View metadata, citation and similar papers at core.ac.uk

Programming Parallel Computers

K. Mani Chandy

Department of Computer Science
California Institute of Technology

Caltech-CS-TR-88-16

L
brought to you by .{ CORE

provided by Caltech Authors - Main

https://core.ac.uk/display/216151305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Programming Parallel Computers

K. Mani Chandy
California Institute of Technology

August 2, 1988
Caltech-CS-TR-88-16

Abstract

This paper is from a keynote address to the IEEE International Con-
ference on Computer Languages, October 9, 1988. Keynote addresses are
expected to be provocative (and perhaps even entertaining), but not neces-
sarily scholarly. The reader should be warned that this talk was prepared
with these expectations in mind.

Parallel computers offer the potential of great speed at low cost. The
promise of parallelism is limited by the ability to program parallel machines
effectively. This paper explores the opportunities and the problems of paral-
lel computing. Technological and economic trends are studied with a view
towards determining where the field of parallel computing is going. An
approach to parallel programming, called UNITY, is described. UNITY
was developed by Jay Misra and myself, and is described in [Chandy].
Extensions to UNITY are discussed; these extensions were motivated by
discussions with Chuck Seitz.

1 Introduction

The success of our research in parallel programming depends in part on
our understanding of the milieu in which programming will be carried out
in the next ten to twenty years. So, let us study the history of programming
to discern trends that may help us determine where the field is going.

1.1 Trends in Programming

Rapid changes in computer technology force us to confront, once again,
the question: What is programming? When computers were first available,
in the late 1940s, programming was the development of a program for a
specific machine — the one in the basement of the laboratory in which the
programmer was working. Computing resources were limited, and program-
mers had to go through whatever contortions were necessary to eke out the
desired efficiency. Later, in the 1950s, the programmer’s target computer
became more general; it was no longer the machine in the basement, but a
specific model: Model X of vendor Y. Later, in the 1960s, transportability
became more important. Programs written for one model were required to
run on others. Programs that were tailor-made to run efficiently on one
model were difficult to transport to other models. The economics of the sit-
uation suggested that it was preferable to program for an abstract machine
— a FORTRAN machine or a COBOL machine — and to pay the price of
lower efficiency in return for the advantages of more expeditious program
development, lower maintenance costs, and improved transportability. In
the 1970s, the cost of software development and maintenance outstripped
the cost of hardware. Programmers searched for higher-level languages to
express programs accurately and succinctly, again at a potential cost of
some loss in efficiency; Functional and Logic Programming were proposed
as ways of handling the software development problem.

This little history shows a few clear trends. Programmers view comput-
ers in increasingly abstract terms — from that machine in the basement to
an interpreter of functions. History shows a continuing shift in emphasis
from concern about machine details to concern about expeditious program
development.

1.2 Trends in Hardware

A computer has four basic parts: (a) processor, (b) storage, (c) commu-
nication channels, (d) interface. The relative improvements in technology
in these four areas has a profound effect on programming because the im-
portant resource — i.e., the scarce resource — depends on the relative costs
of these four parts. Efficiency in programming is concerned with using the

scarce resource most effectively; programmers can afford to be relatively
profligate with abundant resources.

In the early history of programming, the processor was considered to
be the scarce resource, and the emphasis was on using the processor most
effectively. Rapid developments in silicon technology, and the relatively
slower progress in magnetic storage technology have made storage the scarce
resource. Consider the following facts:

Cost The cost of storage and communications exceeds the cost of procssors
in many data-processing organizations.

Time The life-cycle of a transaction is roughly as follows: It spends some
time getting processed, then it performs some I/O activity such as
swapping, then more processing, then I/O activity such as paging or
access to files, and so on ... , alternately using a processing unit and
the I/O facility. The time a transaction spends doing I/O exceeds the
time it spends using processing units. Even for low-priority ‘batch’
jobs, the time spent doing I/O usually exceeds the time spent using
processing units (though the time spent waiting for processing units
may be substantial).

Space The amount of silicon area required to implement a processor is the
same as the amount required to implement a relatively small amount
of memory — 2K to 10K bytes.

Programmers now work in a world in which processors are a relatively abun-
dant resource, whereas storage and communication resources are relatively
scarce. Indeed, the mismatch between a fast processing rate and a relatively
slow memory access rate is not new; caches, operating systems that use ex-
tended storage, and semiconductor ‘disks’ are attempts at overcoming the
relative difference in speeds between processing and data retrieval.
Developments in different technologies can change the picture dramati-
cally; what was once a scarce resource may become abundant. For instance,
the use of light as a medium of communication may make problems of in-
terconnectivity much simpler, thus shifting the bottleneck to some other
resource. Nevertheless, we should determine hardware trends as best we

can before embarking on programming research, because hardware tech-
nologies determine the scarce resource, and efficient programs are those
that use scarce resources effectively.

1.3 Trends in Applications

There are a few trends in applications with important consequences for
programming,.

The variety of applications has been growing dramatically. Applica-
tions range from scientific programs, where the primary data struc-
tures are arrays and grids, to expert systems that are based on sets
of rules and list structures.

The sizes of applications have increased; yet, progress in some fields
of science continues to be limited by the size of problems that can be
solved on computers within reasonable time.

The lifetimes of successful applications are long and, in many cases,
are getting longer.

The increasing variety of applications has resulted in the discipline of
programming becoming fractured into diverse subdisciplines. It is a chal-
lenge to provide a uniform design methodology that applies across a variety
of application areas.

The increase in the sizes and lifetimes of applications has resulted in a
continuing concern about efficiency. In some areas (for example, many fields
of scientific computation), an obsession with efficiency results in program-
mers designing programs from the very beginning so as to exploit special
features of target machines — much as they once designed programs for
machines in their basements. This obsession with efficiency is unavoidable
given the limits that computation places in many areas of scientific research.
The challenge is to mediate between two opposing concerns: On the one
hand, the time taken to develop a correct program is smaller if program-
mers can use constructs that are close to their applications, and, on the
other hand, program execution times are smaller if programs are written
in notations that are designed to exploit scarce computing resources.

1.4 Trends in the Software Life Cycle

An elegant (but incorrect) picture of programming is as follows: The
programmer is given a specification, and the programmer develops a pro-
gram that meets the specification. The picture is incorrect because a large
part of the cost of software development is in (a) coming up with the specifi-
cations in the first place, and (b) modifying the specifications and programs
to meet changing demands. It is difficult to propose specifications because
it is difficult to determine what customers want. Rapid prototyping — the
rapid development of correct, but perhaps inefficient programs — is one
way of handling this problem. Customers are given the inefficient proto-
type to determine if it has the functionality and the interface that is needed;
if it does not, then the prototype is modified until it has the desired func-
tionality. The prototype is used as the specification except for additional
constraints regarding efficiency.

Specifications change with time, and modifying programs rapidly to
meet changes in specifications is one of the challenges of programing.

In addition, rapid prototyping is useful for model building. In many
areas of science, researchers build computational models of physical or so-
ciological systems. The problem of model-building has two phases:

Developing an appropriate model which may take repeated iterations
of constructing a model and then determining whether it is an ade-
quate representation of the system, and

Improving the efficiency of model execution so that it runs rapidly

enough to meet the researcher’s needs for analyses of several sets of
data.

Developing appropriate models is much the same as rapid prototyping, and
improving model efficiency is a process of program refinement.

These trends suggest that a program design strategy should facilitate
the development of rapid prototypes that can be transformed later, by
stepwise refinement, into programs with adequate efficiency.

1.5 Proliferation of Architectures

From the first computer to the present, programmers have had to deal
with one architecture: the von Neumann machine. Now there are many
kinds of computing engines available: multicomputers with hundreds of
processors that communicate by messages, SIMD machines with thousands
of processors executing the same instruction, pipelined scientific processors,
and neural networks. How can we respond to the challenge of a variety of
novel architectures? One approach is to think of programming as the task
of developing a program for a specific architecture. Thus, we have different
programming disciplines: one for SIMD machines, one for message-passing
MIMD machines, one for shared-memory MIMD machines, one for neural
network machines, But, our study of the history of computing suggests
that a trend of computing is to program for increasingly abstract (and gen-
eral) computers. Just as programming Model X of vendor Y gave way to
programming a FORTRAN machine, so too, programming for a specific ar-
chitecture must give way to a more general view of programming. Programs
will outlive the architectures for which they were initially designed, just as
they outlived Model X; issues of transportability across models and vendors
must be generalized to issues of transportability across architectures.

1.6 Learning from the Trends

The trends outlined in the previous section suggest a programming no-
tation and design strategy based on the following ideas:

1.6.1 What, not When, Where or How

In the initial stages of design, a program consists of a description of what
should be done; if the efficiency of the initial design is inadequate, program-
mers begin to address issues of when an action should be carried out, where
(i.e., on which processor) an action should be carried out, and how a pro-
cessor should carry out an action. The programming notation should allow
programmers to describe programs exclusively in terms of what, and later
to introduce concerns about where, when, and how. The notation should
allow programmers to begin their designs by concentrating on the applica-~

tion, and later to consider target architectures. Improvements in compiler
technology will make it increasingly likely that the initial programs will
have adequate efficiency.

1.6.2 Stepwise Refinement

If the efficiency of the initial program is inadequate, the notation should
allow the program to be modified, in small steps, so that it becomes more
efficient for a target architecture. One approach is to use one programming
paradigm — say logic programming — at the initial stages of design, and
then use a totally different paradigm — say imperative programming —
when efficiency becomes a key concern. I think that there are advantages
to using the same framework at all steps of the design, from the initial
prototype to the final program. Therefore, the UNITY project is concerned
with exploring the question: Will one framework suffice?

1.6.3 Assignment

The assignment operator is an effective way of managing memory. While
there are several ugly things about the assignment operator, it does give
the programmer control over how memory is used. If memory is a scarce
resource, programmers need the power of the assignment operator. By the
same argument, since data movement is often the bottleneck, programmers
need the power of message-sending and message-receiving operators. And,
since all computers today employ control flow and program counters, pro-
grammers need the power of sequencing. The challenge for a program design
methodolgy is to allow programmers to use those constructs — equations,
relations, fixed-points, invariants — they find most convenient to solve their
problems (without being too concerned about efficiency) in the initial stages
of design, and to later control the use of scarce resources — storage and
communications — to obtain efficient programs.

1.6.4 Learning from Programming Paradigms

For many problems, logic programming appears to be the notation of
choice; for many other problems, functional programming appears to be

ideal; for yet other problems rule-based programming is the style of choice.
A difficulty with these approaches is that it is hard to refine programs down
to the level of using the primitive hardware while remaining within these
programming styles. The hardware — functional units, registers, caches,
I/O devices — can be thought of as state-transition systems, but it is harder
to represent them as functions or Horn clauses. The challenge is to use
ideas from functional, logic and rule-based programming, while retaining
the ability to bring in architectural considerations at appropriate stages
in design. On the one hand, concepts from different programming styles
appear to be useful; on the other hand, if we succumb to the temptation of
including something from every programming style we will end up with a
programming methodology that does not have a clean theory. Our challenge
is to provide a unifying theory.

2 An Approach to Programming

The ideas here are from UNITY, a programming methodology, including
a specification notation, programming notation, proof system and design
heuristics, that was proposed in [Chandy| which contains both an informal
discussion of the key ideas and a formal treatment. The discussion in here,
however, is entirely informal. First we shall describe the ideas underlying
UNITY; later we shall discuss possible extensions motivated by discussions
with Prof. Chuck Seitz of Caltech.

A UNITY program has four parts:

declare section A declaration of variables.

always section A set of equations that are invariants of the program, i.e.,
that always hold in all computations.

initially section A set of equations specifying the initial values of variables.
assign section A set of assignments.

(The ordering of equations or assignments in each section is irrelevant.)
An assignment has one or more variables on the left-hand side and a
corresponding number of expressions on the right-hand side. The syntax of

8

an equation in a UNITY program is the same as that used for an assignment
statement, except that the assignment ‘=’ in an assignment statement is
replaced by the equality ‘="in an equation. When executing an assignment
statement, all expressions on the right-hand side are evaluated concurrently
and then applied to the left-hand sides concurrently. Thus, z,y = y,z
interchanges the values of £ and y. An equation with more than one variable
on the left-hand side is equivalent to a set of equations, one for each variable
on the left side. Thus: z,y = 1,2 is equivalent to: z=1, y=2

Some of the sections of the program may be empty. We begin by de-
scribing programs in which the last two sections, the initially and assign
sections, are empty. Such programs are functional programs. Functional
programs consist of a set of equations (definitions); the solution to the set
of equations is the result of the program. Definitions are given in the always
section, and variables are declared in the declare section.

2.1 Functional Programs

Consider the problem of sorting an array in increasing order. We are
given an array, X, each element of which is distinct. Extensions to allow
duplicates are straightforward. We are required to design a procedure that
returns an array Y, where (a) Y is a permutation of X and (b) Y is in
increasing order. Assume that both X and Y are indexed 1...N.

2.2 First Program

Let perm be a function where perm(X) is the set of all permutations of
X. One solution is:

Define Y as the lexicographically smallest member of perm(X).

(An array Z is lexicographically smaller than an array Z' of the same

dimension as Z if and only if, for some index 3, Z[¢] < Z'[¢], and for all
indices 7 less than ¢, Z[j] = Z'[f]. Thus [2,1, 3] is lexicographically smaller
than [2,3,1].)

The program is a declaration and an always section that consists of the
equation that defines Y.

Given function perm and operand lezmin — the lexicographical-minimum
dyadic operand — the definition of sort is simple, and the correctness argu-
ments are straightforward. The execution time (which is V! in a straight-
forward implementation) may be unacceptable.

2.2.1 Notation

The program consists of a declaration of Y and an always section that
consists of the single equation:

Y =<lezmin Z : Zinperm(X) = Z >

In general,
K opZ: ZinSand f(Z) = g(Z) >

where op is an associative, commutative, dyadic operator, and where fis
a boolean function, has value

9(Z1) op 9(Zz) op g(Zs) op ... op g(Zs)

where 7y, Z;,Zs, ..., Z) are the members of S that satisfy f.

10

2.3 Second Program — The Rank Sort

Next, we describe another functional program.

Define an array rank of integers indexed 1...N where for all i: rank[z)
is the number of elements of X that are less than or equal to X[i]. Since
rankli] is the position of X[] in array Y, it follows that Y [rank[s]] = X[3].

For example, given that X = [3,7,5|, rank = [1, 3,2]. So, in our exam-
ple, Y[1] =3, Y[3] =7, and Y[2| = 5.

The program has a declare section and an always section that consists
of equations that define rank and Y.

2.3.1 Notation

The always section for this program is:

always
{The equations defining rank are: }
< 07 :1<i< N :rank[i] =
K+ (ISJSN)AX[F]I S X[E]) =1>
>
O
{The equations defining Y are: }
L 0¢ : 1< N :Y[rankld]] = X[i] >

The symbol O separates equations. There is one equation defining
rank[i] for each ¢ in 1...N. The term

L+ (I<JSN)A XIS X[E]) =1>

in the definition of rank[i] is a sum (because of the ‘+’) over all j, such

11

that (1 <7 < N) A (X[j] £ X[i]), of the expression ‘1°. Thus, it is a count
of the number of elements in X that are less than or equal to X[i]. There
is one equation defining Y[rank[:]] for each ¢ in 1...N.

2.4 Other Functional Programs

There are many other functional definitions of sorting. We do not dis-
cuss them here because our modest goal is only to present some idea of
UNITY. The message I want to leave with you is this: A UNITY program
that consists of only the declare and always sections is a functional program,
and functional programs are often clear and succinct.

3 Rule-Based Programs

Now let us consider programs without the always section but with the
initially and assign sections. These programs are similar to rule-based
programs.

Computation proceeds by executing an assignment selected nondeter-
ministically and fairly from the set of assignments. The fairness require-
ment is that it is always the case that each assignment will be executed
eventually. The state of a program is given by the values of its variables.
(There is no program counter because there is no sequential control flow.)
A fixed point of a program is a state of the program in which the execution
of each assignment leaves the state unchanged; therefore a fixed point of a
program is a state in which, for each assignment in the set, the values of
variables on the left-hand side of the assignment equals the values of the
corresponding expressions on the right-hand side. The program returns
values if and when it reaches a fixed point, and, in this sense, reaching a
fixed point is similar to termination. (Of course, many programs — op-
erating systems, for instance — never terminate, and do not reach fixed
points; they may become quiescent awaiting input, but they do not halt.
In this paper we shall restrict attention to programs that are required to
reach fixed points.)

The set of assignments can be thought of as a set of actions or a set of
rules. A program containing the assign section has points of similarity with

12

rule-based programs. There are also similarities between sets of assignments
and sets of communicating sequential processes and sets of objects; we do
not have space here to explore these similarities.

3.1 Third Program — An In-Place Sort

Next, we design an in-place sort. Initially ¥ = X. We define what
actions are to be carried out on Y without specifying where, when or how
the actions are to be carried out; therefore, the program is simple.

Inttially Y = X.

Rules For every adjacent pair of elements of Y: flip the pair if they are out
of order and leave them unchanged otherwise. (The program has
N — 1 rules, one for each adjacent pair of elements.)

The program consists of an instially section in which Y is set equal to
X, and an assign section which consists of assignments corresponding to
the actions of flipping adjacent pairs of elements of Y if they are out of
order. Computation proceeds by repeatedly selecting any adjacent pair of
elements nondeterministically and fairly, and flipping them if they are out
of order. A fixed point of the program is a value of Y in which flipping an
adjacent pair of elements of Y if they are out of order (and leaving them
unchanged if they are in order) leaves Y unchanged. To demonstrate the
correctness of the program, we have to show that (1) a fixed point will
be reached, and that (2) at all fixed points reached in computations of
the programs, Y is a permutation of X, and Y is in increasing order. More
about correctness next.

13

3.1.1 Correctness Arguments

Metrics and Progress To prove that all computations of the program
will reach a fixed point, we demonstrate a metric — a function from the
states of the program to the integers, where the value of the function is
bounded from below and every state change reduces the value of the func-
tion. If the value of the metric is m initially, and a lower bound on the
metric is b, a fixed point is reached in at most m — b state changes. For our
example, a metric for the sorting program is the number of out-of-order
pairs (7,); i.e., it is the number of pairs (¢, j) where { < j and Y[i] > Y[s].
We prove that a function, M, from the states of a program to the natural
numbers, is a metric as follows. We show that for each assignment, and for
all values Y of the state that satisfy invariants of the program, execution
of the assignment in state Y results in a state, newY, where

either there is no change in state, (i.e., ¥ = newY), or
the metric decreases (i.e., M(Y) > M(newY)).

For our example, our proof obligation is to show that flipping an out-of-
order pair reduces the total number of out-of-order pairs. This is straight-
forward.

Demonstrating a bound on the number of state changes is not the only
way of proving that a fixed point will be reached. In general, all we have to
show is that a metric will decrease eventually, and we do not have to give

a bound for how many state changes will occur before that eventuality is
realised.

Invariants An invariant of a program is a predicate on the states of the
program that holds in all states reached in all computations. In particu-
lar, an invariant holds at all fixed points reached in computations of the
program. To prove that a predicate Inv on the states of a program is an in-
variant of the program, we prove that Inv holds initially, and we also prove
that for each assignment in the program if Inv holds immediately before
the assignment is executed, then it holds immediately after the assignment
is executed.
In our example, we shall prove the following invariant:

14

Y is a permutation of X.

Initially, ¥ is a permutation of X because Y = X. If Y is a permutation
of X immediately before a pair of elements of Y is flipped, ¥ will remain
a permutation of X immediately after the flip. This completes the proof of
the invariant.

Fixed Point A fixed point of the program is a state in which each action
— flipping a pair of adjacent elements of Y if they are out of order, and
leaving them unchanged if they are in order — leaves the state unchanged.
If Y is not ordered, flipping adjacent elements that are out of order changes
Y. Therefore, Y is ordered at all fixed-points of the program.

Correctness of the Program We have demonstrated a metric; there-
fore, the program reaches a fixed point. We have shown that Y is ordered
at all fixed points of the program. We have shown that an invariant of the
program is that Y is a permutation of X. Therefore, the program reaches
a fixed point in which (1) Y is ordered and (2) Y is a permutation of X.

3.1.2 Notation

The action of switching X[i] and X[+ 1] if they are out of order is
represented by the multiple assignment:

X[s], X[é + 1] == min(X[d], X[¢ + 1]), maz(X[d], X[z + 1])

In this assignment, X[i] becomes the smaller of X[i], X[i+1], and, simulta-
neously, X[i+ 1] becomes the larger of X[i], X[¢ +1]. The program consists
of N —1 actions, one for each 7, where 0 < 7 < N. The set of N — 1 actions
is represented by:

K< 0O1:0<e< N uX[g],X[i+1]:=

min(X[d], X[¢ + 1]), maz(X[3], X[{ + 1]) >
The box O is a separator between assignments. In the above statement,
¢ is a dummy variable, and the program has assignments for all ¢ , Where 1
satisfies the predicate between the *’ and the “::’, namely 0 < ¢ < N.

15

4 Programs with Functional and Rule-Based
Components

A variable that is defined in the always section cannot be assigned a
value in the assign section; it may, however, appear on the right-hand side
of an assignment. For example, let nf and nm be program variables that
are the numbers of females and males (respectively) in an organization.
The total number of people, nt, in the organization can be defined by
the invariant: nt = nf + nm. The equation defining nt appears in the
always section. Variables nf and nm can appear in the left-hand sides of
assignment statements, but nt cannot. The program is equivalent to one
in which all occurrences of nt in the right-hand sides of assignments are
replaced by the expression (nf + nm) that defines it.

4.1 Fourth Program — Towards the Heap Sort

We next describe another in-place sort. This program can be refined
to obtain the heap sort, an efficient program for sequential architectures.
Let m be an integer variable that takes on values in 1...N. The program
has the invariant that the portion Y[m + 1... N] of the array has its final

values, i.e., for all £ where m < k < N: Y[k| is the k-th smallest element
of X.

Define Define index, big, such that Y[big] is the largest value in Y[1...m].
Initially Y = X and m = N.

Rules The program has a single rule: Interchange Y[m] and Y[big] and
concurrently decrement m if m > 1.

16

Define big in the always section. The assign section consists of a single
rule.

I do not contend that the UNITY program is better, more succinct or
clearer than an imperative program. I do contend, however, that a UNITY
program and a typical imperative program emphasise different things.

In UNITY, one tends to use definitions where possible, and to avoid
control flow. For instance, we could have modified the value of big in the
set of rules; we prefer to define big by means of an equation (that always
holds). An argument can be made, however, that control flow has been
introduced by the always section. For instance, in our example of a sorting
program, after each execution of the rule (that interchanges Y[big] and
Y[m], and decrements m) the value of big is recomputed. This control
flow is tmplicit in a UNITY program, whereas it is ezplicit in imperative
programs. Indeed, in UNITY, we choose not to think about operations at
all, except to evaluate efficiency.

Also, where one would write a loop in an imperative program, one
tends to define a set of variables and write a single assignment statement
in UNITY. Often, the assignment statement assigns multiple values con-
currently to multiple variables. Sequencing is not necessarily bad, nor is
concurrent assignment necessarily good. The difference in emphasis does,
however, lead to different styles of program development: In an imperative
program, one tends to design the program skeleton and its proof together,
whereas in UNITY one tends to design the specification in detail without
proposing a program skeleton in the usual sense. In this example, we began
by giving an invariant for our program. In a sequential program, one would
propose a program skeleton and annotate the program skeleton: different
assertions hold at different points in the program. Since UNITY programs
do not have ‘program points’, we can propose an invariant without ambi-

guity about where the invariant holds: The invariant holds for the entire
program.

4.2 Notation

Let v be the largest element in Y[1...m]. Then big is any index such
that Y [big] = v; we define big to be the smallest index such that Y [big] = v.

17

Program P4

declare big,v : integer;

X,Y :array[l...N]| of integer

always v=<mazi : 1<i<m :Y[i] >
Obig=<mini :(1<i<m)A(v=Y[]) : i>

initially < O ¢ : 1 <i<m = Y[i] = X[¢] >
Om=N

assign Y [m],Y [big],m := Y [big],Y [m]|,m — 1 if m>1
end {P4}

5 Refinement for Target Architectures

A first step in design is to develop a prototype quickly. The prototype is
developed without too much concern for efficiency or target architectures.
Later in the design cycle, the prototype is refined to execute efficiently
on a set of target machines. We do not have space here to carry out the
refinement of sorting programs for different architectures. The rank sort
is efficient for parallel machines. The fourth program can be refined to
obtain the heap sort. In addition, we shall also present another example of
an in-place sort — the odd-even transposition sort — that appears to be
efficient for both SIMD and MIMD architectures.

Introduce two sentinels, Y'[0] and Y[N + 1], where Y[0] = —oco and
Y [N +1] = +oo. Let k be the step number, i.e., the number of times that
a rule has been executed.

18

Initially Y = X and k = 0.
The program has a single rule: flip Y [¢] and Y [¢+1] if they are out of order,
for all ¢ where (i = k) mod 2, and concurrently increment k by 1 if k < N.

Pairs (Y'[1],Y[2]), (Y[3],Y [4]),(Y[5],Y[6]),..., are flipped, if they are out
of order, on odd steps. Pairs (Y2],Y[3]),(Y[4],Y[5]),(Y[6],Y]7]),..., are
flipped, if they are out of order, on even steps. After N steps, the rule does
not change the state of the program and, therefore, a fixed point is reached.

5.1 Notation

The assign section of the program is:

assign < ||7 :1<¢< N =Y[i]:=
min(Y[¢],Y[i + 1)) if (£ = k) mod 2 ~
maz(Y [, Y[—1]) if (i # k) mod 2

>
I k:=k+1ifk<N

The ‘||’operator is a parallel assignment. The right-hand sides of the as-

signment are evaluated in parallel for all 4, and then assigned in parallel to

Y [¢] for all z.

Mapping this program to SIMD machines, such as the Connection Ma-
chine, is fairly straightforward. Mapping the program to multicomputers

and shared-memory multiprocessors is also quite direct; for details, see
[Chandy].

6 Extensions

In this section we shall propose two extensions to UNITY that make
rapid prototyping easier, and also suggest a way towards stepwise refine-

19

ment for parallel architectures. These extensions control the manner in
which assignments in the assign section are executed. The extensions were
motivated by discussions with Chuck Seitz. We shall discuss one extension
at a time. Each extension is an additional section of a UNITY program.

6.1 Guarantee

The first extension is called a guarantee section which consists of a
single boolean expression on the variables of the program and a variable
new.y for each variable y declared in the program. Let g(y, new.y) be the
boolean cxpression. Computation progresses by selecting an assignment
nondeterministically and fairly (as before); the selected assignment, say
y := e, is executed only if g(y, €) holds; otherwise the assignment is skipped.
Therefore, the program with the guarantee is equivalent to one without the
guarantee in which each assignment y := e is replaced by an assignment

y:=eif g(y,e). So the guarantee does not provide additional power. The
reason for the guarantee is:

to focus attention on properties of the program
rather than on properties of individual statements.

Pseudovariable, new.y, is the next value of y if the selected assignment is
executed; thus g(y,new.y) relates the current value of y with its next value.
Let us consider the sorting example again. We propose to do a sort in
place; therefore, initially ¥ = X. We begin, as usual, by determining what
the actions of our program should be. Let us say that the actions of the
program are to interchange any pair of elements of Y. Interchanging an
arbitrary pair of elements will maintain the invariant that Y is a permuta-
tion of X, but it will not result in the computation progressing towards a
result. Therefore we propose the guarantee that a metric decreases, where
the metric is defined as the total number of out-of-order pairs. Thus, a
pair of elements is interchanged only if the number of out-of-order pairs is
decreased. Specifying a metric in this manner is one way of guaranteeing
that the program will reach a fixed point. It makes programming simpler
by simplifying the correctness argument; programmers do not have to prove
that fixed-points will be reached — they need only specify a metric in the
guarantee section. (Of course, the metric must be bounded from below.)

20

We can also employ the guarantee section to define invariants of a pro-
gram. For example, suppose we want £ > y to be an invariant of our
program. Then we define the guarantee so that it implies new.z > new.y,
and we define the initially section so that z > y initially. An assignment
(that is selected nondeterministicaly and fairly, in the usual manner) is exe-
cuted only if the desired invariant is maintained; otherwise, the assignment
is skipped.

Here, again, the purpose of the guarantee is to simplify the correctness
argument — the programmer need not prove an invariant; it is enough to
put it in the guarantee section.

At a fixed point of a program, for each assignment y := e:

(y =€) or notg(y,e)

where g is the guarantee. For a program with an assign section, our cor-
rectness arguments usually have three parts:

demonstration of a metric,
proofs of invariants,
proofs of properties at fixed-points.

By employing the guarantee section the proof obligation can be limited
to the fixed-point part. If the initial program does not have adequate
efficiency, stepwise refinement is employed to transform the program by
weakening the guarantee and strengthening the assignments.

In summary, I want to leave you with the following message about
the guarantee section. A critical difference between a prototype that is
developed rapidly and the final program is that the protype has a simpler
proof — its correctness is more obvious. The simplicity in proof is often
achieved at the expense of efficiency in execution. The guarantee section
is an aid to rapid prototyping because it simplifies the correctness
argument. The direction in which a program can be made more efficient is

often self-evident from the guarantee: Weaken the guarantee and strengthen
the assignments.

21

6.2 Goal

In this section, we restrict attention to rule-based programs, i.e., pro-
grams with assign sections. (These programs may have other sections as
well.) Consider only programs for which it is possible to demonstrate a
metric — a function from the states of the program to the natural numbers
— such that every state change reduces the metric. If the initial value of
the metric is M, then the program reaches a fixed point in at most M state
changes.

Consider a computation tree for such a program. The nodes of the
tree are states of the program; edges of the trece are labeled with rules
(i.e., assignments in the assign section). Each node has N sons where N
is the number of rules in the program. This tree has infinite depth. A
computation of the program is a path through the tree, starting at the
root, and going from each node to one of its sons (subject to the fairness
constraint).

Derive a tree with a bounded number of nodes from the computation
tree as follows: Discard each node that is identical to its father, i.e., retain in
the tree only those rule-executions that change the program state. (When
a node is discarded, all its descendants are discarded as well.) Since each
state-change reduces the metric, and the metric has value M at the root,
this tree has depth at most M. This tree has a bounded number of nodes
since it has bounded depth and each node has at most N sons. Many
problems can be formulated as a search of this tree.

Consider, for example, the eight-queens problem. The goal is to find a
placement of eight queens on a chessboard so that no queen can capture
another. Consider the following rule-based program.

22

Instially Initially the board is empty.

Actions An action (or rule) is ‘place a queen on an empty square of the

board’. (There are 64 actions corresponding to the 64 locations on
the board.)

Guarantee No queen on the board can capture another queen on the board.

A metric for this program is (8 —n) where n is the number of queens on the
board. We want our program to return any board position that satisfies
the guarantee and has eight queens on it. For instance, we may design our
program to return the ‘least’ such board where the least is any ordering
(such as a lexicographic ordering).

We may be faced with the problem of counting the number of solutions
to the eight-queens problem, or of listing all solutions in which there is a
queen in row 1 and column 1. We specify what we want the program to
do in the goal section. Let state be any reachable state of the program.

We specify the goal by quantifying over all states in the usual way. For
instance:

Goal << least state : 8 queens on board :: board >>

returns the least board over all reachable states of the program in which
there are eight queens on the board.

Goal << + state : 8 queens on board :: 1 >>

returns the number of reachable states in which there are eight queens on
the board.

(Note: A board can be represented by a boolean array b where br, c|
holds if and only if the r-th row and ¢-th column of the board contains a
queen. In the following, assume that b is indexed [0...7,0...7].)

23

A somewhat more efficient solution is as follows. For a given row r
(which is initially 0) and for each of the eight columns ¢, place a queen in
row r, column ¢, and increment r by 1 if r < 8. The search tree for this
program is less wide than the tree for the previous program because each
node of the tree has at most eight sons.

Initially Initially the board is empty, and r = 0.

Actions For each column c: ‘place a queen in row r, column ¢, and incre-
ment r by 1 if r < 8.” (There are 8 actions corresponding to the 8
columns.)

Guarantee No queen on the board can capture another queen on the board.

Goal << least state : 8 queens on board :: board >>

We can continue the process of making our program more efficient by,
firstly, reducing the size of the search tree, and later by considering op-
erational issues such as the manner in which the program is implemented
on a target architecture. Our objective is not to exclude operational and
architectural considerations, but rather to include them only if efficiency
demands it.

Consider another example: The knapsack problem. We are given a
number of objects and a knapsack. Each object has a weight and value.
The knapsack has a capacity. Objects are to be placed in the knapsack
to maximize the total value of all the objects in the knapsack, subject to
the constraint that the total weight of all the objects in the knapsack must
not exceed the capacity of the knapsack. An obvious solution is as follows.
An action is: ‘place an object in the knapsack’ (if it is not already in
the knapsack). The guarantee is that the capacity of the knapsack is not

24

exceeded. The goal is to maximize the contents of the knapsack over all
states:

Goal << maxz state : true : sum of values of objects in knapsack >>

Another way of thinking about the goal section is in terms of fairness.
In a program that does not have the goal section, the execution of rules
in the assign section is fair: It is always the case that every rule will be
executed eventually. This fairness rule is quite weak; we can construct
an execution where the ‘right’ rules are not executed for an arbitrarily
long (but finite) time, and the ‘wrong’ rules are executed repeatedly. In
this sense, the nondeterminism in rule-execution is demonie. In the initial
stages of design, we work with programs with nondeterministic execution
sequences; as design progresses and the target architecture becomes better
defined, we make our programs more deterministic by disallowing sequences
that are inefficient for the target architecture.

Chuck Seitz suggested a complementary form of program development:
Begin by assuming an angelic form of nondeterminism, in which the ‘right’
rules are always executed; later implement this angelic behavior on the
target computer. The angelic and demonic views of nondeterminism are
quite symmetric; they are helpful in program design for the same reason:
We unnecessarily restrict program execution if we insist that programs have
to be deterministic.

How do we specify the ‘right’ rules? We specify a goal; the ‘right’ rules
are those that get the program to its goal. The state of the program is
changed, as usual, by carrying out one of the actions. Rather than select
actions demonically, however, we may think of the actions as being selected
angelically so that the goal is achieved eventually.

Rule-based programs with angelic nondeterminism appear to have, at
least superficially, some similarities to logic programming. (Logic program-
ming is nicer in that it consists of a set of definitions rather than a set of
actions.) We hope to use nondeterminism as a means of stepwise refine-

ment, and both angelic and demonic nondeterminism seem useful in this
regard.

25

6.3 Caveat

I do not know if the ideas of goal and guarantee are good. Jay and I
write many programs and cogitate for a long time before we decide that

a construct is worth including in UNITY. I think the ideas are nice, but
then, I am often wrong.

7 Program Composition

UNITY can be thought of as an experiment in studying different forms
of program composition. In place of an assignment, in the assign section, we
can have a program — a procedure — that modifies some variables (cor-
responding to the variables on the left-hand side of the assignment) and
that accesses other variables without modifying their values (correspond-
ing to variables that appear on the right-hand side, but not on the left-hand
side, of the assignment). A rule-based program in which (each rule is itself
a program, and) rules are executed using demonic nondeterminism, and
in which values are returned at fixed points, is one way of program com-
position. Similarly, a rule-based program using angelic nondeterminism
is another means of program composition. A multiple assignment corre-
sponds to another form of program composition: Replace each assignment
by a program, and the multiple assignment corresponds to a composed
program in which all of its component programs are executed ‘in parallel’.
Indeed, all UNITY constructs are about program composition. The only
traditional form of program composition is sequential composition; UNITY
offers some others. Here we are following Tony Hoare’s work [Hoare], which
can be thought of as a study of program composition. The programs com-
posed by using UNITY constructs may be written in any notation — an
imperative language, for instance.

8 Adequacy of System Representation

One of our goals is to refine our program down to a detailed level, ‘close’
to the hardware. We can only carry out such a refinement if the notation al-
lows the hardware, or the underlying system, to be represented adequately.

26

The underlying system may be an asynchronous circuit [Martin,Seitz], or
a clocked circuit, or a distributed system that spans continents. I do not
have the time to discuss adequacy of representation in detail. Ishall merely
allude to it in passing.

First consider asynchronous circuits. A wire connecting the output
variable y of a gate to the input variable z of a gate is represented by the
assignment (or rule) z := y. A gate with a vector of inputs y, and a vector
of outputs z, that is computing a function f, is represented by the assign-
ment z := f(y). For example, an and gate with inputs z, y and output 2
is represented by: 2z := z and y. Assignments are selected nondeterminis-
tically and fairly (demonically) as usual. Thus an asynchronous circuit is
represented by a rule-based program in which each circuit and each wire is
represented by a rule, and the representation is straightforward.

Now consider synchronous circuits. A multiple assignment is used to
represent the firing of several gates in a single clock cycle. For example,
consider the and gate of the previous paragraph and an or gate with inputs
a and b and output ¢, where all the signals a, b, ¢, z, y, z are distinct. The

outputs of the gates are read once in each clock cycle, after the voltages
have reached equilibrium. The circuit is represented by:

z:=zandy ||c:=aorb

Asynchronous and synchronous communication in distributed systems
can also be represented in the same way. Our goal is to employ the same
notation — and the same ways of thinking — at all levels of program
design, and this requires that one model be an adequate representation at
all levels. I most certainly do not wish to suggest that our representation
is preferable to other representations of circuits or systems; I do, however,
want to emphasise that adequacy of representation is an important issue,
and it appears that UNITY offers some hope in this regard.

9 Swuccess or Failure?
When embarking on a scientific experiment, it is a good idea to evaluate

its potential for success or failure. Let me try to do that now with respect
to the UNITY experiment. First, the potential for failure.

27

9.1 Failure

The UNITY experiment may fail because there may be no unity to the
program design task: programming different architectures and different
applications may be so different that a general approach will offer little
insight.

The experiment may fail because UNITY constructs are unconventional.
We have several decades of experience in imperative deterministic program-
ming: We know that programmers can think in this style. I am far from
certain that programmers will be willing to adopt the UNITY style. For
example, the coupling of definitions (in the always section) and nondeter-
minsm (in the assign and goal sections) may be unacceptable to most pro-
grammers. Consider another example: Will programmers be comfortable
thinking of a sort program merely as ¢ flip out-of-order pairs’ ?

The experiment may fail because the programming model is more ab-
stract than the conventional model, and so understanding UNITY programs
requires a better understanding of proof constructs such as invariants, met-
rics and progress than is required for sequential programs.

UNITY is predicated on the assumption that a variety of architectures
exist for a variety of reasons, and that a variety of programming styles exist
for a variety of reasons; a goal is to attempt to provide unifying principles
across architectures and notations. An alternate view (and possibly the
correct view) is that architectures and notations are merely artifacts: They
exist because we, the computing community, want them to exist. There-
fore, we could all agree to employ the single best notation, and then build
machines for only that notation; in this case the problem of unification
vanishes.

Finally, UNITY may fail because its specification notation, program-
ming constructs, proof method, and heuristics are just plain wrong. It will
most definitely fail if, in our attempt to unify, we create a hodgepodge of
ideas without unifying principles.

9.2 Success

UNITY is not a programming language: It is a collection of ideas about
specifications, programming constructs, proofs, and heuristics. The effi-

28

ciency with which UNITY programs execute on multicomputers, SIMD
machines, pipelined architectures and sequential machines, are certainly
reasonable yardsticks for evaluating success. Our experiment, however, is
not about a language. If the UNITY ideas are good, we expect that they
will find their way (after some modification) to other languages and sys-
tems. For instance, if our ideas about nondeterminism, fixed points and
rules are good then these ideas will find their way to into research that
others do. I think it is unlikely that others will use our notation because
notation seems to be a matter of personal style, but that does not matter.
For instance, others may use guarded commands rather than assignments,
and equilibrium states rather than fixed points. The key question is whether
the ideas underlying the notation are similar. If our representation of cir-
cuits is good, the same representation will be used by others. If our proof
method is good then it will lead to similar (and better) methods. Finally, if
the UNITY experiment is a good one, others will try similar experiments.
The success of the project should be measured by the degree of diffusion of
UNITY ideas. Only time will tell whether the project is successful.

10 Conclusion

Our goal in program design is to allow programmers to focus attention
initially on their problems rather than on the computer architectures on
which their programs may be required to run. If the initial programs do
not execute fast enough (and we hope that in many cases, with optimizing
compilers and fast machines the initial programs will be adequate), then
the programs are refined to make them execute faster. A program runs fast
if it uses scarce resources well, even if it is profligate in its use of abundant
resources. Our goal is to provide a path by which in the initial design stages
programmers can use constructs such as cquations, invariants and metrics,
that do not deal with architectures or computing resources, and in later
stages, they can control message communication, memory management and
sequencing, and the special features of target architectures. For example, in
the initial stages of designing an in-place sort program, our program might
be: flip adjacent out-of-order pairs. A compiler can compile efficient code
for parallel machines (SIMD, multicomputers and multiprocessors) for this

29

program; indeed, it is fairly direct to generate the odd-even transposition
sort. If, however, the compiled code does not execute fast enough on the
target machine, the programmer can refine the initial program by employing
a set of heuristices to obtain shorter execution times.

A program design strategy includes a specification notation, a proof
theory, and heuristics for the refinement of designs; we have no space to
discuss these important issues, and the reader is referred to [Chandy]. We
are currently writing compilers for SIMD machines. See [Bagrod] in this
conference for plans for the Connection Machine.

11 Acknowledgments

The UNITY project, a research effort that has been going on for the last
three years, is funded by the Office of Naval Research, partly through the
University Research Initiative, and is led by Jay Misra at the University
of Texas at Austin and me. Prof. Rajive Bagrodia of the University of
California at Los Angeles is extending UNITY and implementing it on the
Connection Machine. Eric F. Van de Velde of the California Institute of
Technology is experimenting with extensions of UNITY for scientific com-
putations executing on coarse-grained message-passing concurrent comput-
ers [Velde]. Their efforts continue to suggest research directions. Many of
the ideas discussed here came from discussions with Chuck Seitz who, with
his students, has developed notations and many algorithms for multicom-
puters. Special thanks to Alain Martin for his thoughtful comments.

Also, the support of the California Institute of Technology and the Sher-
man Fairchild Foundation during the year 1987 - 88 is gratefully acknowl-
edged.

Many of the ideas here are drawn from different programming styles:
communicating sequential processes, and object-oriented, rule-based, func-
tional, logic and imperative programming. It is not possible to cite the
sources from which these ideas are drawn in the space available. A com-
plete list of references is found in [Chandy].

30

Bibliography

[Bagrod] R.Bagrodia and K. M. Chandy, ‘Programming the Connection
Machine’, Proceedings IEEE International Conference on Computer
Languages ’88, Miami Beach, Florida, October 9 — 13, 1988.

[Chandy] K. M. Chandy and J. Misra, Parallel Program Design: A Foun-
dation, Addison-Wesley, Reading, Massachusetts, 1988.

[Hoare] C. A. R. Hoare Communicating Sequential Processes, Prentice-
Hall, London, 1984.

[Martin] A.Martin, ‘Compiling Communicating Processes into Delay-Insensitive
VLSI Circuits’, Journal of Distributed Computing, Vol.1, No.3, 1986,

[Seitz] C. Seitz, ‘System Timing’ in Introduction to VLSI Systems, eds.
C.Mead and L.Conway, Addison-Wesley, Reading, Massachusetts, 1980.

[Velde] E. F. Van de Velde, ‘A Concurrent Direct Solver for Sparse Un-

structured Systems’, report C3P-604, Caltech Concurrent Computation
Project, 1988.

31

