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SUBMICRON SYSTEMS ARCHITECTURE

Computer Science
California Institute of Technology
1. Overview and Summary
1.1 Scope of this Report

This document reports the research activities and results for the seven month period 16 March 1984
to 15 October 1984 under the Defense Advanced Research Project Agency (ARPA) Submicron Systems
Architecture Project.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI systems appropriate to a microcircuit
technology scaled to submicron feature sizes, and includes related efforts in concurrent computation and

VLSI design. Additional background information can be found in previous semiannual technical reports
[5052:TR:82], [5078:TR:83], [5103:TR:83], [5122:TR:84|.

1.3 Highlights

Some highlights of the previous 7 months are:

(1) New Cosmic Cube system software (2.1.2).

(2) Development of a concurrent circuit simulation program (3.1).

(3) New techniques in program verification (3.3).

(4) Construction and testing of the MOSSIM Simulation Engine (4.1).

(5) Symbolic representations of Boolean functions, with applications to fault modeling (4.2, 4.3).
(6) Bit-serial Reed-Solomon decoders (4.4).

(7) New results in error correction (4.5).



2. Architectural Experiments

2.1 Cosmic Cube
W C Athas, Reese Faucette, Chuck Seitz

A draft of a paper that describes the Cosmic Cube experiment is included in the appendix to this report.

A non-exclusive license covering design and patent rights, and a resale license of the operating system, has
been negotiated. A commercial version of this system is in development by the licensee.

2.1.1 Hardware Status

Our 64-node and 8-node Cosmic Cubes continue to run reliably. With at this time some 600,000 node-hours
of operation and only two hard failures logged, both in dRAM chips, the calculated MTBF of 100,000 hours
can be regarded as conservative at the 98% confidence level.

To recap from the last report, the only recent hardware renovation was the replacement of the original Cube
Life Support (CLS) board with a uew version called the Rosebud OLS. This renovation was necessary due
to a noise problem in the intermediate host to cube cable connection. We took advantage of this redesign
to support all the functions of the old CLS board in a design that is a generic Multibus interface board for
all the ensemble machine experiments underway.

Since Rosebud and other design projects in the department have come to rely heavily on Programmable
Array Logic (PAL) chips for board level TTL designs, a program was written to convert logic functions
expressed as truth tables into PAL equations. Since only small switching expressions can be stored in the
PAL chips, the program applies all possible optimizations to the logic function to find the minimal expression.
Interest has been expressed to use this program for PLA optimization in VLSI chip projects.

Once this program was completed and documented, the PAL ICs for Rosebud were programmed and Rosebud
was constructed. The remedy for the noise problem included different connectors than the old CLS board,
and this in turn required that the corner node boards be rewrapped.

A SUN fileserver, ARPAnet address CIT-SOL, now serves as a Cosmic Cube intermediate host. Since the
connection is by a 30-foot 60-conductor ribbon cable (with alternate wires grounded), it is a good acid test
for the new interface.

Under separate support (DoE) program-compatible cosmic cube “Mark II” systems are being assembled by a
group at JPL for the Caltech user community. The user group now has their own 5-cube running, and their
current use of the original 3-cube and 6-cube is being phased out in favor of computer science and network

users.

2.1.2 System Software Status

The inner kernel of the Cosmic Kernel (OK) is now essentially complete. The scheduling, message passing,
aty To
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011(] mMamaoary ')]lf\f‘ .f\'l’l rr\"f;nnc hﬁ‘fﬂ "\Dp "\n
and memory allocation routines have been tho
have been written which run under the CK and give it a good workout. The internals of the kernel have
changed several times in the past six months, but the design and documentation of the interface between

the operating system and the nser processes was sufficiently complete that the code for these programs has

ughly tested a quit differer

not had to change at all.

The message passing system has had many additions over the course of the summer. Some tuning was done
to improve the speed. Message fragmentation has also been added so that long messages can be passed
across the cube without requiring that every intervening node have sufficient storage available to buffer
the entire message. There is a parameter to the system which defines the longest allowed single message,
and any message longer than specified by this parameter is fragmented. The overhead associated with the
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fragmentation process is two headers per extra fragment generated. The fragment parameter is currently
256 words.

Message passing between processes in the same node (local SEND) has been fixed so that the message is
buffered if the target process has not yet executed a RECV, rather than keeping the message in the data
area of the sending process, as is done for non-local SENDs. This oversight would have resulted in different
semantics for local and non-local SENDs.

The memory management scheme was slightly modified recently to use indirection pointers rather than
returning the actual address of the memory requested. This makes the job of the memory compaction
routine much simpler since it no longer needs to know where programs that request memory keep their
pointers, so it can go out and change them at compaction time. As a result of being simpler, the compaction
algorithm is also now much faster.

Oune demonstration program that runs on the cube under the cosmic kernel consists of six user processes which
are loaded into memory along with the kernel. The user processes communicate with one another as well
as with the host, and use the LED’s attached to each board to demonstrate message flow. Many properties
of the message system can be observed using this program, such as qucuing of mcssages, indcpendence of

messages intended for different processes in the same machine, and message routing implications.

The sixth process does not use the LED’s, but is a prototype of the “spy” process mentioned in the paper in
the appendix. This process is used to read memory from any board back to the host. A message is sent to
this process from the host containing a starting address and the number of words requested. A reply is sent
back to the host containing the contents of the memory. This operates concurrently with the LED display
without affecting it, and hence can be used to observe the internal happenings associated with the message
traffic, and display on the SUN intermediate host histograms of message locations.

The “spy” process described above also exists as part of a “post-mortem” debugger. This is a version of the
cosmic kernel that loads into high memory and can be used to look at the memory of a crashed program to
determine the cause of failure in an otherwise very unrevealing environment. This process is being refined
to provide information about processes that are running, such as their current program counter or values of
variables. It will also be used to monitor system resources like free memory, idle time, or message activity.

Several compilers have been found that produces code suitable for running on the cube, and will be used to
compile both user and outer kernel processes.

The intermediate host (IH) is now a SUN-II file server running Berkeley Unix 4.2, ARPAnet address CIT-
SOL. The Rosebud CLS board has been installed in the SUN and a device driver written for it. The 8086
asscmbler has been brought up on this machine, and it is now being used for all development as well as being

the intermediate host.

With the Cosmic Kernel and host tools now quite stable and reliable, and with such a nice intermediate host,
our attention is shifting to the IH software. The IH software runs in a Unix and local network environment
that is quite similar to the process programming environment supported by the kernel running in the cube.

A “cube-master” program is planned for the IH that will support communication between user processes
in the cube and Unix processes in any Unix machine connected to the host by ethernet. Thus, one will be
able to run programs on the cube in conjunction with programs on any network connected machine, where
currently the cube computations run in conjunction with processes that run only in the IH. This mode of
operation is possible because functions such as process spawning are invoked in the CK by messages rather
than by system calls. We are planning also to provide in the “cube-master” time- and space-sharing of the
cube.

2.1.3 Programming Techniques

Several programs intended to exempify and demonstrate programming techniques have or are being written
for applications such as computer graphics, simulation, aud gamne playing. Preliminary user’s guides have



been written, and this documentation together with programming examples will be made available on-line
on CIT-SOL in the near future.

2.1.4 Advanced Technology Homogeneous Machines

We continue to study designs of advanced technology nodes for homogeneous machines with characteristics
described in a previous technical report [5103:TR:83].

2.2 Mosaic Systems
Chris Lutz, Steve Rabin, Don Speck, Chuck Seitz

Work is proceeding on schedule for assembling a 1024-node system based on the single chip Mosaic node.
The chip design aspect of the project is described here, and the programming aspects in part 3.

2.2.1 Mosaic Processors

We continue to fabricate and test Mosaic A prototype processors for yield evaluation for ourselves and for

MOSIS. The speed of current processors fabricated at 3 um feature size is limited entirely by the pad frame
and test jig to about a 55 nsec cycle time (see 2.2.3 below), from which we conclude that our target of 10

MHz in-system operation will be exceeded. We have sufficient A processors for a useful size prototype for
programming experiments, and this system, including host interfaces, is being constructed.
The Mosaic B processor microcode is thoroughly tested, and about 3 months effort in layout and verification

are required to complete this design.

2.2.2 Mosaic RAM

The prototype dynamic RAM module (later to be integrated with the Mosaic processor and communication
channels) was received from MOSIS, tested, and found to have a geometrical design rule error that obscured
the test results. The layout was fixed, and a second iteration is being fabricated.

2.2.3 Mosaic Clock Driver

Most of the effort of at-speed testing of the RAM module (and sets of Mosaic prototypes as yield monitors for
MOSIS) is in producing fast clock waveforms in the slow TTL technology of wire-wrapped test jigs. nMOS
chips designed in the “hot-clock” style give very good performance, but require external clock drivers to
drive clock loads very fast with almost no skew. Mosaic processor and memory parts fabricated separately
run with clock pulses as short as 15ns. We have designed a small OMOS/SOS clock chip to produce 0.6
watts/chip of precisely timed Mosaic clock waveforms, derived on-chip from a 50 MHz reference. Copies of
these chips are in the June 1984 MOSIS SOS run, and first silicon (sapphire) from MOSIS is expected any
day.

2.3 Super-mesh
Wen-King Su, Chuck Seitz

Super mesh is a fine-grain mesh-connected SIMD machine designed to study limiting points in synchroniza-
tion, power, cost, chip area, and speed of high performance VLSI engines for highly regular high-precision
numerical computations. At the heart of each node is a very efficient serial floating point unit that uses
carry-save mantissa multiplication.

A trial layout of the floating point unit was completed in June with a team of students from the VLSI
design laboratory course. A review of this design suggests some improvements can be accomplished with a
somewhat different layout strategy, and a revised floating point unit is underway.

2.4 Other Experiments
The MOSSIM Simulation Engine (MSE) constructed in this reporting period is described in section 4.1.

A 10-node message-passing SIMD ring machine for orbital mechanics computations, called the “Orrery”, was
designed and built in a project led by Gerry Sussman while he was on sabbatical at Caltech.



3. Concurrent Computation

3.1 CONCISE: Preliminary Results
Sven Mattisson, Chuck Seitz

A concurrent circuit simulator for the Cosmic Cube is under development. The program is called CONCISE
(CONcurrent Clreuit Simulation Experiment), and a first version running on a sequential machine has been
implemented. The programming language used is Pascal. No special language features are needed; only
predefined message passing routines are required for interprocessor communication.

Preliminary results are promising, and the performance of CONCISE on a VAX is comparable to SPICE2.

A circuit simulation program solves a set of nonlinear equations
F(u(t), e(t),t) =0

where v(t) is the unknown node voltage vector, e(t} is the source vector and t is time, for a specified time
interval. In order to sulve this equation concurrently, some of the algorithms commonly used on a sequential

computer have to be replaced with others better suited for concurrent execution.

The different steps in a circuit simulation program can be described as: (1) formulation of network equations,
(2) numerical integration, (3) linearization of the nonlinear network equations, and (4) sparse matrix equation
solving. :

The greatest impact on the concurrent program design is in the equation formulation method and the matrix
equation solving algorithm.

The properties of the coefficient matrix are determined by the network formulation method used. The nodal
formulation is attractive since it yields a matrix with a tendency towards diagonal dominance and with
preserved circuit sparsity and connectivity. However, the nodal formulation has a deficiency in only being
able to handle elements with an admittance description, but problems due to this nongenerality can almost
always be circumvented by more realistic device models. The modified nodal formulation is an extension to
the nodal formulation, to facilitate inclusion of general circuit elements. This latter formulation method has
a disadvantage in that it suffers from zeroes in the diagonal of the coefficient matrix. By means of pivoting,
this problem can be circumvented, but this yields a coefficient matrix with a less dominant diagonal than
the original matrix.

The equation solving method in conjunction with the network formulation method determines how the
different matrix entries are addressed (sequence and locality). The Jacobi and Gauss-Seidel iterative methods
allow each matrix row to be treated as a separate equation and only require node voltages to be communicated.
With these algorithms the matrix equation can be partitioned such that each processor solves for a number
of rows, and the results from each processor are then iterated with neighboring processors. Because of
convergence properties, the Jacobi method is used for internode iterations and the Gauss-Seidel method for
intranode iterations.

The algorithms used for evaluating the matrix equation coefficients are not difficult to implement in a
concurrent manner by letting each node compute a subset of the coefficients. The only penalty for this is
some redundancy in terms of stored data (voltages and device data), and that parts of some device equations
are evaluated in more than one node. The amount of redundancy depends on the network formulation and
equation solving methods being used, as well as on the partitioning scheme.

With the above-mentioned partitioning scheme, the integration and linearization algorithms only have to
operate on coefficients within the row being solved for. Furthermore, the Newton-Raphson algorithm, in
conjunction with the Jacobi or Gauss-Seidel method, can be implemented in a straightforward manner
without the need for matrix inversion. Similarly the variable-step variable-order backward differentiation
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predictor-corrector formula can be the same as for any sequential program, except that each node may
be integrated separately. In order to preserve charge, each device terminal should be associated with a
state vector, allowing the charge state variable to be integrated rather than the node voltage. This requires
some extra storage but simplifies device modeling, since the derivatives of the charge state variable can be
discontinuous without causing nonconservation of charge.

CONCISE uses the nodal formulation, despite its nongenerality, to formulate the network equations because
it can be mapped on a multiprocessor system without difficulties. The resulting matrix equation can easily
be partitioned with any number of rows in each processor. Furthermore there is no need for pivoting and
thus the tendency towards diagonal dominance and the connectivity can be preserved. It is very important
to have a matrix with a dominating diagonal if an iterative method is used for solving the matrix equation.

With a partitioned matrix, direct equation solving methods become expensive since they address the coefficients
in a way that is difficult to distribule without excessive commupication. Sowe iterative methods re-
quire only operations within a row at a time and are thus easy to distribute. CONCISE use the Jacobi
and Gauss-Seidel methods as described in the previous section. This allows each row, or chunk of rows
to be solved for concurrently with rows in other processors. When each row equation has been solved,
the intraprocessor iteration, and interprocessor iteration can be performed to check convergence among
the rows. Intraprocessor and interprocessor iterations are repeated until sufficient convergence is achieved.

When rows are solved with an iterative method requiring operations within the row only, whole waveforms
can be solved and iterated instead of voltages. Solving for waveforms is advantageous when each row equation
is solved independently, since the time step and order for the integration algorithm can be optimized for
each node. That is, each waveform can be solved with a2 minimum of computational effort. Hence CONCISE
uses waveform iterations to solve for the node voltages.

When the node voltages are integrated, a discontinuity at a certain time point may cause the integration
algorithm to try to “home in” on a time point close to the discontinuity. For example, if a square wave is
applied to a network, the error control algorithm causes steps past the edge of the input signal to be rejected,
since the error for these steps is too large. A new shorter step is tried from the last accepted time point. If
this falls short of the edge it is accepted, otherwise it is rejected and the try is repeated with a yet shorter
step. This rejecting and accepting of steps continues until a time point close to the discontinuity has been
found and until the time step is “sufficiently short”. Since “sufficiently short” typically means at least an
order of magnitude shorter, this “homing in” becomes expensive.

CONCISE uses a windowing scheme synchronized with the input signal events. Instead of solving for
a whole waveform, the simulation interval is split into windows with ecach window bcing a time interval
with continuous input signal. Thus the “homing in” behavior of the integration algorithm is eliminated.
Furthermore the number of Jacobi iterations needed for solving the matrix equation can be optimized for
each window, hence only the “difficult parts” of the waveform are iterated more times.

In the procedures implementing the Newton-Raphson algorithm, special care has been taken to make use of
the fact that only one row equation is solved at a time. Hence each device model only has to return the value
and derivative of the terminal current and terminal charge for terminals associated with the row equation
being solved. But as MOS devices have four terminals, it is difficult to compute derivatives analytically when
more than one terminal is connected to the same node. However it is very easy to compute the derivative
numerically, as the derivative is only with respect to one voltage. For conventional programs it is not simple
to compute the derivatives numerically, but it is not necessary to find parallel terminal connections as
everything is plugged into the same coefficient matrix. CONCISE uses the forward difference approximation
to find the derivatives with respect to the node voltage. This requires two function evaluations to find the
derivative, and to minimize the number of function evaluations, the derivative is not updated each Newton-
Raphson iteration; the accuracy of the solution is determined by the accuracy of the current and charge
formulations and not the derivative.



Charge conservation is important in MOS circuits. Hence a state vector is stored for each device and a
derivation of the state variable (e.g., charge) is done instead of multiplying the terminal capacitance with
the derivative operator. As well as preserving charge, this scheme makes modeling easier since discontinuous
capacitors do not cause any problems (as long as the charge is piecewise linear). The disadvantage is that
each state variable has to be derived separately.

A sequential version of CONCISE has been implemented on a VAX to facilitate some experiments prior to
moving the program over to the Cosmic Cube.

In this sequential version of CONCISE all algorithms needed to perform a transient analysis are included.
Only the outer iterations of the matrix equation solving routine, corresponding to internode iteration, are
unused. The interprocessor iteration routine essentially consists of a message passing routine asking for
waveforms needed and distributing new solutions from the intraprocessor iterations. Thus the sequential
and concurrent versions of CONCISE are essentially identical.

It is tempting to compare with SPICE2, but since CONCISE is implemented in another programming
language and intended for parallel processing such a comparisen is difficult. On the other hand the question
of how CONCISE is doing compared to SPICE2 is bound to come. Thus comparisons on circuits ranging
from MOS inverters to dynamic NMOS circuits with bootstrapping have been done.

When running SPICE2 it is important to be aware of the fact that the run time depends on which MOS
model and what model parameters are used. For a “hot clocked” pad driver run times with SPICE2 were
in the range 5-30 minutes. For the same circuit CONCISE used 2-45 minutes depending on the allowed
truncation error. The MOS model used in CONCISE has the same accuracy, or better, than SPICHE2 levels
2 and 3. When comparing with MOS model level 1 in SPICE2, and using a truncation error in CONCISE
giving the same level of detail in the output waveforms for the two programs, the run times were roughly
equivalent.

Other circuits were used with CONCISE to establish whether the run time scaled linearly with circuit
complexity.

With totally decoupled circuits, i.e., only voltage sources in common, run time scaled perfectly linearly with
size, as expected from theory. Circuit size varied from 2 to 200 MOS transistors.

With various circuits it was established that the windowing scheme used in the waveform iteration was very
effective. Run times decreased up to five times when windowing was applied as opposed to when the whole
waveform was iterated. Furthermore, for none of the circuits were the average number of window iterations,
intraprocessor iterations, greater than four. This is a very important result since the Jacobi method is one of
the slowest ways of iteratively solving a matrix equation. Thus the fact that only 3-4 iterations per window
are needed is very encouraging, since it proves that the waveform convergence is good for realistic circuits.

Profiling was run on most of the test circuits. With the complex MOS model, 25-50% of the total time was
spent doing square roots in the device equations. Happily, square roots are one thing that the cosmic cube
nodes do faster than a VAX. Also by using simpler models, the run times decreased correspondingly. 'L'his
shows that most of the time is spent solving device equations and the overhead in doing it is small; it pays
off to use simple models., Even with an extremely simple MOS model, much simpler than SPICE2 level 1,
most of the CPU time was used in evaluating the device response.

After some additional measurements and profiling of the communication demands in the internode iterations,
our next step is to bring CONCISE up on the cosmic cube, a task that is expected to be routine.

(Sven Mattisson is a special computer science graduate student at Caltech, and also with the Applied
Electronics Department, Lund Institute of Technology, Sweden.)



3.2 Process Placement
Craig Steele, Chuck Seitz

This effort is direcited at optimization of process placement on distributed homogeneous processor architec-
tures. In a such an environment, a computation may be represented as a graph, where communicating
processes are the vertices, and logical communication channels are the edges. Likewise the underlying physi-
cal structure may be represented as a graph with processors and physical communication paths represented
as vertices and edges. To run a computation on a distributed processor, the processes must be loaded onto
the physical machine, requiring a mapping of the logical graph onto the physical graph.

Minimizing the communication cost of the computation is a major problem unless the logical and physical
graphs are similar. While many problems of interest to physicists can take advantage of the isomorphism
of the 6-cube architecture of the Cube to three-space, even in three-dimensional simulations the density
of simulated objects may vary, lowering efficiency with simple partitioning. Graph structures common in
applications of interest in computer science, such as trees, do not map in obviously good ways to n-cube
architectures.

Using the technique of simulated annealing, good mappings may be found in moderate time for arbitrary
logical computation graphs. Taken into account are arbitrary edge weights (reflecting varied utilization
of logical communication channels) and arbitrary process memory sizes (allowing the physical processor
constraints to affect the density of processes per processor).

This method has been applied to a comparative study of proposed interconnection structures for homogeneous
machines for both single and multiple process (o processor wmappings. DElficient mappings are found for
interconnects less costly than binary n-cubes for most problems at only modestly increased communication
costs. For example, a modified shuffle-exchange interconnect for the 1024-element mosaic multiprocessor
desigu has been simulated for equally large problems to good effect.

Work is continuing to extend the architectural comparison to include congestion factors for networks in
which communication channel saturation is significant.

3.3 Techniques in Program Verification
Young-il Choo, .Iim Kajiya
3.3.1 A Simple Proof Technique for Abstractions

To verify large programs it is imperative that the formal technique includes rules for abstraction constructs
like procedures and functions. For simple procedures and functions without recursion the substitution of the
body for the procedure or function call may be acceptable, but for procedures and functions with recursion
there has to be more sophisticated techniques.

As we surveyed different proposed proof rules, we found that they fall into two fundamentally different
styles. In the one we have Hoare logic-like systems with the assignment statement as the primitive operation
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functions cannot be dealt with in a logically sound and elegant manner (see [0’Donnell 82}). On the other we
have proof systems for recursive functions where structural induction and computational (Scott’s) induction
are the main techniques (see [Manna 75]).

When one considers the logical complexity of a (mathematical) function, the proof of correctness should be
similar whether it is programmed as a procedure in an imperative language or a function in an applicative
language. By comparing the proofs we found a compelling similarity in that they both used induction in one
way or another. When we tried to translate the proof of one into the proof of the other there were significant
difficulties. We found it impossible to translate functional proofs into procedural ones. In order to translate
the procedural one to a functional one what we had (o do was give an explicit denotational semantics to the



assignment statement as a function from the set of states to the set of states. Then the proof is identical
except for the fact that the domains of our objects are different.

Essentially, our method is based on a denotational semantics which interprets a recursive definition of a
function or a procedure as specifying the unique object satisfying the equation. Given that the object exists,
the recursive definition is the defining equation characterizing the object and our proof technique reduces to
that of doing mathematical induction over a well founded set that is defined for each domain.

Our experience with this technique indicates that the proofs become a series of equalities that are algebraically
manipulated and therefore are not too sensitive to the particular syntax of the language or of the logic. In
fact the logic we use is our intuitive notions of reasoning used in mathematics. Therefore we do not need to
set up a logical theory with peculiar formulas like in the Hoare system.

A very interesting consequence of this approach is the possibility of proving Prolog programs constructed
out of Horn clauses. Here again the denotational semantics provides us with objects which are in some sense
solutions of the recursive equations. The interesting part here is in coming up with a nice denotational
semantics for Horn clauses.

3.3.2 Characterization of Admissible Predicates

By using lazy evaluation it is possible to specify infinite data objects and operate on them to produce other
infinite data objects. In general, infinite functions can be defined recursively that produce meaningful results
but which do not terminate. The fundamental data objects are finite or infinite lists whose elements can be
finite or infinite lists. Before one can formulate proof techniques there must be a clearly defined semantics.
Using the Scott D-infinity construction method we have constructed the appropriate domain for our data
objects.

The proof technique to use would appear to be the Scott induction rule. This rule is very powerful in
allowing us to reason about infinite objects from the properties of their finite approximations. When using
Scott’s induction we must make sure that the properties (expressed as predicates in some logical language)
are admissible, for only admissible predicates give sound conclusions.

When we are dealing with infinite data objects, it is not always clear what properties are admissible. In
the literature there are sufficient characterizations for a predicate to be admissible [Manna 74], but none
showing the necessary conditions.

Since we are dealing with infinite objects, and because certain properties holding for finite ones do not seem
to extend for infinite ones, we are looking at non-standard analyses where standard and non-standard models
are defined and where finite and infinite objects are distinguished. Our aim is to prove the necessary and
sufficient conditions for the admissibility of predicates by constructing a suitable standard and non-standard
models and applying the Concurrence Theorem and notions such as internal and external sets.

References
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3.4 A New Network — Sneptrees for Distributed Computation
Pey-yun Peggy Li, Alain J. Martin

A new interconnection network, the Sneptree, has been investigated in the past few months. It is an
augmented binary tree configuration with homogeneous nodes. Each node has four links. The extra links



are so connected that the outgoing links of the leaf nodes are fed back to all the nodes of the binary tree.
There are many such connections. One type of connection which contains two spanning cycles is of particular
interest. We name this special type of Sneptree a “Cyclic Sneptree”, and focus on this connection.

It has been proved that the mapping of a complete binary tree of any size onto a Sneptree is optimal.
Moreover, an extremely unbalanced tree, such as a left /right skewed tree, results in an optimal mapping on
a cyclic Sneptree.

The cyclic Sneptree can be laid out onto an H-structure plane. The construction rule is recursively defined
so that the bigger H-structure Sneptree can be constructed by connecting smaller Sneptrees following some
simple rules. Moreover, the cyclic Sneptree can be extended easily with smaller Sneptrees built in single
chips. The cyclic Sneptree is not planar, neither is its H-structure layout. The number of crossings in the
H-structure layout is about 3/8 of the total number of nodes in the Sneptree. The maximal length of the
extra links are about the same as that of the longest wire in the H-structure binary tree layout.

The cyclic Sneptree can simulate a binary tree optimally. The mapping of other data structures onto the
Sneptree, such as linear array, has also been considered. Having investigated many applications, we found
it better to map the linear array onto the leaf nodes and to use a routing algorithm from a leaf node to leaf
node. The routing time is bounded in n, where n is the height of the Sneptree. The route selected is shorter
and less congested than on a pure binary tree.

Applications for the Sneptree are under investigation. One popular knowledge representation method in Al
applications, the semantic net, has been mapped onto the Sneptree. It works well for some special examples.
How to map an arbitrary Semantic Net to the Sneptree and achieve the maximal concurrency in searching
the Net is still an open question.

3.5 Functional Programming
Jerry Burch, Young-il Choo, Alain J Martin

We have started investigating functional programming methods. After experimenting with various functional
programming styles, we have decided to choose a language with lexical scoping and lazy evaluation as a rule,
thus allowing infinite lists. In a first instance, we want ot find simple semantics and proof techniques that
are able to deal with lazy evaluation and infinite lists. The various forms of fixed point induction techniques
currently available are not sufficient for that purpose. Our long-term goal is to find out whethier such
languages are suitable for highly concurrent and distributed implementatons.

3.6 Concurrent Data Structures

Bill Dally, Chuck Seitz

The appearance of concurrent computers such as the Cosmic Cube and Mosaic is creating a need for
concurrent data structures. Conventional data structures such as heaps and B-trees have many bottlenecks
which limit their potential concurrency and make them unable to take advantage of the computing potential
of these concurrent machines. New data structures are required that can harness the power of concurrent
computing.

Our research has been proceeding in two directions: to study the concurrency limitations of existing data
structures and to develop new data structures which overcome these limitations. A heap was selected as
representative of existing data structures and its concurrency properties were studied in detail [5156:DF:84].
As a result of this research some variants of conventional heaps were developed which offer improved
concurrency and virtual memory performance. However, even these variant heaps are limited by their tree
structure to concurrency which grows only as the log of the number of elements in the heap.

To overcome the concurrency limitations of conventional data structures we have developed two new data
structures for ordered sets: the balanced cube and the B-cube [5159:DF:84]. By using a Boolean n-cube
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rather than a tree to organize data, these structures overcome the bottleneck of a single entry point or root
node. As a result, the concurrency of these cube structures grows linearly with the number of elements in
the set enabling them to effectively make use of concurrent processors.

3.7 ANIMAC: A Multi-Processor Animation Machine
Daniel S Whelan, Jim Kajiya

This thesis work proposes a new architecture for animation and flight simulation engines. This architecture
consists of a nearest neighbor network of specialized processors. The targeted performance of 100,000
polygons per frame time represents an improvement of almost two orders of magnitude over today’s systems.
Furthermore, scenes are calculated with shadowing effects. Anti-aliasing techniques are utilized to achieve
acceptable image quality.

Development of the ANIMAC architecture involved the design of a partitionable visible surface determination
algorithm. This algorithm allows individual engines to be connected into a multi-processor and still utilize
only very local information for calenlating shadowed images. Tn order to achieve load balancing in the
ANIMAC, both static and dynamic techniques for associating processors with image space regions were
examined.

The design of the individual engines involved the extension of the processor per object paradigm to handle
shadowing of objects. A processor per pixel algorithm is also utilized in determining whether non-local
objects cast shadows on local objects.

This work rests on a model of scene composition that has been determined by analyzing statistics gathered
from images created by a rendering program. This program is in wide use by the Caltech graphics community.
Selected images were meant to be representative of scenes encountered in animation runs.

Previous work in the field has been re-examined in light of the scene composition model. Strong points of
these architectures have found their way into ANIMAC. Hopefully, the weak points have been avoided.

3.8 Language Research
Mike Newton, Howard Derby, .Jim Kajiya

The language investigation of the last few years into rewrite and logic programming systems is finally
entering the implementation phase. With Mike Newton and Howard Derby, the past 6 months have seen
the construction of a preliminary design and implementation of a logic programming language which allows

functional programming constructs.

We do this by modifying the standard prolog interpreter to include a rewrite subsystem to be invoked upon
the failure of ordinary unification. If ordinary unification fails, the rewrite subsystem attempts a bottom up
rewrite of terms in the goal. These rewrites are fully trailed so that backtracking will explore all alternatives.

Several small programs have been written 1n the new language. Indications are that 1ts possesses a much
greater expressive power than standard Prolog. We estimate something like a compression ratio of 4 to 10
times.

During the course of this investigation we have invented a new method for controlling backtracking which
is in a sense dual to Prolog’s cut mechanism. It appears to be natural from a programmers point of view
and relatively easy to compile. A report is being written now and will appear shortly.

Future language work involves studying the compilation issue for our functional logic language. At present
we have a rather inefficient interpreter. There is every indication that the techniques used to compile Prolog
and Lisp will be applicable to this language. Second, we wish to extend the data structures which can be
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manipulated by the language—currently limited to trees and lists. Finally, the impact of this language on
machine organization is undergoing active investigation.

3.9 An Object Oriented Computer Architecture
Jim Kejiya, Bill Dally

With Bill Dally, we have been exploring new architectures for late binding object oriented languages, most
notably Smalltalk. These promise a potential 100 times speed up over conventional instruction set processors
implemented in an equivalent technology. We propose to investigate these ideas with experiments on a
modified Smalltalk-80 implementation.

The architecture is based on a conventional pipelined von Neumann machine with two extensions: associative
threading, and floating point addresses. About one third of the time is spent hashing messages in an object
oriented interpretation loop . The associative threading scheme effectively pipelines this overhead to a rather
small value. Another one third of the time is spent in storage management: mostly in the allocation and
deallocation of contexts. Our architecture minimizes this overhead with segmented memory.

Associative threading is a key to fast object oriented machines. Conventional instruction set processors
use operation codes whose interpretation is independent of operand datatypes. In associative threading the
mcaning of an instruction is lookcd up in an association table whosc key is formed from the opcode and the

datatypes of operands.

The association mechanism is implemented much like a conventional demand paging virtual memory system.
First, the machine maintains a complete set of association tables. These are simply the message dictionaries
for each class. Second, the machine caches most recently used associations in a local memory called the
instruction translation lookaside buffer (ITLB).

The overhead of storage management, bounds checking, and data security is minimized by hardware seg-
mented memory — one object per memory segment. But with conventional segmented memory schemes, the
”small object problem” immediately arises. A memory address must be able to specify a segment as well as
an offset to select a field of a given segment. To accomodate a large number of small objects, the segment
index field of an address must be large. But then for a reasonable address wordsize, the number of bits which
can be devoted to a segment offset is uncomfortably small. Our addressing scheme handles this problem by
adding a binary exponent. The exponent determines the boundary between segment and offset fields. The
integer part of the resulting number forms the segment index while the fractional part forms the offset. This
scheme allows for both a large number of small objects as well as a few very large objects.

Our preliminary simulations with an ITLB are very encouraging. With a 4 way set associative cache of
modest size (8K), we measure hit ratios in the high 90 architecture we estimate that a machine based on
conventional TTL technology will be able to execute perhaps 5 to 10 million 3 address instructions per
second. A single 3 address instruction would be equivalent 2-3 Smalltalk bytecodes.

12



4. VLSI Design

4.1 Switch Simulation Tools
Bill Dally, Randy Bryant

Much of the effort in switch level simulation tools in this period is concentrated on the MOSSIM Simulation
Engine (MSE). A paper on the MSE is included as an appendix to this report. A paper by Randy Bryant:
“A Switch-Level Model and Simulator for MOS Digital Circuits” appeared in the IEEE Transactions on
Computers, February, 1984.

Design verification is essential in the development of VLSI systems. The complexity of VLSI circuits,
inaccessability of internal nodes, and difficulty of repair make the probability of producing a working chip
very low without, extensive design verification. As the complexity of VLST cirenits approaches 108 devices, the
computational requirements of design verification are exceeding the capacity of general purpose computers.
To provide the computing power required to verify these complex VLSI chips, we are developing the Mossim
Simulation Engine (MSE) [5123:TR:84].

The Mossim Simulation Engine is a special purpose processor which, in a single processor configuration,
performs switch-level simulation of MOS VLSI circuits 200-500 times faster than a VAX 11/780. In multiple

processor configurations even greater speedup can be achieved.

The MSE overcomes two limitations of existing simulation engines. By using the switch-level model developed
by Bryant [5065:TR:83|, the MSE performs accurate simulation of MOS circuits. Existing simulation engines
perform logic simulation and cannot model MOS effects such as stored charge, charge sharing and transistor
ratios. Also, by using the concept of virtual processors the MSE can simulate a circuit many times larger
than the size of the processor. Existing simulation engines are limited to simulating circuits which fit in the
processor.

A prototype MSE has been constructed and is now in the final stages of debugging. A debug monitor and a
microassembler have been written to support this hardware development. The prototype will be used both as
a research tool to support the simulation requirements of the next generation of VLSI circuits and as a test
bed for experiments in switch-level simulation including: the development of a virtual simulation processor
system, experiments in the application of multi-processing to switch-level simulation, and a study of the
locality of activity in MOS circuits.

4.2 Symbolic Manipulation of Boolean Functions

Randy Bryant

Many problems in computer science and engineering can be described in terms of symbolic manipulations of
Boolean functions. For example, to verify that a combinational logic network correctly implements a desired
behavior, we could construct symbolic representations of the Boolean functions describing the network and
the desired behavior, and then test the two for equivalence. This, of course, is an NP-complete problem, but
our hope is to develop algorithms which under most conditions do not exhibit exponential behavior. Other
problems for which this approach may yield practical results include automatic test generation {described
below), and certain combinatorial problems such as graph coloring.

We have developed a new set of algorithms for Boolean function manipulation whereby the function is
represented by an acyclic directed graph, similar to the binary decision diagram notation introduced by
Lee [1] and furiher popularized by Akers[2]. While the graph representing a funclion of n arguments can
have O(2") vertices in the worst case, most commonly encountered functions are represented by smaller
graphs. We have developed algorithms for performing various operations on Boolean functions using this
representation, where the complexity is related to the size of the graphs being operated on. Hence, as long
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as the graphs do not grow too large, these algorithms have good performance. We are currently running
experiments to determine the practicality of our approach.

4.3 Automatic Test Pattern Generation
Randy Bryant

We have developed a new method to generate test patterns that detect faults in combinational logic circuits
based on Boolean function manipulation. We construct a symbolic representation of the functions computed
by the good circuit and by each faulty circuit. We then attempt to find a small set of input patterns such
that for each faulty circuit at least one of these patterns will yield a different value on some output than in
the good circuit. Similar techniques were used over 20 years ago at IBM but failed to be practical for larger
circuits due to the use of inefficient algorithms for Boolean function manipulation.

Some advantages of our approach over more traditional test generation programs (such as those based on
the D-algorithm) include: (1) general fault models — anything that can be represented by Boolean functions,
(2) easy recognition of undetectable faults — when both the good and the faulty circuit implement, the same
function, (3) guaranteed fault coverage — 100% of all detectable faults modeled, (4) less sensitivity to the
type of circuit — fewer problems with exclusive-or’s and reconvergent fanout, and (5) smaller test sets.

Preliminary experiments with this approach have been quite promising. Using the 74181 4-bit ALU chip as a
benchmark (MSI technology, 14 inputs, 75 logic gates, 204 single faults), we have generated several test sets
containing only 12 patterns that detect all single faults. It has been shown that no smaller test set can give
complete fault coverage for this circuit, hence our tests are minimal. To our knowledge, only hand generated
test sets have matched this result. Our program generates these test sets with less than 20 minutes of CPU
time on a VAX 11/780 — an acceptable performance for this task.

We plan to experiment with both larger and different classes of circuits to evaluate this approach more
completely. Remaining areas of research include extending these methods to sequential and to switch-level
circuits.

References
Lee, C.Y., “Representation of Switching Circuits by Binary Decision Programs”, BSTJ, July, 1959.
Akers, S.B., “Binary Decision Diagrams”, IEEE TC, June, 1978.

4.4 Bit-Serial Reed-Solomon Decoders in VLSI
Douglas L Whiting, Robert J McEliece

Reed-Solomon codes are among the most versatile and powerful error-correcting codes available, with an
inherent capability of correcting both random and burst errors and of incorporating a limited amount of
soft decision information. Thus, Reed-Solomon (RS) codes are a prime candidate for VLSI implementation.
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Efficient RS encoder design is relatively
for VLSI remains an open question. Conventional RS decoders have been implemented with sequential
architectures, but our aim was to produce decoder architectures that take advantage of the parallelism
available in the decoding algorithms. Original results have been obtained in several key areas which can be
combined to produce efficient decoder designs. These results, presented in detail in the thesis “Bit-Serial
Reed-Solomon Decoders in VLSI” by Douglas L Whiting, represent a significant contribution to the techniques

available for design and implementation of Reed-Solomon decoders.

et
ivCCyures

First, efficient structures for performing finite-field arithmetic in digital logic are examined. A general
expression for the transformations involved in bit-serial multiplication is derived. This expression includes
Berlekamp’s dual basis multiplier and Omura’s normal basis multiplier as special cases, and it is shown that
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the dual basis multiplier is not restricted to multiplication by a constant. Next, the necessary and sufficient
condition is derived for the dual basis to be identical to the canonical basis, which consists of consecutive
powers of a primitive element. Also, it is shown how reciprocals over the field can be computed in an efficient
bit-serial fashion; traditionally multiplicative inversion has been considered quite costly. We also present a
proof that normal basis multiplication {proposed by Omura and Massey) involves roughly twice the number
of product terms as a dual basis multiplier.

In the area of decoding methods, known decoding algorithms for Reed-Solomon codes are reviewed and
compared. New techniques for erasure initialization in the Berlekamp and Euclidean decoding algorithms
are presented which fit much more naturally into hardware than previous approaches.

Using these results as a foundation, we introduce several decoder architectures that utilize as much parallelism
as possible and are suitable for VLSI implementation. In particular, for a t error correcting code over GF(2™),
these architectures have area A == O(mt) and pipeline period P = O(1) . Our decoders have the property
that the throughput in bits per second is directly related to P ; 7e, a 10 MHz clock rate implies a 10 Mbit/sec
decoder throughput. Further, it is shown that a single decoder chip can handle a variety of redundancies
and block lengilis with little additional area overhead. Among these architectures is an array of cells to solve
the key equation which requires only a single central controller yet is also entirely systolic. This structure
can also be used for encoding and seems to have several practical advantages over Kung’s proposed systolic

array.

In the area of burst modelling, we developed a method of computing exact output bit error probabilities
using the Gilbert channel model for Reed-Solomon codewords of a given blocklength, redundancy, and
depth of interleaving. Previous attempts at such computations have assumed that all character errors are
independent, but our method allows direct modelling of bursty channels by introducing an extra degree of
freedom.

4.5 Soft Error Correction for Increased Densities in VLSI Memories
Robert J McEliece, Khaled Abdel-Ghaffar, Henk Van Tilborg

If VLSI RAM densities are to continue to increase, it will be necessary to take the problems associated with
“soft errors” much more seriously than has previously been done. We have undertaken a serious study of
how on-chip error-correcting codes can be used Lo enhance the reliability of RAM chips.

We have analyzed the limits of code performance as feature size increases indefinitely, and our results
have been published in an invited paper entitled “Soft Error Correction for Increased Densities in VLSI
Memories,” in the proceedings of the IEEE 1984 Conference on Computer Architecture. A copy of this
paper is reproduced in the appendix to this report.

Also, we have written an expository article called “The Reliability of Computer Memories,” which will appear
in the January 1984 issue of Scientific American.

Our research indicates that the most important source of VLSI soft errors in the near future will be alpha
particle-induced errors. As cell dimensions decrease, we find that a single alpha particle may cause a two-
dimensional “burst” of errors. Thus our current research efforts have been focused on the problem of efficient
correction of such bursts, a subject which has received very little previous attention in the coding literature.
We have devised a new class of two-dimensional burst-error correcting codes, based on the new idea “burst
identification,” which are very easy to implement (¢e, the encoding and decoding circuits would occupy only
a tiny fraction of the RAM’s area), and which are of very low redundancy. A preliminary report on this work
was presented at the 1984 IEEE Information Theory workshop, and a fuller report is now in preparation.
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The Cosmic Cube
Charles L Seitz

Introduction

The Cosmic Cube is an experimental computer for exploring the practice of highly concurrent
computing. The largest of several Cosmic Cubes currently in use at Caltech consists of 64 small
computers that work concurrently on parts of a larger problem, and coordinate their computations
by sending messages to each other. In analogy to a computer network, we refer to the individual
small computers as nodes. Each node is connected through bidirectional, asynchronous, point-to-
point communication channels to six other nodes to form a communication network that follows
the plan of a 6-dimensional hypercube, or binary 6-cube (Fig 1}. An operating system kernel in
each node schedules and runs processes within that node, provides system calls for processes to
send and receive messages, and routes the messages that flow through the node.

The excellent performance exhibited by the Cosmic Cube on a variety of complex and demand-
ing applications, together with its modest cost and open-ended expandability, suggests that highly
concurrent systems of this type are an effective means of achieving faster and less expensive com-
puting in the near future. The Cosmic Cube nodes were designed as a simulation in hardware
of the nodes we expect to be able to integrate onto one or two chips about five years hence.
Future machines of thousands of nodes are feasible, and for many demanding computing prob-
lems, these machines are expected to outperform the fastest uniprocessor systems. Even with ~
current microelectronic technology, the 64-node machine is quite powerful for its cost and size.
It benchmarks between five and ten times the speed of a VAX11/780 on a variety of demanding
scientific and engineering computations.

Message Passing Architecture

A significant difference between the Cosmic Cube and most other parallel processors is that
this multiple instruction, multiple data (MIMD) machine uses message passing, while most such
machines use shared variables for communication between concurrent processes. This message
passing computational mode] is reflected in the hardware structure and operating system, and is
also the explicit communication and synchronization primitive seen by the programmer.

The hardware structure of a message passing machine such as the Cosmic Cube differs from a
shared storage multiprocessor by employing no switching network between processors and storage
{Fig 2). The advantages of this message passing architecture derive from a separation of engineering
concerns between the processor-storage communication and the interprocess communication. The
critical path in the communication between an instruction processor and its random-access storage,
the so-called von Neumann bottleneck, can be engineered to exhibit a much smaller latency when
the processar and storage are physically lacalized. The processor and storage might occupy a single
chip, hybrid package, or circuit board, depending on the technology and complexity of the node.

It was a premise of the Cosmic Cube experiment that the internode communication scale well
to very large numbers of nodes. A direct network such as the hypercube satisfies this requirement,
both with respect to the aggregate bandwidth achieved across the many concurrent communication
channels, and also with respect to the feasibility of the implementation. The hypercube is actually
the same network in a distributed form as indirect logarithmic switching networks, such as the
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Omega or banyan network, that might be used in shared storage organizations. The hypercube
has the additional property that communication paths traverse different numbers of channels, and
so exhibit different latencies. One may take advantage of communication locality in the placement
of processes in nodes.

Message passing machines are simpler and more economical than shared storage machines, and
increasing so with larger numbers of processors. However, the more tightly-coupled shared storage
machine is more versatile, since it is able to support code and data sharing. Indeed, shared storage
machines can simulate message passing primitives very easily, while message passing machines do
not efficiently support code sharing and shared variables.

Figure 2 emphasizes the differences between shared storage and message passing organizations
by picturing the extreme points. We conjecture that shared storage organizations will be preferred
for systems with tens of processors, and message passing organizations for systems with hundreds or
thousands of processing nodes. Hybrid forms employing local storage or cache with each processor,
together with a message passing approach to non-local storage references and cache coherence, may
well prove to be most attractive for intermediate numbers of processors.

Process Programming

The hardware structure of the Cosmic Cube, when viewed at the level of nodes and channels,
is a difficult target for programming any but highly regular computing problems. It is the resident
operating system of the Cosmic Cube that supports a more flexible and machine-independent
environment for concurrent computations. This process model of computation is quite similar--
to the hardware structure of the Cosmic Cube, but is usefully abstracted from it. Instead of
formulating a problem to fit on nodes and on the physical communication channels that exist only
between certain pairs of nodes, one may formulate a problem in terms of processes and “virtual”
communication channels between processes.

The basic unit of these computations is the process, which for our purposes is an instance of
a sequential program that contains actions of sending and receiving messages. A single node may
contain many processes. All processes execute concurrently, whether by virtue of being in different
nodes, or by being interleaved in execution within a single node. Each process has a unique (global)
ID that serves as an address for sending it messages. All messages have headers containing the
destination and sender IDs, and a message type and length. Messages are queued in transit, but
between any pair of processes, message order is preserved. The semantics of the message passing
operations are independent of the placement of processes in nodes.

Except for the ability to distribute processes across the nodes, this process programming
enviroment with interprocess communication by messages is common to many multiprogramming
operating systems. A copy of the resident operating system of the Cosmic Cube, called the “kernel”,
resides in each node, and all of these copies are concurrently executable. The kernel can spawn and
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manage storage, and deal with error conditions. In addition, the kernel handles the queueing and
routing of messages for processes in its node, as well as for messages that may pass through the
node. Many of the functions that we would expect to be done in hardware in a future integrated
node, such as message routing, are in the Cosmic Cube done in the kernel. Thus we are able to

experiment in the kernel with different algorithms and implementations of low level node functions.

The Cosmic Cube has no special programming notation. Process code is written in ordinary
sequential programming languages (eg Pascal, C, etc), extended with statements or external pro-
cedures to control the sending and receiving of messages. These programs are compiled on other



computers, and are loaded into and relocated within a node as binary code, data, and stack seg-
ments.

Process Distribution

It was a deliberate decision in the design of the present kernel that once a process is instantiated
in a node, the kernel will not relocate it to another node. One consequence of this restriction
is that the physical node number can be included in the ID for a process, thus eliminating the
awkward way in which a distributed map from processes to nodes scales with the number of nodes.
Messages are routed according to the physical address part of the destination process ID in the
message header.

This decision was also consistent with the notion that the programmer be able to control the way
in which the processes are distributed onto the nodes, based on an understanding of the structure
of the concurrent computation being performed. Alternatively, since it is only the efficiency of a
multiple process program that is influenced by process placement, the choice of the node in which
a process is spawned can be deferred to a library process that makes this assignment based on
inquiries about the processing load and storage utilization in nearby nodes.

The objective of a careful distribution of processes to nodes generally involves some tradeoffs
between load balancing and message locality. We use the term process structure to describe a set
of processes and their references to other processes. A static process structure, or a snapshot of
a dynamic process structure, can be represented as a graph of process vertices connected by arcs
that represent reference (Fig 3). One can also think of the arcs as virtual communication channels, -
in that process A having reference to process B is what makes a message from A to B possible.

The hardware communication structure of this class of message passing machines can be
represented similarly as a graph of vertices for nodes and (undirected) edges for the bidirectional
communication channels. The mapping of a process structure onto a machine is an embedding of
the process structure graph into the machine graph (Fig 5). In general, the arcs map not only to
internal communication and single edges, but also to paths, representing the routing of messages
in intermediate nodesT It is this embedding that determines both the locality of communication
achieved and the load balancing properties of the mapping.

Concurrency Approach

Most sequential processors, including microprocessors such as the RISC clips described else-
where in this special issue, are covertly concurrent machines that speed up the interpretation of a
single instruction stream by techniques such as instruction prefetching and execution pipelining.
Compilers can assist in this speedup by recovering the concurrency in expression evaluations and
in the innermost iterations of a program, and then generating code that is “vectorized”, or in some
other respects allows the processor to interpret the sequential program with some concurrency.
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We can use such techniques within nodes, where we are tied to sequential program repre-
sentations of the processes. In addition, we want to have at least as many concurrent processes as
nodes. Where are such large degrees of concurrency to be discovered in a computation? One quick
but not quite accurate way of describing the approach used in the Cosmic Cube is that we exploit
overtly the concurrency found in the outermost, rather than innermost, program constructs of cer-
tain demanding computations. It appears that many highly demanding computing problems can
be expressed in terms of concurrent processes with either sparse or predictable interaction. Also,



the degree of concurrency inherent in such problems tends to grow with the size and computing
demands of the problem.

It is important to understand that the compilers used to generate process code for the Cosmic
Cube do not “automatically” find a way to run sequential programs concurrently. We do not know
how to write a program that translates application programs represented by old, dusty Fortran
decks into programs that exploit concurrency between nodes. In fact, because efficient concurrent
algorithms may be quite different from their sequential counterparts, we regard such a translation
as implausible, and instead try to formulate and express a computation explicitly in terms of a
collection of communicating concurrent processes.

Data flow graphs, such as those discussed in this issue in the article on the Manchester data
flow machine, also allow an explicit representation of concurrency in a computation. Although
we have not yct tried to do this, data flow computations can bec executed on machines such
as the Cosmic Cube. One of the reasons we do not use data flow graphs is that many of the
computations that show excellent performance on the Cosmic Cube or on other parallel machines,
and are very naturally expressed in terms of processes {or objects), are in the nature of simulations
of physical systems. Here the state of a system is repeatedly evaluated and assigned to state
variables. The functional (side-effect free) semantics of data flow, in pure form, appears to get
in the way of straightforward expression of this type of computation. The process model that,
we use for programming the Cosmic Cube is relatively less restrictive than data flow, and in our
implementation is relatively more demanding of attention to details such as process placement.

Concurrent Formulations

The crucial step in developing an application program for the Cosmic Cube is the concurrent
formulation, because it is here that both the correctness and efficiency of the program are deter-
mined. It is often intriguing, even amusing, to devise strategies for coordinating in an orderly way
a myriad of concurrent computing activities.

For many of the demanding computations encountered in science and engineering, this formula-
tion task has not proved to be very much more difficult than it is for sequential machines. These
applications are typically based on concurrent adaptations of well-known sequential algorithms, or
are similar to the “systolic” algorithms that have been developed for regular VLSI computational
arrays. The process structure remains static for the duration of a computation.

At the risk of leaving the impression that all of the application programs for the Cosmic Cube
are as simple, let us offer one concrete example of a formulation and its process code. The problem
is to compute the time evolution of a system of NV bodies that interact by gravitational attraction,
or some other symmetrical force. Because each of the /N bodies interacts with all of the V—1 other
bodies, this problem might not seem to be as appropriate for the Cosmic Cube as matrix, grid
point, finite difference, and other problems based solely on local interaction. Actually, universal
interaction is easy, because it maps beautifully onto the ring process structure shown for N =7
in Figure 3.

With N odd, each of N identical processes is “host” to one body, and is responsible for
computing the forces due to (N — 1)/2 other bodies. With a symmetrical force, it is left to other
processes to compute the other (N — 1)/2 forces. The process also accumulates the forces and
integrates the position of the body it hosts. As shown in the C process code in Figure 4, the
process that is host to body 1 successively receives guests 7, 6, and 5, and accumulates forces due
to these interactions. Meanwhile, a message containing the position, mass, accumulated force, and
host process ID of body 1 is conveyed through the processes that are host to bodies 2, 3, and 4,
with the forces due to these interactions accumulated. After (N — 1)/2 visits the representations



of the bodies are returned in a message to the process that is host to the body, the forces are
combined, and the positions updated.

A detail that is not shown in the code in Figure 4 is the process that runs in the Cosmic
Cube intermediate host (IH), or on another network-connected machine. This process spawns the
processes in the cube, and sends messages to the cube processes that provide the initial state, ID
of the next process in the ring, and an integer specifying the number of integration steps to be
performed. The computation in the Cosmic Cube can run autonomously for long periods between
interactions with the IH process. If some exceptional condition were to occur in the simulation,
such as a collision or close encounter, the procedure that computes the forces could report this
event with a message back to the IH process.

This ring of processes can, in turn, be embedded systematically into the machine structure
(Fig 5). In mapping 7 identical processes, each with the same amount of work to do, on 4 nodes,
the load obviously cannot be balanced perfectly. Using a simple performance model originally
suggested by Willis Ware, “speedup”, S, can be defined as:

__ time on 1 node

" time on N nodes’
For this 7-body example on a 4-node machine, neglecting the time required for the communication
between nodes, the speedup is clearly 7/2. Since computation proceeds 3.5 times faster using 4
nodes than it would on a single node, one can also say that the efficiency e = S/N is 0.875,
representing the fraction of the available cycles that are actually used.

More generally, if k is taken as the fraction of the steps in a computation that, because of )
dependencies, must be sequential, the time on N nodes is max(k, 1/}, so that the speedup cannot
exceed min(1/k, N). This expression reduces to “Amdahl’s argument”, that 1/k, the reciprocal of
the fraction of the computation that must be done sequentially, limits the number of nodes that
can usefully be put to work concurrently on a given problem. For example, nothing is gained in
this formulation of an N-body problem by using more than N nodes.

Thus we are primarily interested in computations for which 1/k 3> N, in effect, in computations
in which the concurrency opportunities exceed the concurrent resources. Here the speedup obtained
by using N nodes concurrently is limited by (1) the idle time due to imperfect load balancing, (2)
the waiting time due to the communication latencies in the channels and in the message forwarding,
and (3) the processor time dedicated to processing and forwarding messages, a consideration that
can be effectively eliminated by architectural improvements in the nodes. These {actors are rather
complex functions of the formulation, its mapping onto /N nodes, the communication latency, and
the communication and computing speed of the nodes. We lump these factors into an “overhead”
measure o, defined by the computation exhibiting a speedup S = N /(1 + o). A small ¢ indicates
that the Cosmic Cube is operating with high efficiency, that is, with nodes seldom being idle, or
seldom doing work they would not do in the single node version of the computation.

Cosmic Cube Hardware

With this introduction to the architecture, computational model, and concurrent formulations,
let us turn now to some experimental results.

Figure 6 is a photograph of the 64-node Cosmic Cube. For such a small machine, only 5 feet
long, and large ratio of printed circuit board width to spacing, a one-dimensional projection of the
6-dimensional hypercube is satisfactory. The channels are wired on a backplane underneath the
long box in a pattern similar to that shown in Figure 2b. Larger machines would have nodes arrayed
in 2 or 3 dimensions, such as the 2-dimensional projection of the channels shown in Figure 1. The



volume of the system is 6 cubic feet, the power consumption is 700 watts, and the manufacturing
cost was $80,000. We also operate a 3-cube machine in support of software development, since the
8-cube is not readily shared.

Most of the choices made in this design are fairly easy to explain. First of all, a binary n-cube
communication plan was used because this network was shown by simulation to provide very good
message flow properties in irregular computations. It also contains all meshes of lower dimension,
which is useful for regular mesh-connected problems. The binary n-cube can be viewed recursively.
As one can see from studying Figure 1, the n-cube that is used to connect 2 = N nodes is
assembled from two (n — 1)-cubes, with corresponding nodes connected by an additional channel.
This property simplifies the packaging of machines of varying size. It also explains some of the
excellent message flow properties of the the binary n-cube on irregular problems. The number of
channels connecting the pairs of subeubes is proportional to the number of nodes, and hence on
average to the amount of message traffic they can generate.

With this rich connection scheme, simulation showed that we could use channels that are fairly
slow (about 2 Mbit/sec) compared with the instruction rate. The communication latency is, in fact,
deliberately large to make this node more nearly a hardware simulation of the situation anticipated
for a single chip node. The processor overhead in dealing with each 64-bit packet is comparable
to its latency. The communication channels are asynchronous, full duplex, and include queues for
a 64-bit “hardware packet” both in the sender and receiver in each direction, a basic minimum
necessary to decouple the sending and receiving processes.

The Intel 8086 was selected as the instruction processor because, at the time, it was the
only single chip instruction processor available with a floating point coprocessor, the Intel 8087.
Reasonable floating point performance was necessary for many of the applications that our col-
leagues at Caltech wished to attempt. The system currently operates at a 5 MHz clock rate, limited
by the 8087, although it is designed to run at 8 MHz when faster 8087 chips become available.
After our first prototypes, Intel Corporation generously donated the chips of their manufacture
for the 64-node Cosmic Cube.

The storage size of 128K bytes was the subject of a great deal of internal discussion of “balance”
in the design. It was argued that the cost incurred in doubling the storage size would better be
spent on more nodes. In fact, this choice is clearly very dependent on target applications and
programming style. The dynamic RAM includes parity checking but not error correction. Each
node also includes 8K bytes of read-only storage for initialization, bootstrap loader, dynamic RAM
refresh, and diagnostic testing programs.

Since machine building is not a very common enterprise in a university, some account of the
chronology of the hardware phase of the project may be of interest. A prototype 4-node (2-
cube) system on wirewrap boards was designed, assembled, and tested in the winter 1981-82, and

this system was used for software development and application programs until it was recently

disassembled. The homogeneous structure of these machines was nicely exploited in the project
to accelerate the software development by use of a small hardware prototype that is similar to
scaled-up machines. Being generally pleased with the results from the 2-cube prototype, we had
printed circuit boards designed, and went through the other packaging logistics of assembling a
machine of useful size. The Cosmic Cube grew from an 8-node to a 64-node machine over the
summer 1983, and has been in routine use since October 1983. The task of building hardware to
provide more cycles for the user group has been passed to a group at Caltech’s Jet Propulsion
Laboratory, with the intention of building a 7-cube and two 5-cubes using a program-compatible
derivative design with twice the storage for each node.



In its first year of operation (560,000 node-hours), the Cosmic Cube has experienced two hard
failures, both quickly repaired, and a soft error in the RAM is detected by a parity error on average
of once every several days.

Cosmic Cube Software

As in many “hardware” projects, most of the effort has been in the software. The software
effort has been considerably simplified by the availability of cross-compilers for the Intel 8086 /8087
chips, and because most of the software development is done on conventional computers. Programs
are not only written and compiled in this familiar computing environment, but their concurrent
execution can be simulated on a small scale. Programs are downloaded into the cube through a
connection that is managed by the intermediate host. In the interest of revealing all of the opera-
tional details of using this unconventional machine, we shall begin with the startup procedures.

The lowest level of software is part of what we will call the machine intrinsic environment.
This environment includes the instruction set of the node processor, its I/O communication with
channels, and a small initialization and bootstrap loader program stored together with diagnostic
programs in read-only storage in each processor. A startup packet specifies the size of the cube to
be initialized, and may specify that the built-in RAM tests be run (concurrently) in the nodes. A
part of the initialization involves each of the identical nodes discovering by sending messages its
position in whatever size cube was specified in the startup packet sent from the intermediate host.
This initialization, illustrated in Figure 7, involves messages that also check the function of all of
the communication channels to be used. Program loading following initialization typically loads
the kernel. -

A crystalline applications environment is characterized by programs written in C, in which there
is a single process per node, and in which messages are sent hy direct I/O operations to a specified
channel. This system was developed by the physics users for producing very efficient application
programs for computations that are so regular that they do not require message routing.

The operating system kernel, already described in outline, supports a distributed process en-
vironment with a copy of the kernel running in each node. The kernel is 9K bytes of code and 4K
bytes of tables, and is divided into an “inner” kernel and “outer” kernel. Any storage in a node
that is not used for the kernel or for processes is allocated as a a kernel message buffer that is used
to queue messages.

The “inner kernel”, written in 8086 assembly, performs message sending and receiving in
response to system calls from user processes. These calls pass the address of a message descriptor,
which is shared between the kernel and user process. There is one uniform message format that
hides all hardware characteristics, such as packet size. The kernel performs the construction and
interpretation of message headers based on the descriptor information. The hardware communica-~
tion channels allow very fast and efficient “one-trip” message protocols, with long messages being
automatically fragmented. Messages being sent are queued in the sending process instead of being
copied into the kernel message buffer, unless the message is local to the node. Local messages
are either copied to the destination if the matching receive call has already been executed, or are
copied into the message buffer to assure a consistency in the semantics of local and non-local send
operations.

Processes are often required to manage several concurrent message activities. Thus the send
and receive calls do not “block”. The calls return after creating a request that remains pending
until the operation is completed. The completion of the message operation is tested through a
lock variable in the message descriptor. Program execution can continue concurrently with many
concurrently pending communication activities. A process may also use a probe call that determines



whether a message of a specified type has been received and is queued in the kernel message buffer.
A process that is in a situation where no progress can be made until some set of message areas
are filled or emptied may elect to defer execution to another process. The inner kernel schedules
user processes by a simple round robin scheme, with a process running for a fixed period of time
or until it performs the system call that defers to the next process. The storage management and
response to error conditions are conventional.

The “outer kernel” is structured as a set of priviledged processes with which user processes
communicate by messages rather than by system calls. One of these outer kernel processes performs
process spawning and killing. A process can be spawned either as a copy of a process already
present in the node, in which case the code segment is shared, or from a file that is accessed
through system messages between the spawn process and the intermediate host. Because process
spawning is invoked by messages, it is equally possible to build process structures from processes
running in the cube, in the intermediate host, or network-connected machines. One other essential
outer kernel process is known as the “spy” process, and permits a process in the intermediate host
to examine and modify the kernel’s tables, queued messages, and process segments.

Our current efforts are focused on intermediate host software to allow both time- and space-
sharing of the cube.

Applications and Benchmarks

Caltech scientists in high energy physics, astrophysics, quantum chemistry, fluid mechanics,
structural mechanics, seismology, and computer science, are developing concurrent application
programs to run on Cosmic Cubes. Several research papers on scientific results have already been ~
published, and other applications are developing rapidly. Several of us in the Caltech computer
science department are involved in this research both as system builders and also through interests
in concurrent computation and applications to VLSI analysis tools and graphics.

Application programs on the 64-node Cosmic Cube execute up to 3 million floating point
operations per second. The more interesting and revealing benchmarks are those for problems
in which the machine operates at less than peak speeds. A single Cosmic Cube node at 5 MHz
clock rate runs at 1 /fiﬁl the speed of the same program compiled and run on a VAX11/780. Thus
we should expect the 64-node Cosmic Cube to run at best (1/6)(64)~10 timcs faster than the
VAX11/780. Quite remarkably, many programs reach this performance, with measured values of
o, as defined previously, ranging from about 0.025 to 0.5. For example, a typical computation with
o — 0.2 cxhibits a specdup § — (1/6)(64)/(1.2)~9. One should not conclude that applications
with larger o are unreasonable; indeed, given the economy of these machines it is still attractive
to run production programs with o > 1.

As an example of its applications at Caltech, a lattice computation programmed by physics
post-doc Steve Otto has run for an accumulated 2,500 hours on the 6-cube. This program is a
Monte Carlo simulation on a 12x12x12x16 lattice, an investigation of the predictions of quantum
chromodynamics, a theory that explains the substructure of particles such as protons in terms of
quarks and the glue field that holds them bound. Otto has shown for the first time in a single
computation both the short range Coulombic force and constant long range force between quarks.
The communication overhead in this naturally load balanced computation varies [rom o = 0.025
in the phase of computing the gauge field, to o = 0.05 in computing observables by a contour
integration in the lattice.

Amongst the most interesting and ambitious programs currently in development is a concur-
rent MOS-VLSI circuit simulator, called CONCISE, formulated and written by computer science
graduate student Sven Mattisson. In addition to being a vehicle for developing techniques for



less regular computations, this program promises very good performance in a computation that
consumes a large fraction of the computing cycles on many high performance computers.

The simulation of an electrical circuit involves solving repeatedly a set of simultaneous nonlinear
equations. The usual approach, illustrated in Figure 8, is to compute from the circuit models
piecewise linear admittances, and then to use linear equation solution techniques. CONCISE uses
anodal admittance matrix formulation for the electrical network. The admittance matrix is sparse,
but because electrical networks have arbitrary topology, does not have the crystalline regularity
of the physics computations. At best the matrix is “clumped” because of the locality properties of
the electrical network.

This program is mapped onto the cube by partitioning the admittance matrix by rows into
concurrent processes. The linear equation solution phase of the computation, a Jacobi iteration,
involves considerable communication, but the linearization that requires about 80% of the execu-
tion time on sequential computers is completely uncoupled. Integration and output in computing
transient solutions are small components of the whole computation. The computation is actually
much more complex than we can describe here; for example, the integration step is determined
adaptively from the convergence of previous solutions.

Amongst the many unknowns in experimenting with circuit simulation, as a paradigm of less
regular computations that can be performed on machines such as the Cosmic Cube, are the
interaction between communication cost and load balancing in the mapping of processes to nodes.
Although the “clumping” can be exploited in this mapping to localize communication, it may also
concentrate many of the longer iterations occurring during a signal transient into a single node,~
thus creating a “dynamic” load imbalance in the computation.

Future Perfect Cubes

The present system is never as perfect as the future system, on which we have not yet had
the opportunity to view mistakes and oversights. Although one can polish and fix the software
on a daily basis, the learning cycle on the architecture and hardware is much longer. Let us then
summarize briefly what this experiment has taught us so far, and indulge in some speculations
about future systems of this same general class.

Although programming these machines has not turned out to be as difficult as we should have
expected, we have a long agenda of possible improvements for the programming tools. Most of
the deficiencies are concerned with the representation and compilation of process code. There
is nothing in the definition of the message passing primitives that we would want to change, but
because we have tacked these primitives onto programming languages simply as external functions,
the process code is unnecessarily baroque.

The way in which the descriptors for “virtual channels” are declared, initialized, and manipu-
lated (Fig 4) is not disguised by a pretty syntax, but more fundamentally, the attention the pro-
grammer must give to blocking on lock variables is tedious, and can create incorrect or unnecessary
constraints on the message and program sequencing. Such tests are better inserted into the process
code automatically, based on a data flow analysis, similar to that used by optimizing compilers for
register allocation. These improvements may be only aesthetic, but they are a necessary prelimi-
nary to making these systems less intimidating to the beginning user.

The cost/performance of this class of architectures is quite good even with today’s technologies,
and progress in microelectronics can be translated particularly easily into either increased perfor-
mance or decreased cost. The present Cosmic Cube node is not a large increment in complexity
over the million-bit storage chips that are expected in a few years. Systems of 64 single-chip node



elements could fit in work stations, and systems of thousands of nodes are interesting supercom-
puters. Although this approach to high performance computation is limited to applications that
have highly concurrent formulations, the applications developed on the Cosmic Cube have shown
us that many, perhaps even a majority, of the large and demanding computations in science and
engineering are in this category.

It is also reasonable to consider systems with nodes that are either larger or smaller than the
present Cosmic Cube nodes. We have developed at Caltech a single-chip “Mosaic” node with the
same basic structure as the Cosmic Cube node, but with less storage, for experimenting with the
engineering of systems of single chip nodes, and with the programming and applications of finer
grain machines. Such machines offer a still higher return in performance per cost than the Cosmic
Cube. However, we expect them to be useful for a somewhat smaller class of problems. Similarly,
the use of better, faster instruction processors, higher capacity storage chips, and integrated
communication channels, suggest machines whose nodes would be about the same physical size
as the Cosmic Cube nodes, but would provide an order of magnitude higher performance and
storage capacity.

The present applications of the Cosmic Cube are all compute- rather than I/O-intensive.
However, it is possible to include I/O channels with each node, so that as much I/O bandwidth can
be created as one might need. Such machines could be used, for example, with many sensors, such
as the microphone arrays towed behind seismic exploration ships. The computing could be done
in real time instead of through the medium of hundreds of tapes conveyed to a supercomputer.
One can, similarly, attach disks for secondary storage to a subset of the nodes.

History and Acknowledgements

The origins of the Cosmic Cube project can be traced to research at Caltech in the 1978-80
period by graduate students Sally Browning and Bart Locanthi. These ideas were also very much
influenced by several other researchers. We sometimes refer to the Cosmic Cube by a term from
a 1977 paper by Herbert Sullivan and T L Brashkow, a homogeneous machine, a machine “of
uniform structure”. C A R Hoare’s communicating sequential processes notation, the “actor”
paradigm developed by Carl Hewitt, the “processing surface” experiments of Alain Martin, and the
“systolic” algorithms described by H T Kung, Charles Leiserson, and Clark Thompson, encouraged
us to consider message passing as an explicit computational primitive.

The Cosmic Cube design is based in largest part on extensive program modeling and simulations
carried out in 1980-1982 by Charles R Lang. It was from this work that the communication
plan of a binary n-cube, the bit rates of the communication channels, and the organization of
the operating system primitives were chosen. Together with early simulation results, a workshop
on “homogeneous machines” organized by Carl Hewitt in the summer 1981 helped create the
confidence that it was time to build an experimental machine.

f the Cosmic Cube was donc by computer e graduate students Erik
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DeBenedlctls and Blll Athas. The early crystalline soft,ware tools were developed by physics
graduate students Eugene Brooks and Mark Johnson. The machine intrinsic and kernel code
was written by Bill Athas, Reese Faucette, and Mike Newton, with Alain Martin, Craig Steele,
Jan van de Snepscheut, and Wen-King Su contributing valuable critical review of the design and
implementation of the distributed process environment.

This extended experiment is sponsored through the VLSI program in the Information Processing
Techniques Office of the Defense Advanced Research Projects Agency. We thank Bob Kahn, Duane
Adams, and Paul Losleben both for their support and for their interest in these efforts.
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Figure 1: A hypercube, also known as a binary or Boolean n-cube, is the
way in which N = 2°n small computers called nodes are connected by
point-to-point communication channels in the Cosmic Cube. This
6-dimensional cube, or binary 6-cube, corresponding to a 64-node machine,
is shown projected onto two dimensions.

<<Note to editor: we can provide this illustration from (computer-driven)
laser printer output at any scale and line density you desire.>>
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() Message passing multicomputer systems retain a physically close and
fast connection between the processors and their associated storage. The
concurrent computers, called nodes, can send messages through a network of
communication channels. The network shown here is a 3-dimensional cube, a
small version of the communication plan used in 6 dimensions in the

64-node cosmic cube.

Figure 2: A comparison of shared storage multiprocessors and message
passing machines. Various hybrids between the two extreme points pictured

here are also possible.



Figure 3: Process Structure for a concurrent formulation of the N-body
problem. In this example, one is computing the time evolution -- orbital
positions -- of N=7 bodies that interact by a symmetrical force such as
gravity. Messages containing the position and mass of the particles

are sent from each process (N-1)/2 steps around the ring, accumulating the
forces due to each interaction, while the process that is host to that
body accumulates the other (N-1)/2 forces. The messages are then returned
over the chordal paths to their host process, the forces are summed, and
the position and velocity of the body is updated. This example is
representative of many computations that arce demanding simply because of
the number of interacting parts, not because the force law that each part
obeys is complex.



/* process for an n-body computation, n odd, with symmetrical forces */

#include '"cubedef.h" /* cube definitions */
#include "force.h" /* procedures for computing forces and positions */
struct body { double pos[3]: /* body position x,y.= */
double vel[3]:; /* velocity vector x,y,z */
double force[3]; /* to accumulate forces x/
double mass; /* body mass */
int home_id; /* id of body's home process */
} host, guest;
struct startup { int n; /* number of bodies */
int next_id; /* ID of next process on ring */
int steps: /* number of integration steps */
} s
struct desc my_body_in, my_body_out, startup_in; /* IH channels */
struct desc body_in, body_out, body bak; /* inter-process channels */

cycle() /* read initial state, compute, and send back final state */
int i; double FORCE[3]:;

/* initialize channel descriptors */

/* init(*desc, id, type, buffer_len, buffer_address); */

init (&my _body_in ,0,0,sizeof (struct body) /2, &host) ; recv_wait (&my _body_in) ;
init (&startup_in ,0,1,sizeof (struct startup)/2,4&s); recv_wait (&startup_in);

init (&my_body._out, IH_ID, 2, sizeof (struct body) /2, &host):
init (&ody_in , 0O, 3, sizeof(struct body) /2, &guest);
init (&body_out , s.next_id, 3, sizeof (struct body) /2, &guest)
init (&ody_bak , 0O, 4, sizeof(struct body) /2, &guest):;
while(s.steps--) /* repeat s.steps computation cycles */
{
body_out.buf = &host; /* first time send out host body */
for(i = (s.n-1)/2; i--;) /* repeat (s.n-1)/2 times */
send_wait (&body_out) ; /* send out the host|guest */
recv_walil (&ody_in) ; /* receive the next guest */
COMPUTE_FORCE (&host, &guest,FORCE) ; /* calculate force */
ADD_FORCE_TO_HOST (&host, FORCE) ; /* may the force be with you */
ADD_FORCE_TO_GUEST (&guest, FORCE) ; /* and with the guest, also */
body_out.buf = &guest; /* prepare to pass the guest */
}
body_bak.id = guest.home_id’ /* send guest back */
send_wait (&body_bakK) ; recv_wait (&body _bak) ; /* Tthe envoy returns */
ADD_GUEST_FORCE_TO_HOST (&host, &guest) ;
UPDATE (&host) ; /* integrate position */

}
send_wait (&my_body_out); /* send body back to host, complete one cycle */
by

main() { while(l) cycle(): } /* main execute cycle repeatedly */

Figurc 4: C language process code for the N-body example.
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Figure 5: Embedding of the process structure for the 7-body example into a
4-node machine. The way in which the processes are distributed does not
influence the results computed, but does influence through load balancing
and message locality the speedup achieved by using 4 computers for this
task rather than one.



Figure 6: Photograph of the 64-node Cosmic Cube in operation. The nodes
are packaged as one circuit board per node in the long card frame on the
bench top. The 6 communication channels from each node are wired in a
binary 6-cube on the backplane on the underside of the card frame. The
separate units on the shelf above the long 6-cube box are the power supply
and an "intermediate host'" (IH) that connects by an extra communication
chamnel to node O in the cube.
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Figure 7: In the initialization of the Cosmic Cube, each of the identical
nodes discovers its identity, and checks all the communication channels,
with a message wave that traverses the 3-cube pictured from node O to node
7, and then from 7 to O. If node 3 did not respond to messages, nodes 1,
2, and 7 would report this failure back to the corner over other channels.
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"solve matrix equation' phase.
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Abstract

Special purpose bardware for performing switch-level simula-

tion of MOS VLSI circuits 500 times faster than a conventional

computer is described. A virtual processor architecture allows
circuits of any size to be simulated independent of the number -

of processors installed.

Introduction

As the complexity of VLSI circuits approaches 10° devices, the
computational requirements of design verification are exceeding
the capacity of general purpose compuiers. To provide the

computing power required o verify these complex VLSI chips, -

special purpose hardware for performing simulation is required.
Existing logic simulation engines [1,2,3,4] are inadequate for
MOS VLSI because they cannot accurately model MOS circuits.

Switch-level simulation, on the other hand, models the effects of - ‘

capacitance and transistor ratios at speeds comparable to logic
simulation. Existing machines limit the size of a circuit which
can be simulated by binding circuit elements to hardware at
compile time. Virtual network processing allows circuits of any
size to be simulated by binding circuit elements to hardware ab
run-time.

A state of the art VLSI chip in 1982 contained ~ 10° devices

and required a4 1 week of CPU iime to complete a single

verification cycle. The complexity of VLSI circuits is increas-
ing at an exponential rate and will soon reach the level of 10°
devices per chip. Since both the number of test vectors Tequired

to verify a chip and the amount of computation required to

simulate one test vector scale at least linearly with the com-
plexity of a chip, the amount of computation required verify
a chip scales at least quadratically with complexity. Thus, as
shown in figure 1, a 1986 chip containing = 16° devices will
require about 2 years of CPU time to completely verify on a
conventional computer. Clearly, special purpose hardware is
required to simulate these complex chips in a {imely manner.

This paper describes the architecture of the MOSSIM.-

Simulation Engine (MSE) [5], a special purpose processor
for performing switch-level simulation of MOS VLSI cir-
cuits. The MSE implements the MOSSIM algorithm [6] in
hardware. Subnetwork concurrency, functional concurrency

and specialization are used to accelerate the algorithm so that -

a single processor MSE performs switch-level simulation 200 to
500 times faster than a VAX 11/780. Several MSE processors
can be connected in parallel to achieve additional speedup. The
MSE performs run-time binding of circuit elements to make
more efficient use of parallel processors and to allow circuits of
any size to be simulated.

L Figere 1. Scaling of Simulation Time .
’ Algorithm v o

The MSE implements the MOSSIM algorithm [8] in hardware.
This algorithm, is based on a formal switch-level model of MOS

" transistor networks. By modeling. MOS transistor ratios and

node capacitances and by considering an MOS transistor as
a truly bidirectional device, MOSSIM provides comsiderably
more accurate simulation of MOS LSI than conventional logic
simulators. MOSSIM achieves performance comparable with
logic gate simulators by using an incremental algorithm which
exploits the sparseness and locality of events in a circuit.

The switch-level network model consists of a set of nodes con-

_ nected by a set of transistors. Nodes are assigned sizes based -

on their relative capacitance. The abstraction of node size ac-

" curately models the behavior of charge sharing in MOS cir-

cuits while avoiding the complexity of parametric capacitances.
Traasistor Tatios are modeled by assigning each tramsistors a

_ strength based on its relative ratio. Both nodes and transistors

have states from the set 0,1, X.

The MOSSIM algorithm performs repeated solutions of the
steady state excitation of the network umtil a stable state is
reached. Unlike logic simulators which propagate logic values
through a gate network, MOSSIM operates by analyzing paths
on the graph formed by conducting transistors. Each solution
involves finding the strongest path from a source of logic zero
or logic one to each scheduled node and proceeds in four phases.
In the first phase all nodes which may be affected by a chang-
ing transistor are scheduled for evaluation. In phase two, the
strongest definite path to each scheduled node is found. The
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Figure 2. MSE Block Diagram

strongést unblocked path from logic zero or logic one to each
node is found in phase three and the logic state of the node is

set based on this path. In phase four, the state transistors con-

trolled by changing nodes are updated. This simulation using
blocking paths handles unknown logic states in a very accurate
manner [6].

The MOSSIM. algorithm was ﬁxodiﬁed for the hardware im-

plementation by manipulating each phase of the simulation to

" fit into an algorithm template. The template was then imple-

mented in hardware by building dedicated units for the tasks

of scheduling, updating nodes, and traversing the network.

Axchitecture

The MSE achieves its performance through subnetwork concur-
rency, functional concurrency and specialization. Subnetwork

concurrency involves partitioning the network into several sub-

networks and simulating the subnetworks in parallel. Within

each processor functional concurrency is achieved by perform-

ing the operations of scheduling, node evaluation and network

traversal in parallel. Finally, in performing each of these opera-
tions spec.alized logic circuits are used to implement the time

critical functions offering orders of magnitude speedup over -

general purpose computer instructions.

As shown in figure 2, the MSE consists of a number of subnet-
work" processors (SP) connected by a message bus (MB) to &
message switch (MS). Auxiliary processors (AP) may also be
connected to the MB to perform functional simulation. A host
processor (HP) is connected to all processors by the host bus
(HB). The HP controls the operation of the MSE, performs vir-
‘tual processor swapping and has the ability to read and write
each register and memory location in the machine.

The SPs and APs simulate subnetworks of a circuit in paral-
lel. Interactions between submetworks create messages which
are routed throngh the MS. The MS performs a virtual subnet-
work to physical SP translation for each message and queues
messages for subnetworks which are swapped out. Simulation

studies indicate that up to eight SPs may be attached to asingle

MB/MS without signiﬁcam'degmdation due to bus contention.

The SP, shown in figure 3, is the hardware kernel of the MSE.
Each SP has a capacity of 4096 nodes and 18384 transistors
partitioned into separate physical processors of 1024 nodes
each. An SP implements the MOSSIM algorithm performing -
all operations for its submetwork and sending messages to the
MS for operations involving other subnetworks. To exploit all |
possible functional concurrency a separate function unit is as- *

sociated with each major data structure. The scheduling unit

(SU) implements the scheduling priority queues. The node

memory and a relaxation unit which operates on nodes are -

contained in the node operation unit (NOU). The network . :

. traversal unit (NTU), contains the link and gate lists which .

describe the transistors and the network connectivity. The SP -

"also contains two additional function units. The control proces-
~sor supervises operation of the SP, and the lnput/output unltﬂ -

handles inter-processor communication..

'In operation the address of the highest priority node scheduled

for the current simulation phase is removed from the priority =
queus by the SU and transmitted to the NOU. The NQU

reads the node record at this address and sends pointers to

its adjacency lists to the NTU. The NTU then returns the =
addresses of all adjacent nodes. The NOU operates on these .
nodes scheduling those which change by sending their address .

“to the SU. All aperations are pipelined to keep all three units

busy at all times. A stall mechanism is used to interlock the :
pipeline. :

Specialized hardware was added to each unit as necessary to

" balance their performance so that no one unit was a bottleneck. -

The SU priority queue was implemented in hardware so that an .

insertion takes one cycle and a deletion takes two cycles. The: =

adjacency lists in the NTU are sequenced by counters at a rate”
of one node per cycle. The relaxation operation in the NOU is

performed in one cycle. When this 200ne cycle is compared to -

the 50 lines of source code (== 200p¢) required to implement
this operation in software, it is easy to see that specialization
achieves much greater performance improvements than concur-

Figure 8. Subnetwork Processor Block Diagram
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Tency.

Votual Network Processing

The very locality of activity which makes subcircuit concur-
rency possible can lead to a degradation in performance due to
idle processors. Typically only 5% of the nodes in a circuit are
active at a given time; however, this 5% tends to be clustered as
50% of the nodes in 10% of the subnetworks. Since the amount

of activity in each processor is not equal, processors with low

activity will complete a processing step early and remain idle
until all processors complete the step. To avoid this potential
degradation, we have developed the concept of virtual network
processors (VINPs). This concept is analogous to that of virtual
memory. We partition the circuit into many more subcircuits
than we have physical processors. A virtual network processor,
associated with each subcircuit, contains the complete state of
the simulation of that circuit. To maximize throughput, the

VNP5 are dynamically mapped to SPs based on activity. The

virtual network processor mechanism allows the MSE to simu-
late large circuits with the size of the circuit limited only by the
amount of backing store available to hold the circuit descrip-
tion.

Performance

MSE performance has been measured using both a fanctional

simulator and a chip-level simulation of ther MSE hardware.

At a 5MHz clock rate, a single MSE processor performs 5M .

relaxation operations per second. For typical networks this
corresponds to 250K gate cvaluations per second (GEPs).
Simulation results indicate that eight MSE processors can be

conmnected on a single bus to achieve a throughput of 2M GEPs. .

For comparison, MOSSIM on a VAX 11/780 performs about

300K GEPs. Accounting for I/O overhead during a simulation,.-

we estimate that a single SP MSE will simulate 200 to 500 times
faster than a VAX.

Status

A prototype MSE subnetwork processor has been comstructed

and is currently being debugged. Consisting of ~ 400 in-
tegrated circuits packaged on a single board, this processor can
hold subnetworks totaling 16K transistors and 4K nodes. We
expect this prototype to be operational by early Fall 1984. The
development of systems software for the processor is proceeding
in parallel with the construction of the hardware,

Corncluasion

The ideas incorperated in the MSE can be applied to many

problems of a similar nature. For a problem to be a can-
didate for special purpose hardware, it must be computation-
ally demanding, have a stable and structured algorithm, have
potential parallelism (both functional and structural), and have
some operations which are poorly matched to the capabilities
of a general purpose computer. The concept of virtual network
processing, run-time binding of sub-networks to hardware, is
also applicable to many problems. Virtual network process-
ing can be applied to any application which is characterized
by sparse clustered activity. Switch-level simulation has all of
these properties. Other problems which are candidates for spe-
cial purpose hardware and virtual network processing include
circuit simulation, geometry compaction, and routing. It is in-
{eresting to note that these problems also use a sparse dynamic

graph data structure and could make use of the schedulmg and
network traversal units of the MSE.

Acknowlicdgements

We thank Chuck Seitz for providing support and guidance to
this project and Hsiu-Tung Yu for contributing to the softwarc
and hardware debugging. This research was sponsored by
the Defense Advanced Research Projects Agency, ARPA order
number 8771, and monitored by the Office of Naval Research
under contract number N00014-79-C-0597.

Beferences
[1] Denneau, M. M.,“The Yorktown Simulation Engine,” 16tk
Design Automation Conference, ACM, 1982, pp. 5i-b4.
[2]  “ZyCad LE00L and LE-002 Produci Description,”
: ZYCAD,1982.
[3 Bartow, R. L. ‘et al,“Architecture of a Hardware
Simulator,” IEEE Conference of Circuils and

Computers, 1980, pp.891-893.

[4} “Daisy Megalogician, Product Description,” Daisy
Systems, 1984.

8] Dally, W., The MOSSIM Simulation Engine: Architecture
and Design, Caltech Technical Report 5123:TR:84, April

1984.
[8] Bryant, R., “A Switch-Level Model and Simulater for MOS

Digital Systems,” IEEE Trancactiorns on Computers, vol.
C-33, pp. 166-177, February 1984,

-8 -



SOFT ERROR CORRECTION FOR INCREASED DENSITIES IN VLSI MEMORIES

Khaled Abdel-Ghaffar and Robert J. McEliece

Department of Electrical Engineering
California Institute of Technology

1. INTRODUCTION

If VLSI RAM densities are to continue to in-
crease, it will undoubtedly be necessary to take
the problems associated with "soft errors" much
more seriously than has previously been done. In
this paper, we propose a methodology for analyzing
the effects of soft errors in VLSI RAMS as feature
sizes decrease, and for taking corrective action
with error-correcting codes. We will take a para-
metric approach, making several different assump-
tions about how the error severity will scale as
feature size decreases, and our conclusions will

be stated relative to the particular assumption
made. It is our hope that as more definite infor-

mation about VLSI error-scaling becomes available,
the results of this paper will prove helpful for
designers of ultra-dense memories.

The most important source of soft errors in
the near future is expected to be alpha-particle
effects [1]. The charge track produced in the
memory cells by a sufficiently energetic alpha
particle emitted from the impurities in the IC
package can change the logical state. Cosmic rays
can produce errors by essentially the same mecha-
nism [2].

If feature size becomes sufficiently small,
thermal and quantum effects may become significant
[31,[4],[5], and, we will argue below, will impose
an ultimate limit (doubtless unrealistically opti-
mistic) on information densities.

We wish to argue that error-correcting codes
can be used to reduce the effects of soft errors on
dense memories. Unfortunately, however, no accu-
rate models have been established which predict the
severity of error at submicron feature sizes. Thus,
as mentioned above, we have pursued our study using
a family of abstract error models. These models
are introduced in Section 2. In Section 3, we will
study the improvement possible (as measured in area
per information bit) with coding, for each of our
abstract models. In Section 4, we consider the
problem of placing the encoder and decoder on the
RAM chip. In Section 5, we discuss an explicit
class of codes, orthogonal codes, which we show are
attractive for a certain class of error models.

The research described in this paper was sponsored
by the Defense Advanced Research Projects Agency,
ARPA order 3771, and monitored by the Office of
Naval Research under contract number N0O001l4-79-C-
0597.

0194-7111/84/0000/0248%01.00©1984 IEEE

Finally in Section 6, we discuss our abstract re-
sults in the light of what little we are able to
say about the physics of the error-producing mech-
anisms.

2. AN ABSTRACT MODEL

We begin with an abstract "chip" of unit area,
which contains one memory cell. We apply a linear
scaling of a factor of o, which produces on the
original chip o cells. We assume that if error-
correction is present, it is performed at regular
intervals (the interval will be a multiple of the
chip's refresh period, and may vary with a).

We further assume that the probability of a
given stored bit of information changing its logi-
cal state during a decoding period, satisfies the
following set of assumptions:

1. It is position- and time-invariant.

2., It is independent of the current state of
the chip.

3. It is independent of any errors which may
occur elsewhere on the chip.

With these assumptions (which are certainly
subject to challenge; see Section 6), storing and
retrieving bits on the chip is equivalent to trans-
mitting them over a memoryless binary symmetric
channel (BSC). We will denote the transition pro-
bability of this channel by €. We assume that €
increases with o, and that it tends to 1/2 as a
tends to infinity. In our analysis, however, the
quantity 1l-2¢ occurs more dircctly than ¢, and so
we define & to be this quantity:

§=1-2 .
3. THE MINIMUM AREA PER INFORMATION BIT (MAPIB)

When error-correcting coding is used to in-
crease storage reliability, a certain number of the
memory cells on the chip are reserved for the code's
parity-checks, and will be called redundant bits.
The remaining memory cells are used for storing
data and are called information bits. The code
rate R is defined to be the ratio of the total num-
ber of information bits to the total number of bits
on the cell (az). As o increases, we expect a
larger probability of error, and so the needed code
rate R will decrease. Thus, although the_total
number of bits on the cell increases as a“, the
number of information bits cannot be expected to



grow this rapidly. Indeed, if the increase in
error severity is sufficiently rapid, the number
of information bits on the chip may actually begin
to decrease when o exceeds some limit.

Thus the following question arises. What is
the minimum area per information bit (MAPIB) re-
quired for reliable data storage, relative to a
given error scaling model, assuming the technology
to produce scaled chips with any a 2 1? We can
answer this question using known results from in-
formation theory.

According to Shannon's noisy-channel coding
theorem [6], the probability of (decoded) error for
the stored bits can be made arbitrarily small 1if
and only if the code rate R is less than the capa-
city C, which is given by the formula

C= 1/2[(1—5)log2(1—6)+(1+6)log2(l+6)]

It follows that the minimum area per information
bit for a given code rate R, which we denote by
A(R), is given by

1
A(R) =
R[s~Hc R 1

where 6_1 and C—1 are the inverse functions of
§(a) and C(S8), respectively. Hence

MAPIB = min A(R)
0<R<1

For a given assumption about the relationship be-
tween o and 8, it is possible to draw a curve ex-
hibiting the relationship between the minimum
needed area per information bit as a function of
R. Such a curve separates an "allowable region"
in which reliable storage of data is, in principle,
possible, from a "forbidden region," in which re-
liable storage is impossible. The shape of this
curve depends critically on the error model, es-
pecially as o approaches infinity (Figures 1-4).
However, the possible curves fall into three gen-
eral categories:

Case 1 (Light Noise): ab + « .

For this (unlikely) set of models, an infi-
nite number of information bits can be stor?d on
a unit area. Fig. 1 shows this for § = o-1/2,
MAPIB is zero.

Case 2 (Moderate Noise): ad =+ constant #0 .

In this case a finite nonzero number of in~-
formation bits can be stored as o + . Fig. 2
shows this for § = a~l, MAPIB is finite.

Case 3 (Severe Noise): ad + 0 .

In this case, the error rate increases very
rapidly with a, so that in the limit all of the
bits on the chip become redundant, and the area/
information bit Eends to infinity. Fig. 3 zhow?z
this with 6 = a-2, and Fig.4 for &=1-20(10%3/2)
(see Section 6). MAPIB is finite in this case also.

4., THE AREA REQUIRED FOR THE ENCODER
AND DECODER

In Section 3 we implicitly assumed that the
chip area was devoted entirely to information and
redundant bits. In this section we will briefly
consider chips in which the encoder and decoder
themselves consume some of the chip area, so that
less area is available for "bits."

In the following we will assume that the en-
coder and decoder are immune from error. Although
this assumption is perhaps somewhat unrealistic,
it is known that errors in active processors are
much less frequent than errors in memories.

In Case 1 in Section 3 (8o + <), we showed
that an infinite number of information bits can be
stored reliably on the chip, and that MAPIB tends-
to zero. In fact, we can show that MAPIB tends to
zero, even with the encoder and decoder on the
chip. In this case, our analysis shows that most
of the chip will be devoted to the processing cir-
cuitry, and a negligible fraction to the codeword
bits.

We have not yet completed our studies of the
impact of decoder area in Cases 2 and 3.

5. ORTHOGONAL CODES FOR MEMORY CHIPS

In order to achieve the potential MAPIB's
promised in Section 3, it is necessary to use effi-
cient and sophisticated codes. Here we consider
only Case 1, and as before leave the consideration
of Cases 2 and 3 to a later paper. Motivated by a
result of Viterbi [71, we have found that the class
of orthogonal codes can be used to achieve, in the
limit, an infinite number of bits per unit of area.
(An orthogonal code with n codewords of length N,
with n<=N, can be constructed by taking the first
n rows of an N x N (0,1) Hadamard matrix.)

6. DISCUSSION

Tn Section 3, we made a number of simplifying
assumptions about the error mechanism which led us
to consider the memoryless binary symmetric chan-
nel. 1In fact, some of these assumptions are known
not to be valid for some error mechanisms. For
example, it is believed that as cell dimensions
decrease, a single alpha particle may cause multi-
ple errors, If this is the case, the resulting
channel will not be memoryless. However, it is a
well-known if vague theorem of information theory
[8] that for a given error probability, memory can
only increase channel capacity, so that in princi-
ple our memoryless assumption is in fact pessimis-
tic! We mention also that in NMUS technoulugy,
only cells representing logical-ones (uncharged
depletion regions) are sensitive to alpha-particle
errors. This would make the appropriate channel
model a binary asymmetric channel. However, sense
amplifiers and bit lines are also sensitive to
alpha particles [9], and errors of this nature can

effect both logical zeros and ones.

Although alpha-particles are expected to be



