SUBMICRON SYSTEMS ARCHITECTURE

Semiannual Technical Report

California Institute of Technology

November 1983

5103:TR:83

Reporting Period: 16 April 1983 to 15 October 1983
Principal Investigator: Charles L Seiiz

Faculty Investigators: Randal E Bryant
James T Kajiya
Alain J Martin
Robert J McEliece
Martin Rem
Charles L Seitz

Sponsored by
Defense Advanced Research Projects Agency
ARPA Order Number 3771

Monitored by the
Office of Naval Research
Contract Number N00014-79-C-0597

-1-

SUBMICRON SYSTEMS ARCHITECTURE

Computer Science
California Institute of Technology

1. Overview and Summary
1.1 Scope of this Report

This document reports the research activities and results for the period
16 April 1983 to 15 October 1983 under the Defense Advanced Research
Project Agency (ARPA) Submicron Systems Architecture Project.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircult technology scaled to submicron
feature sizes, and includes related efforts in concurrent computation and
VLSI design. Additional background information can be found in previous
gsemiannual technical reports [5052:TR:82, 5078:TR:83].

1.3 Highlights
The highlights of the previous 6 months are:

(1) The cosmic cube, a 64—element experimental homogeneous machine, was
completed and is now in regular use. Benchmarks of this system show it
outrunning a VAX11/780 by a factor of 6 on two large regular computations.
Numerous other application programs are in progress for this machine. A
new operating eystem, the cosmic kernel, has been defined and its code is
being written.

(2) Prototype mosaic processors have been packaged with fast off~-chip
storage for a small mosaic-tree for software experiments. Meanwhile, the
efforts in the design of the single chip mosaic element are approaching
completion, with the storage section designed and several processor
improvements accomplished, including interrupts, a multiply intruction, a
faster control PLA, and new microcode.

(3) The algorithms for and logical design of the super mesh element are
complete and have been simulated with MOSSIM.

(4) FMOSSIM, a concurrent fault simulator for MOS digital systems, is now
operational, This program uses the same switch-level representation of
MOS circuits as the logic simulator MOSSIM II, and so can model such MOS
circuit structures as (bidirectional) pass transistors, static and
precharged logic, busses, and both static and dynamic memory. The
concurrent simulation techniques of FMOSSIM simultaneously models the good
circuit and a large number of faulty circuits, and consequently requires
much less CPU time than simple serial fault simulation.

Do
2, ARCHITECTURAL EXPERIMENTS

We have three architectural experiments, Cosmic Cube, Mosaic, and Super
Mesh, in various phases of design, construction, programming, and use-.
These machines are all ensembles of identical, concurrently operating, and
regularly interconnected elements that communicate by message passing
[5102:TR:83]. Our priority in these efforts has been to apply VLSI
technology to achieve substantial advances in cost/performance in a
limited set of computationally demanding tasks.

These experiments, the machine organizations, software systems, current
status, and application span, can be summarized as follows:

2.1 Cosmic Cube
(W C Athas, Reese Fawcette, Mike Newton, Chuck Seitz)

Cosmic~cube is an experimental homogeneous machine with elements
interconnected in a Boolean n-cube. Cosmic elements are of medium size
for this class of machine, about 140 MSL, and consist of an Intel 8086
processor with 8087 floating point coprocessor, 128K bytes of primary
storage, 8K bytee of read-only estorage for initialization, bootstrap, and
diagnostic programs, and 6 bidirectional self-timed communication
channels.

At 140 million square lambda (MSL) complexity, and 78 "off the shelf"
chips, the nodes of this machine are considered to be a hardware
simulation of a node element that could be made as a single chip with 1
micron MOS technology. In anticipation of this advanced process
technology, we have built this system in order to experiment with the
applications, algorithms, and programming of such systems.

2.1.1 Current Status of the Hardware

Construction of the 6~cube (64 element) machine is now complete, and the
system is in regular use. This machine has been completed and tested in
stages of 3~, 4-, 5~, and 6-cubes in June, July, August, and September
1983, respectively, as node elements have been checked out.

A 2-cube (4 element) prototype has been running concurrent programs since
July 1982, and has been used for software development. We are also
operating an independent 3-cube machine for system software development.

The Cosmic 6~cube elements are running at a clock rate of 4.1 MHz, reduced
from the interim design point of 5.0 MHz, due to speed problems in the
Intel 8087 floating point coprocessor. As soon as all the 8087°s are
replaced by the -3 version, the system should operate at 5 MHz. Except for

the 8087’s, the system operates at up to 8 MHz. Accordingly, our current
benchmarks can be expected to improve by a factor as much as 2 over the

next year when faster 8087°s become available, and due to an improved code
optimizer.

Under separate support (principally DoE), production of about 200 nodes of
a descendent of the cosmic cube design is under way at Caltech JPL, in

-3

order to provide additional cycles for scientific users in the Caltech
concurrent computation project. These nodes are software compatible with
the cosmic 6-~cube, and will assembled into a Boolean 7-cube (128 element)
system and several smaller systems.

2.1.2 Application Programs and Benchmarks

An SU3 lattice gauge theory computation, an adaptation of a computation
that had been run for about 1000 hours on the original 2—cube, is being
used to test the 6-cube. This program, an investigation of the properties
of protons predicted by the quantum chromodynamics theory, has now ruan for
about 100 hours, and is producing successively more and more refined
statistics. It will run for several hundred more hours before improving
significantly on the best existing results obtained in about 40 hours on a
Cray-1.

A LaPlace equation demonstration program that illustrates the relaxation
solution in the progress of the computation is has been refined into a
highly efficient and general program for differential equation solution by

relaxation methods.

Both of these physics programs use substantially all of the node storage,
and benchmark at 6:7 times the VAX11/780 on the present machine. At

8 MHz clock and by using a new code optimization package, we expect the
Cosmic 6-cube to achieve more like 15 times the VAX11/780 for these regular
computations, or easily in excess of 0.1 of a Cray-l.

There are numerous other application programs under development, the most
interesting of which is a MOS-VLSI circuit simulator. The formulation
that is used to achieve concurrency is a row partitioning of a modified
nodal admittance matrix into concurrent processes [Mattisson 5096:DF:83].
A simulator working on this principle, written in Pascal, and running on a
VAX, is the testbed for this program that will be transferred to the
6-cube this spring. The simulation formulation is described in more
detail in section 4.2.

2.1.3 Software Status

The period of bringing up the 6-cube was one in which a large suite of
testing and diagnostic programs have been written and refined. These
programs are largely routine. The lowest level tests, such as the RAM
test, are coded in 8086 assembly code, while the communication and
floating point tests are coded in C.

The mature software tools for application programming of the Cosmic Cube
now include a full initialization, bootstrap, and disagnostic package, a C
and Unix based environment that is widely used for the more "crystalline"
applications, and a complete Unix based simulator for programs written in
this environment.

A prototype message passing and routing multiple process operating system
called the "cosmic kernel" [5095:DF:83], has been defined and is being

lyem

coded and debugged. Since this will be the environment seen by people
that might want to do software experiments with the Cosmic Cube after it
is made available as a network server, an outline of the principal
functions provided by and computational model imposed by the cosmic kernel
(CK) is included in the concurrent computation section 3.2 below.

2.2 Mosaic Systems
(Chris Lutz, Steve Rabin, Chuck Seitz)

Mosaic is another experimental homogeneous machine, but with very small
node elements, by the plan of this experiment, a single chip. This
element consists of a mosaic processor with 4 input and 4 output ports
(2.5 MSL) and as much primary storage as a single chip permits. For
example, a 6 mm square chip in 3 microa MOSIS nMOS technology, 4000 lambda
by 4000 lambda, 16 million square lambda (MSL), will accomodate a Mosaic

processor, 4K bytes of RAM (32 bytes of which are "maimed" to provide a
small initialization and bootstrap lvader), and the small number of pads

required for this element.

Mosaic elements can be interconnected in a variety of communication plans,
including a tree, mesh, shuffle-exchange graph, chordal ring, or cube
connected cycle.

A paper on the design of the Mosaic element, to be published in the
Proceedings of the MIT Conference on Advanced Research in VLSI, January
1984, is included as Appendix A of this report, and is also available as a
Caltech technical report [5093:TR:83]}.

MOSIS has fabricated a run of 48 prototype Mosaic processors for us, on
which we got a 56% yield (27 working processors). Thesc processors are
being packaged on PCBs (designed with Earl and fabricated through the
MOSIS prototype PCB service) with fast (InMOS) off-chip storage in order
to make a working, programmable, and expandable 15 element Mosaic~tree or
16~element Mosaic~shuffle. These machines will be used for software
development while we go through the logistics of building larger and more
highly integrated versions of Mosaic systems. This staging tactic worked
very well for the cosmic cube project.

An improved version of the processor with interrupts, a multiply
instruction, a faster control PLA, and new microcode has been designed,
but not yet verified. RAM test chips have been fabricated and tested. A
full-size RAM element has been designed and verified, and is about ready

to be sent to MOSIS for fabrication and test. Thus we believe we are very
close to assembling a complete Mosaic element, a single chip with about

140,000 transistors.

This project involves a number of supporting efforts in testing to allow
production of these chips in quantities of several thousands. We are
putting a wafer-stepping probe station into operation in preparation for
testing Mosaic elements on the wafers.

-

It is our intention in the runs of Mosaic element chips, both in an early
run of about 20 wafers, and in a run later of sufficient wafers to yield

about 1500 working chips, to work with Martin Buehler at JPL in
correllating test strip results die by die with functional test results.

It is our plan to have a 1024~element Mosaic system running in June 1985.

A 1024~element Mosaic system is expected to be capable 2,500 Million
instructions per second on combinatorial problems, or of 20:80 Million
32-bit mantissa floating point operations per second —- essentially Cray-l
performance -~ on a limited class of matrix, grid point, and finite
element computations. It is expected to exhibit a factor of about 10 in
cost/performance over some of the most regular computations that can be
performed on cosmic cube, and that do not require large amounts of storage
per node, and a factor of about 100 in cost/performance over conventional
mainframes for this limited set of problems.

Discussions of algorithms and programming systems for Mosaic are deferred
to the concurreant computation section below.

2,3 Super-mesh
(Wen King Su, Chuck Seitz)

Super-mesh is a serial communication, serial floating point arithmetic,
SIMD machine in the early stages of design. Its rationale was discussed
in some length in our previous semi-ananual report [5078:TR:83]. This
machine might be regarded as a shared control implementation of a
computational or systolic array.

The arithmetic algorithms and logic design for the super-mesh node are now
complete, and the node fully simulated with MOSSIM.

The most substantial change made in the course of the design from the

plans previously reported is a decision to use a 64-bit floating point
format with a 56-bit mantissa and 8~bit exponent.

Based on early and partial layouts of the arithmetic slice and registers,
the elements meet our previous size expectations, as scaled by the change
in word size, to be about 2 MSL. Each element contains 40 registers,
serial floating point arithmetic, neighbor communication, and the serial
microcode receiver and pipeline. An instruction cycle of this machine
requires 65 clock cycles. Since the serial carry-save arithmetic
algorithms use only short combinational paths, we expect to clock this
chip at 20 MHz, and achieve a floating poiat rate of 0.3 Mflops per
element or 1.2 Mflops per chip with 4 elements per chip.

A microcode control word is transmitted serially for each instruction
cycle. The physical design of this machine employs a deliberate skew in
the internode communication and instruction broadcast to allow it to be
extended to any size, but its interconnection is limited to a mesh.

e
2.4 Designs for Advanced Technology Homogeneous Machines

(Chuck Seitz)

A number of designs for an advanced technology homogeneous machine node
element are being developed, with the following characteristics:

(1) 1 Mbyte of storage per node, with error correction, implemented with
(40) 256K dJdRAM chips.

(2) 2 32-bit processors, one for communication and operating system
funetions, and the second for task processing (including fast floating
point arithmetic), share the Mbyte of storage. Either the M68010 or DEC
microVAX are possibilities for the processors.

(3) The communication section will be based in an evolution of the Fifo
Buffered Tranceiver (FBT) chip previously reported [Ng 5055:TR:82]. The
node will support up to 12 serial channels, which would allow up to 4096
element Boolean n—cube machines, and an additional channel for host, 1/0,
or secondary storage coanections.

(4) The task section will use a floating poiat coprocessor with a floating
point rate of 1 Mflop with "short" floating point words.

3. CONCURRENT COMPUTATION
3.1 Concurrent Algorithms
(Lennart Johnsson)

In the search for efficient algorithms for easemble architectures, a few
algorithms for sorting on binary trees and Boolean n—cubes, and for
solving tridiagonal linear systems of equations on n—cubes have been
devised [5085:DF:83]. The algorithms are totally distributed (as are the
data structures).

Bitonic sort can be performed on a perfect shuffle network in
(logN)*(1logN) time, if there are one element per node. With one element
per node an a Boolean n~cube the order of the time complexity is the same,
but the constant can be improved somewhat. With several elements per node
a combination of sequential sort and parallel sort is obviously necessary.

A few algorithms have been devised for differeant sorting orders, and with
different cowbinations of sequential/parallel sort. Some of Lhe

algorithms exhibit a gradual change of behavior from efficient sequential
sort when only one processor is available to a Bitonic sort when there is
as many proceesore as elements to be sorted. All nodes execute the same
program. The control is entirely local.

The tridiagonal system solver devised for the n-cube solves the system in
logN time if the cube is large enough that one dimension of the system to
be solved can be identified with one node of the cube. If the system is
larger than that, then the execution time grows lineraly, as on a
sequential machine. The control is again entirely local, but somewhat
more complex than in the sorting algorithms. The local control sequence
can be derived from generators of a Gray code. What is effectively needed
is to make successive linear embeddings in the cube, where the nodes in
each embedding consists of nearest neighbors in the cube, and the
succession of paths to be embedded are obtained by deleting every other
node in the previous paths.

3.2 Cosmic Kernel
(W C Athas, Reese Fawcette, Chuck Seitz)

The following is an outline of the principal functions provided by and
computational model imposed by the cosmic kernmel (CK), a small operating
system kernel being developed for the cosmic cube.

One copy of the cosmic kernel (CK) resides in each node of the cosmic cube
(CC), and all of these copies are concurrently executable. Some operating
system functions are supported also in the CC intermediate host (IH).

When running with this operating system, the IH does not run user code.

It is dedicated to operating system and network functions, and the CC
operates as a network server.

-8

The kernel has two layers. All those parts of the kernel with which one
communicates by system calls are in the "inner kernel" (IK). The inner

kernel contains all message sending and receiving, message routing, and
process scheduling.

All other kernel functions are invoked not by a system call mechanism, but
by sending messages to a set of processes called the "outer kernel" (0K).
The outer kernel provides capabilities of host 1/0 and of process creation
and destructione

The basic unit of the computations supported by CK is a "process." A
single node of CC may contain many processes. A computation consists of a
collection of processes distributed through the CC that can be thought of
as all executing concurrently, either by virtue of being in different
physical nodes of CC, or by being interleaved in execution within a single
node. Processes communicate by sending and receiving messages.

The placement of processes in physical nodes of CC can be controlled by
the programmer, or may be deferred tu a library process. This placement
does not influence the logic of the program, but will have consequences in
(1) the possibility of exceeding available storage, (2) the influence of
process placement on performance through the overhead in message routing
and the competition for cycles amongst processes in a single node.

As far as the kernel is concerned, a process is a segment of sequential
code and data of fixed size. This code and data is represented for
communication purposes as a binary image relocatable by the segmentation
features of the 8086 processor. Process code must be dynamically
relocatable; it must not load or manipulate the code segment (CS), data
segment (DS), or stack segment (SS) registers, and must maintain a stack
with sufficient space for storing state in an interrupt. The code, data,
and stack segments are each limited to 64K bytes.

The code for a process is written in a suitable programming notation, such
as extended versions of Pascal, C, or 8086 Assembly, and compiled
independently of other processes that may be a part of the same
computation. Because of the independence of the comstruction of process
code, and the standardization of kernel functions, there is complete and
uniform compatiblity of processes independent of source language. For
example, a library process written in C or assembly code can be used in a
computation in which most of the processes were written in Pascal.

Each process has a unique 16~bit identifier that is an ordered pair:
process id = <physical node, process number within the node>. This id is
normally represented in a single 16 hit word, in which the physical node
has a range 0:255 and the process number a range 0:255.

Because the physical location of a process is imbedded in its id, CK does
not maintain a map from process id to physical node. Message routing to
processes is based simply on the physical address part of the destination
found in the message header. Thus we assume that a process, once created,
is not relocated.

-0

CK supports one message format. All messages have headers. Long messages
are communicated over the physical channels of CC by different protocols
than are used for short messages, but this difference is invisible to user
programs.

The message header can be thought of as the envelope in which a message is
sent. The header is 4 words long, and contains

word l: id of the destination process
2: id of the sending process
3: message type
4: message length

Words 1 and 2 are self-explanatory. The 16~bit type is significant in the
way in which messages sent are matched against messages expected by the
destination process. The message length is specified in number of words,
and may be zero. A message of length O is called a "syanchronization

message,'" and coaveys information oaly through the type and by its
existence.

A process performs message sending and receiving by system calls. The
system call is implemented on the cosmic node as a software interrupt-
For present purposes calls will be described by a name followed by
parameters, if any. In C or Pascal source, system calls may be either
calls to an external procedure that includes the system call, or may be
compiled directly into the suitable system call.

The two basic message calls are SEND and RECV. These calls specify a
communication request that will be satisfied as soon as CK is able. CK
buffers messages in transit, up to and includiang complete messages. It is
perfectly legal to SEND a message before a corresponding RECV is executed;
such a message will be queued in the destination node and in transeit ase
storage space allows. CK also supports a PROBE call that checks for the
presence of a message queued for a process, and an UNRECV call that

will undo a pending RECV. Details of these functions are described in
[5095:DF:83].,

The outer kernel (0K) is a priviledged set of processes whose functions
are invoked by messages rather than system calls. User processes will
normally communicate with their own OK processes, but may equally
communicate with any other OK processes.

If we might be allowed to indulge briefly here in design philosophy, let
us remark that any future evolution of CK is seen as occurring in the
outer kernel. The number of functions of the inner kernel, accordingly
its size, complexity, and difficulty in portability, has been guarded
fairly closely. These functions are very close to machine intrinsics, and

may well guide the development of future node architectures. The outer
kernel is meant to be more nearly open-ended, machine independent, and

accessible to change.

~10~

The set of process ids <%*,255>, <*,254>, ... is reserved for the OK.
Processes <*,254> have capabilities of performing I/0 with hosts, and so
are denoted <*,host>. Processes <*,255> have capabilities of creating and
destroying processes, and the associated capability of performing storage
management within a own node, and are denoted <*,spawn>.

3.3 Mosaic Software
3.3.1 Scheduler
(Pey—yun Peggy Li, Lennart Johnsson)

A Scheduler has been implemented in Mosaic Assembly Language and tested
under the Simulator. The scheduler keeps track of the states of the
processes, i.e., RUN, READY, SUSPEND and SLEEP states. The state
transitions are triggered either by the ruaning process while an I/0
operation fails or by the scheduler while it receives a message at one
input port. The scheduler occupiles 387 words of memory and one Process
Control Block takes 30 words. The time to perform a context switch (swap
in and swap out) and inspect all the three input ports is about 150
instruction cycles.

3.3.2 Tree Downloader
(Pey-yun Peggy Li, Lennart Johnsson)

A Multi-node Downloader for a Mosaic—tree with the mapping algorithm
[5084:TR:83] implemented in it has been written and tested. The
downloader can load a fixed number of process programs into one Mosaic
element. That anumber is furnished by the host and propagated through the
eatire tree. The downloader has three parts, initiation, type loading and
name loading. The initiation part creates, allocates and initiates the
process control blocks for the fixed number of processes.

The type loading part loads the proper number of node types into each
node, and the code loading part loads the relocatable program code of all
the residing processes into each node’s memory. The type loading part is
running in time sharing mode for simplicity reason. Because of the heavy
context switches, the root processor takes about 13,000 instruction cycles
to load the node type string of a five level tree into a four level tree
machine. Meanwhile, it takes about 10,000 instruction cycles to load all
the program code down into the tree, provided that the root node contains
two different node types and there are totally five different node types,
one for each level, and each program is 200 words long.

For an L level binary tree which is mapped onto a M level tree machine, L
> M, the time to load the node type string at the root processor can be
formulated as follows:

n+l
T=7000+{2% Sum [2**(i-1)-2%*(i=-3)=1]%1000}+N*1000%(L=n~1)
i=4

-11-

where n = M~L and N = 2%%a~1, eg, the number of nodes shared in the root
pProcessor.

The documentation for the scheduler and the multi-node downloader is
in preparation.

3.3.3 A Modic Compiler for Mosaic
(Alain Martin)

We are building a compiler for translating a high-level language for
distributed computations into Mosaic code.

According to the principle that "a complex system that works is invariably
found to have evolved from a simple system that worked" (John Gall), we
have decided to start with a simple language called Modic. The sequential
part of the language is based on Dijkstra’s guarded commands.
Communication and synchronization are provided by input and output
commands (slmilar to CSP’s) on channels. A channel is a programming
concept that makes it possible to match an input command in one process to
an output command in another process. A Boolean operation on a channel,
called the "probe'", allows one to test whether an input or output command
is pending on the channel.

Later, the language will be extended with procedures, dynamic creation of
processes, multiple channels, (i.e., channels shared by more than two
processes), select, and broadcast operations.

]2
4, VLSI DESIGN
4.1 Switch Simulation Tools
4.1.1 FMOSSIM
(Mike Schuster, Randy Bryant)

FMOSSIM, a fault simulator for MOS digital sysitems first became
operational in April, 1983. This program utilizes the same switch-level
representation of MOS circuits as the logic simulator MOSSIM II. As a
consequence, it can model such MOS circuit structures as (bidirectional).
pass transistors, static and precharged logic, busses, and both static and
dynamic memory. Faults are represented as alterations of the switch-level
description causing selected nodes to be stuck-at 0 or 1, or selected
transistors to be stuck open or closed. Faults such as breaks in wires or
short circuits between wires can also be modeled by adding extra "fault"
transistors to the network description.

This combination of circuit and fault modeling capabilities is far more

general than has been achieved previously. FMOSSIM utilizes concurrent
simulation techniques to simultaneously model the good circuit and a large
number of faulty circuits, and consequently requires much less CPU time
than simple serial fault simulation. Both the utility and the performance
of this program seem quite promising.

A paper on FMOSSIM, to be published in the Proceedings of the MIT
Conference on Advanced Research in VLSI, January 1984, is included as
Appendix B of this report, and is also available as a Caltech technical
report [5101:TR:83].

40142 The MOSSIM Simulation Engine
(Bill Dally, Randy Bryant)

We have begun the design of the Mossim Simulation Engine (MSE), a special
purpose processor for performing switch level simulation of MOS VLSI
circuits [5100:TR:83]. A single MSE processor will be constructed from

~400 TTL MSI and MOS memory devices packaged oan a single 15" x 15"
wire-wrap board, and will perform switch level simulation at a rate of

~5%10"5 logic events per secoand, 500 times faster than MOSSIM II running
on a VAX-11/780. Several MSE processors may be coanected in parallel to
achieve additional speedup.

4.2 Circuit Simulation on the Cosmic Cube

(Sven Mattison, Lennart Johnsson, Chuck Seitz)

We have completed a study of MOS~VLSI circuit simulation formulations for
concurrent execution [5096:DF:83].

-13~

This effort is motivated by two threads of our research. First, SPICE
uses lots of time on our computers as well as on many people’s
supercomputers, and such a program would provide a more economical way to
doing these simulations. The second reason is that circuit simulation is
an excellent paradigm of a computation with concurrency opportunities in
which the communication graph, while fixed, is not so regular as in the
computations being done by our collaborators in the sciences at Caltech.

The formulation we have chosen, a modified nodal admittance matrix, is not
as general as the usual circuit simulator, and will not treat elements
such as ideal opamps, curreant controlled current sources, ideal
transformers, or nonlinear elements that lack an unambiguous admittance
description. This formulation is, however, perfectly adequate for
MOS-VLSI, and offers some storage and performance advantages over more
general formulations.

The most critical aspect of the approach to concurrent execution is the
sparse matrix equation solution method. Direct solution methods are hard
to implement on a machine such as the cosmic cube, and iterative methods
very natural. The most common iterative methods are the Jacobi (J),

Gauss-Seidel (GS), successive overrelaxation (SOR), and the conjugate
gradient (CG) method.

Among these basic iterative methods, J, GS, and SOR use oaly one row at a
time in the matrix to calculate a new estimate for each component in the
unknown vector. Thus there is both locality and concurreancy achieved by
row partitioning. SOR requires an accurate estimate of the relaxation
parameter to be efficient, and its local calculation is sufficiently
difficult to eliminate SOR from consideration. CG is not strictly
iterative, and because it uses matrix inner products during each iteration
is less local than J or GS.

When choosing a method for solving the matrix equation, one must weigh
also that the matrix solving on sequential machines represents only 10:207%
of the cycles, while the more freely concurrent model equation evaluation
represents 80:90% of the cycles. One prefers that the partitioned matrix
equation solving algorithm have an interface to the model evaluating
routines that causes as little communication and redundant model
evaluation as possible. There is a good correspondence between the
elements and the row partitioning. Each row in the modified nodal
admittance representation contains only entries from devices connected to
the node represented by the row.

In order to see if iterative methods are considerably slower than direct
ones, SPICE 2 version G.5 was modified to use GS diterations in the
transient analysis. GS was used instead of Jacobi, since it does not need
extra storage for the new estimates of the unknowns, and is easier to
code, but since GS and J have similar convergence properties, the results
should apply to both methods. Three different test circuits were used,

with the consistent result that the performance was nearly identical.

Thus, based on these studies, the circuit simulator we are writing for the

-14

cosmic cube will use a row partitioned matrix equation solving routine.
Among the iterative solution methods, the Jacobi iteration assures
convergence independent of the order in which the different processes
complete their calculations)for matrices conditioned in a way that is
easily assured for MOS circuits). Within each process the modified
Newton~Raphson method is used as the inner iteration of the global Jocobi
iteration. A first or second order predictor-corrector backward
differentiation formula is assumed as the integration algorithm.

4.3 From Circuit to Layout - Another Approach

(Tak~Kwong Ng, Lennart Johasson)

The circuit embedding problem can be transformed into the problem of graph
embedding. A proper graph model for studying MOS circuit layout topology

has been proposed, and an alogorithm for mapping a circuit into its graph

model has been implemented.

Transistors whose gates beloang to the same net are lumped together to form
one component. This component is represented by a vertex. Each
individual source or drain is mapped into an edge incident on this vertex.
All other connections to the gate net are represented by edges incident on
this vertex.

Serial traansistor configurations can be considered as a transistor with

multiple gates. Such component is represented also by a vertex. The
source and drain are mapped into edges incident on this vertex. All gate
connections are represented by edges incident on this vertex.

The exterior of a layout is also mapped into a vertex. For each external
net, there is an edge connecting the exterior vertex and the external nct
vertex.

Hopcroft and Tarjan’s graph planarity testing algorithm is modified to
include the procedure for saving the appropriate information which is
necessary for deriving the proper embedding. The information is saved as
constraint graphs. Thus, the graph embedding problem becomes the problem
of assigning edges to some plane such that all constraints are met, and

a predefined function is optimized. Optimal solutions can be found by
enumeration. Several heuristic approaches are being studied.

4.4 Mosaic RAM element design
(Steve Rabin, Chris Lutz, Chuck Seitz)

A RAM section for the Mosaic element has been designed. Each RAM section
stores 4K bits, and 8 copies of this macrocell will be used in the 16 MSL

version of the Mosaic element.

Although specialized processes provide higher storage density than

-]15~

processes that are suitable for the Mosaic processor, a processor

with on-chip memory on has many advantages over processor and memory in
separate packages. These advantages include many times lower volume, pin
count, signal energy, and driver delay, resulting primarily from the
integration of the memory bus into a single package.

The Mosaic memory was designed to be quite process technology independent,
and able to benefit from nMOS technology to under 2um feature size. It
was also designed to take full advantage of and extend the circuit style
of "hot clock" bootstrap drivers used in the Mosaic processor. The final
design uses exactly no depletion transistors.

The memory must be very fast, fast enough to perform an access at least
every 300 tau, and have a 16-bit word interface. The memory must have a
negligible soft error rate, and would ideally dissipate negligible DC
power. The memory must be flexible enough to be configured in various
sizes of up to the 4K words (64K bits) of processor address space.

Process independence and organizational simplicity lead us to select a
two-bus three~transistor dynamic RAM memory cell design.

Commercial single transistor dynamic memories require dynamic node refresh
every 2ms. Systems using such devices typically use error
detecting/correcting codes to bring soft errors to acceptable levels. It
is expected that the use of many banks of concurrently refreshing three
transistor cells with fairly large storage nodes combined with the 50 usec
refresh period provided by Mosaic processor will provide very good
immunity to soft errors.

The memory bus is pipelined to take advantage of the rather generous
memory latency permitted by the processor. Allowable instruction latency
is one cycle plus one phase. Allowable data or write latency is two
complete cycles. Pipelining in this fashion allows us to reduce the
bandwidth to/from the processor to 29 bits/cycle (1 write, 12 address, 16
data).

Each memory access starts with a column read followed almost always by a
write to the same column on the next cycle. Because this write occurs in
the same cycle as the next read, the storage control is somewhat tricky.
Mandating a write causes one of several words from the memory to be
replaced with write data from the processor. If another word on the same
column is accessed on that cycle, the subsequent write back to the column
would permanently store incorrect (stale) data. For this reason a write
back override is enabled on the second cycle after a write cycle.

Two subsidiary clock phases, philL and phi2L have been introduced, and
divide the processor cycle into 6 epochs. A conservative clocking
discipline is used to permit switch level simulation using a unit delay
timing model.

Circuit design for the Mosaic storage element avoids depletion loads due
to associated scaling and process problems incompatible with the goals of

-] Hee

aggressive technology independence and low DC power consumption. Dynamic
logic is used exteansively. Race conditions are avoided entirely and
charge sharing is kept to a minimum. Large capacitive loads are admirably
driven by rising edge logic using bootstrap clock drivers combined with
precharged logic devices typically underneath the memory bus itself.
Circuit simulations predict operation at 15 MHz to match the predicted
performance of 3 micron Mosaic processors.

S0, our objectives have been met by a conceptually simple, scalable

memory, optimized for advancing MOS process technology. This memory
design imposes the following domain restrictions:

Consecutive write operations are not supported.

Read operations immediately following a write operation will not
refresh the dynamic storage nodes of the column so read.

Reading a word that was written the previous cycle is not supported.

The first two conditions do not occur in the microcode, and the third
condition occurs only by writing into the instruction stream.

4.5 SOS technology, PCB technology

(Chuck Seitz)

A fairly extensive cell library for CMOS/S0S, all in Manhattan geometry
in order to be compatible with design tools that do not handle real
geometry, has been provided to MOSIS for distribution. Circuits received
from the first MOSIS SOS run have been tested, and the process behaves
exactly as expected. A new SOS technology writeup is in preparation for
MOSIS distribution.

We were happy to have assisted Ms Mosis in the development of PCB
services. Farl and our various plotting programs have been modified to
accommodate PCB technology, and we have made use of this service as
indicated in section 2.2 to package a prototype Mosaic machine. The PCBs
received very quickly from MOSIS were unremarkable except for a MOSIS logo
of excessive size.

-17-

California Institute of Technology
Computer Science, 256-80
Pasadena, California 91125

ARPA Technical Memos and Technical Reports

together with selected other Caltech reports on VLSI topics

November 1983

Available from the Computer Science Department Library

++

5102:TR:83

5101:T™M:83

5100:DF:83

5099:TM:83

5098:TM:83

5097:TR:83

5096 :DF:83

5095:DF:83

5093:TR:83

5092:TM:83

"Experiments with VLSI Ensemble Machines," October 1983;
Seitz, Charles L.

"Concurrent Fault Simulation af MOS Digital Circuits,"

October 1983
Bryant, Randal E,.

"MOSSIM Simulation Engine Preliminary Architecture," October
1983;
Dally, Bill and Randy Bryant

"VLSI and the Foundations of Computation,'" September 1983;
Mead, Carver

"New Techniques for Ray Tracing Procedurally Defined
Objects," September 1983;
Kajiva, James T. [$2.00] 13 pages

"The Design of a Self-timed Circuit for Distributed Mutual

Exclusion," September 1983;
Martin, Alain J.

"MOS-VLSI Circuit Simulation Formulations for Concurrent
Execution," August 1983;
Mattisson, Sven

"A System Programmer’s Guide to Cosmic Kernel ," August 1983;
Seitz, Chuck and Athas, Bill

"Design of the MOSAIC Element," July 1983;
Lutz, Chris, Steve Rabin, Chuck Seitz and Don Speck 10

pages

"Residue Arithmetic & VLSI," July 1983;
Chiang, Chao-Lin & Lennart Johmsson [$2.00] 5 pages

5091:TR:83

5090:TR:83

5089:TR:83

5088:TM:83

5087+ TM:83

5086:TR:83

5085:DF:83

5084 :TM:83

5083:DF:83

5081:TR:83

5079:TR:83

5078 :TR:83

5077 :DF:83

5076:DF:83

5075:TR:83

-18-

"Race Detection in MOS Circuits by Ternary Simulation," June
1983;
Bryant, Randal E. [$2.00] 12 pages

"Space-Time Algorithms: Semantics and Methodology,"Ph.D,
Thesis, June 1983;
Chen, Marina Chien-mei [5.00] 109 pages

"Signal Delay in General RC Networks with Application to
Timing Simulation of Digital Integrated Circuits," July
1983;

Lin, Tzu-Mu and Carver A. Mead [$10.00] 68 pages

"infinite Fair Shuffle," June 1983;
Choo, Young-il

"Concurrency Algebra and Petri Nets," June 1983;

Choo, Young-il

"A VLSI Combinator Reduction Engine,'MS Thesis May 1983;
Athas, William C., Jr. [$4.00] 40 pages

"Solution Set of AM/CS146," May 1983;
Johnsson, Lennmart and Peggy Li

"The Tree Machine: An Evaluation of Strategies for Reducing
Program Loading Time," August 1983;
1i, Pey-yun Peggy, and Lennart Johnsson [$2.00] 26 pages

"Role of Parameters-Sticks Representations," May 1983;
Trimberger, Steve

"RTsim ~ A Register Transfer Simulator," April 1983;
Lam, Jimmy [$4.00] 63 pages

"Highly Concurrent Algorithms for Solving Linear Systems of
Equations," April 1983;
Johnsson, Lennart [$2.00] 79 pages

"Submicron Systems Architecture," April 1983;
ARPA Semiannual Technical Report [$5.00] 32 pages

"Pooh: A Uniform Representation for Circuits,” March 1983;
Whitney, Telle

"The Semantics of a Functional Language for VLSI Systems,"
March 1983;
Chen, Marina

"A General Proof Rule for Procedures in Predicate Transformer
Semantics," March 1983;
Martin, Alain [$2.00] 20 pages

-19-

5074:TR:83 "Robust Sentence Analysis and Habitability," Trawick, David
J., Ph.D. Thesis, February 1983

5073:TR:83 "Automated Performance Optimization of Custom Integrated
Circuits," Trimberger, Stephen, Ph.D. Thesis, March 1983

5068:TM:83 "A Hierarchical Simulator Based on Formal Semantics," Proc.
Third Caltech Conf. on VLSI, p. 207-223, March 1983; Chen,
Marina and Carver Mead [$1.00]

5065:TR:82 "Switch Level Model & Simulator for MOS Digital Systems,"
December 1982; Bryant, Randal E. [$3.00]

5059:TM:82 "A Comparison of MOS PLAs," December 1982; Trimberger,
Stephen [$2.00]

5055:TR:82 "FIFO Buffering Transceiver: A Communication Chip Set for
Multiprocessor Systems," MS Thesis, December 1982;
Ng, Charles H. [$5.00]

5052:TR:82 "Submicron Systems Architecture," submitted to ARPA October
1982; Semiannual Technical Report [$4.00]

5049:TR:82 "Distributed Mutual Exclusion Algorithms," submitted for
publication, AJM 31, September, 1982; Martin, Alain [$3.00]

5047 :TR:82 "The Torus: An Exercise in Constructing a Processing
Surface,”" Proc. 2nd Caltech Conference on VLSI, Caltech,
Pasadena CA, January 1981; Martin, Alain [$3.00]

5046:TR:82 "An Axiomatic Definition of Synchronization Primitives," Acta
Informatica 16, pp. 219-235 (1981); Martin, Alain [$3.00]

5045:TM:82 "A Distributed Implementation Method for Parallel
Programming," Proc. Information Processing 80, S. H.
Lavington, (ed.); Martin, Alain [$3.00]

5044 :TR:82 "Hierarchical Nets: A Structured Petri Net Approach to
Concurrency," September, 1982; Choo, Young-I1 [$10.00]

5043:TM:82 "A Formal Derivation of Array Implementations of FFT
Algorithms," Proc. USC Workshop on VLSI & Modern Signal
Processing, (sponsored by ONR) Nov. 1982, to be published by
Prentice-Hall; Johnsson, Lennart and Danny Cohen [$3.00]

5042:TR:82 "Concurrent Algorithms as Space Time Recursion Equations,"
SepLember, 1982; Chen, Marina and Carver Mead [$4.00]

5040:TR:82 ""Concurrent Algorithms for the Conjugate Gradient Method,"
September, 1982; Johnsson, Lennart [$4.00]

5038:TM:82 "A New Channel Routing Algorithm," September, 1982;
Chan, Wan S. [§4.00]

5035:TR:82

5034:TR:82

5033:TR:82

5030:TM:82

5029:TM:82

5027 :TM:82

5021:TR:82

5019:TR:82

5018:TM:82

5017:TM:82

5016:TR:82

5015:TR:82

5014:TR:82

5012:1M:82

5005:TM:82

5004:TM:82

-20-

"Type Inference in a Declarationless, Object-Oriented
Language,' MS Thesis, June 1982; Holstege, Eric [$10.00]

"Hybrid Processing," Ph.D. Thesis, March 1982; Carroll, Chris
[$12.00]

"MOSSIM II: A Switch-Level Simulator for MOS LSI User’s
Manual," August 1982; Schuster, Mike and Randal E. Bryant
[$4,00]

"VLST Algorithms for Doolittle’s, Crout’s, and Cholesky’s
Methods,”" Proc. ICCC ‘82, IEEE Int’l Conf. on Circuits &
Computers, NY Sept. 1982, pp.372-377, IEEE Catalog No.
82CH1813-5; Johnsson, Lennart [$1.00]

"POOH User’s Manual," July 1982,; Whitney, Telle [$4.00]

"Concurrent Programming," July 1982; Bryant, Randal E. and
Jack B. Dennis [$3.00]

"Earl: An Integrated Circuit Design Language," MS Thesis, May
1982; Kingsley, Chris [$5.00]

"A Computational Array for the QR-Method," Proc. MIT

Conference on Advanced Research in VLSI, P. Pennfield, ed.,

Boston, January 1982, pp.123-129; Johnsson, Lennart [$3.00]

"Filtering High Quality Text for Display on Raster Scan
Devices," August 1981; Kajiya, Jim and Mike Ullner [$2.00]

"Ray Tracing Parametric Patches," May 1982; Kajiya, Jim
[$2.00]

"Bristle Blocks — Scrutinized and Analyzed," June 1982;
McNair, Richard, and Monroe Miller [$4.00]

"WLSI Computational Structures Applied to Fingerprint Tmage
Analysis,"; Megdal, Barry [$4.50]

"The Extension of Object-Oriented Languages to a Homogeneous,
Concurrent Architecture,” Ph.D Thesis, April 1982; Lang,
Charles R. Jr., [$15.00]

"Switch-Level Modeling of MOS bigital Circuits,"; Bryant,
Randal [$2.00]

"Chip Assembly Tools,"; Trimberger, Steve and Chris Kinglscy
[$2.00]

"Riot - A Simple Graphical Chip Assembly Tool,";
S. and Jim Rowson [$2.00]

Trimberger,

5003:TM:82

5001:TR:82

5000:TR:82

4778:TM:82

4777 :TR:82

4724:TR:82

4716:TM:82

4710:TM:82

4684:TR:82

4682:TR:81

4675:TR:81

4655:TR:81

4654 :TR:81

4653:TR:81

4618:TM:81

4601:TM:81

-21-

"Pipelined Linear Equation Solvers & VLSI ," Proc.,
Microelectronics 1982, Adelaide, Australia, May 1982,
pp.42=-47, The Institution of Engineers, Australia, Nat’l
Conf. Pub. No. 82/4; Johnsson, Lennart S. [$2.00]

"Minimum Propagation Delays in VLSI ," IEEE J. Solid State
Circuits, Vol. SC-17, No. 4, August 1982, pp. 773-775:
(Tater version of 4601:TM:81); Mead, Carver, and Martin Rem
[$2.00]

"A Self-Timed Chip Set for Multiprocessor Communication," MS
Thesis, February 1982; Whiting, Douglas [$6.00]

"Testing and Structured Design," Proc. International Test
Conference., Cherry Hill NJ, August 1982; DeBenedictis, Erik
P., and Charles L. Seitz [§2.00]

"Techniques for Testing Tntegrated Circuits,”;
Erik P,

DeBenedictis,

"Concurrent, Asynchronous Garbage Collection Among
Cooperating Processors,”" (superceded by 5014:TR:82); Lang,
Charles R. [$5.00]

"A Rectangular Area Filling Display System Architecture,;
Whelan, Dan [$4.00]

"Earl: An Integrated Circuit Design Language," (Succeeded by
5021:TR:82); Kingsley, Christopher [$5.00]

"A Characterization of Deadlock Free Resource Contentions,";
Chen, Marina, Martin Rem, and Ronald Graham [$3.00]

"Earl: An Integrated Circult Design Language,”" (Succeeded by
5021:TR:82); Kingsley, C. [$3.00]

"Switching Dynamics,”" MS Thesis,; Lewis, Robert K. [$7.00]

"Proceedings Second Caltech Conference on Very Large Scale
Integration,”" 19-~21 January 1981; Seitz, Charles, ed.
[520.00]

"A Versatile Ethernet Interface," MS Thesis; Whelan, Dan
[$12.00]

"Toward A Theorem Proving Architecture,”" MS Thesis; Lien,
Sheue-Ling [$10.00]

"The Tree Machine Operating System,"; Li, Peggy [$5.00]

"Minimum Propagation Delays in VLSI," Proc., Second Caltech
Conf, on VLSI, January 1981; Mead, Carver A. and Martin Rem

T%3.001

4600:TM:81

4530:TR:81
4521:TR:81
4517:TR:81

4407 :TM:82

4379:TR:81

4336:TR:81

4334:TR:81

4332:TR:81

4320:TR:81

4317:TR:81

4298:TR:81

4287:TR:81

4281:TR:81

4270:TR:81

4204 :TR:78

4191:TR:81

-2

"A Notation for Designing Restoring Logic Circuitry," Proc.,
Second Caltech Conf. on VLSI, January 1981; Rem, Martin, and

Carver A. Mead, (revised from 4529:TM:81) [$3.00]

"Silicon Compilation,"” Ph.D. Thesis; Johannsen, Dave [$18.00]
"Lambda Logic," MS Thesis:; Rudin, Leonid [$8.00]
"The Serial Log Machine," MS Thesis; Li, Peggy [$7.00]

"An Experimental Composition Tool,"; Mosteller, Richard C.
[$3.00]

"LAP User’s Manual,"; Lang, D, (Rev. by C. Kohle and S.
Trimberger 9/81) [$2.00]

"A Structured Decign Methodology and Associated Software
Tools,"; Trimberger, S., J. Rowson, D. Lang, and J.P. Gray
[$4.00]

"An Inexpensive Multibus Color Frame Buffer,"; Whelan, Dan
and R, Eskanazi [$1.00]

"RLAP, Version 1.0, A Chip Assembly Tool,"; Mosteller, R.
[$3.00]

"A Hierarchical Design Rule Checker," MS Thesis; Whitney,
Telle [$7.00]

"REST - A Leaf Cell Design System," MS Thesis; Mosteller,
Richard C. [$10.00]

"From Geometry to Logic," MS Thesis,; Lin, Tzu-mu [$5.00]

"Computational Arrays for Band Matrix Equations,"; Johnsson,
L. [$2.00]

"Combining Graphics and a Layout Language in a Single
Interactive System (2nd Revision),"; Trimberger, S. [$2.00]

"FIFI Test System Preliminary User’s Manual,”" (later version
contained in 4777:TR:82); DeBenedictis, Erik [$3.00]

"A 16-Bit LSI Digital Multiplier," EE Thesis; Masumoto, R. T.
[$8.00]

"Towards A Formal Trcatment of VLSI Arraye," Proc., Sccond
Caltech Conference on VLSI, Pasadena, CA, January 1981;
Johnsson, Lennart S., Uri Weiser, D, Cohen, and Alan L.
Davis [$4.00]

4168:TR:81

4088:TR:80

4087 : TR: 80

4061:TR:80

4029:TR:80

4025:T™M:80

4024 :TM: 80

4022:TM:80

3901:TM:78
3882:TM: 80
3880:TM:80

3857:TM:80

3805:TR:80

3762:TR:80

3761:TR:80

3760:TR:80

3759:TR:80

3710:TR:80

-3

"Computational Arrays for the Discrete Fourier Transform,"
Proc.,, 22nd Computer Science Int’l., Conference, CompCon 81,
San Francisco, February 1981, pp. 236-244, IFEE Catalog No.
81CH1626-1; Johnsson, Lennart S. and D, Cohen [$3.00]

"The Representation of Communication and
Milne, George [$8.00]

Concurrency,";

"Gaussian Elimination of Sparse Matrices
Complexity Analysis," (Succeeds 4087:DF
Lennart [$3.00]

and Concurrency - A
:80); Johnsson,

"A Preliminary Report on the Caltech ARPA Tester Project,”
(later version in 4777:TR:82); DeBenedictis, Erik [$4.00]

"Structure, Placement and Modeling," MS Thesis; Segal, R,
[$8.00]

"Sticks Standard Software Package, ; Segal, R. and Steve
Trimberger [$2.00]
"SSP Basic Software Package (Revised),"; [$5.00]

"Comprehensive CIF Test Set (Revised),"; Trimberger, S.

[$5.00]
"Hierarchical Design for VLSI,"; Rowson, J. [$3.00]
"A Chip Assembler,"; Tarolli, Gary [$2.00]
"The Proposed Sticks Standard,"; Trimberger, S. [$5.00]
"VLSI Architecture & Design," Proc., National Electronics

Conference, Chicago, Oct., 1980, Vol. 34, pp. 254-259;
Johnsson, Lennart [$1.00]

"SSP Annual Report,'"; Silicon Structures Project [$3.00]

"A Software Design System,'" Ph.D. Thesis; Hess, Gideon
[$8.00]

"A Fault Tolerant Integrated Circuit Memory," Ph.D. Thesis;
Barton, Tony [$7.00]

"The Tree Machine: A Highly Concurrent Computing
Environment," Ph.D. Thesis,; Browning, Sally [$10.00]

"The Homogeneous Machine," Ph.D. Thesis; Locanthi, Bart
[$7.00]

"Understanding Hierarchical Design," Ph.D. Thesis; Rowson,
James [$9.00]

—24—
3642:TM:80 "Modeling and Verification in Structured Integrated Circuit
Design," Ph.D. Thesis; Buchanan, Irene [$10.00]
3487:TM:80 "The Proposed Sticks Standard,"; Trimberger, Steve [$2.00]

3364:TM:79 "Stack Data Engine," December 1979; Efland, G. and R. C.
Mosteller [$5.00]

3357:TM:79 "CIF20P Instruction Manual,"; Tarolli, Gary and Dick Lang
[$3.00]

3356:TR:79 "LAP User’s Manual,"; Lang, Dick [$3.00]
3353:TM:79 "FORTRAN Debugging Aids,"; Trimberger, Steve [$3.00]

3352:TM:80 "A Comprehensive CIF Test Set," December 1979; Trimberger,
Steve [$2.00]

2883:TR:79 "A Pascal Machine Architecture Implanted in Bristle Blocks, a
Prototype Silicon Compiler," MS Thesis; Seiler, Larry
[$10.00]

2870:TM:79 "A Wire Oriented Mask Geometry Editor,"; Trimberger, Steve
[$5.00]

2686:TR:80 "The Caltech Intermediate Form for LSI Layout Description,";
Sproull, Robert and Richard Lyon, revised by S. Trimberger
[$2.00]

2276:TM:78 "A Language Processor and a Sample Language,"; Ayres, Ron
[$12.00]

1584:TM:78 "Cost and Performance of the VLSI,"; Mead, Carver A. [$3.00]

1438:TM:78 "Polygon Package,"; Sutherland, Ivan E. [$3.00]

DESIGN of the MOSAIC ELEMENT

Chris Lutz, Steve Rabin, Chuck Seitz, Don Speck

Department of Computer Science
California Institute of Technology
Pasadena, California 91126

ABSTRACT

The Mosaic element is a fast single chip com-
puter designed to be used in groups for concurrent
computation experiments. Each element contains a
18-bit processor, read-write storage, read-only store
for a small initialization and bootstrap loading pro-
gram, fonr input ports, and four output ports. The
Mosaic processor, a highly structured design that
achieves very good performance and density through
innovations in its microcode, circuit techmques, and
layout, is described in detail.

INTRODUCTION

Myriads of Mosaic elements can be connected
together by their ports in a variety communication
plans to form a family of specialized, high perfor-
mance, concurrent, and programmable computing
engines. In addition to its end use as a component for
experiments with concurrent computing engines, the
Mosaic element has been an interesting vehicle for
numerous adventures in VLSI design, design tools,
and testing. It includes experiments and innovations
in its microcode, circuit techniques, and layout, with
performance being a central objective throughout.

A Mosaic element with 4K bytes of read-write
storage, approximately 140K transistors on a chip
4000 lambda square (6 mm square at 3 micron fea-
ture size), is sufficiently complex to have given our
design tools a thorough workout, and have stretched
our capabilities for laying out, verifying, and testing
large structured designs.

The original models for this project were (1)

Sally Browning’s research on algorithms for a pro-

The research described in this paper was sponsored by the
Defense Advanced Research Projects Agency, ARPA Order
number 3771, and monitored by the Office of Naval Research
under contract number N00014-79-C-0597.

grammable tree machine'?® and (2) the “OM” de-
scribed in Mead & Conway*. Mosaic started out as a
tree machine element, but we have since come to see
it as a building block for a variety of fine grain en-
semble machines® with connection plans up to degree
four, such as a tree, mesh, shuffle, chordal ring, or
cube connected cycle. The influence of the OM2 on
the processor datapath layout is apparent.

Several early attempts to lay out a much less

~ ambitious processor with a4-bit path to of-chip stor-

age managed to break our design tools, and were
thus indirectly the origin of the constraint solving
composition and geometry tool Earl® used for the
present design. A new processor with a 16-bit path to
storage that could be placed on-chip was designed in
1982, sent to MOSIS in January 1983, and functioned
essentially correctly, and at 7 MHz (4 micron feature
size), on first silicon in February 1983. The processor
design was subsequently augmented to include addi-
tional functions, to speed up the control PLA, and
to incorporate the planned on-chip storage. It is this
latest design that is described here.

TOP LEVEL VIEW

It appears that most of the silicon area in mul-
tiple instruction multiple data (MIMD) ensemble ma-
chines will be devoted to storage. In Cosmic Cube?,
a larger grain size machine at Caltech whose or-
ganization is otherwise similar to Mosaic, the frac-
tion of the element complexity devoted to storage is
about 75%. With the precondition that a complete
Mosaic element fit on a single chip, and using today’s
MOSIS nMOS fabrication with 1.5 micron lambda (3
micron feature size) on chips 6 wm square, the com-
plexity of today’s Mosaic element is limited to 4000
by 4000 lambda, or 16 million square lambda (MSL).
This area is apportioned with about 2.5 MSL for the
processor and ports, 1 MSL for the pad frame, and
12 MSL (75%) for storage and its interconnect. The
area allowed for the processor is quite small, less than
6 sq mm, or 9,000 sq mils.

The storage is partitioned into several smaller
arrays, as suggested by the analysis presented in sec-~
tion 8.5 of Mead & Conway*. Each array is 4098 bits,
64 by 64, organized to interface with the processor as
256 16-bit words. The densest read-write storage we
understand how to make with MOSIS nMOS technol-
ogy is based on a 3-transistor dynamic storage cell,
which requires that this storage be refreshed peri-
odically. This refresh function is accomplished in the
microcode of the processor. The very small amount
of read-ounly storage required for the initialization
and bootstrap loader is implemented with a set of
“maimed” RAM cells.

Thus the 16 MSL Mosaic has the floorplan shown
in figure 1, but if more MSL were made available by a
reduction in lambda, one could use this area to pack
in more storage. While the processor is only 18%;
of the area of the chip, it represents about 90% of
the design effort, so most of the following description
concentrates on the processor.

P-t o/S

proc osSar

4K bits 9K bits

9k bits 4K bits 4K bits

Pads

4k bits 4k bits 4K bits

Figure 1: Mosaic Element Floorplan

The Mosaic element is synchronous, with 2-phase
non-overlapping clocks supplied externally. The stor-
age cycle, processor microcycle, and datapath oper-
ations occur in parallel in one clock cycle.

PROCESSOR ORGANIZATION

- Figure 2 is a detailed block diagram of the pro-
cessor, while figure 3 is the floorplan of the core of
the processor, without the surrounding storage and
pads. The processor has two principle components: a

datapath/port block, and a controller. Each is a very
dense, mostly metal-limited block of layout. The
datapath/port block is functionally centered around
the processor’s single 16-bit internal data bus; it is
controlled by signals issued by the PLA-based con-
troller.

DATAPATH

The Mosaic datapath contains those parts of
the processor that communicate over the intermal
data bus. These parts include sixteen general pur-
pose registers, an ALU-shifter with associated flags,
a memory address section, an interrupt counter, four
input ports, four output ports, and an interface to
the memory data bus and memory address bus. The
ports are discussed in the following section. The
functional blocks in the datapath are organized in a
bit slice pattern, one bit of the bus running through
each bit slice, with a bit slice pitch of 34 lambda.
In the first clock phase of each cycle the bus is pre-
charged and the ALU-shifter computes a new result.
The second (last) clock phase is used for the bus
transfer and the ALU carry chain precharge.

The ALU obtains operands from a pair of latches,
called X and Y, that are loaded from the bus. The
ALU result serves as input to the shifter, which uses
pass gates to route correctly shifted data to the ALU-
shifter output. The ALU is logically very similar to
the ALU in the OM design?, with a pair of function
blocks and a precharged pass transistor carry chain.
Although the ALU does not use carry lookahead, it
is optimized to the extent that it is not in the critical
timing path. An associated special purpose register,
the Multiplier/Product, allows the processor to per-
form a multiply step in one microcyele. The multiply
macroinstruction produces 2 32-bit unsigned product
in 20 microcycles.

The processor maintains four flags associated
with the ALU/shifter. These are the familiar 2 (zero
result), N (negative result), V (two’s complement over-
flow), and C (carry/not borrow). The controller can-
not sense the values of the flags directly. Instead, a
fixed 3-bit field in conditional braneh macroinstruc-
tions specifies one of eight branch conditions. These
three bits, as well as the values of the four flags, are
inputs to a small PLA that produces one bit of out-
put, the “flag condition”. This bit is an input to the
controller, which tests it when performing the con-
ditional branch instructions. The branch condition
codes were assigned carefully so the flag condition

4 ovtput 4 input
pogz F;;ds po:-zP;ads

41:: Bl BUS 16
Wy §

y % p 16 _Memory

3 L A\ [Oata

P
select select ${ﬂiﬂ/’@{/ section '-"' ; Addcc);s
_\

4 1. 4 16 ALU/ v
output { input registers Shift ""E’L‘
ports i ports hifter Address Memor
N t; . m— Flzgs
z — 1A= 3
2| 8 Ldoor [#log LPLA L6
Sl &£ B condition
6l =& :
(Y] L +
%l 2 5
& =t
£ Feedback Control Latchl
[
Reset ‘ I {} 1\ Memory write
’ th \ J’J{ €15:6 yth
sean PRl sl (nput (stches output latches p-a-s“" Mg
Controller PLA
input plane output plane

Figure 2: Processor Block Diagram

T |
DATAPATH ™
OUTPUT | INPUT : L,
@] @
PORTS REGISTERS ALU .'._. e et
T 4 B
I (woizl
w ™2 e -]
S8l &
< 5
PORT CONTROL
& SELECT REG IS IaR DRIVERS & ROUTING
ROUTING
PUT
NCWES OUTPUT LATCHES & DRIVERS [LATCHES;
DRIVERS DRIVERS
INPUT OUTPUT INPUT
(ANDY o Ry (AND)
PLANE PLANE PLANE
- 1500 >

Figure 3: Processor Floorplan

PLA requires only seven implicants. Since the PLA
is so small, it fits neatly next to the flags in the up-
per right corner of the processor, in a region formed
by removing the top four bit slices of ihe address
section.

On every microcycle the address section emits
a new memory address onto the 12 memory address
wires that come out of the right edge of the datapath.
A 12-bit address is currently sufficient for the number
of words of memory we can place on chip. The ad-
dress generation section houses the program counter
(PC) register, the current refresh address (RA) reg-
ister, and an incrementer used with both registers.
The controller guarantees that the RA is incremented
and issued to the memory frequently enough, at least
once every 8 microcycles, to keep the dynamic memo-
ry refreshed. Only memory cyclos which would other-
wise go to waste are used for refresh cycles.

The processor can generate timed interrupts us-
ing its interrupt counter (1C). "The IC is a 18-bit
register which counts down once per microcyele and
causes an interrupt when it reaches zero. In order
to guarantee interrupt service in bounded time, the
port-wait states must be interruptible. Thus the side
effects of any input or output instruction that can-
not be completed immediately are reversed, and the
instruction is refetched and restarted. Timed in-
terrupts are useful for decoupling communications
from processing, (eg, to implement automatic mes-
sage routing, and to buffer large blocks of data) and
to give the processor a sense of time {eg, for heuristic
searches).

PORTS

Mosaic processors communicate with each other
through their ports. Each processor has 4 input ports
and 4 output ports. Connecting an output port of
one processor to an input port of another processor
forms a two-word fifo. Each output port is based
on a parallel-in, serial-out shift register; each input
port is based on a serial-in parallel-out shift register.
The communication between input and output ports
is bit serial.

Mosaic’s implementation of the ports requires
only a single wire, called the port link, to connect an
input to an output port. When a port is not ready to
perform a serial transfer, beeause it is an output port
with no data or an input port with unremoved data,
it clamps the port link to ground. On the microcycle
when both ports are ready to perform a transfer,

neither port grounds the port link and it is pulled up
to VDD by an external pullup resistor. Both ports
recognire this signal as the “start bit” of a transfer,
much as in RS-222 data communications. The next
16 microcycles pass the data serially on the port link,
and then the ports revert to the clamp-if-not-ready
state.

This protocol allows multiple input ports to be
connected to the same link: all input ports receive
data from the output port beginning on the cycle
when all the ports are ready. We didn't notice this
feature until atter we had running chips.

CONTROLLER

On every microcycle the Mosaic controller issues
a new set of signals to control the datapath. The
original plans for the controller assumed a rather
conventional organization in which microcode words
were fetched from a ROM, and a new ROM address
was cumputed every microcycle by a conglomeration
containing an incrementer, multiplexers, and other
miscellaneous logic. This design was simplified when
we realized that we could efficiently program a PLA
to perform most of the original controller’s function.
An auxiliary PLA which controlled the ALU/shifter
proved to be very troublesome because we could not
find a placement for it that did not resull in large wir-
ing channels and expanses of white space. We finally
eliminated the auxiliary PLA by learning to program
the main controller PLA to perform its function. The
controller became merely 2 PLA with latches.

In most microcireuit instruction processors the
datapath is the more regular part, and the control
the less regular part. In the Mosaic processor, the
controller is even more regular thap the datapath.

The controller has 20 inputs: 10 bits from the
instruction register, the flag condition, the port con-
dition, the multiplier bit from the multiplier/product
register, the interrupt request from the interrupt count~
er, the processor reset, and 5 feedback bits (outputs
from the controller clocked directly back to the con-
troller input). The instruction register (I) holds the
current macroinstruction and can be latched from
the memory data bus on command from the control-
ler. So little feedback state is needed because much
of the state is held in the instruction register, and
the sequences to implement macro instructions are
short, typically 5 microcycles. (The shorter instrue-
tions are in practice executed more frequently, so

the average execution time is 4 microcycles.) Most
of the 48 outputs from the controller go to clock-
AND bootstrap drivers that drive control lines into
the datapath. These outputs are eflective during the
microcycle following the microinstruction fetch.

INSTRUCTION SET

The tables in figure 4 summarize the macro-
instruction set. All instructions are one word fol-
lowed by gzero, one, or two words of immediate data.
In the first instruction word, the two 4-bit fields J and
K can be used to specify one of the general registers.
In some instructions, the K field may specify one of
the ports or a branch corndition instead.

There are two types of instructions: MOVEs and
Arithmetics. MOVE instructions fetch an operand
specified by a 3-bit MSOURCE field, and assign it as
specified in the 4-bit MDEST field. The MOVEs in-
corporate subroutine linkage and branches: gpecify-
ing an MDEST of PC performs a jump; an MDEST of
PCF—+@——R; X—PC performs 3 subroutine call by
pushing the current PC on a stack, and then assign-
ing it.

Arithmetic instructions fetch two operands, X
and Y, as specified by the 3-bit MODE field. (The X
and Y operands in fact correspond to the hardware
registers X and Y at the input to the ALU.) Then
they perform the operation specified by the 4-bit OP
field, which requires computing some function of X
and Y, and usually assigning a result as specified by
the MODE.

Instructions that write to an output port wait
until there is room in the fifo. Instructions that read
from an input port wait until there is a word to read,
and can optionally “advance” the port (remove the
word from the fifo).

The richness of this instruction set is justified
by the code compactness it offers in its environment
of scarce on-chip memory.

MICROCODE

The speed, simplicity, and compactness of this
design owe much to the realization that the controller
need be nothing more than a PLA with latches. But a
PLA is not merely sufficient; it is convenient and easy
to program for an instruction set such as Mosaic’s
in which microinstruction sequences are short but
heavily branched.

We chose to view each of the 120 implicants in
the PLA as a word of microcode. More than one
word of microcode can be active (that is, more than
one implicant can be TRUE) in any given microcycle.
Usugzlly only one word is active at a time, but there
are important exceptions. In these cases, the oul-
puts are partitioned into disjoint sets, such that each
active word has no TRUE outputs (transistors in
the OR plane} outside its set. The eflect of mul-
tiple active words used in this restricted manner is
like that of multiple disjoint PLAs, but the physi-
cal layout retains the regularity of one PLA. In
return for this self-imposed restriction, the absolute
true/complemented sense of the individual outputs
is irrelevant, the microcode assembler and assembly
language is simpler, and the microcode is easier to
understand.

A simple microcode assembler, written in SIMU-
LA, reads the source microcode and assembles it into
a runtime data structure. From here the assembler
can output the code in any of several formats, includ-
ing Earl source code. The assembler also contains an
ad hoc register-transfer level simulator of the entire
prucessor. This simulator served as au initial debug-
ger for the processor design, and is still the initial
testing ground for modifications in the processor and
its microcode.

To llustrate some features of the micyocode pro-
gramming style and processor timing, the rest of this
section is a blow-by-blow description of the execution
of a sample macroinstruction. Figure 5 shows the
assembly of the instruction ADD #7,R1,R2, the 4
microcode words required to execute it, and the be-
havior of various parts of the processor in the vicinity
of these 3 cycles. This instruction adds immediate
data 7 to the contents of register 1, and ‘stores the
result in register 2. The instruction executes in 3
microcycles, corresponding to the first, second, and
last two mierocode words (the last two are active
simultaneousty).

The tokens “.decode”, “.get”, and ®.go” are mne-
monics for feedback states; they appear both in the
input conditions and in the next state outputs. The
first microcode word, “DECODE:”, is in fact the first
word of every instruction. It becomes active any time
the feedback state is “.decode”, and no interrupt is
pending {“Interrupt==0"). Previous microcode has
ensured that a new macroinstruction was fetched on
the previous cycle. Thus “DECODE;” latches it into

FLAG CONDITIONS:

" K flag condition K flag condition
II I ’ 'l(|] IJ l lI - I’ -
15 4 13 12 1110 9 8 7 6 5 4 3 2 1 o0 ?; Iovarf:wll"z {zero|
tolioved by 0, 1, or 2 words of inmediste value, Inegativel | 5 Z o N tex zerol
21¢ {Cerry =01 | 6 ZoriC {unsigned <e)
3 Nxor Visigned<)| 7 Zor (NxorV) [signed <=|

then K specifles a port:

| avloir] P r ARITHYETIC INSTRUCTIONS:
1

I I S 1O N Y O

15 4 1312 110 9 8 7 6 5 4 % 2 10 : [v] wooe | ® | X [J

Pt is the port mumber; specifies one of 4 ports 'T;i |1 |I 1“ l‘ol S S N ! I O O
Dir=0 for output port; Dirst for Input port w5 $ 87 6 5 4 3 2 10
Adve] to advence port if Input port Is read

MOCE Dir X Y Dest Assembly lengusge example
KEY: Rn is reglister number n,
Rnt+ Is register number n, Incremented sfter reading. ‘: RJ' :: :i g :I.;Mm r2
—Rn is register number n, decremented before reading, b Vel
val Is the Immedizte vaiuve, R 1
@ ie tha momory word whoco sddress 1z 2. § :::l : R; g 3 'TZRI R2
Quifort Is output port number Pt, ; crelaRly
InPort fs {nput number Pt,
port 4 o R 0 OutPort MOV R1,P1

A | B means concatenation ot bit fleid A end bit field B,
f<i> maans the I-th bit of §, *

f<i:j> means I=-th to j-th bits of ¢,

FRC Is the flag/Cword: C | V| N|Z | FC

0 val RJ OutPort ADD #val,R1,P1
4 1 InPort RY R} ADD P1,R!
[ADD P1+,R1 to 2dvance}
5 toval Infort RJ ADD #val,P1,R1

SPECIAL CASES: RESET: FPC => &(-1); 0 > FC |ADD #val,Pi+,Rt to advence]
] - 1C; > 8(=2); 8(-3} =» FC
NTERRUPY: O —> IC; FFC -> €(-2); @(-3} =» 6 =) R =y ADO M 6R1,R2

MOVE INSTRUCTIONS: 7 evat RJ &l ADD M efval,RY

o MOlRCE | moesT | K | R |
|

I
S N Y S T O Y O O O
5 1 1312 1109 8 7 6 5 4 3 2 1 0

|
s Atl Arithmetic instructions modify the Z, N, ond V flegs,

. Assembier Carry tlag
hen MSOURCE PR therwise,)
R means RK when I1s0, 1, 2, or 3; R means RJ o S8, O Instriction Mrerontc Etfoct pbA
MSOURCE X MDEST effect
0 INCrement iING X+ 1 -> Dest o
0 (] 0 X->R 1 DECrement DEC X -t -> Dest no
1 ey 1 X-> & 2 Arithmetic Shift Right AR X<15>]X > Dest|C yes
O e S
9 Le -> yes
e(RJ+val) X => @(R+val)
i vel i X => @~R 5 Loglcal Shift Right LSR O}X > Dest|C yos
5 evsl 5 X~> gval 6 Rotate Nibble Right RAR X<3:0> | X<15:4> «> Dest o
- 3
6 fnPort 6 X ->Outfort 7 AL AD X+Y ~> Dost yos
8 ADD with Carry AOC X+Y+C -> Dest yes
7 ic 7 X=>1IC
8 IC->R; %> IC 9 StBtract SBB Y- X -> Dt yes
9 Xo>FC A bitwise OMplement OOM X - Dest o
A X - FRC B bltwico sXciuelvo OR YR X exciuslive or Y —> Dest o
B X ->FC If tiag condition K true C:'“‘”W AD Xeond Y -> Dest ™
C X =->FCif flag condition K false D bitvise OR R XorY -> Dest o
0 X->FC If port K Is not ready E QMpare o X-Y . yes
E X ->FCIf port K Is ready F MiLtiply ML high wcrd;f*v) SR Mo
F FPC->@—R; X=>FC low word(X*Y) -> R

modify Z,N,V bosed on high word

Figure 4: Diagram of the Complete Instruction Set

A macroinstruction, assembly Tanguage:

11: ADD #7,R1,R2

A macroinstruction, binary code:

10: ... [last word of previous instruction]

11: 1001 1001 0010 0001 {[first word of instruction]

12: 0000 0000 0000 0111 [immediate value = 7]

13: ... [first word of next instruction}

14: ... [immediate value for next instruction, or

first word of instruction after next]

Source microcode for ekecuting the macroinstruction:

The syntax for a source microcode word is:

word <mnemonic>: <inputs> {outputsd>

word DECODE: .decode Interrupt=0 :: IN->I RA++->A RJI=> X Y M .get

word #,J,K: .get I=1 001 saveC PC++->A IN=> X .go

word ADD: .go I= 1-** * 1 000 :: ALUONLY GP=86 Cin=0 NOshift setINV setC

word ALU->K: .go [= 1 0 * * :+ NOALU PC++->A W=> RK .decode
Processor timing in executing the macroinstruction:

: microcode| microcode memory ALY
micro-| word(s) word(s) address memory memory function
cycle being controlling being address data and bus
number| fetched processor computed available transfer
T P+l =12 | T

DECODE een (immediate (ADD instr) e eee
value)
-------------- RA+1 12 ADD instr
1 #,4,K DECODE (new refresh| (immediate (latch into R1=>
address) value) I register) XY, M
ADD: PC+1 = 13 ' 7
2 and #,0,K (1st word of| (refresh (immediate
ALU->K next instr)| address) value) 7=>X
ADD: PC+1 = 14 13 X+Y->HW
3 DECODE and (immed for (1st word of {refresh
ALU->K next instr) next instr) data) H=>R2
RA+1 14
e DECODE: {new refresh| (immed for (1st word of ves
address) next instr) next instr)

Figure 5: Example of a macroinstruction execution

-

the instruction register (“IN—1") at the start of the
cycle. The controller has not had time to branch
based on the new instruction, but the J and K fields
will have arrived at the register decoder in time to
select a register to drive the bus on that cycle; thus
this microcode word fetches one of the registers to all
of the destinations where it might be needed {(“RJ=
X Y M"). This “register prefetch” saves a cycle in
most instructions. It is too early to know what to do
with the next memory cycle, so the microcode uses it
ag a refresh cycle (“RA++ —+A”, o macro for “RA—
INC Addl INC—A A—RA”™).

The next microcode word “#,J,K:* is condi-
tional on the first bit (1) and MODE bits (0 0
1) of the instruction register (“I= 1 0 0 1”) and
corresponds to an arithmetic instruction with an im-
mediate value and a register as operands. In the com-
plete microcode there is also 2 microcode sequence
conditional upon each of ‘the other possible MODE
fields. . The MODE in this example specifies operand
X as an immediate value, which is obtained from the
memory data bus via the memory data input buffer
(“IN= X"}). The PC is then incremented past the
immediate value (“PC++ —A”) in order to begin
fetching the next instruction. The next state “.go”
indicates that all operands have been fetched and the
code for the operative part of the instruction should
take over.

The last two microcode words, “ADD:” and “ALU
— K:” are active simultanevusly and complele the
macroinstruction. In the “ADD:” word the token
“ALUONLY” indicates that this word specifies only
ALU outputs (i.e. it has no transistors in the OR

plane for other outputs} while “NOALU” in the “ALU—+

K:” indicates that this word controls the rest of the
outputs. The “ADD:” word instructs the ALU to add
its inputs, X and Y, by specifying the appropriate
Generate and Propagate codes (“GP== 86"), the carry-
in (“Cin= 0"), and the type of shift (“Noshift”).
The complete microcode contains similar words cor-
responding to the other arithmetic operations: sub-
tract, increment, etc. They are independent of the
MODE field of the instruction but dependent on the
OP field (“I=1** * 10 0 0", since OP code for ADD
is 1000).

The “ALU—K:” word deposits the ALU out-
put in register K (“W= RK”). Other words, de-
pendent on the MODE but independent of the OP
code, handle the other possible destinations. Thus

the orthogonality in the macroinstruction set, arith-
metic OPs versus MODES, is represented directly in
the microcode. Note that only one microcode word,
“ALU—K:”, is needed to handle four MODE cases,
since the MODEs have been carefully encoded so that
one input condition (“I= 1 0 * *”), decodes all four
cases. Careful encoding such as this throughout the
instruction set has led to more compact mierocode.
In “ALU—K:” the PC is incremented and used as
the memory address (“PC++ —A”), as it is in the
last eycle of sll instructions. This begins fetching the
word after the next instruction, in case the next in-
struction takes an immediate value and needs to use
it in its second cycle.

STORAGE

Although specialized semiconductor processes pro-
vide higher storage demsity than those suitable for
the Mosaic processor, a processor with on-chip mem-
ory has many advantages over processor and memory
in separate packages. These advantages include re-
duced volume, pin count, signal energy, and driver
delay, resulting primarily from the integration of the
memory bus into a single package.

For each storage bank, a two-bus three-transistor
dynamic RAM memory cell is organized in 64x64 bits
with a 18-bit word interface. All the banks operate
in paralle] to accomplish parallel refresk, and provide
a read and pipelined write operation every processor
microcycle (roughly 300 tau). Each memory access
starts with a word-line access followed almost always
by a refresh write to the same word-line on the next
cycle. Because this write occurs in the same cycle as
the next read, the storage control is somewhat subtle.

Mandating a write causes one of the 4 words
read from the selected memory bank to be replaced
with write data from the processor. This write data
is written in the next cycle, in parallel with the next
read. However, if the read is to the same word line
as the pipelined write, stale data is accessed, and
the subsequent write back to the word line would
permanently store incorrect data. For this reason a
write back is disabled on the second cycle after a
write cycle. This form of pipelining imposes domain
restrictions upon the microcode in that consecutive
writes, refresh following write, and write followed
by read to the same address will all fail. The first
{wo conditions do not occur in the microcode, and
the third condition occurs only by writing into the
instruction stream.

CIRCUIT DESIGN

Some of the performance and layout simplicity
of Mosaic is due to the simple clock-AND bootstrap
driver shown in figure 6. It is used extensively and in
several variations both in the processor and storage
sections. In the processor, this clock-AND is used
to produce control signals that are the logical-and
of a PLA output and a clock. In the storage, the
clock-AND is used so extensively in driving select and
data lines that depletion transistors arc completely
absent. i o

en >——I—‘—‘
¥Pathn

Figure 6: Clock-AND Circuit

Although referred to as a “driver,” this clock-
AND does not provide power amplification of the
clock, but rather passes a replica of the “hot clock”
input, whatever its HICH voltage, to the output as
gated by an enable signal of low energy. The clock
signal typically switches between ground and 7 volts
with VDD = § volts, but the chips also work cor-
rectly at reduced speed with 5 volt clocks. The delay
and power dissipation of these clock-ANDs is almost
negligible, and so the clock driving problem, together
with the power dissipation usually required in control
signal drivers, is exported to outside the chip where
it can be dealt with using special driver circuits. This
hot clock technique improves performance in pass
structures, and also makes the performance much
less sensitive to variations in the depletion threshold
voltage than in conventional Mead-Conway designs.
Precharge techniques are also used extensively in this
chip, both to save power and for speed.

DESIGN TOOLS

The layout and verification was accomplished
on a VAX-11/780 running Berkeley Unix with design
tools written in MAINSAIL and C. Circuit design and
optimization relied primarily on tau model calcula-
tions. SPICE was used to evaluate bootstrap effects,
technology dependence, and critical timing paths.

The processor design is represented by 10,000
lines of code, interpreted by Earl®, a constraint solv-
ing composition and geometry tool. Although the

parts are composed in a rectangular bounding box
discipline, the geometry internal to cells includes ar-
bitrary angles and approximations of circular arcs, a
form of “Boston geometry” that can be specified very
easily in Earl. This unusual layout style is estimated

“to have reduced silicon area by 10% over 45-degree

angle geometry, and by about 259 over Manhattan
geometry.

For the design verification, the entire logic design
was coded and simulated using the termary switch
level simulator MOSSIM® to verify logical correct-
ness. After the layout was complete, raster extrac-
tion of layout using a Boston geometry circuit ex-
tractor produced a switch network that was used for
MOSSIM II° simulations.

TESTING

First silicon for the Mosaic processor, received
on 9 February 1983, 34 days after the CIF was sub-
mitted to MOSIS, was tested immediately and found
to run code at a 7 MHz clock rate at room tempera-
ture. Subsequent processors fabricated using a faster
process (still with a 4 micron feature size) ran at up
to 11 MHz at room temperature.

Initial testing was accomplished by running the
same code that had been used for switch level simula-
tions. Subsequent testing using more extensive test
programs discovered minor bugs that have been fixed
in subsequent microcede. A scan path included in the
original design between the datapath and controller
was not used, although it might have been useful if
anything had been serionsly wrong.

Overall, our testing experiences have been quite
similar to those reported by several other university
groups, and' point to two interesting development
in testing for design verification. First, verification
tools have advanced to the extent that nearly the
entire design verification task is now accomplished
before first silicon. Second, chips that are systems
rather than components turn out to be simpler to
test by placing them in their system environment
than in a conventional tester, and the same tools that
are used to program these systems serve to develop
thorough tests of their function.

ACKNOWLEDGEMENTS

Chris Kingsley - Earl, Mike Schuster - Fsim,
Howard Derby - early design, OM2 & GMP - idess.

(]

(2]
8]

[5)

REFERENCES

Sally A Browning, Computations on a Trec of
Processors, Proceedings of the Caltech Confer-
ence on VLSI, January 1979, Computer Science,
Caltech.

Sally A Browning, Hierarchicelly Organized Ma-
chines, Section 8.4 in Mead & Cunway*.

Sally A Browning and Charles L Seitz, Commu-
nication in ¢ Tree Machine, Proceedings of the
Second Caltech Conference on VLSI, January
1981, Computer Science, Caltech.

Carver Mead and Lynn Conway, Introduction to
VLSI Systems, Addison-Wesley, 1980.

Charles L Seitz, Ensemble Architectures for VLSI,

Proceedings of the MIT Conference on Advanced
Research in VLSI, January 1982, Artech Books,
1982.

[6]

[7]

18]

(9]

Chris Kingsley, Earl: An Integrated Circust De-
sign Language, Technical Report 5021, Compu-
ter Science, Caltech, June 1982.

Charles L Seitz, Ezperiments with VLSI Ensem-
ble Machines, Technical Report 5102, Computer
Science, Caltech, October 1983.

Randal E Bryant, A Switch-Level Model and Sim-
uletor for MOS Digital Systems, Technical Re-

port 5065, Computer Science, Caltech, January
1983.

R. Bryant, M. Schuster, D. Whiting, MOSSIM
II: A Switch-Level Simulator for MOS LSI, User’s
Manual, Technical Report 5033, Computer Sci-
ence, Caltech, March 1982.

= _gw—

Mﬁ

S >
g—.____!
ﬁ%ﬂ-——'—rﬁﬁ-h -

Prototype Mosaic Processor

3

CONCURRENT FAULT SIMULATION
OF MOS DIGITAL CIRCUITS

Michael D. Schuster and Randal E. Bryant

California Institute of Technology
Pasadena, California 91125

5101:TM:83

To be presented at the Conference on Advanced Research in VLSI, to be held at the Massachusetts
Institute of Technology, January 1984. Proceedings published by Artech House, Inc., Dedham, MA
02026.

ABSTRACT

The concurrent fault simmlation technique is widely used to anslyze the behavior of digital circuits
in the presence of faults. We show how this technique can be applied to metal-oxide-semiconductor
(MOS) digital circuits when modeled at the switch-level as a set of charge storage nodes connected by
bidirectional transistor switches. The algorithm we present is capable of analyzing the behavior of a wide
variety of MOS circuit failures, such as stuck-at-zero or stuck-at-one nodes, stuck-open or stuck-closed
transistors, or resistive opens or shorts. We have implemented a fault simulator FMOSSIM based on
this algorithm. The capabilities and the performance of this program demonstrate the advantages of
combining switch-level and concurrent simulation techniques.

This research was supported in part by the IBM Corporation and by the Defense Advanced Research
Contracts Agency, ARPA Order 3771. Michael Schuster was supperted in part by a Bell Laboratories
Ph.D. Scholarship.

© Artech House, 1984 ,

CONCURRENT FAULT SIMULATION OF MOS DIGITAL CIRCUITS

Michael D. Schuster and Randal E. Bryant

Department of Computer Science
California Institute of Technology
Pasadena, California 91125

ABSTRACT

The concurrent fault simulation technique is
widely used to analyze the behavior of digital cir-
cuits in the presence of faults. We show how this
technique can be applied to metal-oxide-semicon-
ductor (MOS) digital circuits when modeled at the
swiich-level as a set of charge storage nodes con-
nected by bidirectional transistor switches. The
algorithm we present is capable of analyzing the
behavior of 2 wide variety of MOS cireust failures,
such as stuck-at-zero or stuck-at-one nodes, stuck-
open or stuck-closed transistors, or resistive opens
or shorts. We have implemented a fault simmlator
FMOSSIM based on this algorithm. The capabili-
ties and the performance of this program demon-
strate the advantages of combining switch-level
and concurrent simulation techniques.

INTRODUCTION

Test engineers use fault simulators to deter-
mine how well a sequence of test patterns, when
applied to the inputs of an integrated circuit, can
distinguish 2 good chip from a defective one. The
fault simulator is given a description of the good
circuit, a set of hypothetical faults in the circuit,
a specification of the observation points of the
test {e.g. the output pins of the chip), and a se-
quence of test patterns. It then simulates how the
good circuit and all of the faulty circunits would
behave when the test patterns are applied to the
inputs. A fault is considered detected if at any
time the siomlation of that particular fanlty cir-
cwit produces, at some observation point, a logic
value different than that produced by the good cir-
cuit. By keeping track of which faults have been

This research was supported in part by the IBM Corpor-
ation and by the Defense Advanced Research Contracts
Agency, ARPA Order 3771. Michael Schuster was sup-
ported in part by a Bell Laboratories Ph.D. Scholarship.

detecied and which have not, the fanlt simulator
can determine the fault coverage of the test se-
quence, which is defined as the ratio of the number
of faults detected to the total number simulated.
The simulator can also provide the user with infor-
mation about which faults have not been detected,
either because the test sequence failed to exercise
the defective part of the circuit, or because the se-
quence failed to make the effect of such an exercise
visible at some observation point. This informa-
tion guides the engineer in extending or modify-
ing the test sequence to improve its fault coverage.
Such 2 tool is invaluable for developing test pat-
terns for today’s complex digital systems.

For a large integrated circuit such as a micro-
processor chip, thousands of faults must be simu-
lated to adequately characterize the fault coverage
of a test sequence. Furthermore, test sequences
can involve thousands of patterns. Hence a simple
serigl simulation, in which the good circuit and
each faulty circuit are simulated separately, would
require far too mnch computation. Fortunately, -
clever algorithms can reduce the amount of com-
putation considerably. A technique known as con-
current simulation! exploits the fact that a faulty
circuit typically differs only slightly from the good
circuit. Rather than simulating each circuit sep-
arately, only the good circuit is simulated in its
entirety. The simmlator keeps track of how the
network state of each faulty circuit differs from
the network state of the good circuit by selec-
tively simmulating portions of the faulty network.
To the user, it appears as if the program is simulat-
1ng many circuits concwrrently, but the amount of
CPU time required is a small factor (e.g. often
less than 10 times) greater than the time required
to simulate the good circuit alone. Furthermore,
the simulator can easily determine when a faulty
circuit produces a value different than the good
circuit at some observation point without stor-

ing the entire output history of the good circuit
simulation. Once a fault has beéen detected, the
simulation of this particular faulty circuit can be
dropped, thereby reducing the amount of com-
putation required for the remainder of the simula-
tion. Typically, the faults that cause great differ-
ences from the behavior of the good circuit, and
hence require the most computational effort, are
detected quickly. Consequently, fault dropping

greatly improves the overall performance of the
simulator.

Most existing logic simulators model a digi-
tal circuit as 3 network of logic gates, in which
each gate produces values on its outputs based
on the values applied to its inputs, and possibly
on the value of its internal state. Some of these
simulators extend the simple Boolean gate model,
in which only the value 0 or 1 is permitted on
each input and output, with additional logic values
and special types of gates to model circuit strue-
tures such as busses and pass transistors. These
simulators are not suitable for modeling faults in
MOS digital circuits for two reasons: First, many
MOS circuit structures cannot be adequately mod-
eled as a set of logic gates. Creating gate-level
descriptions of pass transistor networks, dynamic
memory elements, and precharged logic is at best
tedious and inaccurate, and at worst impossible,
even with extended gate models. The user must
translate the logic design by hand inte a form
compatible with the simulator, and the resulting
simulation is inherently biased toward the user’s
understanding of the functionality of the circuit.
Second, logic gate simulators are especially poor
at predicting the behavior of 3 MOS circuit in
the presence of faults. Even simple logic gates
can become seemingly complex sequential circuits
when a fault such as an open-circuited transis-
tor occurs? As a result, fault simulators based
on logic gates can model only a limited class of
faults, such as the gate outputs and inputs stuck-
at-zero or stuck-at-one. Faults such as short cir-
cuits across transistors and between wires, or open
circuits in transistors or wires, are beyond their
capability, Furthermore, even the modeling of
stuck-at faults is limited in accuracy when the
logic gate description is an artificial translation of
the actual circuit structure.

To remedy these problems with logic gate sim-

ulators, we propose that fault simulations of MOS
circuits be performed at the switch level with the
transistor structure of the circuit represented ex-
plicitly, but with each transistor modeled in a
highly idealired way. This approach has proved
successful for logic simulation in programs such
as MOSSIM® and MOSSIM II* becanse proper-
ties such as the bidirectional nature of field-eflect
transistors and the charge storage capabilities of
the nodes in 2 MOS circuit are modeled directly,
rather than by some artificial translation into logic
gates. Unlike the precise, but time-consuming al-
gorithms used by circuit simulators, switch-level
simulators model the circuit in a sufficiently simp-
lified way that they operate at speeds comparable
with conventional logic gate simulators. Further-
more, our switch-level logic model is well suited for
modeling a variety of failures in MOS circuits in a
reasonably realistic way, because many faults can
be viewed as creating new switch-level networks
which differ from the switch-level representation
of the good circuit. Hence, while the switch-level
model has proved successful for logic simulation,
it seems especially attractive for fault simulation.
Hayes® has proposed the Connector-Switch-Atten-
uator representation of logic circuits for modeling
faults, and our switch-level model has essentially
the same capabilities.

We have adapted the technique of concur-
rent simulation to implement a fault simulator for
MOS circuits, where the problem is viewed as one
of simulating a large number of nearly identical
switch-level networks. This program FMOSSIM
can simulate a large variety of MOS circuits, un-
der a variety of fault conditions, at much higher
speeds than would be possible with serial simula-
tion. Other concurrent fault simulators for MOS
have been implemented? but these could only mod-
el a very limited class of networks. In this paper,
we will present an overview of the switch-level
model and how different faults can be represented
in it. We also discuss our concurrent, switch-level
simulation algorithm and present performance Te-
sults from FMOSSIM.

NETWORK MODEL

The following network model is implemented
in the simulators MOSSIM II and FMOSSIM. It
provides a more general transistor model than pro-
vided by other switch-level simulators, giving bet-

ter capabilities for fault injection. A switch-level
network consists of a set of nodes connected by a
set of transistors. Each node has a state 0, 1, or
X, where 0 and 1 represent low and high voltages,
respectively. The X state represents an indeter-
minate voltage arising from an uninitialized node,
from a short circuit, or from improper charge shar
ing. No restrictions are placed on how transistors
are interconnected.

Each node is classified as either an input node
or o ¢toragenode. An input node provides a strong
signal to the network, as does a voltage source in
an electrical circuit. Its state is not affected by
the actions of the network. Examples include the
power and ground nodes Vdd and Gnd, which act
as constant sources of the states 1 and 0, respec-
tively, as well as any clock or data inputs.

The state of a storage node is determined
by the operation of the network. Much like a
capacitor in an electrical circuit, 3 storage node
holds its state in the absence of connections to in-
put nodes. To provide a simple model of charge
sharing, each storage node is assigned a discrete
size from the set { k1, £3,...,%, }, where the sizes
are ordered 1 < k2 < -+ < K. A larger
storage node is assumed to have much greater cap-
acitaunce than a smaller one. When a set of storage
nodes charge share, the states of the largest nodes
in the set override the states of the smaller nodes.
The number of different sizes required (g} depends
on the circuit to be simulated. Most circuits can be
represented with just two node sizes. In this rep-
resentation, high capacitance nodes such as busses
assigned size &g, and all other nodes are assigned
size xj.

A transistor is a device with terminals Iabeled
gate, source, and dravn. No distinction is made
between the source and drain connections — each
transistor is symmetric and bidirectional. Becanse
transistors can be either n-type, p-type, or d-tyge,
both a1MOS and CMOS circuits can be modeled. A
d-type transistor corresponds to a negative thres-
hold depletion mode device. A transistor acts as
a resistive switch connecting or disconnecting its
source and drain nodes according to its type and
the state of its gate node, as shown in Figure
1. Transistor states O and 1 represent open (non-
conducting) and closed (fully conducting) condi-
tions, respectively. The X state represents an in-

45?'0—’

1

gate state ‘ n-type p-type d-type

0 0 1 i
i i 0 i
X X X i

Frgure 1. Transistor state function

determinate condition between open and closed,
inclusive.

To model the behavior of ratioed circuits, each
transistor is assigned a discrete strength from the
set {71,72,...,7p }, where strengths are ordered
N <72 < ++- < 9. A stronger transistor is as-
sumed to have much greater conductance than a
weaker one. When a storage node is connected to a
set of input nodes by paths of conducting transis-
tors, its resulting state depends only on the states
of the input nodes connected by paths of greatest
strength. The strength of a path is defined to
equal the strength of the weakest transistor in the
path. The total number of strengths required (p)
depends on the circuit to be modeled. Most CMOS
circuits do not utilize ratioed logic and hence can
be modeled with just one transistor strength. Most
nMOS circuits require only two strengths, with
pull-up loads assigned strength 4; and all other
transistors assigned strength 7,.

¢in
I m }—-'
r buo 1 data
wy Te W —
—~ — l——- ’Tié}—- data
. K1 ™My . K1 Mg = '

q[”
all|

Figure 2. Three transistor dynamic RAM

As an example of a switch-level network, con-
sider the three transistor dynamic RAM circuit
shown in Figure 2. The bus node has size s to
indicate that it can supply its state to the size xy
storage node (m; or ms) of the selected memory
element during a write operation (when w; or wg
is 1) and to the size x; drain node {¢; or cg) of the
selected storage transistor during a read operation
(when 7y or rp is 1}. The d-type pull-up transis-
tor in the input inverter has strength 4, to indi-
cate that it can drive the bus high only when the

strength 7, pull-down transistor is not conduct-
ing. The strengths of all other transistors in the
circuit are arbitrary, since they are not involved
in ratioed path formation {except possibly when
faults are present).

The switch-level network model strikes a rea-
sonable balance between a detailed electrical mod-
el and an abstract logical model. As a result of this
abstraction, the model may not predict the true
hehavior of circuits such as sense amplifiers and
arbiters which rely on detailed analog properties.
Moreover, the network model does not contain
enough detail to accurately model timing behavior,
because even in circuits with straightforward logi-
cal behavior, timing can be subtle. However, ex-
perience has shown that switch-level simulation
works quite well for verifying logic designs.

FAULT INJECTION

Faults are represented in FMOSSIM as though
extra fault transistors were added to the network,
much like that proposed by Lightner and Hachtel?
In the implementation, however, many of these
faults are injected without actually adding fault
transistors; nevertheless, the behavior is equivalent
to what is described below. The gate nodes of the
fault transistors are considered to be extra fault
inpute to the network that control the presence or
ahsence of the failures. A variety of MOS failures
can be modeled with this method. For example,
a short circuit between two nodes is modeled by
connecting the nodes with a fault transistor that:
is open in the good circuit and closed in the faulty

circuit. Similarly, an open circuit is modeled by
splitting a node into two parts and connecting
the resulting nodes with a fault transistor that is
closed in the good circuit and open in the faulty
circuit, By adjusting the strength of the fault
transistor, the resistance of the short or open may
be modeled in an approximate way. For example,
if the strength of the fault transistor is set to Tp+1
(i.c. 8 strength greater than that of auy mormal
transistor), then setting this transistor state to 1
shorts the source and drain nodes together such
that they act as a2 single node. Moreover, because
the state of each fault transistor car be controlled
independently, both single and multiple faults can
be injected.

Figure 3 fllustrates the use of fault transistors

.

'7p+1

.||”

Node 7 stuck-at-zero Node n stuck-at-one

T

7

Ti

Transistor ¢t stuck-open Transistor ¢ stuck-closed

! 7
nd 1l . .m ny— L. n
Tp+1 Tp+1
Short # and m Open n into n; and ng

Figure 8. Modeling MOS failures

to create a variety of circuit fanlts. Those transis-
tors with gate nodes labeled £ are normally 0, but
are set to 1 to create the fault; the transistors with
gate nodes labeled f are normally 1, but are set
to 0 to create the fault. A stuck-at-zero or stuck-
at-one node fault can be modeled by inscrting a
strength 4,1 fault transistor to short the node to
Gnd or to Vdd, respectively. A stuck-closed tran-
sistor fault is injected by shorting the transistor's
source and drain together with a fault transistor
whose strength equals that of the failing transis-
tor. Similarly, a stuck-open transistor fault is
modeled by putting a fault transistor in series with
it. In FMOSSIM, both stuck-at node states and
stuck-at transistor states are implemented without
extra fault transistors, while other faults require
additional transistors to be inserted into the net-
work.

Although FMOSSIM can model a larger class
of faults than can be modeled by logic gate fault
simulators, it still provides only a simplified rep-
resentation of the faulty circuit. For example,
the effects of manufacturing defects such as in-
correct tramsistor thresholds, pinholes in the gate
oxides, and variations in the circuit delays, cannot
be described accurately. The effects of resistive

shorts and opens can only be approximated. In
fact, even existing circuit simmlators cannot model
defects that change the basic nature of the devices,
such as pinholes in the gate oxides. However, even
if the fault models supported by our simulator
do not exactly match the failure modes in actual
chips, the program can still help the designer in
developing a set of test patterns. For circuits imp-
lemented in bipolar technologies such as TTL, ex-
perience has shown that a test sequence that yields
a high level of coverage for single stuck-at-zero
and stuck-at-one faults in the logic gate network
generally provides a2 good test of the circuit. It
seems reasonable to expect that the test coverage
measured by a switch-level fault simulator for an
idealized set of faults should reliably predict how
well the test sequence will work on 2 MOS eiremnit.
Such a conjecture, however, can only be confirmed
by actual experience in a manufacturing environ-
ment.

Many faults in our model have the effect of
creating an X state on a node when the good circuit
has a 0 or 1. For cxample, if the control signal
wy in the circuit shown in Figure 2 is stuck-at-
zero, bit m; of the memory will never be initialized
and will remain at X. On the other hand, if the
precharge clock 4, is stuck-at-one, any time we
try to read a 1 value out of a memory cell, a
short circuit will develop between Vdd and Gnd
giving an X on the bus. Whether or not such X’s
would be detected in an actual test depends on
detailed characteristics of the circuit that cannot
be predicted at the switch-level, such as the initial
voltages of dynamic nodes, how the voltage would
divide across a shorting path, and the thresholds
of the devices sensing these X values. On one
hand, a pessimist might argue that an Xin a faulty
circuit should be considered undetectable, because
there is no guarantee that the X will produce an
effect different than the state of the node in the
good circuit. On the other hand, a fault that
prevents the circuit from being initialized, such as
a stuck-at-zero clock line, would clearly be quickly
detected. As a compromise FMOSSIM allows the
user to specify a #oft defect imit [such that if in
the good circuit some output changes both to 1
and to O at least [times each, while the output
in a faulty circuit remains at X, then this fault is
considered detected. This approach seems to work
reasonably well in practice.

BEHAVIORAL MODET,

The operation of 2 MOS circuit is charac-
terized in the switch-level model in terms of its
steady state response function®® which can best
be explained in terms of an analogy to electrical
networks. A MOS transistor behaves as a voltage-
controlled, nonlinear resistor where the voltages of
its gate, source and drain nodes control the resis-
tance between its source and drain. Suppose in
a transistor eircuit we could control the transis-
tor resistances independently of the node voltages.
For a given setting of the transistor resistances,
such a circuit acts as a network of passive elements
which, for a given set of initial node voltages, has
2 unique set of steady state node voltages. Thus a
function that maps transistor resistances and ini-
tial node voltages to steady state mode voltages
gives a partial characterization of the behavior of 2
transistor circuit. The steady state response func-
tion provides just this sort of characterization, but
in terms of node and transistor states 0, 1, and X.
That is, for a given set of initial node and tran-
sistor states, the steady state response function
yields the set of states which the storage nodes
would eventually reach if all transistors were held
fixed in their initial states. This function only
appreximates network behavior, since it does not
describe the rate at which nodes approach their
steady states nor the effects of the changing tran-
sistor states as their gate nodes change state.

In general, a switch-level network may con-
tain nodes and transistors in the X state. Such
states arise from improper charge sharing or {tran-
sient) short circuits even in properly designed net-
works. The behavior of a network in the presence
of X states must be described in a way that is
neither overly optimistic (i.e. ignoring possible er-
ror conditions}), nor overly pessimistic (i.e. spread-
ing X's beyond the region of indeterminate be-
havior). This can be accomplished by defining the
steady state response of 3 node to be 0 or 1 if
and only if the node would have this unique state
regardless of whether each node and transistor in
the X state had state 0 or 1; otherwise, the steady
state of the node is defined to be X. Rather than
computing the steady state for all possible com-
binations of the nodes and transistors in the X
state set to 0 or 1 (a task of exponential com-
plexity), an equivalent two-pass linear time algo-

rithu iy used? Each pass involves solving a set of
equations expressed in a simple, discrete algebra
using a relaxation algorithm.

Given a technique for computing the steady
state response function, a switch-level logic simm-
lator can be implemented that simulates the opera-
tion of the network by repeatedly performing unit
steps until a stable state is reached. Each unit
step involves computing the steady state response
of the network, setting the storage nodes to these
values, and setting the transistors according to the
states of their gate nodes. This simulation tech-
nique implements s timing model in which tran-
sistors switch one time unit (i.e. ome evaluation
of the steady state response function) after their
gate nodes change state. Such a timing model
tells little about the speed of a circuit but usually
suffices to describe the circuit’s logical behavior.
As with other unit delay simulations, this com-
putation may not reach a stable condition due
to oscillations in the circuit, and hence an up-
per bound must be placed on the number of steps
stmulated.

On a given unit step, often only a small por-
tion of the network changes state, while the rest
of the network remains inactive. Most logic sim-
ulators exploit this property by recomputing the
output of a logic gate only if at least one of the
gate’s inputs has changed state. A similar effect is
achieved in switch-level networks by viewing net-
work activity as creating small perturbations of
the network state, and only computing the effects
of these perturbations incrementally rather than
recomputing the state of the entire network. We
say that a storage node is periurbed if it is the
source or drain of a transistor that has changed
state, or if it Is connected by a transistor in the
1 or X state to an input node that has changed
state. Such a perturbation can only affect storage
nodes in the vicinity of the perturbed node, where
two nodes are in the same vicinity if and only if
there exists some path of transistors in the 1 or
X state between the nodes which does not pass
through any input nodes. This definition exploits
the dynamic locality in the network where the
source and drain of a transistor in the 0 state are
considered to be electrically isolated. Typically,
a vicinity contains only a few nodes, and hence
activity remains highly localized.

unti-step(P);

for csch n€ Pdo
U:=UU update-vicinity(n);
P=0;
for each n€ Udo
begin
P:=P U perturb-transistors(n);
update-node(n);
cnds
return(P);
end unti-step;

Figurc {. Implementation of unit step

Figure 4 shows a simplified implementation of
the unit step operation that uses this incremental
perturbation technique to recompute only selected
parts of the network state. The argument Pis a
set of perturbed storage nodes derived from either
new data and clock inputs to the circuit or from
the last unit step. For each of these nodes, update-
vicsnity finds all the nodes in the same vicinity,
computes their steady state response, and returns
a set of nodes that changed state. These updated
nodes are accumulated in the set U Vicinities are
found by a depth first search!® originating at the
perturbed node and tracing outward through tran.
sistors in the 1 or X state from source to drain un-
til an input node is encountered. As each node is
added to the vicinity, it is flagged to avoid duplica-
tion and endless cycles. For each updated node n
in U, perturb-transistors finds all transistors whose
gate node is n and checks to see if they have
changed state. Nodes perturbed by these chang-
ing transistor states are accumulated in a new set
P in preparation for the next unit step. Finally,
update-node sets each updated node to its mew
state.

i R 0

We have seen that the presence or absence of a
fault in a switch-level network is controlled by the
state of a fault input node. Suppose the test pat-
terns that specify data and clock input values are
extended to include values for the network’s fault
input nodes. Then the behavior of a set of faulty
circuits can be determined by repeatedly simalat-
ing patterns that differ only in selected fault in-
put values. Hence, concurrent fault simulation can
be viewed as the problem of efficiently applying a

large number of nearly identical test sequences to
a single network. This viewpoint separates issnes
of fault modeling from concurrent sirmlation. For
example, since values for fault input nodes are
specified on an individual pattern by pattern basis,
multiple and intermittent faults are easily modeled
without changing the basic simulation algorithm.
Furthermore, there are no inherent restrictions re-
quiring that the data inputs of all test sequences
be identical. Thus, concurrent simulation is useful
not only for simulating faults, but for simulating
sets of similar test patterns on a fault-free circnit.

The concurrent simoulation algorithm is given
a description of the network and a set of test se-
quences T = {tg,...,tn }. A test sequence &; €
T consists of a sequence of test patterns, each
specifying values for the data, clock and fault in-
puts of the network. The algorithm simulates the
network to determine how each node behaves for
each test sequence f;. That is, at any point dur-
ing the simulation, each node’s state s; in test se-
quence ¢; is found. Since we assume that the be-
havior of the network differs only slightly from test
sequence to test sequence, s; = s for most nodes
in the network. This observation is exploited by
representing node states cormpactly as a set of pairs
S = {(t;,8:) }, called a state set, where (t;,8;) € S
if and only if ¢ = 0 or 8; 5= sp. The behavior of the
network for test sequence {y serves as a reference
point, since states are explicitly stored only for test
sequence ty and those sequences {; whose states
differ from to. For this reason, test sequence &g
is called the reference requence. For fault simula-
tion, the reference sequence corresponds to the
good circuit, while test sequences t;,7 5% 0 differ
only in selected fault input values, and hence cor-
respond to faulty circuits. A node is said to be
diverged for t; if 8; 5% sg. A node is said to be
diverged if it is diverged for any ¢;. If the gate
node of a transistor is diverged, then the transis-
tor itself is said to be diverged.

If a node is perturbed due to an input node
or transistor changing state for the reference se-
quence, it is likely that the node is also perturbed
for most other test sequences ;. We exploit this
observation by maintaining a set of perturbations
of the form P = {{nj,t;)}, called the perturba-
tion set, where (nj, tg) € P if and only if node
n; is perturbed for the reference sequence ¢y and

{(ns,t;) € P,i 5= 0, if and only if n; is perturbed
for t; but not for the reference sequence. The per-
turbation (nj,t;) € P, where ¢ ¢ 0, indicates that
the network has behaved differently in the area
near node ny for test sequence ¢; when compared
to its behavior for the reference sequence.

As described above, each unit step of the con-
ventional switch-level simulation algorithm com-
putes a steady state response for each node in the
vicinity of a perturbed node, updates those nodes
that have new steady states, and returns a set of
perturbations for the next unit step. To general-
ize this operation for concurrent siomlation, ob-
serve that the perturbation (nj,to) € P repre-
sents a perturbation not only for the reference se-
gquence, but bkely for most other test sequences.
In general, the steady state response of nodesin a
vicinity is a function of both their initial states as
well as the states of the transistors whose source
or drain node is in the vicinity. Thus, when the
steady state response is computed for the nodes in
some vicinity as a result of a perturbation for the
reference sequence, we must check to see if any
of the nodes or transistors are diverged. We ex-
pect that most of the time, for most test sequences
t;, nodes within the vicinity will not be diverged
for t;. In this case, the steady state response
computation performed for the reference sequence
will be valid for t;, and hence there is no need
to duplicate this computation for #;. However, if
some node n; within the vicinity is diverged for
t;, then the steady state response computation us-
ing the states of the nodes and transistors for the
reference sequence may mot be valid for ¢;. To
guarantee that an accurate computation be per-
formed for ¢;, the perturbation (n;,¢;) is added
to P. In effect, we are simply scheduling a steady
state response computation that will be performed
sometime later. Diverged transisters are handled
in a similar manner, for if some transistor with
source n, or dram 7y in the vicinity is found to be
diverged for ¢;, then the perturbations (n,, ;) and
{na, t;) are added to P.

To determine the steady state respomse for
nodes in the vicinity of a perturbation (nj,t;),
where ¢ 5£ 0, states of the nodes and transistors
for test sequence t; must be found. This involves
searching node state sets S for elements of the
form (g;,f;). I such an element is not found, then

Vdd =m; = my =dﬂ—ta={(to,1)}
Gnd = ¢pe = $in = data = {(to,ﬂ)}
re = wy = wyg = ¢1 = cg = {(t,,0)}
bus = {{tg,1),(t:,0)}
71 =f1 = {(t0v0>! (ihl)}
fo={(to,0), (ta, 1)}

Figure 5. Initial Node States

the state for the reference sequence is nsed. To
reduce search time, elements m both the state sets
S and perturbation set P are kept sorted by test
sequence.

As an example of this simulation technique,
consider the circuit shown in Figure 2. An opera-
tion that sets node mg to O will he described.
Suppose initially that nodes Vdd, m;, ms, bus,
and data have state 1 and all other nodes have
state 0. Two fault transistors are added to the
network, one connecting node my to Vdd whose
gate is fault input f;, the other connecting node
r1 to Vdd whose gate is fy. For the reference se-
quence, both of these fault input nodes have state
0 so that the faults are absent. For test sequence
t1, J1 has state 1 to inject fault r; stuck-at-one.
For test sequence tg, fo has state 1 to inject fault
mg stuck-at-one. Due to the fault injected by ¢,
bus and Gnd are connected by conducting tran-
sistors, hence bus is initially 0 for ¢{;. The repre-
sentation of these mitial states is shown in Figure
5.

To set my to 0, nodes ¢i, and wg must be set
to 1. These changes perturb bus, data, and mo,
since they are connected to the source or drain of
transistors that have changed state. The vicinity
for each of these perturbed nodes contains bus,
data, mg, Vdd, and Gnd, and so their steady state
responses are determined. All three storage nodes
have steady states 0 due to the connection to Gnd
through transistors whose gates are ¢;, and daia.
The states of Vdd and Gnd are unchanged since
they are input nodes. Notice that the pull-up
connection between data and V dd has no effect on
the steady state of data since the strength of this
conuection, which is 7, is less than the strengih
45 pull-down connection between date and Gnd.

The steady state computation just described
was performed relative to the reference sequence,
since node states for the reference sequence were

Vdd=m1 = $in == Wo =m={(ta,1>}
Gnd = ¢po = data = {{7,0)}
rg = wy = ¢) = cg = {{£0,0)}
bus-—'—{(io,()),(tg,x)}
= f ={<t0y0)!<t171>}

mp = fop = { <t0:0)1<t21 1) }
Figure 8. Final Node States

used to determine which nodes were within the
vicinity as well as their steady state responses.
This computation may be invalid for sequences ¢,
or to since bus has state 0 for {3 and mq is con-
nected to a conducting fault transistor for ¢;. So
that the appropriate steady state response com-
putations will be performed for both ¢, and ¢, the
perturbations (bus,t;) and (mg,ts) are gemerated
as the vicinity is found.

Consider the effects of perturbation {mg, t,}.
A vicinity containing bus, data, mo, Vdd, and Gnd
is found, as in the simmlation for the reference se-
quence. The steady state response of bus depends
on the strengths of the transistors whose gates
are ¢;n and wy. If both of these transistors have
strength 1, data stays 0 but bus becomes X due
to the short between Gnd and Vdd through the
fault transistor connected to mo.

Now consider the effects of the perturbation
{bus, ty). In this case, the vicinity contains node
¢1, in addition to those found above. The short
between bus and Grd has no effect, and ¢;, mo,
bus, and data all have steady state responses equal
to those in the good circuit. The representation of
the final node states is shown in Figure 6.

In this example, we have seen that faults may
affect the steady state response of nodes as well
as which nodes are contained within a vicinity.
By explicitly generating perturbations for diverged
nodes and transistors when a vicinity in the good
circuit is simulated, we exploit the locality of ac-
tivity in each faulty circuit independent of ac-
tivity in other circuits. Furthermore, this tech-
nique selectively simulates only differing portions
of a faulty circuit, and hence simulation proceeds

quickly.
PERFORMANCE RESULTS

As a test case for evaluating the performance
of FMOSSIMV, we simulated 2 64 bit dynamic RAM

papmeq =inng

450 30
400
25
350
300 20
« ¥
g
250 . é_
2
200 S
g
10 8
150]
100
- 5
] J}\V"T"w-v-v—rm-n
o LA l o
o 100 200 300 400
Test Pottermns

Figure 7. Performance on Memory Circuit

circuit containing 374 transistors. This circuit in-
corporates a variety of MOS structures such as
logic gates, bidirectional pass transistors, dynamic
latches, precharged busses, and three-transistor
dynamic memory elements. The circuit was simm-
lated with 428 faults — each storage node stuck-
at-zero, each storage node stuck-at-one, and pairs
of adjacent busses shorted together. To validate
the program, we also simulated other faults, in-
cluding stuck-open and stuck-closed tramsistors.
The simulator was implemented in the Maingail
programming language!! and run on 2 DEC-20/60.

Figure 7 illustrates the performance of FMOS-
SIM when simulating a test sequence consisting of
3 marching test!? of the memory, together with
special tests for the control logic. The curve climb-
ing diagonally upward indicates the total number
of faults detected as the test progresses. All faulis
were detected after 407 patterns. The falling curve
indicates the CPU time required to simulate each
pattern. This time starts at 27 seconds when the
circuits are initialized. After 100 patterns, it drops
to around 1 second as faults were detected and the
simulations of these circuits were dropped. This
time finally reaching 0.3 seconds at the end of the
simulation, when only the good circuit is being
simulated.

K]
400 35
350
30
300 k
a
5 25
-%
g 230
u 20
2 200
Y
g_ .18
150
1
R
100 0
50 4.08
1] s 00
[+] 100 200 300 400
Test Pattemns

Figure 8. Effective Concurrency

Figure 8 illustrates the performance advan-
tage of concurrent simulation over simmlating each
faulty circuit separately. The curve falling diagon-
ally to the right indicates the number of circuits
being simnlated as the test proceeds. The other
curve indicates the CPU time required to simulate
each pattern divided by the number of circuits be-
ing simulated for that pattern. This curve staris
at about 0.05 seconds per pattern, drops to a low
of 0.005 seconds once those faults causing major
differences from the good circuit are dropped, and
finally climbs back to 0.3 seconds when only the
good circuit is being simulated. Considering that
simulating a single circuit requires about 0.3 sec-
onds per pattern, the effective benefit of simulat-
ing all of the circuits concurrently starts at 6 times
serial sirmlation, rises to 60 times, and drops back
down to 1.

Over the eniire test sequence, simulating the
good machine alone requires 2.5 CPU minutes.
Our fault simulation requires 11 CPU minutes,
whereas simulating each faulty circuit serially un-
til it produces a different result than the good 'ir-
cuit would take almost 6 hours. Thus, in this
case, concurrent simulation has 3 thirty-fold net
advantage over serial simulation. Such a perfor-
mance gain is clearly worth the effort.

}nos) sed wisyod J4od Bpuooceg

CONCLUSION

Our experience with FMOSSIM has shown
that it is a very useful tool for developing test se-
quences. Even when developing a test for a small
section of an integrated circuit (such as an ALU
or a register array), the fault simulator provides
information that is hard to obtain by any other
means. It quickly directs the designer to those
areas of the circuit that require further tests. For
example, in developing test sequences for the mem-
ory design described previously, we discovered that
a simple marching test provided high coverage in
the memory array itself, but that testing the con-
trol logic and peripheral circuits such as the input
and output latches was more difficult.

It remains to be seen how the performaonce
characteristics of FMOSSIM will vary as the size
of the circuit and the number of faults to be simm-
lated grows large. Even if it becomes impractical
to run full-chip fault simulations with large num-
bers of faults, the program could still produce use-
ful results by simulating portions of the chip, by
eliminating faults that produce effects identical to
other faults, or by simulating only a subset of the
possible faults selected at random.

REFERENCES

(1] E. Ulrich, T. Baker, “The Concurrent Simu-
lation of Nearly Identical Digital Networks,”
Design Automation Workshop Proc., June 19-
73, pp. 145-160, and IEEE Computer, April
1974, pp. 39-44.

" R. Wadsack, “Fault Modeling and Logic Sim-
ulation of CMOS and MOS Integrated Cir-
cuits,” Bell System Techntcal Journal, Vol.
57, May-June 1978, pp. 1449-1473.

R. Bryant, “MOSSIM: A Switch-Level Sim-
ulator for MOS LS1,” 18th Design Automation
Conference Proceedings, July 1981, pp. 786-
790.

R. Bryant, M. Schuster, D. Whiting, MOS-
SIM II: A Switch-Level Simulator for MOS
LSI, User’s Manual, Technical Report 5033,
Department of Computer Science, California

Institute of Technology, March 1982.

J. Hayes, “A Fault Simulation Methodology
for VLSI,” 18tk Design Automation Confer-
ence Proceedings, July 1982, pp. 393-399.

4]

- 10 -

[8] A. Bose, et al, “A Fault Simulator for MOS
LSI Circuits,” 19th Design Automation Con-
ference Proceedings, July 1982, pp. 400-409.

M. Lightner, G. Hachtel, “Implication Algo-
rithms for MOS Switch Level Functional Mac-
romodeling, Implication and Testing,” 18tk
Design Automation Conference Proceedings,
July 1982, pp. 691-698.

R. Bryant, “A Switch-Level Model of MOS
Logic Circuits,” in J. Gray, ed.,, VLSI 81,
Academic Press, August 1982, pp. 329-340.

R. Bryant, A Switch-Level Model and Simu-
lator for MOS Digital Systems, Technical Re-
port 5065, Department of Computer Science,

California Institute of Technology, January
1983.

[10] A. Aho, J. Hopcroft, and J. Ullman, The De-
stgn and Anclysis of Computer Algorithmas,
Addison Wesley, 1974.

[11] Xidak, Inc. Mainsai! Language Manual, Men-
4 lo Park, CA_, 1982.

7l

(€]

[12] Winegarden, S., and D. Pannell, “Paragons
for Memory Test,” 1981 IEEE Test Confer-
ence, pp. 44-48.

