CHARLHTHEELCHH

SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

A Critique of Adaptive Routing
by
Michael J. Pertel

Caltech Computer Science Technical Report
Caltech-CS-TR-92-06
June 18, 1992

The research described in this report was sponsored by
the Defense Advanced Research Projects Agency.

https://core.ac.uk/display/216151428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Critique of Adaptive Routing

Michael J. Pertel
June 18, 1992

Abstract

This report refutes claims that adaptive routing performs better than
dimension-order routing. Simulation results are presented that show
dimension-order routing achieves both higher throughput and lower
latency than adaptive routing. Specious claims for the advantages of
adaptive routing are critiqued.

1 Introduction

Adaptive routing [1] is an alluring idea. Although there are usually
many minimum-distance paths between two nodes in a multicomputer
message-passing network, the dimension-order routing used in existing
networks [2] always routes a packet from a given source to a given
destination along the same path. Adaptive routing allows a packet
to follow any minimal path from source to destination, and would
seem to offer an opportunity to decrease latency, diffuse local areas
of congestion, increase channel utilization (throughput), and improve
fault tolerance.

The most attractive feature of adaptive routing was its promise to
double network throughput. Previous simulation studies [1] indicated
that networks using dimension-order routing could utilize only = 50%
of their bisection bandwidth, whereas adaptive-routing networks could
utilize = 90% of their bisection bandwidth. Improving throughput
was the primary motivation for adaptive routing because throughput
is more important than latency, and claims for traffic diffusion and
fault tolerance had not been demonstrated.

A VLSI implementation of adaptive routing was undertaken [3]
with the belief that adaptive routing would increase throughput, dif-
fuse hot-spots, and improve fault tolerance. In preparation for making
a detailed design, an architecture [4] and simulators [5] were developed
to reproduce, refine, and extend the earlier studies. The architecture
was sufliciently general that it could implement either dimension-order
routing (DOR) or adaptive routing (AR). The simulators were signifi-
cantly faster and more flexible than simulators used in earlier studies,
and a wider range of network topologies, sizes, and characteristics were
simulated. In particular, it was possible to compare DOR and AR for
realistic network sizes [6] while keeping everything but the routing
algorithm fixed.

Throughput: It was discovered that the earlier results showing a
performance advantage for AR over DOR were an artifact of giving
the adaptive routers more buffering than the dimension-order routers:

Fallacy 1 Dimension-order routers can ulilize only =~ 50%
of the bisection bandwidth, whereas adaptive routers can
utilize =~ 90% of the bisection bandwidth.

Fact 1 Dimension-order routing allows optimal bandwidth
ulilization. As the network radix increases, the bisection
utilization of DOR approaches 100%. When given equal
buffering, DOR can support higher throughput than AR.

Latency: The intuitive notion that AR can reduce latency by cir-
cumnavigating local congestion is also incorrect. Indeed, blocking due
to output competition is very rare with DOR, especially for networks
with large radices. With DOR, an output channel is used almost ex-
clusively by the corresponding input channel in the same dimension,
except for injections from the previous dimensions with probability
O(3) for network radix R. Since contention is rare, AR does not
perform better than DOR. Moreover, DOR performs better than AR
for heavy applied loads. DOR utilizes all bisection channels equally,
and achieves the maximum possible throughput. AR does not utilize
all the mesh’s bisection channels evenly: a packet is allowed to follow
any minimal path from source to destination, and many more paths
cross the middle of the bisection than the cross the edges of the bisec-
tion. AR creates a surfeit of congestion in the center of the mesh and

under-utilizes the edges; this prevents AR from achieving maximal
throughput, and leads to much higher latency than DOR, for heavy
traffic. In summary:

Fallacy 2 Adaptive routing decreases latency by routing
packets around congestion.

Fact 2 Adaptive routing increases latency for heavy traf-
fic. QOutput contention is rare, O(%), for dimension-order
routing. Dimension-order routing produces less network
congestion under heavy traffic, and achieves higher through-
pul.

“Hot Spots”: The notion that adaptive routing would improve
performance by avoiding “hot spots” is specious. Claims about hot
spots appeal to intuition, but they have not been accompanied by a
precise, realistic definition of “hot spot.” If a hot spot is a random,
local fluctuation in traffic, then the simulations of random traffic pre-
sented in this report show that DOR, not AR, gives better perfor-
mance. If a hot spot is a chronic region of abnormally heavy traffic,
then hot spots are pathological cases. Chronic regions of congestion
can be attributed to poor program design or poor process placement,
and networks are not designed to remedy the ills of a particular pro-
gram. For a specific definition of “hot spot,” the burden of proof
lies with the AR proponent, who must show that such hot spots oc-
cur in real networks, that they degrade network performance, that
they are best handled in the network itself, and that AR improves
their handling significantly. One could almost certainly concoct a
pathological traffic pattern that favors AR, but the design of general-
purpose routing networks cannot be based upon a special-case traffic
pattern; random traffic is the most general model. Communication
patterns that exhibit locality cannot benefit from AR because there is
negligible path multiplicity for short paths. Communication patterns
that do not exhibit locality can use random process placement to avoid
pathological congestion, and DOR outperforms AR for random traffic.

Fallacy 3 Adaptive routing improves performance by dif-
fusing “hot spots.”

Fact 3 This nebulous claim has never been substantiated.
Localized traffic cannot benefit from AR because il lacks

path multiplicily. Random traffic is the accepted worst-case
model for non-localized traffic, and DOR oulperforms AR
for random traffic.

Fault Tolerance: Fault tolerance is a popular concept, but the
term is often used loosely. Since AR allows a packet to choose from
more than one path through the network, “fault tolerance” is some-
times listed among the virtues of AR. When actual studies of the fault
tolerance of AR have been done [1], the results for realistic topologies
[6] have been poor. AR does not provide redundancy for all paths;
this fact alone is sufficient to discredit claims that AR provides fault
tolerance.

Note 1 In a radiz-R d-dimensional mesh, the number of

minimum-distance paths between two nodes separated by

. Ax Az
(Azy,...,Azq) is %

Note 2 There are R? (d(R — 1)+ 1) node pairs that have
only one minimum-distance path between them. FEven when
multiple paths exist, they may overlap significantly and are
not independent.

Building a fault-tolerant network requires an intentional design effort,
and well-defined reliability goals. The fact that a routing algorithm
incidentally yields path redundancy for some (src, dest) pairs does not
justify claims of fault tolerance.

Indeed, some legitimate approaches to fault tolerance
to layer atop a network that uses DOR. With AR, any one of many
paths might be taken by a packet, so delivery can be guaranteed only if
all such paths are fault free. With DOR and static faults, a (sre, dst)
pair always works or always fails.

L are easier

Fallacy 4 Adaptive routing provides fault tolerance.

Fact 4 Adaptive routing does not provide redundancy for
all paths, and it does not provide practical fault tolerance.
The possibility that a packet might follow any one of many

LA faulty (src, dst) path can be rerouted through an intermediate node: (sre, i), (4, dst).
A fixed intermediate can be chosen for each broken path when static faults are recorded.
Such an approach requires no special hardware and can be used in existing machines.

different paths makes it harder to guarantee that a packet
will be delivered in a faully network using AR.

2 Simulation Results

This section presents measurements of network latency obtained from
a simulator [5]. The simulation parameters are (d,R,L,4), where d is
the mesh dimension, R is the mesh radix, L is the packet length in
flits,? and A is the applied load. The number of nodes is N = R4, and

the bisection bandwidth is B = Rd_lgzz = %!Zﬁfe. The simulator
uses random, homogeneous traffic: on every cycle each node gener-
ates a packet with probability ¢ = %, and all (sre,dst) pairs are
equiprobable.

_ 4Apackets 4A flits 4AW bils
1= RL cycle R eycle R eycle

The applied load (A) is expressed as a fraction of the network’s bi-
section bandwidth (B); in steady state, the bisection utilization (U) is
equal to the applied load (4), and the throughput is 7 = 4BU.?

The steady-state average cut-through latency T is measured for a
range of applied loads: A = 10%, 30%, 50%, 70%. Measurements are
made for several mesh radices R and dimensions d. The measured
latency T is the average time between the sending of a packet from
the source and its arrival at the destination, including injection and
cul-through latency but not spooling latency. Cut-through latency is
the head-to-head transmission delay. Since the injection queue is just
another input FIFO, injection latency and cut-through latency are not
separated. Spooling latency refers to the L-cycle head-to-tail delay.

The basic simulator has been described in a previous report [5], so
only minimal discussion is included here. Results are reported for two
simulator variants: SNS (which uses DOR) and ANS (which uses AR).
The versions of SNS and ANS used to produce the data for this report
differ from those previously reported [5] in some minor respects. The
main() function has been changed to wait for the throughput to con-
verge before waiting for the latency to converge. Also, a measurement
of the average queue length (AQLEN) has been added. A listing of the

2One flit is W bits, where W is the channel width.

3For random traffic, % of all packets cross the bisection, i in each direction.

5

SNS code used for this report is included as an appendix. ANS differs
from SNS only in the following function:

int allowed(n,in,out) int n,in,out; {
packet *p=node[n].head[in]; int pc,nc,dim=DIMOF (out) ;

if(!'p || p->tin>curtime) return O; /* p arrived? */
if(node[n] .tnh[in]>curtime) return 0; /* p at head? */
if(node[n] .tfree[out]>curtime) return 0; /* out free? */
if (p->dest == n) return out==0; /* p at dest? */

pc=COORD(p->dest,dim), nc=COORD(n,dim);

if(nc<pc) return out==SUCC(dim);

if(nc>pc) return out==PRED(dim);

return O; /* not profitable */
}

Except where otherwise noted, the simulations use packet length
L=32 flits, which is realistic for fine-grained computations [7, 8]. For
comparison, L=8 and L=128 results are presented in an appendix.

The simulations were run using ACCURACY=.03, which is more
than sufficient to show that DOR is preferable to AR. The execution
times for the simulations would increase by an order of magnitude if
ACCURACY=.01 were used instead.

The simulator measures the network-average queue-length at ter-
mination, not the lime-average queue-length: AQLEN is the number of
packets that have been sent but not received divided by the number
of queues. The AQLEN values are listed to provide insight, but the sim-
ulator does not check their convergence. Inspecting the AQLEN values
shows that the average queue length is typically only a fraction of a
packet. It can also be seen that the average queue length is greater
with AR than with DOR for heavy trafficc. The AQLEN values are
coarse and may appear noisy.

2.1 One-Dimensional Results

There is no difference between AR and DOR for 1D because there is
only one path between any two nodes. ANS and SNS produce iden-
tical results for d=1. Although 1D results cannot be used to compare
AR and DOR, they are included for completeness; 1D is the simplest
case and will be studied before proceeding to 2D and 3D. Some 1D
simulation results are shown in Table 1.

Observation 1 Average cut-through latency is not directly
proportional to network radiz, so it is not directly propor-
tional to average distance.

A=, A=.3 A=.5 A=.7
R T AQLEN T AQLEN T AQLEN T AQLEN
3.95 | 0.00 10.8 | 0.00 || 34.8 | 0.46 335 | 3.18
8 5.47 | 0.00 11.5| 0.04 || 26.4 | 0.13 | 73.6 | 0.65
16 || 8.37 | 0.00 14.9 | 0.00 {29.7| 0.06 || 71.5| 0.11
32 || 13.8 | 0.01 ||20.6| 0.00 || 36.1 | 0.04 | 72.2| 0.04
64 | 24.7| 0.00 || 31.9| 0.00 | 45.8 | 0.02 | 80.6 | 0.01
128 || 46.1 | 0.00 || 53.7 | 0.00 || 67.0 | 0.00 103 | 0.02

o

Table 1: 1D Data

Observation 2 For a given applied load there is an “op-
timal” radix for which the cut-through latency is minimal.
The optimal radiz increases with throughput.

When a packet traverses an empty network, its cut-through latency
is Toyt = D 4 1: there is a one-cycle delay for each hop along a path
of distance D, and a one-cycle delay at the destination. The aver-
age distance in a radix-R d-dimensional mesh is D = % (R - %) [10].
Congestion in the network increases the cut-through latency. Even for
light traffic (A= 10%) congestion cannot be neglected; the congestion-
free latency formula is correct only when the applied load is extremely
small (a few percent of network capacity). The congestion-free latency
formula is not even qualitatively correct: according to the formula,
average cut-through latency should increase linearly with average dis-
tance, but latency is not proportional to distance. Latency grows
only linearly with average distance (radix), but it grows supra-linearly
with channel utilization (throughput). According to the Pollaczek-
Khinchin formula, average queue delay grows with queue utilization

u

(u) as #—. As radix increases, blocking becomes rarer, so queue uti-

lization decreases.
Note 3 With DOR, an incoming packel conlinues in the
same dimension unless its offset in that dimension is zero.
If the offset in the current dimension has been reduced to
zero, the packet is dejected into the next dimension. A
packet continuing in ils present dimension is blocked by
output competition only if the output is being used by an

injection from the previous dimension. The average injec-

tion rate is ¢ = %ggjzz, so the probability of blocking is
1

O(r)-

As radix increases, the average distance increases but the average
delay per hop decreases. For a given applied load, there is a latency-
optimal radix that gives the smallest cut-through latency. The radix
that gives the smallest latency increases with applied load as queueing
delay becomes more important.

To give a better sampling of the latency versus applied load curve,
more data is presented in Table 2.

R A=.55 | A=.6 | A=.65 || A=.75 | A=.8 | A=.85 | A=.9 | A=.95
4 47.1 73.0 123 o'} oo} o'} o'} 00
8 33.2 44.1 55.4 112 193 824 00 00
16 35.0 441 52.9 96.3 140 205 1233 00
32 40.3 48.0 57.4 91.5 126 180 353 00
64 51.7 58.5 68.6 97.4 125 182 284 833
128 72.4 81.3 89.9 121 144 190 295 611

Table 2: More 1D Latencies

Observation 3 Latency is a smooth, super-linear, mono-
tonically increasing function of throughput (&) that diverges
for applied loads above a radix-dependent mazximum bisec-
tion utilization U, 4.

Observation 4 U,,,, increases with radiz.

The existence of a maximum bisection utilization less than 100% can
be readily deduced for random traffic. Consider the bisection channel
and the node that feeds that channel. The channel can be used ei-
ther by a new injection at that node or by a packet continuing from
the node’s predecessor. When the bisection channel is not used for
either injection or forwarding, it is idle; thus, the bisection utilization
is limited to less than 100%. The probability that the node injects a
packet that uses the bisection is Z, and A < 1= ¢ < %. 4 The proba-

2
bility that a packet continues from the predecessor across the bisection

4Unless R > 4, this bound is vacuous.

(R/2)
R/2)+1
predecessor. Thus, the probability that the bisection channel is idle is

Pigie > (1 - %) (1 - m) and Uy = 1 — Pjgj is bounded by

channel is

u, where u is the utilization of the channel from the

2 (R —2)
U”<1_E(R+2)

2.2 Two-Dimensional Results

Although data comparing AR to DOR for 1D and 3D meshes is also
presented, the comparison for 2D meshes is the most realistic, prac-
tical, and interesting. This research is part of a large multicomputer
design project called the Mosaic [6]. The Mosaic is a 128 x 128 mesh of
single-chip multicomputer nodes; each node contains an 11 MIPS pro-
cessor, 64 KB memory, and asynchronous DOR network router with
60 MB/s channels. Since the 2D mesh is the topology used in state-
of-the-art machines [6, 11, 12], it is the most appropriate topology for
comparing AR to DOR. ?

The 2D simulation results are shown in Table 3. T and AQLEN are
listed as “o0” when the latency and queue lengths did not converge,
i.e., when they grew without bound.

Observation 5 DOR can support higher throughput than
AR. Upqr is a decreasing function of dimension for AR.

Observation 6 DOR yields much lower latency than AR
for heavy traffic. AR yields slightly lower latency for light

traffic.

Observation 7 The performance advantage of DOR in-
creases with radiz. DOR begins beating AR at lower applied
loads for larger radices. DOR beats AR at any applied
load for a 128x128 mesh.®

Observation 8 Average queue length is typically only a
fraction of a packet, and queue lengths decrease as radix
INCTeases.

Observation 9 Differences in latency between DOR and
AR reflect differences in average queue length.

For planar wiring, 2D networks are throughput optimal [13].
6In an empty network, 7.y; = D + 1 =T = D + 1, for both AR and DOR.

DOR (SNS) AR (ATS)

R A T AQLEN T AQLEN
4 1 6.31 | 0.00 6.17 0.00
4 3 18.5 | 0.06 17.5 0.03
4 b || 547 | 0.44 52.9 0.43
4 .6 108 0.33 127 0.50
4 .65 || 184 0.44 (%) 0

4 7 382 2.60 00 (%)

8 1 9.79 | 0.00 9.09 0.00
8 3|l 21.6 | 0.02 18.8 0.02
8 bl 533 | 0.13 441 0.10
8 7 179 0.44 256 0.92
8 TH || 246 0.85 (%) (%)

8 .8 688 2.00 (%) (%)

16 1 15.8 | 0.00 14.9 0.00
16 3] 29.6 | 0.02 25.9 0.01
16 bl 62.9 | 0.05 52.7 0.05
16 7 156 0.16 261 0.29
16 | .75 || 223 0.21 00 0

16 .8 354 0.45 00 00

32 1 26.9 | 0.00 26.2 0.00
32 3 || 41.6 | 0.01 39.2 0.01
32 Do 745 | 0.03 70.7 0.03
32 .6 102 0.05 105 0.05
32 7 159 0.08 256 0.15
32 .8 294 0.20 00 (%)

64 1| 48.6 | 0.00 48.2 0.00
64 3 | 63.9] 0.01 63.4 0.01
64 Dol 95.5 | 0.02 100 0.02
64 7 182 0.05 253 0.07
64 8 296 0.09 (%) (%)

128 | .1 90.1 | 0.00 89.7 0.00
128 | .3 107 0.01 110 0.01
128 | 5 140 0.01 152 0.01
128 | .7 222 0.03 293 0.04
128 | .75 || 265 0.04 > 461 | > .07
128 | .8 332 0.05 > 2440 | > .70

Table 3: 2D Data

10

Even when AR latency is less than DOR latency, the difference
is far too small to justify the greater cost (e.g., area and complexity)
of AR. Moreover, it is precisely when network performance matters
most (i.e., at high applied loads) that DOR performs significantly
better than AR. The extreme difference in latency between AR and
DOR for heavy applied loads can be attributed to the difference in
Unaz-

The approximate formula for U,,,, that was derived for 1D is still
applicable for 2D with DOR, since 2D DOR can be regarded as two
independent 1D routings. The U,,,; bound is a property of random
traflic, not a property of the routing algorithm. DOR can support
maximal throughput.

AR does not support maximal throughput. AR has a lower U, 4z
than DOR. The lower throughput of AR is a property of the routing
algorithm. DOR achieves maximal throughput because every channel
of the bisection is utilized maximally. AR cannot support maximal
throughput because it does not utilize all bisection channels evenly.
With AR, channels at the center of the bisection are utilized more
than channels at the edges of the bisection because more of a packet’s
possible paths pass through the center of the mesh. If the utilizations
of the bisection channels are independently monitored, then U, 4. is
seen to be the DOR value multiplied by the ratio of the mean to the
peak of the AR bisection-utilization profile [14]. Note that, even if an
AR implementation could be devised that performs as well as DOR,
AR cannot beat DOR.

For a given number of nodes and a given bisection bandwidth,
the highest throughput is achieved by the network of the largest radix
(smallest dimension) because U4, increases with R. If bisection band-
width were a realistic measure of network cost, this would imply that
1D networks were optimal. However, in reality, a 1D network is much
more expensive than a 2D network with the same bisection bandwidth.
Wiring area is a much more realistic cost metric than bisection band-
width, and for a given wiring area, the highest bisection bandwidth
is achieved by using a 2D network [13]. Therefore, large-N machines
(e.g., N=16384) have large radices (e.g., R=128), and for large radices
DOR outperforms AR a fortiori.

As noted earlier, the simulators used for this report give only a
crude measure of the average queue length. AQLEN is the network-
average queue length when the simulator terminated. A proper mea-

11

surement of the average queue length would be the time average of
the network average. If one were interested in measuring the aver-
age queue length properly, one could modify the simulator to record
AQLEN every cycle; the time average of AQLEN could be monitored for
convergence the way T is monitored. Given that AQLEN is a crude
measurement, not much should be deduced from the tabulated val-
ues. However, it seems safe to conclude from the above data that
fairly short FIFOs are suflicient for real router implementations. Ex-
isting routers use FIFO lengths that are only a fraction of the average
packet length,” and the simulation results suggest that little perfor-
mance improvement would result from using longer FIFOs. &

2.3 Three-Dimensional Results

Using higher-dimensional meshes should favor AR. As the number of
dimensions increases, so does the path multiplicity. With AR, a packet
is allowed to reduce its offset in any of the d dimensions at any time,
so it may have up to d allowed outputs. With DOR, there is always
exactly 1 allowed output. Thus, the “difference” between DOR and
AR is proportional to d. For d = 1, DOR and AR are identical. The
performances of AR and DOR are expected to differ more for 3D than
they did for 2D. The 3D simulation results are shown in Table 4.

Observation 10 For fized radiz, latency is not directly
proportional to dimension. °

Observation 11 For a fired number of nodes, lower di-
mension and larger radiz gives better performance for heavy

traffic.

Comparing the 3D data to the 2D data shows that the difference
between DOR and AR performance increases with dimension. The
slight latency advantage of AR for light traffic is greater for 3D net-
works. The lower throughput and higher latency of AR for heavy
traffic is more pronounced for 3D networks. Path multiplicity is both
the virtue and the vice of AR, and it increases with dimension.

“A packet can be spread over multiple nodes when it cannot fit into a single FIFO.

8With the FIFO length equal to the packet length, the performance is the same as for
infinite buffering for a 128 x 128 mesh with 4<80% [5].

91f T were proportional to average distance, it would be proportional to d.

12

DOR (sNS) || AR (ANS)
R | A T AQLEN T AQLEN
4 | .11 890 | 0.01 7.92 | 0.01
4 | .31 25.2| 0.04 20.4 | 0.03
4 | .5 74.7 | 0.20 65.8 | 0.21
4 | .61 149 0.56 o0 o0
4 | .7 467 1.74 o0 o0
8 | .1 14.1| 0.00 12.0 | 0.00
8 .31 328 0.03 22.9 | 0.02
8 [.5 79.1| 0.10 55.8 | 0.07
8 | .7 | 265 0.45 o0 o0
16 | .1]| 23.2 | 0.00 20.6 | 0.00
16 | .3 || 44.4 | 0.02 34.0 | 0.01
16 | .5 || 93.2 | 0.05 77.5 1 0.05
16 | .7 || 247 0.20 o0 o0
32 .11 39.8 | 0.00 37.3 | 0.00
32| .31 628 | 0.01 54.3 | 0.01
32| .5 | 112 0.03 113 | 0.03
32| .7 | 250 0.10 o0 o0

Table 4: 3D Data

13

Compare the results for a 4 X 4 X 4 mesh to the results for an 8 x 8
mesh, and compare the results for a 16 x 16 x 16 mesh to the results for
a 64 X 64 mesh. These are the cases in which a 2D mesh and a 3D mesh
have the same number of nodes. The average distance is smaller for the
3D meshes than for the 2D meshes: 3.75 versus 5.25 and 15.9 versus
42.7. The smaller average distance leads to lower latency for light
traffic. However, the 2D meshes beat the 3D meshes for large applied
load. Output contention is proportional to dimension and inversely
proportional to radix, so 3D meshes have longer queue lengths. Since
latency grows only linearly with average distance but superlinearly
with queue utilization, a low-dimensional mesh will always beat a
high-dimensional mesh for suffliciently heavy traffic.

The 2D meshes exhibit lower injection and cut-through latency
than the 3D meshes without reference to spooling latency. It is well
known that, for fixed wire bisection, a low-dimensional mesh can have
lower latency than a high-dimensional mesh [2, 8]; however, this is a
consequence of the low-dimensional mesh having wider channels, thus
less spooling latency. It was thought that the cut-through latency
increased with radix (decreased with dimension) while the spooling
latency decreased with radix (increased with dimension). The compe-
tition of these two effects formed the basis for computing the latency-
optimal dimension [2, 8]. Since cut-through latency does not decrease
as dimension increases, there is no basis for such an optimization.

2.3.1 Comparing Networks of Different Dimension

The equal-L comparison between 2D meshes (8 x 8, 64 x 64) and 3D
meshes (4 x4 x4, 16 X 16 X 16) was biased in favor of the 3D meshes.
Note that the 2D meshes showed better heavy-traffic performance de-
spite being handicapped in the comparison. However, it is customary
to compare networks of equal wire bisection, since wire bisection gives
a measure of the network’s cost/complexity. '° If two meshes have
the same bisection, then equal A values lead to equal throughput (mes-
sage volume). An R x R mesh with channels of width W has bisection

B = RW. An R*/®x R*/® x R?/® mesh must have channel width R‘f’/g

10Tf 2D and 3D networks are compared using equal layout area, rather than equal bi-
section bandwidth, then the 2D networks look even better. For a fixed layout area, a 2D
network can be given more bisection bandwidth than a 3D network [13].

14

to have bisection R W. Equal bisection leads to equal injection rate:

w
48 (%) bits 4AW bits
N TE cycle R cycle 420

Since the channels are narrower in the 3D mesh, the packets must be
longer to convey the same information per packet.!' An 8 x 8 mesh
with packet length L=32 should be compared to a 4 X 4 X 4 mesh with
packet length L=64. A 64 x 64 mesh with packet length L=32 should
be compared to a 16 X 16 X 16 mesh with packet length L=128. When a
fair comparison is made, the longer packet lengths for the 3D meshes
further reduces their performance relative to the 2D meshes. Table 5
presents simulations in which Lzp = R1/3L2D.

With Lap = Lop, the 2D meshes gave lower latency only for heavy
traffic. With Lap = R1/3L2D, the 2D meshes give lower latency even for
light traffic. Again, the 2D meshes are showing lower cut-through
latency, not just lower total latency. Even if the cut-through latency
were higher, the 2D meshes would have lower total latency because
their wider channels reduce spooling latency. In addition to having
lower latency, the 2D meshes can support higher throughput (Uy,qz)-

3 Summary of DOR Advantages

1. Throughput: DOR can support higher throughput than AR
on the same network: U, 4, is greater for DOR than for AR.

2. Latency: DOR gives significantly lower latency than AR for
heavy traffic. It is for heavy traffic (communication-limited com-
putations) that network performance is critical. The difference
in latency is small for light traffic.

3. Simplicity: VLSI implementation of DOR [9] is considerably
simpler than implementation of AR [4].

(a) Area: Dimension-order routers are smaller than adaptive
routers and require only a tiny fraction (= 3%) of the area
of a single-chip multicomputer node [6].

1Rather than making the packets longer to compensate for narrower channels, more
packets could be used to send each message. However, increasing the number of packets
increases the overhead due to packet headers, which increases the applied load, which
increases latency.

15

Parameters DOR (SNS) AR (ANS)
d|R| L |4A T | AQLEN || T [AQLEN
2] 8 [32].1]979] 000 [[9.09] 0.00
31464 |.1|132] 001 ||11.1] 0.01
21 832]1.3(216] 002 ||[18.8] 0.02
31464 |.3|46.2] 0.05 ||34.8] 0.04
21 8132]1.5](533] 013 [[44.1] 0.10
31 4|64 | .5 144 | 025 || 123 | 0.12
21 832 .7 179] 044 || 256 | 0.92
31 4|64 .71 82| 1.59 00 00
2164] 32 [.1]486] 0.00 [[482] 0.00
3116|128 | .1 41.9| 0.00 || 31.3] 0.00
2164 32 [.3]639] 001 [[63.4] 0.01
3116|128 | .3 | 127 | 0.01 | 83.2| 0.01
2164 32 [.5]955] 002 | 100 | 0.02
3116|128 | .51 316 | 0.05 | 253 | 0.04
2064 32 [.7] 182] 0.05 || 253 | 0.07
3116|128 | .7 919 | 0.19 0 0

Table 5: 2D vs 3D with Equal Bisections

16

(b) Speed: DOR implementations are smaller and simpler than
AR implementations, so they are faster. The simulation
results underestimate the performance advantage of DOR
because they assume equal cycle times for DOR and AR.

(c) Packet-Order: With multipath routing (like AR), packets
between a given source and destination may take different
paths through the network and arrive out of order; this in-
troduces the non-trivial problem of reconstructing packet
order at the destination (and reduces performance). With
single-path routing (like DOR), packet-order is always pre-
served.

(d) Design: Simpler routers are easier to design, so for a given
amount of design effort, more attention can be paid to op-
timizing the design.

4. Scaling: The performance advantage of DOR over AR increases
with radix. DOR becomes more advantageous as radix increases.
In particular, DOR beats AR for every applied load in a 128 x 128
mesh.

4 Future Work

The data presented in this report shows more than the preferability
of DOR to AR; the data also exposes several misconceptions about
routing network behavior and performance. The data shows that av-
erage cut-through latency is neither directly proportional to nor even a
monotone function of average distance. The data shows that DOR per-
forms better than previously realized; indeed, so well that there is no
reason to consider a more complicated algorithm. The misunderstand-
ings that were incidentally exposed by this adaptive-routing research
impact other aspects of network design. For example, it is clear that
the “optimal” dimension for a routing network is not determined by
minimizing the expression for congestion-free latency [8]. Networks of
different dimensionality and equal cost do not have the same through-
put, so the dimension should be chosen to maximize throughput rather
than minimize latency. The congestion-free latency formula is both
quantitatively and qualitatively incorrect, even for light traffic. A fu-
ture report will show that 2D networks are throughput-optimal for
fixed area [13].

17

Another future report will elucidate the mechanism responsible for
the superior performance of DOR. It is easy to understand why adap-
tive routing does not outperform dimension-order routing. Since there
is only O(%) contention for outputs with DOR, there is little oppor-
tunity for AR to reduce contention. However, this does not explain
why DOR performs better than adaptive routing. The reason why
adaptive routing does not perform as well as dimension-order routing
is that AR does not utilize all the bisection channels evenly. Simula-
tion results proving this explanation of AR’s inferior performance will
be presented in [14]. It is important to remember that, even though
a different AR implementation might perform as well as DOR, AR

cannot outperform DOR.

5 Acknowledgements

The research described in this report was sponsored by the Defense
Advanced Research Projects Agency. Support was provided by a
National Defense Science and Engineering Graduate Fellowship. 1
gratefully acknowledge the direction and assistance of my advisor,
Dr. C.L. Seitz.

References

[1] Ngai JY: A Framework for Adaptive Routing in Multicomputer
Networks. Caltech Computer Science Technical Report: CS-TR-
89-09. 1989.

[2] Seitz CL: Chapter 5 “Multicomputers,” pp.131-200, in Hoare
CAR (ed): Developments in Concurrency and Communication.

Addison-Wesley, 1990.

[3] Pertel M, Seitz C: §4.8 “Implementing Adaptive Routing in Mul-
ticomputer Networks,” p.13, in Caltech Computer Science Tech-
nical Report: CS-TR-89-12 Semiannual Technical Report, 1989.

[4] Pertel MJ, Seitz CL: §4.9 “A Silicon Architecture for Adaptive
Cut-Through Routing,” pp.17-19, in Caltech Computer Science
Technical Report: CS-TR-90-14 Submicron Systems Architecture
Project, 1990.

18

[5]

[6]

[7]

[8]
[9]

[10]

Pertel MJ: A Simple Simulator for Multicomputer Routing Nel-
works. Caltech Computer Science Technical Report: CS-TR-92-
04. 1992.

Seitz CL et al: §2.1 “The Mosaic Project,” pp.2-10, in Caltech
Computer Science Technical Report: CS-TR-91-10 Semiannual
Technical Report, 1991.

Boden N: Runtime Systems for Fine-Grain Multicomputers. Cal-
tech Computer Science Technical Report: CS-TR-92-10. (Ph.D.
thesis, in preparation)

Dally WJ: A VLSI Architecture for Concurrent Data Structures.
Kluwer Academic Publishers, 1987.

Flaig CM: VLSI Mesh Routing Systems. Caltech Computer Sci-
ence Technical Report: 5241:TR:87. 1987.

Pertel MJ: Mesh Distance Formulae. Caltech Computer Science
Technical Report: CS-TR-92-05. 1992.

Seitz CL et al: “The Architecture and Programming of the Ame-
tek Series 2010 Multicomputer,” in: Proceedings of the Third
Conference on Hypercube Concurrent Compulers and Applica-
tions, ACM Press, 1988.

Lillevik SL: “The Touchstone 30 Gigaflop DELTA Prototype,”
in Sizth Distributed Memory Computing Conference Proceedings,
pp- 671-677. IEEE Computer Society Press, 1991.

Pertel MJ: The Optlimal Dimension for Multicompuler Routing
Networks. Caltech Computer Science Technical Report: CS-TR-
92-09. (in preparation)

Pertel MJ: Multicomputer Rouling Nelwork Throughput. Caltech
Computer Science Technical Report: (in preparation)

19

A Listing of Simulator Code

/*
*/

sns4.c --- Improved convergence detection.

#include <stdio.h>
#include <malloc.h>
drand48();
CHECK(c,m) {if(!(c)){printf("ERROR: ¥%s\n",m); exit(7);}}

double

#define
#define
#define
#define
#define

PBY(p) (drand48()<(p))

MAX(a,b) (((a)>(b))7(a): (b))
(((x)<0)7-(x) : (x))
DIFF (0old,new) ABS(((new)-(o0ld))/(old))

int pwr(x,y) int x,y; {int r=1; for(;y>0;y--) r*=x; return r;}

ABS (x)

/* Parameters

*/
#ifndef
#define
#define
#define
#endif
#ifndef
#define
#endif
#define

#define
#define
#define

N
N
R
d

A
A

L

16384
128

32

ACCURACY .03

TOL (ACCURACY/3.)
MINPKT (1./(TOL*TOL))

/*
/*
/*
/*

/*

number of nodes */
radix */
dimension */

applied load */

packet length in flits */

int INTERVAL = (int) (MINPKT*L/(8*AxHN/R)) ;

#define
#define
#define
#define
#define

/* Measurements

*/

B
NIN
NOUT
NUMQ
AQLEN

(N/R)

(2%d+1)
(2xd+1)
(N*NIN-d*B)

/*
/*
/*
/*

bisection BW in flits/cycle */
number of router inputs */
number of router outputs */
number of active queues */

((numsent-numrecd) /NUMQ)

double numsent=0. ;

double numrecd=0. ;
double totlat=0.;
double tothops=0.;

#define
#define
#define
#define

/* Data
*/
typedef

T (totlat/numrecd)

/*
/*
/*

/*

number of packets received */
sum of received-packet latencies */
sum of received-packet distances */

average TOTAL latency */

TP ((numrecd*L)/curtime)/* throughput in flits/cycle */
U (.25*TP/B)

D (tothops/numrecd)

Structures

struct packet packet;

/*
/*

bisection utilization */
average distance */

struct packet{int dest,tsent,tin,nhops; packet *next;};

typedef struct nodestate nodestate;

struct nodestate

20

{packet *head[NIN],*tail[NIN]; int tnh[NIN],tfree[NOUT],tls,pin,pout;};

/* Numbering Conventions:
* Dimensions numbered from O0: x=0, y=1, z=3, etc...
* Channels numbered: local=0, xpred=1, xsucc=2, ypred=3,
* Node (x,y,z,...) numbered: ... + zR"2 + yR + x
*/
#define DIMOF(in) (((in)-1)/2)
#define PRED(dim) (2*(dim)+1)
#define SUCC(dim) (2*(dim)+2)
#define END(out) (((out)%2)7((out)+1):((out)-1))
#define COORD(n,dim) (((n)/pwr(R,dim))%R)
#define NGHBR(n,o0) (((0)%2)7(n)-pwr(R,DIMOF(0)):(n)+pwr(R,DIMOF(0)))

/* Simulator

*/
int curtime=0; /#* current simulation time */
nodestate node[H]; /* simulator state */

initnode(n) nodestate *n; {
int i; n->pin=n->pout=n->t1s=0;
for(i=0;i<NIN;i++)
{n->head[i]=n->taill[i]=(packet*)0; n->tnh[i]l=n->tfree[i]=0;}
¥
init(){ int n; for(n=0; n<N; n++) initnode(&(node[n])); }

main() {
int n,etime=INTERVAL; double 0ldT,curT;
init(); printf("\n\n"); nice(10);
printf("SNS4, N=%d, R=%d, d=%d, L=%d, A=Yg, ACCURACY=Yg\n",
N,R,d,L,A,ACCURACY) ; fflush(stdout);
printf("Wait for throughput to converge.\n")
do{ for(; curtime<etime; curtime++)
for(n=0; n<l; n++) simulate(n);
printf("curtime=%d\n",curtime);
printf("'numsent=%g, numrecd=%g\n" ,numsent ,numrecd);
printf("'AQLEN=Yg/%d=%g\n" ,numsent-numrecd ,NUMQ,AQLEN) ;
printf("D=Y%g, d*(R-1/R)/3.=%g\n",D,d*(R-1./R)/3.);
printf("T=Y%g\n",T);
printf("U=Y%g, A=%g, DIFF(A,U)=Yg\n",U,A,DIFF(A,U));
printf("\n"); fflush(stdout);
curT=T; etime*=2;
} while(DIFF(A,U)>TOL);
printf("Wait for latency to converge\n");
do{ 0ldT=curT;
for(; curtime<etime; curtime++)
for(n=0; n<Hl; n++) simulate(n);
printf("curtime=%d\n",curtime);
printf("'numsent=Yg, numrecd=%g\n" ,numsent ,numrecd);
printf("AQLEN=Yg/%d=%g\n" ,numsent-numrecd ,NUMQ,AQLEN) ;
printf("D=Y%g, d*(R-1/R)/3.=%g\n",D,d*(R-1./R)/3.);
printf("U=Y%g\n",U0); printf("T=Yg\n" ,T);
printf("DIFF(0ldT,T)=Yg, TOL=Y%g\n",DIFF(0oldT,T),TOL);
printf("\n"); fflush(stdout);
curT=T; etime*=2;
} while(DIFF(0ldT,curT)>TOL); return O;

21

}

/* Hode Behavior
*/

#define PIN node[n] .pin

#define POUT node[n] .pout

simulate(n) int n; {
int in,out;
if(PBY(4.*A/(R*L))) inject(n); findpin(n);
for(in=0; in<NIN; in++) for(out=0; out<NOUT; out++)

if(allowed(n, (PIN+in)%NIN, (POUT+out)%NOUT))

{
forward(n, (PIN+in)%NIN, (POUT+out)%NOUT) ;
if(1in) {PIN=(PIN+1)%NIN; findpin(n);}
if(tout) POUT=(POUT+1)%NOUT;

¥

}

findpin(n) int n; {
int i; packet *p; nodestate *nd = &(nodel[n]);
for(i=0; i<NIN; i++)
if ((p=nd->head[PIN])&&(MAX(p->tin,nd->tnh[PIN])<=curtime))
return;
else PIN=(PIN+1)%NIN;
¥

inject(n) int n; {
packet *p=(packet*)malloc((unsigned)sizeof(packet));
node[n] .tls = p->tin = p->tsent = MAX(curtime,node[n].tls+L);
p->dest = drand48()*N; p->nhops=0; p->next=0;
enqueue(p,n,0); numsent++;

}

int allowed(n,in,out) int n,in,out; {
int dim,nc,pc; packet *p=nodel[n].head[in];
if(!'p || p->tin>curtime) return 0O; /* p arrived? */
if(node[n].tnh[in]>curtime) return O; /* p at head? */
if(node[n].tfree[out]>curtime) return 0; /* out free? */
for(dim=0; dim<d; dim++) {
nc=CO00RD(n,dim); pc=COORD(p->dest,dim) ;
if(nc<pc) return out==SUCC(dim) ;
else if(nc>pc) return out==PRED(dim);
¥
CHECK (p->dest==n,"profitable()"); return out==0;
¥

forward(n,in,out) int n,in,out; {
packet *dequeue(); packet *p=dequeue(n,in); p->tin=curtime+1;
node[n] .tnh[in]=node[n] .tfree[out]=curtime+L;
if(out==0) deject(p);
else p->nhops++, enqueue(p,NGHBR(n,out) ,END(out));
¥

deject(p) packet *p; {
numrecd++; totlat+=p->tin-p->tsent; tothops+=p->nhops;

22

free((char*)p);
¥

/* Misc Functions
*/
packet *dequeue(n,in) int n,in; {
packet *p=node[n] .head[in]; node[n] .head[in]=p->next;
if (p==node[n] .tail[in]) node[n].taill[in]=(packet*)0;
p->next=(packet*)0; return p;
}

enqueue(p,n,in) packet *p; int n,in; {
nodestate *nd=&(node[n]);
if(nd->head[in]) nd->tail[in]->next=p; else nd->head[in]=p;
nd->tail[in]=p; p->next=0;

A.1 Correction

Line 33 of the listing is:

#define NUMQ (N*NIN-d#B) /* num. active queues */
but it should be:

#define NUMQ (N*NIN-2#d*B) /* num. active queues */

The simulation results were obtained with the listed code. The missing
“27 leads to a small systematic error in the AQLEN values. AQLEN values
are reported only for insight; the network average queue length at
termination is not an adequate substitute for the time average. The
small systematic error is insignificant given the rough nature of the
AQLEN values. The true network-average queue-length can be obtained

_4d
by multiplying AQLEN by C = 24+~

2d+1-24"
tabulated below.

R= 4 8 16 32 64 | 128
d=11]1.101]1.05|1.02| 1.01 | 1.01 | 1.00
d=21]1.13]1.06 | 1.03 | 1.01 | 1.01 | 1.00
d=3]1.14]1.06 | 1.03 | 1.01 | 1.01 | 1.00

The correction factors are

23

B Questions and Answers

When a draft of this report was circulated, it elicited some questions
and requests for more detail. It was felt that these questions would
not have arisen if the conclusions of this report did not challenge some
well-entrenched misconceptions. Rather than add digressions to the
body of the report, it was decided to add an appendix that specif-
ically addressed the concerns of AR proponents. A reader with no
predisposition in favor of adaptive routing should find the main body
of the report sufficiently convincing, and need not be bothered with
fussy details. Readers inclined to find fault with the report because of
the nature of its conclusions will hopefully find satisfactory answers
to most of their questions below.

Question 1 What traffic pattern was used in the simulations, and
what justification is there for that choice?

Answer 1 Random, homogeneous lraffic was used for the simula-
tions. During each cycle, every node injects a packet with probabil-
ity %, and all destinations are equally likely. For further details, the
reader is referred to the report describing the simulator [5]. Studies of
routing networks use random traffic for at least two reasons:

1. Random traffic is the worst case. Performance is betler for lo-
calized traffic.

2. Random lraffic is the most general. Special-case traffic patlerns
are of limited interest.

In particular, the previous reports comparing AR to DOR [1] used
random traffic, so this report must use random traffic to refute those
results. Indeed, random traffic favors AR because localized traffic
would lead to shorter path lengths and less path multiplicity; without
path multiplicity, “adaptive” routing is impossible. For localized traf-
fic, there would be no reason to consider AR. It might be possible to
concocl a non-localized pathological traffic pattern that favored AR, but
such chimera are not relevant to the practical engineering of general-
purpose routing networks. Random traffic is the worst-case model for
non-localized communication, since any pattern can be randomized.
DOR s at least as good as AR for localized communication, which
lacks path multiplicity. DOR beals AR for non-localized communica-
tion because it beats AR for random traffic.

24

Question 2 What effect would finite buffering have on the results?
Are infinite-buffering results realistic?

Answer 2 Finite buffering would increase the performance advantage
of DOR, since infinite buffering favors AR. Infinite buffering elim-
inates AR’s deadlock problem. The techniques (e.g., misrouting [1])
required to avoid deadlock when using AR with finite buffering would
only decrease the performance of AR. Moreover, as can be seen from
the AQLEN values, AR needs more buffering than DOR (under heavy
traffic), so restricting the buffering would only further decrease AR’s
performance relative to DOR.

The AQLEN wvalues also indicate that the infinite-buffering results
are completely realistic because the queue lengths are typically very,
very short. Indeed, a« DOR simulator with FIFOs only one packet
long gives the same resulls as a simulator with unbounded FIFQOs for
practical topologies [5]. In short, finite buffering would leave DOR
results unchanged and worsen the AR resulls.

Question 3 What would be the effect of non-uniform traffic where
there was a concentration of traffic to/from a subset of the nodes?

Answer 3 This question is a red herring, as explained in the Intro-
duction. The most general rebutlal to this question is that DOR is the
extant routing technique, so the burden of proof lies with the proponent
of an unproven alternative. If there is a non-uniform traffic model
that is sufficiently common lo be of interest, then the AR proponent
s obliged to demonstrate significantly superior performance for AR
under that traffic model. In fact, no such non-uniform traffic model
has been proposed. Indeed, a chronically non-uniform traffic pattern is
lrable to arise only if either the program design or process placement
is poor. Dynamic hotl spots are handled better by DOR than by AR.
DOR dissipales traffic fluclualions more quickly because il has lower
latency and higher throughput. The technical rebuttal to this question
s that random traffic is the accepted standard for network analysis,
so there is no obligation to consider every special case that might be
concocled.

Question 4 How does ANS choose an oulput when several are al-
lowed, and how does this choice effect performance?

25

Answer 4 As described in the simulator report [5], ANS chooses the
first free allowed output, and the choice does not effect performance
stgnificantly. If several profitable outputs are free, advancing the packet
in the dimension with the largest offset would preserve the most path
multiplicity, but previous studies have shown no significant effect from
the details of output selection [1]. Even if the output selection had a
noticeable impact on path multiplicity, it would not effect the conclu-
stons of this report. If path multiplicity were decreased, there would
be less difference between AR and DOR (as in 1D); if AR is no better
than DOR, then there is no justification for its greater cost/complexity.
If path multiplicily were increased, the differences belween AR and
DOR would be amplified (as in 3D), in which case the advantages of
DOR would be magnified.

C Effect of Packet Length

The simulations presented in this report have used a packet length
of L=32, which is realistic for the Mosaic and appropriate for com-
paring AR to DOR. However, it is desirable to study the effects of
every parameter — all other parameters have been varied over a wide
range — so this appendix will present some simulations using different
packet lengths. It would be very time-consuming to repeat all of the
previous simulations using different packet lengths; the simulations
for this report have used > 3000 hours of CPU time on a network of
~ 30 Sun SPARCstations. Two-dimensional meshes are the topology
of interest, so this section will present data for 8 x 8, 32 x 32, and
128 x 128 meshes. Short packets (L=8) and long packets (L=128) will
be compared with the medium packets (L=32) used so far. The data
is presented in Table 6.

Observation 12 The latency difference between AR and
DOR generally increases with packet length.

Observation 13 Cut-through latency generally increases
with packet length.

The performance difference between AR and DOR is amplified by
packet length. If AR latency is slightly lower than DOR latency, then
this difference increases with L. If AR latency is greater than DOR

26

Parameters DOR (SHNS) AR (ANS) Difference

a ‘ R ‘ A ‘ L T |aQuEN || T | AQLEN "{::ﬁ —1
2 8 1 8 7.20 .01 6.98 .01 -3%
2 8 1] 32 9.79 .00 9.09 .00 -T%
2 8 1] 128 || 20.5 .00 17.5 .00 -15%
2 8 3 8 10.6 .05 9.58 .04 -10%
2 8 3| 32 21.6 .02 18.8 .02 -13%
2 8 3128 || 70.1 .02 55.3 .01 -21%
2 8 D 8 18.5 12 16.3 11 -12%
2 8 b | 32 53.3 .13 44.1 .10 -17%
2 8 D | 128 191 .07 153 .05 -20%
2 8 e 8 50.5 .56 0 o0 +00%
2 8 T 32 179 44 256 .92 +43%
2 8 7128 713 H2 0 0 +o00%
21 32 1 8 23.7 01 23.4 01 -1%
21 32 1| 32 26.9 .00 26.2 .00 -3%
21 32 | .1 | 128 || 40.5 .00 37.6 .00 -T%
2| 32 3 8 277 .02 27.0 .02 -3%
2 32 3| 32 41.6 .01 39.2 .01 -6%
2| 32 3 128 || 99.7 .01 87.6 .01 -12%
2| 32 5 8 36.5 .06 36.2 .06 -1%
2| 32 b | 32 74.5 .03 70.7 .03 -5%
2 32 D | 128 230 .02 215 .02 -T%
2 32 N 8 60.1 11 106 27 +76%
2| 32 T 32 159 .08 256 .15 +61%
2| 32 7 128 HHhH .08 915 .14 +65%
21128 | .1 8 88.2 .01 88.0 .01 0%
21128 | .1 32 90.1 .00 89.7 .00 0%
21128 | .1 | 128 106 .00 105 .00 -1%
21128 | .3 8 93.6 .02 94.2 .02 +1%
21128 | 3| 32 107 01 110 .01 +3%
21128 | .3 | 128 170 .00 176 .00 +4%
21128 | b 8 104 .04 109 .04 +5%
21128 | 5| 32 140 .01 152 .01 +9%
2 128 | 5| 128 295 .01 337 .01 +14%
21128 | .7 8 128 .07 162 .09 +27%
21128 | .7 | 32 222 .03 293 .04 +32%
2 128 | .7 | 128 618 .02 861 .03 +39%

Table 6: Effect of L

27

latency, then this difference also increases with L. The L=32 value
used in this report is slightly higher than the L ~ 20 estimated for
fine-grained computations [8]. A shorter packet length would increase
the advantage of DOR over AR.

Cut-through latency increases with packet length. Spooling la-
tency also increases with packet length: T, = L. The increase
in latency with packet length suggests using short packet lengths.
However, short packets have relatively more overhead. For exam-
ple, if two flits are required for a packet header, and there are P
flits of payload per message, then n = [%W packets are required for
each message, and there are 2n overhead flits per message. In this
case, the applied load would increase as the packet length decreased:
Aox 14 2?” ~ 14 % Thus, decreasing the packet length increases the
applied load and thereby increases latency. The competition between
latency increasing with packet length and applied load decreasing with
packet length implies an optimal packet length. Determining the op-
timal packet length for interesting topologies might be an interesting
topic for future study.

28

