
IDebug�

An Advanced Debugging Framework for Java�

Joseph R� Kiniry

Caltech Technical Report CS�TR������

Department of Computer Science�

California Institute of Technology�

Mailstop 	
�����

Pasadena� CA ���	


September� ����

Abstract

IDebug� the Infospheres debugging framework� is an advanced debug�
ging framework for Java� This framework provides the standard core de�
bugging and speci�cation constructs such as assertions� debug levels and
categories� stack traces� and specialized exceptions� Debugging function�
ality can be �ne�tuned to a per�thread and�or a per�class basis� debugging
contexts can be stored to and recovered from persistent storage� and sev�
eral aspects of the debugging run�time are con�gurable at the meta�level�
Additionally� the framework is designed for extensibility� Planned im�
provements include support for debugging distributed object systems via
currying call stacks across virtual machine contexts and debug information
logging with a variety of networking media including unicast� multicast�
RMI� distributed events� and JavaSpaces� Finally� we are adding support
for debugging mobile agent systems by providing mobile debug logs�

� Introduction

Programming technologies have evolved greatly over the years� New program�
ming models have emerged� new languages have gained popularity� new tools
have been adopted� and yet several core debugging constructs have not changed�
We believe that the two primary constructs for general debugging are the exe�
cution trace and the assertion�

�This document describes IDebug version ����

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216151565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


��� Object�Oriented Debugging

Debugging object�oriented programs is not the same as debugging procedural
ones� Because most object models enforce modularity and encapsulation� one
must test both the implementation and the interface of a class�

A speci�cation of an interface is called a Contract ��� �� 	� 
�� A class�s
contract speci�es the externally visible behavior that a class guarantees�

Contracts are typically speci�ed via three constructs preconditions� post�
conditions� and invariants� Using these three constructs� the safety properties
of a class can be completely speci�ed�

��� Debugging in Java

Surprisingly� given its popularity� the Java programming language provides very
few built�in constructs for debugging classes�

Typically� a Java programmer relies upon language features and development
tools for debugging� Java provides array bounds checking� static type checking�
variable initialization testing� and exceptions to assist in code debugging� While
programming environments provide sophisticated source�code debuggers� most
developers seem �xated on using primitive println�s to debug their code�

Java is missing several traditional core debugging constructs� the most crit�
ical of which is assertions� Assertions are program statements of the form �at
this point in execution the following must be true�� They are used to specify
predicates that must remain inviolate for a program to exhibit correct behavior�
Typically� if an assertion is violated� a program is aborted� In object�oriented
systems we often have options other than halting the program execution �e�g�
throwing an exception��

��� Debugging Frameworks

A framework is a collection of classes that provides a uni�ed model and interface
to a speci�c piece of functionality� A framework in Java is typically implemented
as a collection of classes organized into a package�

��� IDebug� The Infospheres Debugging Framework

IDebug� the Infospheres debugging framework� is implemented as a set of Java
Beans �Java components� collected into the package IDebug� These classes
can be used either �a� as �normal� classes with standard manual debugging
techniques� or �b� as components within visual Java Bean programming tools�

This package provides many standard core debugging and speci�cation con�
structs� such as the previously discussed assertions� debug levels and categories�
call stack� and specialized exceptions� Debug levels permit a developer to assign
a �depth� to debug statements� This creates a lattice of information that can
be pruned at runtime according to the demands of the current execution� Call
stack introspection is provided as part of the Java language speci�cation� The

�



IDebug framework uses the call stack to support a runtime user�con�gurable
�lter for debug messages based upon the current execution context of a thread�
Finally� a set of specialized exceptions are provided for �ne�tuning the debug
process�

Additionally� the framework supports extensions for debugging distributed
systems� One problem typical of debugging distributed systems is a loss of
context when communication between two non�local entities takes place� E�g�
When object A invokes a method m on object B� the thread within m does not
have access to the call stack from the calling thread in A� Thus� the IDebug
package supports what we call call stack currying� Information such as source
object identity� calling thread call stack� and more is available to the debugging
framework on both sides of a communication� Such information can be curried
across arbitrary communication mediums �sockets� RMI� etc���

The IDebug package is also being extended to support the debugging of
mobile agent systems� Mobile agent architectures can support disconnected
computing� For example� an object O can migrate from machine A to machine
B� which might then becomes disconnected from the network �i�e� absolutely no
communication can take place between B and A�� Since B cannot communicate
with A� and printing debugging information on B�s display might not be useful
or possible� B must log debugging information for later inspection� To support
this functionality� the IDebug package will provide serializable debug logs� These
logs can be carried around by a mobile object and inspected at a later time by
the object�s owner or developer�

The IDebug package is very con�gurable� Debugging functionality can be
�ne�tuned on a per�thread basis� Each thread can have its own debugging
context� The context speci�es the classes of interest to that particular thread�
I�e� If a thread T speci�es that it is interested in a class C but not a second
class D� then debugging statements in C will be considered when T is inside of
C� but debugging statements in D will be ignored at all times� These debugging
contexts can be stored to and recovered from persistent storage� Thus� �named�
special�purpose contexts can be created for reuse across a development team�

� Requirements

In this section we will brie�y present our project analysis including our project
concept dictionary� a review of our requirements for the debugging package� and
our goals�

��� Project Dictionaries

At the beginning of the project analysis phase� a dictionary of concepts was de�
veloped so that all designers� developers� and users would have a clear� common
language� The dictionary of terms is included in Table � as well as in the design
diagrams directory of the framework deliverable�

	



Project Dictionary

Assertion An assertion is a predicate which states a logical
sentence which evaluates to true or false� The
assertion is typically embedded in program code� An error is
indicated if� during program execution� the assertion evaluates
to false� There are three main types of assertions �see
below� preconditions� postconditions� and
invariants�

Debug Context A debug context is a debugging frame of reference�
More speci�cally� each thread of control within a
component can have an independent debug context� This
context describes what types of debugging information are
relevant to that speci�c thread�

Debug Semantics Debug semantics are the runtime behavior of the
debug package� as exhibited by its reactions to
exceptions� the language and text of its output
messages� etc�

Invariant A condition that must be true at all stable points in
program execution� There are several types of invariants�
A class invariant is an assertion describing a
property which holds for all instances of a class and�
potentially� for all static calls to the class� A
loop invariant for a given loop is an assertion that
is true at the beginning of the loop and after each
execution of the loop body�

Output Interface The debug package�s output interface is any
legitimate output medium� Example output interfaces
include the system console� a shell window� a GUI� etc�

Postcondition A condition that must be true at the end of a section
of code�

Precondition A condition that must be true at the beginning of a
section of code�

Predicate Formally� a predicate is something that is
a�rmed or denied of the subject in a proposition in
logic� In other words� it is a logical sentence that
evaluates to a boolean within speci�c contexts�

Variant A variant is a predicate that describes how
state changes� A loop variant is an assertion
that describes how the data in the loop condition is
changed by the loop� Loop variants are used to
check forward progress in the execution of loops �i�e�
avoid in�nite loops and other incorrect loop behavior��

Table � Project Dictionary






Next� we will consider the core� application� and innovative requirements we
agreed upon before designing the IDebug framework�

��� Core Requirements

We require that the IDebug framework support the following requirements� IDe�
bug must� at the minimum

�� Provide an assertion mechanism� Assertions are the core construct of any
debugging system� Assertions can be intelligently inserted in program
code and� if an assertion is violated� an error message is logged and�or a
runtime exception is thrown and the program potentially halts�

�� Support the output of debugging messages� Printing miscellaneous debug�
ging messages� perhaps outside the context of the primary interface of a
component� is essential in a good debugging suite�

	� Support multiple debugging levels� Di�erent types of errors� messages� and
situations require di�erent levels of response� An adequate debugging
framework should not only support a set of debugging levels� but the
set should be ordered so that user or developer�tunable �ltering of debug
output can take place��


� Complement the standard Java exception mechanism� Since this is a de�
bugging framework built for the Java language� it should work with� not
against� the built in exception mechanisms� In particular� prudent use
of exception types �Runtime verses Throwable� is necessary so that the
framework is not overly intrusive to the developer��

�� Work with all development environments� IDebug must work with all
development environments� from the most �ashy IDE to the lowly CLI
runtime� This means that IDebug must be implemented as ����� Pure
Java�� no proprietary extensions or native code may be used�

��� Application Requirements

Because we build a wide array of Java applications and components� we believe
that IDebug should support debugging all types of Java programs� This means
that the framework must provide debug functionality that complements the
following application types� Each type of application listed below is followed by
a non�unique implication of that particular application assumption�

�� Console�based applications� Sometimes we will want to send messages to
an output stream di�erent from C�s stdout or stderr�

�A �ltering mechanism could be used instead� though is usually more tedious for the tester�
�I�e� If all exceptions were Runtime exceptions� the developer would have to bracket nearly

all code with try�catch blocks�

�



�� Graphical user interface applications� Occasionally� one wants to send
debug messages to independent debugging windows or message sub�frames
within a large application�

	� Console�less applications� If there is no output channel� logging debug
messages for later retrieval is an excellent course of action�


� Independent components �e�g� beans� servlets� doclets� etc��� Independent
components should be able to maintain independent debugging semantics
and contexts� Conversely� sometimes it is useful to have a compositional
application share a debug context among its components�

�� Mobile agent�object applications� If an application has mobile sub�components�
their debug contexts need to be mobile as well� and debugging message
output and�or storage should be location�independent and�or location�
aware�

�� Distributed applications� Distributed applications mean �at least� dis�
tributed control� distributed debugging context� and distributed debug
messaging�

If a debug package were to support all of the above application types� we
would consider it extremely powerful due to its �exibility�

��� Innovative Requirements

Finally� we wish to support a set of innovative debugging capabilities� While
most of these goals are independent of the target language� they are facilitated
by many of Java�s more advanced features� The list of innovative requirements
includes

�� Support categorized debugging� Debugging messages� errors� warnings� etc�
should not only have a value �the debug level�� but they should have a
debug category �a classi�cation��

�� Support per�class debugging� A developer should be able to selectively
turn debugging on or o� at a per�class level�

	� Have a con�gurable runtime� We should not force developers to adopt our
debugging semantics� New semantics �debug ranges� base categories� etc��
should be con�gurable at runtime�


� Support multiple output interfaces� All debugging messages need not be
sent to the same output channel� E�g� Consider messages generated by
UNIX�s syslog facility� Some messages are sent to the console� some are
logged in a �le� and some are sent directly to the system administrator
via email�

�



�� Support per�thread debugging� Each thread within a runtime should be
able to construct its own debugging context� More precisely� most of
the above con�gurable options �debugging categories� classes� semantics�
output interface� and level� should be con�gurable on a per�thread basis�
Additionally� these options should be changeable at runtime�

�� Support persistent debug contexts� Once a debugging context is created�
it should be possible to send it to persistent storage for later access� This
way� debugging contexts can not only be shared across sets of components�
but they can be shared across groups of developers�

If a debug framework were to support all of the above requirements� we
would simply be amazed��

Now that we have a common vocabulary and understand the problem domain
and the design goals� we�ll consider a design for the debugging framework�

� Design

We will not discuss the full design of IDebug here due to space considerations�
Interested parties should download and consult the IDebug package or browse
the information online via the IDebug release web page�� Only a few interesting
and�or important design points are discussed below�

��� Context Con�gurability

As mentioned previously� debugging options should be con�gurable on a per�
thread basis� On further consideration� we decided that two con�gurable set�
tings should not be switchable at runtime debug semantics and output inter�
face�

The reason for this decision might not be immediately obvious� but consider
the following two points

� Debugging output might be queued due to the temporary unavailability
of an output channel or user�

� Source code that uses a debugging package makes explicit assumptions
about the semantics of the package� Meaning� while debugging seman�
tics might be switchable at runtime by the framework� it is not �usually�
switchable at runtime for the application using the framework�

Due to these factors� the con�guration of debugging semantics and output
interface is immutable� Meaning� once these options are set for a debugging
context� they cannot be changed�

Note that a new context can be created� All the other �exibility mentioned
in Section ��
 is fully con�gurable at runtime on a per�thread basis�

�Hint� IDebug supports everything you have read so far�
�http���www�infospheres�caltech�edu�releases�

�



Now� we�ll brie�y discuss the implementation and use of the IDebug frame�
work� version ����

� Implementation

IDebug is freely available from the Infospheres Group�s �Releases� web page�

Members of the Distributed Coalition� can obtain source code though a free
license with Caltech�

��� Implementation Size and Performance

Implementation Summary �with test and example code�

Total Number of Packages �
Total Number of Classes ��
Total Number of KB of Java ����KB
�includes code� documentation� and whitespace�
Total Number of KB of class�les
Independent class �les ���
KB
Jar �compressed� format ����KB
Total Number of Lines of Code� ����
Total Number of Lines of Comments �	��
Comments�Code ���

Table � Implementation Summary

The implementations of both versions of IDebug are summarized in Table ��

IDebug Performance� We have not yet performed performance tests on the
IDebug package� In general� its performance is entirely based upon the speed
of the Java runtime�s Throwable�printStackTrace�� method and Hashtable

and StringBuffer implementations� since these classes are at the core of the
exception and assertion�handling mechanisms in IDebug�

A performance pro�le test of IDebug could reveal performance weaknesses�
In general� any performance tuning would mean replacing data structures� rathan
than changing core algorithms�

In general� performance is not an issue in debugging complex systems� es�
pecially distributed or object�oriented systems� We make this claim for two
reasons

First� the debugging phase of an implementation should be part of an ordered
and reasoned test suite� and thus the use of the debugging framework should
also be ordered and have reason� In other words� rarely will it be the case that

�http���www�infospheres�caltech�edu�releases�
�http���www�distributedcoalition�org�

�



all threads within a complex application will have all their debugging options
turned on simultaneously�

Second� we believe that debugging statements should not be written by hand
or statically inserted into program code� Debug code should be �tunable� at
compile time� not just runtime� and thus debug framework performance should
only matter for critical debug paths� of which there should be few�

��� Framework Extensibility

The IDebug framework is extensible in two dimensions debug semantics and
output interfaces�

IDebug Framework Semantics� The semantics of the package can be changed
by implementing new versions of DebugConstantsInterface� An example of
such an extension is provided in the form of the FrenchConstantsInterface

class in the IDebug�examples package� This class provides an implementa�
tion of DebugConstantsInterface that di�ers from the default implementation
�DebugConstantsImpl� in two ways

�� Debug levels range from � to ��� instead of � to ���

�� Default debugging levels have been adjusted for this new granularity of
debug levels� and

	� Default debug messages� categories� and documentation are provided in
French�

IDebug Output Interfaces� New implementations of DebugOutputInterface
can be designed to support sending debug messages to alternative output me�
dia�channels� As of version ���� the framework comes with two implementations
DebugOutputConsole� which sends messages to the console of a Java runtime�
and DebugOutputWriter� which sends debug messages to a Writer which can
be used as part of a normal java�io compositional data stream�

��� Complementary Tools

Static debugging statements clutter source code� increase object code size� and
reduce execution speed� We have developed a application called JPP� the Java
PreProcessor� that solves exactly this problem�

In short� JPP performs transformations of embedded program speci�cation�
in the form of design by contract��� �DBC� predicates in documentation com�
ments� into IDebug test code at compile time� Future versions of JPP will also
perform code beauti�cation� code standard conformance checking� code metric
analysis� and documentation generation�

�



� Conclusion

IDebug is the most advanced debugging framework available today� It is ex�
tremely con�gurable� supports a wide range of Java application types� and�
because it is an open framework� is extensible by the developer�

Future Work� In fact� we encourage developers to extend IDebug� In par�
ticular� we are interested in hearing about �and including� alternative imple�
mentations of the DebugOutputInterface and DebugConstantsImpl� We have
come up with the following alternative ideas for output interfaces� perhaps your
application could use one of these or one that we have not thought of

� DebugOutputDB� used to log debugging messages to a database via stan�
dard JDBC�

� DebugOutputEventSource � send messages to arbitrary listeners within
a Java virtual machine �perhaps as part of a compositional Java Beans�
based application��

� DebugOutputFrame � to send debugging messages to an arbitrary frame
within a larger GUI�

� DebugOutputLog � to persistently log messages for o��line debugging�

� DebugOutputMessager� send messages via a JMS�conformant messaging
infrastructure to a�some remote objects�

� DebugOutputRemoteEventSource � to provide debugging messages as
distributed events �perhaps as part of a Jini��� application��

� DebugOutputScrollableWindow � display messages in an independent�
scrollable window�

� DebugOutputServletLog � to persistently log messages via the servlet
developers kit�s debugging interface�

� DebugOutputSpace� store debugging events in a JavaSpace����

Finally� we are investigating integrating IDebug with Dan Zimmerman�s
�UberNet distributed messaging infrastructure���� Our primary goal is to sup�
port the currying of call stacks across execution contexts� This would mean that
assertions and exceptions on remote �receiver� machines would have access to
the call stack of the sending thread�

Thanks� The author would like to thank the Infospheres Group for help with
the initial problem analysis and early IDebug design� In particular� the com�
ments of Mani Chandy� Dan Zimmerman� Wesley Tanaka� and Adam Rifkin
were invaluable� Also� Nelson Minar used the �rst version of IDebug as part
of his thesis work� his comments were very helpful� Matt Hanna helped review

��



this technical report� Finally� I�d like to thank Ron Resnick� Mark Baker� Mary
Baxter� and Cici Koenig for their general support and encouragement in all I
do�

References

��� Graham Hamilton� Michael L� Powell� and James G� Mitchell� Subcontract
A �exible base for distributed programming� In Proceeings of the 	
th Sym�
posium on Operating Systems Principles� Sun Microsystems� Inc�� December
���	�

��� Richard Helm� Ian M� Holland� and Dipayan Gangopadhyay� Contracts
Specifying behavioral compositions in object�oriented systems� In European
Conference on Object�Oriented Programming�ACM Conference on Object�
Oriented Programming Systems� Languages� and Applications� volume �����
of ACM SIGPLAN Notices� pages ��� ���� ACM SIGPLAN Programming
Languages� ACM Press and Addison�Wesley Publishing Company� October
�����

�	� Ian M� Holland� Specifying reusable components using contracts� In ACM
Conference on Object�Oriented Programming Systems� Languages� and Ap�
plications� pages ��� 	��� ACM SIGPLAN Programming Languages� ACM
Press and Addison�Wesley Publishing Company� �����

�
� Bertrand Meyer� Object�Oriented Software Construction� Prentice�Hall� Inc��
�nd edition� �����

��� Bertrand Meyer� Advances in Object�Oriented Software Engineering� chapter
Design by Contract� Prentice�Hall� Inc�� �����

��� Sun Microsystems� Inc� JavaSpaces Speci�cation� Sun Microsystems� Inc��
���� Garcia Ave� Mountain View� CA �
�
	� revision ��� beta edition� July
�����

��� JimWaldo� Jini Architecture Overview� Sun Microsystems� Inc�� ���� Garcia
Ave� Mountain View� CA �
�
	� �����

��� Daniel M� Zimmerman� �UberNet� The Infospheres Network Layer User
Guide� version ���a� edition� February �����

��


