional pieces and the general floorplan of the design is
decided; cell estimation, where cell interfaces, -- size and interconnection -- are
decided; cell detailing, where detailed cells are laid out; chip integration, where cells
are assembled into chips; and preparation for fabrication, where the finished design is
converted into a form suitable for fabrication equipment. Of course, the design

process may iterate in any of the loops seen in Figure 1.4.1.
Figure 1.4.1 Desigh Process Flow.

The high-level top-down architectural design is still predominantly a human task. In
order to achieve a good design, the designer must not only concern himself with

functional decomposition, but with wiring strategy as well. The product of the
architectural design is a floorplan, a tiling of the plane with functional units. The

floorplan includes a rough specification for each of its elements, including constraints,

interfaces and desired features. At this point, expected critical paths, both in area



and speed can be estimated. This estimate is important in order to properly direct

later optimization work.

Cell estimation is an important precursor to cell detailing. In the cell estimation
phase, approximate geometries are tried for the blocks defined in the floorplan. If
thbese designs cannot be made, or if optimization of the design is too difficult, the
floorplan may have to be altered. Stick diagrams are a useful notation in the cell
estimation phase, they afow both structural and geometrical information to be
expressed in a highly readable form. The cell estimation phase proceeds until all

interfaces between cells are reconciled.

in the cell detailing phase, final designs are produced for each low-level cell using
graphic or program oriented design aids. Detailed cells may be generated in the form
of hard mask geometry, malleable Sticks or algorithmically-defined cells. Cell

detailing is ‘he start of the bottom-up impiementation of the design.

Cell detaiing has typically been given the lion's share of the CAD vendor's effort. In
large systems, most celis are not in the critical path for speed of area use and
therefoe do not require optimization. Systems which automate the layout task are
usefuland desirable even if the result is not as good as hand layout. The fact that it
is faster than hand layout is enough to make it worthwhile. A cell design must be
‘condstent with the flaarplan and it should have the ability to interface to high-level

as=embly tools.

(orrectness by construction leads to the exploration of means by which classes of
arrors are avoided, Therefore, symbolic layout or stick diagrams are an important
means far the generation of detailed cells as they guarantee designs free from
geometrical design rule violations. In addition, since the stick diagram geometry is
malleable by the very nature of the representation, sticks provides a good interface

to the chip integration phase that follows.

The chip integration phase is the one in which cells are assembled, according to the
floorplan, into a finished design. The assembly task is extremely difficult if the
floorplan is badly done or if proper attention was not paid to the cell interfaces.
Much work has been done at Caitech on chip assemblers and silicon compilers, which,
working with a given floorplan and properly defined cells, will assemble low-level cells

into complete integrated systems. These design systems have been very successful,



able to quickly produce many different chips in one class of floorplans.

Programming language based systems are preferred tools for the chip integration task
because of their versatility,. Powerful compositions can be easily defined in this
algorithmic manner. Properly defined compaositions allow changes to individual celis to
be made without requiring a change in the way those cells are composed inta a
system. This leads to a very versatile design method. New ideas and optimizations

as well as bug fixes can be made without requiring large changes to the composition
of the system.

The final step in the design process is preparation for fabrication. This is typically a
batch process, requiring a large processot for vast amounts of time. The hierarchical
nature of Cattech designs enable this phase of the design to proceed faster than
traditional methods. Piotters, mask generation programs and design rule checkers

exist which take advantage of the hierarchy in the Caltech designs to speed up the

processing enormously.

2.0 Design Aids

Caltech has developed aids ranging from pattern generation software to silicon
compilers. Many of the tools have been tested by extensive use in designing large
chips.

2.1 Overview

The design aids at Caltech are being developed almost entirely on a DECsystem-20
computer. The DEC-20 has a number of design stations consisting of an LSi~11
driving a text terminal, a four-color pen plotter, a color frame buffer for graphics
output and a Xerox "mouse" pointing device for graphics input. The graphic

workstation is shown schematicly in Figure 2.1.1.
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Figure 2.1.1 Graphic Workstation.

The computer science department has access to an IBM 3032 computer belonging to
the Caltech Computer Center. This machine is used for large scale batch-mode
processing and use is made of the additional plotting facilities on the IBM machine.
The department has also recently procured a Digital Equipment Corporation VAX
11/780. Some of the software has been transported to that machine, and much more

will be developed for the VAX environment.

Z.7.1 Data Structure Overview

Caltach has forsaken the standard approach to a unified set of tools, that of the
ali-encompassing restricted-access database. There are inherent problems with the
database approach. Much of the effort in a database is in access control, file
storage and optimization of memory usage. These are precisely the tasks performed
by an operating system and executive. Rather than re-implement these functions,
Caltech has decided to use the externally-supported, highly-debugged facilities

provided with the DECsystem-20 computer.

A database allows iools to communicate, but only after conformance with the
pre-defined database model. This model is usually extremely restrictive, since it was
designed before the tools which use it. Extensions to the database are disruptive
and costly. Interface to the database is typically a considerable fraction of the
effort required for the development of a new tool. In a university, where innovation

and experimentation are necessary, being locked into a stagnant database is surely
a death knell.

Rather than limit future design systems with an outdated data description language,
simple interchange standards aliow the tools to communicate to achieve compatibility
(see Figure 2.1.2). Each set of tools: leaf tools; composition tools, and foundry toais,
is a collection of loosely coupled programs communicating through a standard file
format. Thus, a tool may communicate with other design systems whi!_e stil
maintaining any internal representation necessary or desirable for its application.
Such a data structure allows easy incorporation of new forms of data and new
storage techniques. In a sense, we are following our own chip design advice by

organizing our software to communicate through simple, well defined interfaces.
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Figure 2.1.2 Tool Communication Overview,

The Caltech Intermediate Form (CIF) [Sproull 1980} is the standard interface to ail
the "foundry” (fabrication) tools. CIF is a hierarchical geometrical description, and
contains commands to construct rectangles, wires, polygans and circles as well as
facilities to define and call symbols. The Sticks Standard [(Trimberger 1980] is the
standard interchange form for systems which deal with symbolic layout and is being
used as input to composition tools. The Sticks Standard is a symbolic layout
description, and contains cells described with components, interconnections, and
constraints on positions of the components in the sticks diagram. These standards
provide the means for communication in a precisely-specified language, they clarify
the essential concepts of the form of data they describe, and they stimulate tool

development around the standard.

2.1.2 Tool Overview

Tools developed at Caltech can he grouped into three categories: those that help
design leaf cells, those that help design composition cells, and those that help
interface ta fabrication. The leaf design tools aim at praducing the primitive
functional units used in a chip design. Leaf cells contain only primitive elements:
polygons, rectangles, and wires. Composition cells contain only inétances of other
cells, either leaf cells or other composition cells. The interface to fabrication is
needed because of the large number of designs that Caltech produces, both for

research projects and class projects,

An overall view of the tools is illustrated in Figure 2.1.3. A set of "foundry tools"
underlies a system of "compilers" which produce full silicon systems based on ieaf
cells designed using "cell design" tools., These sets of programs are not tightly

bound into a single system, they communicate through standard data interchange
formats.

Figure 2.1.3. Tool Qverview.

The spilt between leaf cell tools and composition tools is deliberate. By separating

the two, we not only match the structure of the separated hierarchy, but gain a great
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deal of independence and flexibility. The independence allows tools to be built with
little detailed knowiledge of other tools. Flexibility is manifested in the ease with

which new tools and new design approaches can be added to the overall system.

2.2 Leaf Cell Tools

A leaf cell is generally a simple functional unit that is implemented using only primitive
elements. The set of leaf celis represent the semantic units the designer can use to
describe a chip. Deciding which pieces of a design are to be made into leaf cells is a
trade-off, matching a desire to have it be a self-contained functional unit with some
limit on design difficulty. Too small, and the leaf cell won't be complete enough to
specify an understandable function. Too big, and the designer won't be able to

understand the relationships among all the parts, making it difficuit to understand and
modify.

Figure 2.2.1. Leaf Cell Examples. a) Super Buffer Cell. b) Static Register Cell.

in chip design, the design of a leaf cell is basically graphical in nature. The cell

designer must specify a mask geometry which implements the desired function.

There are three methods used at Caltech to design leaf cells: interactive graphics,
graphical languages, and a combination of both. All three have their advantages. The
interactive graphic systems provide a very good human interface, allowing rapid
on-line design. Graphical languages provide a less interactive environment because
designs have 1o be "executed" before a plot is produced. But they give the designer
more power, in the sense of variables, expressions, conditions and loops, than the

interactive systems. Hybrid systems have somne of the advantages of both of these
systems.

The three leaf design metiiods are embodied in the following design tools: REST,
LAP/PAUL, and SAM.

2.2.1 REST (graphics)

Richard's Editor for STicks (REST) [Mosteller 1981] is a leaf cell design system

based on symbolic layout techniques of [Williams 1977] and closely related to the
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work of [Hsueh 1979]. REST runs on the high-resolution color display with editing
functions handled by code in the display processor. The symbolic layout manipulation
is done in the DECsystem-20. Since REST is a leaf design tool, it does not support a
design hierarchy. REST interfaces to the Sticks Standard which can be read by

silicon compilers for chip assembly.

The REST system deals with a form of symbolic layout known as stick diagrams. A
stick diagram is a notation midway between transistor diagrams and full mask layouts.
Stick diagrams specify more geometrical information than a transistor diagram in that
the relative positions of transistors and wires are meaningful, but less than a full
layout in that the absolute positions of transistors and wires are not meaningful. This
intermediate position has many advantages. The designer can specify his layout in a
very sketchy manner, with no regard to exact positioning, yet still have control over
the relative topology of the layout. Component recognition and circuit compaction
free the designer from worries related to details about mask making. Contrast the
- sticks drawing, of a static register cell in Figure 2.2.2b with its derived layout in
Figure 2.2.3. The stick diagram includes device sizes and connectivity information,
which are essential for performance estimation and simulation. This abstract
specification allows the designer to concentrate on the system design. Stick
diagrams were designed to be deformable, making them a preferred input form for

silicon compilers and chip assemblers (see section 2.3).

Figure 2.2.2. Stick Diagram of Static Register Cell. a) Uncompacted. b) Compacted.

Figure 2.2.3. Layout of Static Register Cell.

The compaction algorithm in REST compacts along the coordinate axes one axis at a
time, The algorithm is simple and very fast, providing a unified, highly-interactive
man-machine interface. The user can control the direction of compecfion, which axis
is compacted first, and add constraints to the graph. REST does not make topological
changes. The results of compaction are illustrated in the contrast between an
uncompacted stick diagram input by the designer, and the stick diagram resulting from

compaction in Figure 2.2.2.

REST has been used successfully in conjunction with other design tools at Caltech to

produce working designs. Its usefulness will expand as additional composition tools
become available.
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2.2.2 LAP/PAUL (procedures)

There are many advantages to using an expressive language lo design integrated
circuits (see section 1.2). Almost any programming language can be used to design
mask geometry simply by adding some procedures to output primitives of the Caltech
Intermediate Form (CIF). A simple example of such a procedure is "Rectangle" which
simply outputs the CIF code far a rectangle. The coardinates are the parameters of
the procedure. Most programming languages allow those. parameters to be
expressions, enhancing the adaptability of the procedure. A more complex procedure
might be "PLA" to generate a programmed logic array. The parameters of this
procedure are the coordinates of the origin, number of minterms, inputs, and outputs,
and the names of the files holding programs for the AND and OR planes. There is no
limit on the complexity of the design generated by the embedded procedures: the
PLA procedure may optimize the PLA without any changes needed by the PLA user.
These procedures can be calied by the designer in the midst of a program that

"computes” the chip. Such procedures create a kind of "embedded language" that

can be used as a design language.

LAP [Lang 1979] and PAUL are two such design languages, both embedded in the
programming language SIMULA. LAP produces CIf files, PAUL produces Stick Standard
files. The full power of the SIMULA is availabie to the user in either of these
languages. LAP has been in use since 1977 at many installations in research,
education, and industry and has been a major chip design system for both leaf and
composition cells. Over the years, it has been enhanced with a PLA generator,
several simple roulers, mask letlering generator and Sticks Standard to CIF
translator. PAUL is a recent development designed to allow the generation of stick
diagrams without the use of expensive graphics equipment, and to give the user the

power of the SIMULA proaramming language with which to generate the stick drawing.

2.2.3 SAM (graphics and procedures)

Layout languages provide users with the capability to algorithmically define celis. But
the specification language is so non-intuitive that it is impossible 1o debug a design in
that language. One must plot the design. Interactive graphics systems, on the other
hand, aliow the user tv debuy in the form in which he sees the design, but severely

restrict the language he may use to express the graphics. For example, he cannot
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express loops or conditionals. What is really needed is a single interactive system
that combines layout language and graphic modifications to the data. SAM

[Trimberger 1880a] is just such a system.

SAM provides the user with a two-part viewing window on the display as seen in
Figure 2.2.4. The left side shows the program view of the design under edit, the right
side shows the graphics view of that cell. The user may move the viewing location in
either window and may make edits to the data in either window. When the design is

changed in either window, the change is reflected immediately in both windows.
Figure 2.2.4. SAM Display.

The data displayed in the windows are "pictures" of the data structure. The data
structure is the base form, the program view and the graphic view are merely
different ways of looking at the base form of the data. When either the graphic
bitmap form or the program character-string form is needed for display it is generated
from the data structure. When the user makes what appeasrs to be a modification of
the data in either window, the commands are translated into calis on procedures in
the data structure to carry out the action. The data structure makes the modification
and causes both displays to be updated. The two views ¢re kept consistent because

they are both refreshed from the same data in memory.

SAM asllows a designer to create algorithmically-defined cells easily, cells defined as
a program rather than a list of graphics. These ceils are parameterized as well.
When an instance of the cell is made, parameters are passed to the cell whiéh
specify desired attributes of that instance -- for example, cell size or the locations
of the connectors. The parameterization can be used with the program features of

looping and conditional execution to process preperly such input parameters as

_driving power, number of bits of length of a register, or PLA coding.

SAM is experimental system. It was written to test the concepts and feasibility of
combining the program and graphic methods of design. Since SAM is an experimental
system, it is not in use as a design tool. Several test designs were made with SAM
with encouraging resuits. The knowledge gained from those tests is directing further

work in this area and has affected the development of several other new tools.
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2.3 Composition Cell Tools

The problem of VLSI design is lagely a problem of composition. It is a problem of
organizing separately designed aind debugged modules so that they work together
carrectly. The process of composition is at least as error prone as the process of
leaf cell design, and the means for discovering errors in composition are poor at best
and extremely costly. Compostion errors are more likely to persist until late in the

design process.

In order to make correct composition possible, the desigher must be freed from
responsibility for all the myriads of details that must be spécified. This emancipation
is often accamplished by inposing structure through the design tools. By imposing
some structure, the design tool is able to perform the mechanical aspects of the

design, leaving the more irtuitive portions of the design to the user.

Once the composition tod is debugged, the 'designer is also freed from worry about
whole classes of mistak:s. By accepting a small set of restrictions brought on by the
imposed structure, the designer is relieved of most of the particulars of the design,
and the tool can be tristed to do them correctly. Once the user has gained sufficient
confidence in the tool much of the post-design checking like geometrical design rule
checkinq can be brpassed. "Correctness by checking" has been replaced by

"correctness by corstruction.”

Composition tools come in many forms, and under many names, but they all trade
designer restrictons for degrees of computer automation. An examplie of a
compaosition tool s the common PLA generator. This tool imposes the structure that
the design will b2 in the form of a PLA. The input is generally in the form of some form
of logic equatios or AND and OR plane code and all of the layout details are handled
by the progran. It is of course unreasonable to expect every design to be
implemented efficiently as a single giant PLA. However, the PLA generator can be
used to autonatically implement appropriate pieces of a large design. Drawing on
software aralogies, more g¢general composition tools are often termed “chip

assemblers"or "silicon compilers",

Caltech hes three powerful composition toois currently under development: Bristle

Blocks, SLAP/Earl, and SPAM. These are described in the sections below.
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2.3.1B8ristle Biocks

Briste Blocks [Johannsen 1978] is @ silicun compiter that specialices in the
construction of datapath chips. A datapath chip consists of data processing elements
comected by and communicating across data busses. Typical data processing
eliments include register files, arithmetic/logic units, and shifters. The chip is
cmtrolled by a microcode word which is decoded on-chip to drive each of the
irdividual control lines of the processing elements. The functional block diagram for a
tistle Blocks datapath chip is shown in Figure 2.3.1. Notice that the physical
ioorplan of the chip is identical to the functional floorplan. Like many other automatic
ayout systems [Persky 1976] [Chen 1977], Bristle Blocks imposes a generic
Hloorplan in return for ease in automating the layout. While not all designs can fit into
the high-level "datapath" floorplan, those that can are implemented as efficiently as

hand tayout.

Figure 2.3.1 Chip Floorplan. a) Block Diagram. b) Physical Floorplan.

The primary characteristic of Bristle Blocks cells is that they are programs rather
than data (see section 1.2). Rather than designing cells as wires and boxes, the
cells are designed as programs which, when executed, generate the required wires
and boxes. This allows the cells to perform computations and participate in the

design of chip.

Because of the need to minimize area, the cells composing the datapath processing
elements will not all be the same size, which means that the celis cannot be
interconnected by simple abutment. Analysis has shown that global chip area can be
reduced and globatl chip performance increased by stretching the cells to connect by
abutment instead of placing the cells and routing between them. See Figure 2.3.2.
Bristle Blocks makes use of stretching to assure that all cells are of uniform height.
Bristle Blocks leaves the mechanics of stretching to the individual cell: each cell is
designed with the means for stretching built into it. Figure 2.3.3 shows a stretched

register cell.

Figure 2.3.2 Routing versus stretching. a) Connections made by routing. b)

Connections made by stretching.



-18-

Figure 2.3.3 Stretched register ceill.

The input to Bristle Blocks consists of the cell definitions as programs and a high level
description of the chip. The high level description is in terms of calis to the cell
programs, passing the appropriate parameters for the chip to be designed. These
parameters typically consist of behavioral information, such as the conditions required
for the register cell to load information from a bus. The description for a fairly large
chip is approximately three pages long. To build the chip, Bristle Blocks executes the
cell programs as spegcified in the description to create the datapath portion of the
chip. Bristle Blocks stretches cells to be of uniform height and abuts them. The
datapath timing and control information is used to add control line buffers, parallel
load shift registers and a semi-optimized instruction decoder to drive the datapath.
Finally, Bristle Blocks adds bonding pads and wiring to complete the chip and provides

documentation about the locations of pads and signals,

Bristle Blocks hgs been operational since 1978 and has undergone several
improvements and enhancements. The user may now direct the compiler to insert
LSSD registers for testability [Eichelberger 1977]. Recent enhancements allow a
much more general floorplan to be compiled, enabling the system to compile entire
multiple processor computer systems. Bristle Blocks can compile systems with circuit
densities comparable to hand design which are well beyond the capabilities of current
integrated circuit fabrication technologies to implement. The process of compiling a
sixteen bhit datapath chip from the high-level description took fifteen minutes of
elapsed time on the DECsystem-20/60 computer. The resulting design was 3600 by
4250 lambda (lambda equal to 2.5 microns) and contained approximately 13,500

transistors.
2.3.2 SLAP/Earl

SLAP/Earl are two implementations of a system tied closely to the separated

hierarchy.

Composition cells specify interconnections between instances of other cells. Any of
a wide variety of notations can be used to describe composition cells. The notation
familiar to most designers is a netlist form. A'netlist is simply a list of instances along

with a list of logical connections between instances.
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Logical connections are actually made between connectors on instances of cells.
Each cell has a list of connectors that define the interface to the cell, the means by
which the outside workl may interact with the cell's instances. The connectors are
the only available attachment points to an instance of the cell. By explicitly
declaring the interface, interactions with the celt can be controlled, localizing the

behavior of the cell and simplifying the task of verifying correct usage.

One particularly important representation for VLSl design is the geometrical
representation. The composition rule presented here is only one possible algorithm
and certainly not the best, merely one of the first tries. This rule is based on the
structured layout ideas developed in Mead and Cohway [Mead 1980]. In particular,
the layout is designed to be a regular array of instances of cells designed to abut
pearfectly. Perfect abutment implies that all the connectors along the shared edge
(see Figure 2.3.4) are desighed to be at the same position so that abutment will
perform the logical interconnection desired, i.e., all the connectors on the right edge

of instance A will connect to corresponding connectors on instance B.

Figure 2.3.4 Connection by abutment.

This method for structuring the layout design fils very nicely into the separated
hierarchy. Composition cells, containing only logical interconnections of instances of
other cells, are logically very similar to the abutment style shown in Figure 2.3.4. An
automatic mapping can be made between the netlist dgscription of a composition cell

and an abutting cell layout description.

To implement geometry compaosition, interconnection is defined to be superposition
and is accomplished through stretchable cells. Every logical interconnection between
connectors on instances results in those two connectors being placed at the same
physical location. In order to guarantee that this placement can be accomplished, all
cells must be able to increase the distance between any two adjacent connectors.

This use of stretchable cells is a slight generalization of the identical notion in Bristle
Blocks.

The composition rule must perform some algorithin that satisfies all the constraints
introduced by the interconnections. By restricting cells to be rectangular with all
connectors lying on the boundary, the basically two-dimensional layout probtem is

split into two one-dimensional problems. Each dimension is translated into a directed



-20-

graph and solved using graph techniques.

The nodes of the geometry solution graph represent equivalent sets of connectors. A
logically connected group of connectors is represented by one node in the graph.
The weighted, directed arcs represent minimum separation constraints between
connectors resulting from constraints inherent in the leaf cells. Figure 2.3.5
illustrates the resulting graph. Notice that the graph must be acyclic, but there may
be multiple arcs between the same two nodes, possibly with different weights. The
graph is solved with an algorithm that is very similar to the algorithms used in stick
diagram compaction [Hsueh 1979].

Figure 2.3.5 Solution Graph for Horizontal Direction.

The SLAP system was embedded in SIMULA. Currently, work is in progress to produce
an interpretive implementation, called Earl, which will provide a concise composition
cell description language. The Earl language is based on list manipulation primitives
that allow simple construction and interconnection of lists of instances and/or
connectors. A major design project to build a tree connected parallel processor

[Browning 1980] is currently underway using the Earl system as a primary design

tool.
2.3.3 SPAM

» Structure, Placement And Modelling (SPAM) [Segal 1980] is a system that can be
used to describe a hierarchical design whicﬁ can then be simulated at any level of
detail. The system provides a concise method for describing composition celis. SPAM
deals with a structural description from which a physical positioning might be
generated using Earl. In addition, the behavior of a composition cell can be
described. An entire design can be simulated to any desired level of detail by
choosing which celis are the "leaves" of the simulation, i.e., at which points in the

hierarchy the behavioral descriptions are used instead of the behaviors of its parts.

Since individual physical devices are not important in SPAM, the task of describing
the structure of a design is primarily the task of interface specification, the
specification of the organization of communication between modules. Cell names, pin
declarations, and pin typing are all the parameters necessary to compiletely describe

the structure of a leaf cell. Typed pins allows a more complete structural



-21-

verification. SPAM provides six types: fnput, Qutput, 10, Power, Ground, and Clock.
When the hierarchy is instantiated, every connection of two pins is checked for
legality.

Composition cells must specify an interconnection of instances of other cells. Cell
instances can be declared individually or as arrays. The interconnection of instances
is done only through abutment, which can be described either graphically or textually.
No individual pins are mentioned, whole edges of rectangular instances are
interconnected. Thus, "the left of X abuts the right of Y" implies that all the pins on
the left of X connect to all the pins on the right of Y. Since it is occasionly desired
that some pins be left unconnected, a clause can be added to abutment declarations

to omit some connections. From the interconnection description a floorpian can be

derived, as in Figure 2.3.6.
Figure 2.3.6 SPAM Floorplan Output.

Until it is possible to "compile" function into designs it will be necessary to use
simulation to assist in the verification of behavioral integrity. The SPAM enviranment
favors designs produced and verified in a top-down manner. That is, an initial chip
description will be produced and simuiated. When the resuits are deemed correct,
the design is broken up into components and each module is given a behavior. The
rasulting network is simulated and the results are compared to the original test. |[f
the same results are produced, then this refinement has been successful. The

process continues until the leaf cells have been described.

Simulation in SPAM is highly interactive. SPAM contains a four-value, combination
event-driven [Ko 19797 and ciock-driven [Bell 1970] functional simulator. The two
simulation modes may be used in the same simulation run in different cells. The user
may examine any node at any time. The user interface to the simulator is similar to

the interface to a symbolic debugger for a programming language.

Once a circuit description has been compiled, the user may request a documentation
workbook consisting of a hierarchical map of the entire circuit, an interface
specification diagram for each cell definition, and a fioorplan diagram for each

composition cell in the description.
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2.4 Silicon Foundry Tools

The most important aspect of a silicon foundry is its interface to the designers it
serves. Desighers cammunicate their designs to the foundry using the Caitech
Intermediate Form (CIF) and receive from the foundry bonded dice and appropriate
documentation. Designs sent to a foundry are specified as the actual geometry of
the desired devices on the chip. Acceptance or rejection of the chips is determined
by the performance of standardized test patterns. The designers are insulated from
any detailed knowledge of the foundry's process, but require assurance that their
designs have been fabricated correctly.

In the past, Caltech has acted as its own foundry, accepting chip designs described
in CIF and performing the necessary steps to produce pattern generator tapes. The
mask generation and chip fabrication services were then purchased from commercial
houses. The advent of the Multi-Project Chip (MPC) program, administered first by
Xerox Palo Alto Research Center [Conway 1980] and currently by USC's Information
Sciences Institute, has eliminated the need for Caltech to perform these functions in

house. In the future, it is hoped that commercial organizations will develop to provide

this service.

A number of toals have been developed at Caltech to aid in the transformation of
individual chip designs to fabricated chips. Not all of these tools are restricted to
foundry use, many are useful in the design process as well. [n particular, interactive
checkplotting programs are of great use to designers. At the top level, there are
check plotting facilities and a design rule checker. These act as a filter to prevent
the unwitting fabrication of designs which cannot work due to the presence of design
rule violations or other errors which preciude fabrication. Once individual designs are
deemed acceptable, they must be packed into one or more dice. Test circuits and
patterns, alignment marks and scribe lines must be added to suit the process line on
which the designs are to be fabricated. Finaily, the image of the die must be

converted to a format from which masks can be generated.

2.4.1 Check Plotting Facilities

At several points, the image of the designs, or of the entire die, must be viewed to

detect any gross errors. If one had complete confidence in the accuracy of the tools
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that manipulate the artwork, check plotting might not be necessary. However, the

cost of mask making and fabrication is high enough to make such checks worthwhile.

Two plotting tools have been developed al Caltech for the purpose of plotting CIF
files. The first of these, an interactive program named CiF20P, was originally
developed for use by designers in verifying their layout designs. It has become
useful in assembling multi-project chips as well. It accepts any legal CIF file as input
and, in response to commands by the user, plots various portions of the file's
geometry on a variety of output devices. The primary virtue of this program is its
fast response. It is essential that the desigher be able to make small, localized
modifications to a design and view the result quickly. Interactive views of individual
cells and areas of the design must be available to the designer within minutes. This
fast feedback is an important characteristic that allows small changes in the design

to be viewed immediately regardiess of the overall size or complexity of the layout.

A second plotting program, ALEX, is a FORTRAN program intended for batch use. Like
CIF20P, it can utilize a variety of graphic output devices. ALEX is used primarily for
making large plots on a Calcomp four-color plotter. Users can specify a windaow within

their designs and can control which symbols and which layers are to be plotted.

A third check plotting program provides verification that the pattern generator tapes
have been made correctly. This program is called CHKPLT and it takes as input both
Electromask and Mann 3000 pattern generator (PG) formats. It plots the PG
instructions as they would be encountered by the PG machine, verifying that no
obvious errors have occurred in the generation of the PG instructions and also
showing that the instructions have been sorted in the order appropriate for the
particular PG machine. This is the last check made of the data befare it is sent to

the mask making house,
2.4.2 Design Rule Checking

While many of the design tools developed at Caltech endeavor to produce correct
artwork by construction, until these tools gain the confidence of designers and are
shown to be error free, design rule checking will remain a necessary part of the
design process. A significant improvement in design verification has been made
recently at Caltech by the development of a hierarchical design rule checker (DRC}

[Whitney 1981]. The ideas and motivations for this tool are described by McGrath
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and Whitney [McGrath 1980].

Rather than taking the traditional approach of doinyg geometrical operations on a fully
instantiated description of a design, this DRC makes use of the symbol hierarchy
found in the CIF description to eliminate as many redundant comparisons as possible.
The correctness of geometry inside a CIF symbof is checked only once, regardliess of
how many instances of that symbol are made. The environment in which each
instance of a symbol is found is remembered so that a particular set of symbol
interactions is only checked once. This technique gains a great speed advantage on
regular chip designs withoul restricting the complexity of the geometrical shapes

taken as input. Design rule checks can be done on arbitrarily complex rules.

This approach contrasts other attemptis to design efficient DRC programs which
generate a rasterized picture of each mask using a one lambda resolution and perform
design rule checking using this representation [Baker 1980]. Such an approach gains
performance at the cost of restrictions on the form of the input and on the complexity

of design rules which can be checked.

As much of the design intent as is available in the CIF description is used to reduce
the redundant checking of duplicate geometric situations. Of course, some of the
design intent is lost in describing the design in CIF. Some extensions have been
made which allow more of the structural data associated with a design than is
normally found in CIF to be made available to the DRC. Also, some conventions have
been imposed on the input CIF file. Primitive elements have been defined for such
objects as transistors and contacts. Since many design rules contro! the legal
construction of these primitive elements and their interactions with other objects,
considerable simplification and performance are gained if these objects are
identifiable in the design description. Some of the most obscure and difficult design
rules are related to the construction aof transistors. Since these are irreducible
structural objects, they may be defined as primitive elements without reducing the
flexibility available to the designer. Primitive elements can be checked for
correctness prior to their use by the designer and only the interactions of primitive
elements with other objects need be checked, avoiding any need to check their

internal parts.

These technigues minimize the number of geometrical spacing and width checks that

must be performed between primitive geometrical shapes. The use of the design
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hierarchy can eliminate the high complexity inherent in the design rule checking of
fully instantiated designs. The number of false or spurious errors is also reduced.
Since few redundant checks are made, few redundant errors are generated. The
dramatic reduction in the number of shapes compared is shown in Figures 2.4.1 and
2.4.2. The first shows a small design, the second shows those shapes that were
~actually compared with other shapes during the check. For clarity, onily the
polysilicon and metal layers are shown in the figures. When design rule checking, of

course, all layers are processed.
Figure 2.4.1 Design Rule Checker Example.
Figure 2.4.2 Shapes Actually Checked by DRC.

The extraction of the design topology, a side effect of DRC, can provide an important
verification tool for designers in determining whether or not they have impiemented
the circuits they intended in the artwork. When two shapes are later checked
against design rules, their membership in the same or in different nets can play an
important role in detecting whether or not an error truly exists, reducing false errors.
The ability to compare the designer's topological data with that found by the DRC is
not part of the DRC function but it will hopefully be available at Caltech in the near
fulure.

2.4.3 Assembling Multi-Project Chips

A set of three programs have been developed at Caltech to automate the process of
assembling a coliection of independent project designs into a single die image. The
projects are input as individual CIF files with no restrictions on the use of legal CIF
commands. The resuit is a single CIF file containing all the projects placed inside a

rectangular die, including scribe line geometry, mask labelling and fiducial marks.

The first step in the process verifies that each project file contains legal CIF
commands and extracts the bounding box of the geometry. The second step is the
packing of the projects into a single rectangle representing the size of the die.
When a trial packing has been accepted, the location and possible rotation of each

project on the die are saved for use in the third and final step.
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Lastly, the packing information and the original CIF files are used to produce a single,
large CIF file representing the entire die of the multi-project chip. Fiducial marks are
added and each layer is labeled with the name of the multi-project chip and the mask
identifier. Process line and mask house dependent Information is read from a file
describing what type of fiducial marks, scribe lines, layer iabeling are necessary for
the organizations who are to make the masks and process the wafers. Test patterns
for checking the lithography, circuits for checking electrical characteristics and

alignment marks are added to the die merely by including the appropriate CIF files as

additional projects.

At the completion of this last step, a CIF file is available for conversion to pattern
generator format. To document the placement of projects on the die, a plot is made
of the die with outlines of each project and their names inciuded. The entire process
of taking individual CIF files and producing the image of a multi-project chip in this

fashion requires less than an hour of elapsed time.
2.4.4 Translating CIF to Pattern Generator Formats

A FORTRAN program named P?AT was written at Caltech to convert CIF 2.0 data to the
formats required by Mann and Electromask pattern generator machines. This program
removes the CIF symbol hierarchy by recursively replacing instances of symbols with
their corresponding geometrical primitives as it moves through the input file. PAT
fractures all the primitive CIF shapes, including arbitrary non-self-intersecting

polygons, into the set of rectangles available on the PG machines.

To isolate the user from the details of chip fabrication, CIF files specify the actual
geometry of devices on the chip as they are returned to the designer. To translate
from the fabricated geometry to the actual mask artwork requires knowledge
available only to the silicon foundry and which the foundry would prefer to keep‘
confidential. These characteristics of the process affect the relationship between
the artwork and the fabricated geometry. PAT performs the translation of fabricated
artwork to drawn geometry by bioating and shrinking the features on the individual

mask layers before the format conversion is done.

PAT optimizes the ordering of the data on the PG tapes to minimize the time required
by the PG machine in making the reticles. The optimization algorithm is easily modified

to accommodate variations in different machines. The PG output data produced by



-27-

PAT can be visually checked by plotting it with CHKPLT. This provides a picture of

the final date as it is sent to the mask house.

3.0 Con:lusions

The strictured design methodology and algorithmic approach to design tools appear
to be ¢ good fit and are working well. The emphasis on structures which allow
implementation of the desired function in a manner suitable to integrated circuit
implemzntation has been and continues to be a great success. A great advantaqe
has been gained by building tools closely related to the design methodology. These
tools are built with assumptions about the general form of their input. These
assunptions lead to simpler implementations of tools and more powerful design
systems. Powerful design systems have allowed us to quickly produce complex

chips.

3.1 Successes

Tie major successes have been in four areas: methodology, chip assemblers,

standards, and silicon foundry software.

Fhere is no doubt that adopting the structured design methodology and rigorously
structuring a design produces great benefits. These benefits include shorter design
times, better design management, easier checking and increased probability of
correcliness. Over a period of time, work at Caltech has produced some crude
measurements of improvements. For example, it is possibie to achieve an order of

magnitude speed-up in delivery of artwork over conventional designs.

The invention of the chip assembler has contributed significantly to reduction in
design time. Paradoxically, there is even evidence to show that compiled layouts
consume less area than hand-packed designs. This could be a result of the compiler
inexorably applying area optimizations where a designer may be less careful

Additional savings come from global optimizations made possible by the quicker
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turnaround of the assemblers. These area reductions may be as large as twenty

percent.

The somewhat radical view at Caltech which promoles helpful, yet unpretentious
standaids in liey of an ali~encompassing database has allowed nearly unconstrained
work to progress on a number of tools independantly, yet has allowed the tools to be
interfeced in a well-defined manner. This has contributed significantly to the

produztivity of the group as a whole.

Although superficially less interesting, the development of the basic CIF software
(foundry software) has heen a notable success. itis in continued use at Caltech and

other institutions.

3.2 Difficulties

Ne major difficulties have been found with the structured design methodoloay,
athough refinements continue to be made. The major criticism of correctness by
construction is that it interferes with optimization of the circuit. It is true that work
&t Caltech has addressed the issue of correciness at the expense of area and time
eptimization. It seems clear that some area ar performance penalty should be
incurred in structuring a desivgn. After all, the largest determinant in systems
performance is design at the highest level of abstraction. However, it is difficult to
make convincing arguments wilhout quantifiable evidence. At this point, we are

generating measures and collecting data.

The Caltech methodology moves the responsibility for correctness to the construction
programs. The feedback paths traditionally provided by verification programs have
been replaced by restrictions on the design structures. This trading of verication
feedback ftor the simplicity gained by automating details of the design task, is
precisely the tradeoff made in the software community for compiled tanguages over
assembly languages. Elimination of feedback paths may diminish confidence in the
resulting designs. It is not yet known if verification tools can be eliminated totally or

if they cabh be replaced by simpler verification tools.

The major difficulties in tools have been in those areas not compatible with the

directed thrust of the department, specifically, checking tools. The difficulties with



checking tools appear to stem from the current state of tools at Caltech, which only
recently embraced the cotrectness by construction philosophy for all phases of
design. Previously, tools existed only for selected parts of the design process, and

much checking was necessary for the remaining design tasks,

3.3 Future Work

To date, emphasis has been on physical and structural design. In the future, we will
explore temporal and functional approaches to design. Inevitably, this will center

around models and notations appropriate to each design domain.

Compitation without regard to the physical aspects of the implementation medium
appears to lead to poor use of the medium. This may be due to the low-level target
representation for the circuit, transistors. Preliminary work has shown that it is much
easier to convert a behavioral description of a circuit into a physical device by
compiling to a known set of low-level structures, somewhat analogous to re-defining
the low-level primitives for a programming language compiler. Compiling to transistors
appears to be extremely difficult, compiling to datapaths, memory arrays, PLAs and
decoders may be more easily implemented. Future work will explore reasonable goal

structures for compilers along these lines.

Many of the techniques in use at Caltech produce a great savings in design time.
However, there are, as yet, no good measures of that savings. Future work will be
done to test the cost/performance of the design methodology in general, as well as

specific instances of it. Subject to test in the near future are Sticks diagram

systems and seif-timed logic.

3.4 Open Questions

There are many areas of computer aided design which have nat been addressed at

Caltech. Some of these may come under investigation in the near future, some may

not.

The Caltech standards work has proved to be very successful. However, it is not

immediately apparent what further standards are needed. It is not reasonable to
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define standards in the hope that tools will arise that need those standards. More
experience will reveal the need for further standards as well as needs for changes in

those currently in use.

Many books and papers have been written on the organization of design teams for
software. These are usually part of a software design methodology. Caltech has
done no work on the organization of design teams using the structured design
methodology for integrated circuitry, although it is becoming clear that that
organization must be different than that currentiy in use in the integrated circuit
industry. The design team organization will be influenced by the role of the
computerized design aids to be used, which, vl course, are ultimately dependent on

the design methodology.
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Composition Cells

Leaf Cells

Figure 1.1.1  The Separated Hierarchy
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Figure |.2.ta R

Register Cell with All Functions
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Minima] Register Cell
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Architectural Design
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Cell Detailing
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Chip Integration
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Figure 1.4.1 Design Process Flow




RS232 Link to DEC20

!

LSI-11

S Frame Buffer

'

Color Monitor

Samann Four Color Pen Plotter

<«—— Alphanumeric Terminal

Figure 2.1.1 Graphic Workstation



Leaf Cell Sticks
Design Tools Standard

Composition Composition

Cells Tools
CIF
y
Chips = Foundry Tools

Figure 2.1.2 Tool Communication Overview
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Figure 2.1.3  Tool Overview
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Figure 2.2.2a Uncompacted Stick Diagram
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Figure 2.2.2b Compacted Sti-ck Diagram



Figure 2.2.3

Layout Generated From Stick Diagram



"Def SReell | GNDy | VD INPY | LEFTX '
Def SRoal | GNDy | VDDy | INPy | LEFTx |

Note: Default Note. ~ -

Box. Layer: 5. l: T6+LEFTX,12+VDDy
ur: 13+RIGHTX,16 +¥YDDy.

|Box. Layer: 2. WU: 73,12+YDDy ur:

1,16+VDDy.
|Box. Layer: 4. l: 72,13+VYDDy ur:

0,15+¥YDDy.
Box. Layer: 3. Il: 74,5 ur: 2,11, S et
Box. Layer: 4. U: 72,3 ur: 0,7, 334
Box. Layer: 2. I: 73,2 ur: 1,5, N
Box. Layer: 5. l: 73,2 ur: 1,8, \§
Box. Layer: 1. Il: ~4,3 ur: 2,13, \
Box. Layer: 3. IW: T6+LEFTX, 1+INPy ur: %

3,1 HNPY. | N
|Box.” Layer: 3. lU: 5,76+GNDy ur:

7,16+¥DDy.

Box. Layer: 3. W:5 +4 +2,71+INPy ur:

7HRIGHTX +4 + 2,1 +INPy.
|Box. Layer: 5. U: “6+LEFTX, 6+GNDy +
2+ 2ur 13+RIGHTx,'2+GND‘F)J.
. s 72,75+GNDy ur:

N\

N

7

Box. Layer: 3
l:;,"':-i+Gr*ng.lJ

Box. Layer: 2. U: 0,3 ur: 11,5,
Box. Layer: 3. U: 9, 1+INPY ur: 13,2, N
Box. Layer: 2. U: 3,1 ur: 13,5, = %
Box. Layer: 4. lU: 10,0 urs 12,4, _ : G RERA
Box. Layer: 5. I 9,71 ur: 13,5, T ==
Box. Layer: 2. U: 73, 6+GNDy ur: 1,3,

. Layer: 2. U: 72,76 ur: 0,16.

Figure 2.2.4  SAM Display



Chip Floorplah (Logicol)

UPPEBI"‘ BUS

1 | 1
1)
; ;

S R
T v <C

0 ) r an
) )
i

1 x T

Lower Bus

Figure 2.3.1a Chip Block Diagram




Chip Floorplon (Physiool)

-

Port
Reglstebs
Shifter
AL U
Part

Control Line Buffers

Microcode Decode

Pads

Figure 2.3.1b Chip Floorplan
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Stretched Register Cell



Connection by Abutment

Figure 2.3.4
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Solution Graph for Horizontal Direction
Figure 2.3 .5



>
-
-
T

CE BFG H

Solution Graph for Horizontal Direction
Figure 2.3.5
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‘Figure 2.3.6

Ex'ample SPAM Floorplan Output
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Figure 2.4.1
Design Rule Checker Example
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Shapes Actually Examined by DRC



