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ABSTRACT

An approximate approach is presented for determining the
stationary random response of a general multidegree-of-freedom
nonlinear system under stationary Gaussian excitation. This
approach relies on defining an equivalent linear system for the
nonlinear system. Two particular systems which possess exact
solutions have been solved by this approach, and it is concluded
that this approach can generate reasonable solutions even for sys-
tems with fairly large nonlinearities. The approximate approeoach
has also been applied to two examples for which no exact or approxi-
mate solutions were previously available.

Also presented is a matrix algebra approach for determining
the stationary random response of a general multidegree-of-freedom
linear system. Its derivation involves only matrix algebra and
some properties of the instantaneous correlation matrices of a
stationary process. It is therefore very direct and straightforward.
The application of this matrix algebra approach is in general simpler

than that of commonly used approaches.
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NOTATIONS

Matrices and vectors will be denoted by capital letters and
lower case letters with a bar over them, respectively {(exceptions:
E, T). Subscripts may be used to designate different matrices or
vectors, e, g., Xl’ XlZ’ Ri’ Superscripts T and * will denote,
respectively, the transpose and the conjugate transpose of a matrix or
a vector, The components of a métrix or a vector, say A or x, will
be written as ajk or xj . In the following is a list of frequently used

symbols, Others will be defined when they are used,

c, = ¥, wWhenk=j-1
j Yik !
C = damping matrix of a linear system
C(O) = damping matrix of the linearized system of a nonlinear
system
& = difference between a nonlinear system and its equivalent
linear system
E[ ] = expectation operator
fu = ultimate force of a nonlinear spring
ft) = stationary random vector
g = internal force vector of a system
G(t) = impulse response function matrix
H{w) = frequency response function matrix
i = /-1
I - identity matrix
k. = #,  Whenm=j-1
j jm J
k(o) = initial stiffness of a nonlinear spring
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vii

stiffness matrix of a linear system

stiffness matrix of the linearized system of a non-
iinear system

mean vector of X
mass matrix
null matrix or null vector

Laplace transform parameter or probability density
function

transitional probability density
caorrelation function matrix of
ingstantaneocus correlation matrix of %
83k when k=j-1

f0ﬁce in the nonlinear element connecting the jth anc the
k'® masses of a nonlinear system

white noise vector
time
potential energy of a system

spectral density matrix of a white or a clipped white
noise vector

displacement vector
. .th . th
displacement of the j  mass relative to the k™" mass

relative displacement vector of a simple n-degree-of-
freedom system

proportionality factor between C and R—f('r) or a constant

equivalent linear damping constant of 8.\
3

¥

Gamma function
Dirac delta function

fraction of critical damping
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equivalent linear stiffness of Sjk
small parameter
r.m.s, value of y

cutoff frequency of a clipped white noise

natural frequency
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I, INTRODUCTION

In structural dynamics the excitation of a system is often ran-
dom in nature and hence the response of such a system cannot be
accurately predicted by usual deterministic approaches, For example,
the ground motion during an earthquake is a random process and it is
therefore desirable to apply probabilistic techniques to the analysis of
structures subjected to this type of excitation. In recent years the
development of rockets and jet engines which give rise to vibration
that is essentially random has lead to increased interest in the appli-
cation of probabilistic techniques to structural dynamics,

The theory of the random process was first successfully
applied to dynamic systems by Ei.nsvltein1 . He used it to investigate
the Brownian motion of a free particle and found that the probability
density of the response process was governed by a diffusion equation.
Soon his result was generalized to more complicated cases by
Fokkerz, Srnoluchowski3, Planck4, and others, It was found that
the transitional probability of a special kind of Markov process was
governed by a partial differential equation of parabolic type. This
equation is usually called the Fokker-Planck equation. A more
general partial differential equation for determining the transitional
probability density of a completely general Markov process has also
been found" and sometimes it is also referred ta as the Fokker-Planck
equation., In the present study, the general equation will not be used,
and hence the more restrictive parabolic equation will be referred to

as the Fokker-Planck equation.
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In 1919 Ornstein6 developed another approach which did not
require that the response process of a dynamic system be Markovian.
It is known that a random process can be completely defined by its
moment functions of various orders. For example, a Gaussian
process can be specified by its first and second moment functions.
Therefore, Ornstein integrated the equation of motion and expressed
the random displacement in terms of a stochastic integral. Then he
was able to derive all of the required moment functions, This
approach will be célled the impulse response function approach.

Wiener7 in 1930, and ]E§Lh1'.ntc:hi.nts:8 in 1934, found independently
that the spectral density and the correlation function of a random
process are related by a Fourier cosine transform. Since the
spectral density of the stationary response of a linear system can
be readily determined by Fourier transform, the Wiener-Khintchine
relation furnishes another way to determine the stationary response
of a linear system. This approach is usually called the spectral
density approach.

All of these approaches were first developed for single-degree-
of-freedom linear systems. However, they can be generalized to
multidegree-of-freedom linear systems without difficultyg.

In general, it is just an approximation to consider a real
system as linear. Most real systems are nonlinear by their very
nature. The results of linear analysis are particularly'inadequate
for large motions., Hence, the effect of system nonlinearities on the

response of structures should not be overlooked,
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Unfortunately, only one of the three approaches mentioned
above, the Fokker-Planck approach, can be extended to nonlinear
problems. However, no exact solution has been found for the
Fokker-Planck equation for any second-order nonlinear system.
The time-independent or stationary Fokker-Planck equation can be
solved, but only under certain rather restrictive conditions., Since
an exact solution is available only for limited stationary cases,
several approximate approaches have been devised to treat non-
linear problems.

In deterministic theory, Krylov and Bogoliubovlo developed a
technique to replace a nonlinear system by an equivalent linear
system, By solving this linear system, they obtained an approxi-
mate solution to the nonlinear system. The application of this
technique to problems of random vibrations was made independently
by Booton11 and Caughey12 . Later, Caughey further extended this
technique to include some special multidegree-of-freedom nonlinear
systemslz. This extension will be called the normal mode approach
since it is based on the linear theory concept of normal modes of
oscillation,

Another approximate approach which has also been adapted
from the deterministic theory is the perturbation approach.

13

Crandall™~ first applied this approach to investigate the random

14 was able to

vibration of a nonlinear oscillator, Later, Tung
apply it to multidegree-of-freedom nonlinear systems. This approach

requires that the nonlinearity of the system be small. Then the
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nonlinear problem can be reduced to the solution of several sets of
linear differential equations.

In the present study a new approach for multidegree-of-freedom
nonlinear systems is presented. Additionally, as a by—ﬁroduct of
the nonlinear analysis, a matrix algebra approach is developed which
can be applied to find various instantaneous correlation matrices
for the sta.tionary random response of a multidegree-of-freedom
linear systern., The details of the matrix algebra approach are
presented in Chapter II. This chapter also contains a brief review
of existing approaches for multidegree-of-freedom linear systems
and a comparison of the matrix algebra approach and the existing
approaches, Two examples are worked out in detail to illustrate
the application of the matrix algebra approach.

The new approach for determining the instantaneous correlation
matrices of the stationary response of a multidegree-of-freedom
nonlinear systemn is presented in Chapter III along with a brief
review of the Fokker-Planck approach, the normal mode approach,
and the perturbation approach. This approach is based on the idea of
defining an equivalent system by minimizing the difference between
the original system and the equivalent system. In the present study
the equivalent system is assumed to be linear. Thus, it leads to
a generalization of the method of equivalent linearization., The only
restrictions on the application of this géneralized equivalent lineariza-

tion approach are that the excitation be stationary and Gaussian.
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Ii the nonlinearities of the system are small, then the response
should be close to a Gaussian process. Hence, it is expected that
the instantaneous correlation matrices generated by this approach
will be a good approximation. For large nonlinearities the response
may in general be quite different from a Gaussian process. However,
for the examples considered in Chapter III, this anproach still gives
a reasonable solution,

In Chapter IV, two timely examples which cannot be solved
either exactly or approximately by existing techniques are given as

illustration of the generalized equivalent linearization approach.
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II. STATIONARY RANDOM RESPONSE OF
MULTI-DEGREE-QOF -FREEDOM

LINEAR SYSTEMS

2.1 Equation of Motion

The general equation of motion in matrix form for an n-'degree-

of-freedom linear system may be described by

Mx+CX+KX =T (t) (2.1)
where
M  is an nxn generalized mass matrix
C is an nxn generalized damping matrix
K is an nxn generalized stiffness matrix
X  is a generalized displacement vector

defining the motion of the system

f(t) is a stationary random vector process
_specified by its mean vector “ﬁf and its

correlation function matrix

Ry (ty - t,) =E[’f‘(t1)'f"T(t2):|
Since f(t) is a random vector process, Eq. (2.1) is a stochastic
differential equation and x is also a random vector process. In this
study the vector process X is assumed to be stationary, continuous,
integrable and differentiable to the required order in the sense of
mean sqguare. One consequence of these assumptions, which we will
use quite often, is that the operations of expectation and mean-square
differentiation or integration are commutative, provided, of course, -
that the expectations in question exist and are continuous at the limit

poini:sl2



2,2 Review of Commonly-Used Approaches in Obtaining a Stationary

Solution for Multidegree-of-F reedom Linear Systems

Several approaches have been developed to treat the stochastic
differential equation of motion {2.1). The most commonly used
approaches are the impulsive response function approach, the spectral
density approach, and the Fokker-Planck approach. The first two
approaches can be used to calculate the mean vector and the correla-
tion function matrix of the response process. However, if the response
process is Gaussian, these two quantities completely define the prob-
ability densities of any order. In the third approach, the I okker-
Planck equation, which governs the transition probability density
of the response process, can be used only when the excitation is a
shot or white noise, If the excitation is a Gaussian white noise, and
one is interested in the stationary solution, the transition probability
alone completely describes the response process, All three
approaches can be applied to nonstationary problerns as well as
stationary problems. In this section we will give a brief descrip-

tion of these three approaches applied to stationary problems.

2.2.1 Impulsive Response Function Approach

The first step in this method is to find the impulse response
function matrix G(t) of (2.1) which is defined as the solution of the
following system:

MG = CG +KG = I5(t) (2.2)



with the initial conditions

G(0)=G(0)=0 (2.3)
where &§(t) is the Dirac delta function, I, an nxn identity matrix, and
O, an nxn null matrix. The problem specified by (2.2) aﬁd (2.3) can
be solved in a variety of ways. However, one of the most direct is
the Laplace transform methodls.

Taking the Laplace transform of both sides of (2.2) and

using the initial conditions (2.3) yields

~ 2 -1
Gip)=(Mp " +Cp +K) (2.4)
where p is a transform parameter and a(p) is the Laplace transform

of G(t). Let

S(p)=Mp2+Cp+K {2.5)
A(p) =the determinant of S
R(p) =the adjoint of S

Then G(t) is given by the inversion integral

G(t):%vf]srept%dp 2.6)

where Br is the Bromwich contour in the P-plane. For the present
case the integral on the right-hand side of (2.6) canbe evaluated by
calculating the residues at the singularities of the integrand, In this
way, G(t) can be expressed in the following form:

n . .
G(t)=2) (X} cosy t- Y, sinp tle”Ok* (2.7)
k=1



where

Xy 1Yy = [Rep) g ate) | .
(2. 8)
M= " Py s B0
The }\k’s are those roots of A(p) = 0 which have positive imaginary
part, the ak's are always positive for a stable system,

Differentiating G{t) with respect to t gives

I _th
G(t) = '?‘Z e [(Xk“kJ“ Ykﬁk)cos Bt
k=]
+(Xk[3k—Ykak>51n ﬂkt:l (2.9)
As t-0T, that is, as t approaches zero from the positive side, it can
be proved tha.t16
lim
G(t)=0
=07
{2.10)
lim. Git) = M—l
t—+0+

After having found G(t), the steady-state response to an
arbitrary excitation f(t) may be evaluated from the superposition

integral

m —
Z(t) = [ Gt-T(r)dr (2.11)
oo

If f(t) is a random process, x(t) will also be a random process and
the integral in (2, 11) becomes a stochastic integral which will exist

. cprl T
in mean square iff
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-oo<J jc(t 1)R-f-('rl—TZ')G_T(tz-'rz)dTlde<oo @2.12)

for all tl and t2‘ When (2.12) is satisfied, the mean vector T, and

correlation function matrix RE(T) are given by

g =Ex(t)

m —
-] G(t-1) E[T(r)1d,
-0

p QO
= J G(t-7,)dm g
-

a0

{‘ .
=4 G(Tl)dTl) r 2.13)

R=(7)= Rt ~t;) sE[i(tIET(tz)]

(0 0] nm. ’
=Jr J G(tl-'rl)E[?('r'l)?T('rZ)]GT(tZ—TZ)dTldTZ
-0 -0

I f G(t1 Tl)Rf(Tl-TZ)G (tz Tp)dmdr, (2.14)
—m—

where 7 =t1—t2.

When 'f:1 —--1:2 =t, the correlation function matrix becomes

R (0) = B[zt (1 |- f f Gt-m) Re(r,-7,) G (¢-7, )ardr,

-0 CD

(2.15)
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The matrix RE(O) will be referred to as the instantaneous correlation
matrix of X,

If the joint moment functions of higher order of the excita-
tion are given, the present approach can also be used to find the joint
moment functions of the corresponding order of the response. For
example, the third joint moment functions are

Bty (e )xm(t3)J

—n (o] P(I) a0
2 j .f 8iplt1~T1) B q(ta-T2) 8 (t3-T3)
1r=1 —(I) ~ Q0D -0

,.?]r\/lﬂ

..D‘\/:}

l1q
-
-E[fp(-rl)fq(Tz)fr(T3)JdTldedT3
ibkm=1,2,...,n (2,16)
provided that the right-hand side exists, The function gjk(t) in
(2.16) represents the (j, k) element of the matrix G(t).
The mean vector in (2.13) and the correlation function matrix
in (2.14) play an important role in application, First, if a process
is Gaussian, all moments higher than the second can be computed
from these two quantities. Hence, a Gaussian process can be com-
pletely specified by its mean vector and correlation function matrix.
Second, even when the mean vector and the correlation function matrix
cannot specify a random process completely, they still give some

important information about that process.
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2.2,2 Spectral Density Approach

It is well known that the correlation function matrix R?.{('r)
and the spectral density function matrix & (w) of a stationary random
vector process X form a Fourier transform pair. They are related
as follows*:

(@ =z [ R (7 exp (-
o 5 = p(-iwT)drT

- Q0O

(2.17)

oo
R ()= .Jr_m@}—{ (w) exp (iwT)dT

This Fourier transform pair is usually called the Wiener-Khintchine
relation. The impulse response function matrix G(t) and the fre-
quency response function matrix H(w) also form a Fourier transform
pair (or more accurately, G{t) and H{w)/2m)*:
1 r®
G{t) = Z—E‘r H{w) exp (wt)dw

-0
(2.18)

n QO
H(w)= J G(t) exp (-iwt)dt
-0

With the aid of (2.14) and the second equations in (2,.17) and
(2.18), the correlation function matrix becomes
R, (1) =R(t;-t,) =E[R(t JE" (t,)
2 {11 =Rty =tp)= 1= &
o
= [Tate, -7 ) &) aTit, -7, ) exp | duf ) Jar,ar,a (2.19)
NV =Ty 27 T2/ 8XP 10Ty =Ty AT T W o

- Q0

* .
For the conditions under which the integrals in (2.17) and (2.18) exist,
see reference (18), '



-13-

rm

=i 0OH(uJ) $r(w) H¥(w) exo [iw(tl -t;) ]dw
w

- | Etw) S @) exp (twm)du (2.19)
! oo cont'd

in which H*(w) is the conjugate transpose of H{w). Since the Fourier
transform of R.}.{.{T) is unique, from (2.19) and the second equation in
(2.17) we know that the spectral density function matrix of the
response vector X is given by

& (w) = H(w) S(w) H¥(w) (2.20)

When 7=0, i.e., t1=t, Eq. (2.19) reduces to
=T, %
RY(O)EE[x(t)x (t)_jzf_wqb_i.c(w)dw (2.21)

Thus, the instantaneous correlation matrix is just the sum of the
spectral density matrix over all frequencies,

The matrix H{w) can be found by taking the Fourier transform
of both sides of (2.2), or it can alternatively be found from {2.1) by
letting the excitation vector be ?Oeiwt and x =H(w)?0eiwt where ?0 is
an arbitrary constant vector. DBoth approaches lead to

H(w) = .JNOOG(t) exp (-iwt)dt = (-Lu2 M+iw C+1E{)“1 (2.22)
-0
If w=0, Eq. (2.22) reduces to
p QO

H(0) =J' G(t)dt =1
) o (2.23)

*For the conditions under which the integrals in (2.17) and (2.18)
exist, see reference (18),
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Hence, the frequency response function matrix at w=0 is just equal
to the inverse of the stiffness matrix.

Upon substituting (2.23) into (2.13), the mean vector E}_{.
becomes

— el

2.2.3 Fokker-Planck Approach

A random wvector process Z(t) is said to be Markovian if the

conditional probability density function p(En, t t

n[Eh-l’ n-l“";zl’tl)
where Z, =7 (tn)’ “ens z_1 = (tl) and tn>tn_1>. L tl, depends only on
the last value E(tn_l) and not on the preceeding values Z (tn_z), e

—z'(tl). Hence, for a Markov vector process, we can write
P{Zn’ 1:1'1‘2"n—1’tn—1;'°';Zl’tl)zp(zn’trJ zn—l’tn—l)’

t >t > >t (2.25)

The special conditional probability density p(En, ty |‘En_ 10 tno1) i
called the transitional probability density and will be denoted by a

special symbol q(‘zn, tnl From the definition of condi-

En-l’tn—l)'
tional probability we have
P(El, t]. ;-Ez, tz;- e ;_Z-n: tn) :P(_z-l, tl)P(EZ’ tz ‘—21: tl)' ..

R AL l_2n-1’ th1ie ﬁl’tl)’_tn>tn-—1>' | (2.26)

Hence, it follows by using (2.25) that in the case of Markov processes,
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P(Z .t 5%, th5. 00 iZ , t ) =D(Z ), 1)) e(Z,, ¢ I"z‘l,tl). ..

= Z > A,
.,.q(zn,tnlz >t >t

n-1’ 1:n- n-1 1

(2.27)

Thus, if we know the first probability density and the transitional

probability density of Z(t), we can write its probability density of

any order, that is, the first probability density and the transitional

probability completely specify a Markov process.

Consider a special Markovian process whose transitional

probability density is governed by the Fokker-Planck equation

2n Zn 2n 2
] ] 1< a B
-F(ci-FZ 0z, (ajq)'-i,-_{J Z Oz Bz.(bjkq}_o
i= ¥ j=1 k=1 k j

with the initial condition

lim

q(E,tlEl,t1)= 8(2-2Z,)
t—t

1
Such a process will be called a continuous Markovian process.

.{lzk = zk(t-.‘-'r)—z.k(t)

Then the quantities a, and bjk in (2.28) are given by

k

L o lim Elpz, |
k™ 7m0 7

_ lim E[AzkAz.]
ik~ 1=0 T

provided that all limits exist.

(2.28)

(2.29)

Let

(2.30)

(2.31)
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The first probability density of a stationary Markov vector
may be obtained from the transition probability density by letting the

transition time (t-tl) approach infinity, i.e.,

lim .
P(E: t)z(t-tl)"‘(x)q(i'tlzl’ tl) (2-32)
Hence, a stationary Markov vector is sufficiently defined by its transi-
tion probability density alone. The first probability density of a
stationary continuous Markovian process can also be found by solving

the time independent or stationary Fokker-Planck equation

2n 2n 2n 2

9 1v ¢ 8

Z; Oz, (ajp) _EZ Z az.azk(bjkp):o (2.33)
j=1 J k:]_J:l

which follows from (2.28) by dropping the first term and replacing
q(Z, t) 47 |'z1, t,} by p(z, t).
If the vector f in (2.1) is a Gaussian process such that

Effit)]=0
(2.34)

B[Rt (t+7) 1= 20 Wa(T)

where W is the spectral density matrix of f(t), it may be shown that
the displacement and velocity vectors of the response process form
a 2n continuous Markov vector. Wang and UI'LI(-:»IJ.beck1 9 have solved
this problem when M, C,K are symmetric and

TW = vC, (2.35)
where v is a constant. They found that the instantaneous correlation
matrices of the stationary response were governed by the following

equations:
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i}

e'%%T =0

ME %%’ [-KE|X% =0 (2.36)
. T

E;E':ET:]:O

E %%7 |=yg! 2.37)
e e T -1

ELxx l:vM

Wang and Uhlenbeck's approach can be extended to a more
general problem where the spectral density matrix W is not related
ta C and M, C, K are not symmetric. In this case the instantaneous
correlation matrices of the stationary response are governed by the

following equations (see Appendix A for details)

e[xi” lozfe ]

(2.38)

- - _i * B

gL J.CT+<:E BT ]MT+ML|_”""T_‘KT
: T

-!-KELxx |M =2nW

2.3 A Matrix Algebra Approach for Stationary Response

All the approaches discussed in the above section are
directed toward finding the correlation function matrices, and the
instantaneous correlation matrices are given as special cases when

T=0. However, in many applications, one needs only the instantaneous
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correlation matrices. For example, the first probability density
p(_}.:, X) of a Gaussian process is completely described by E["SEEET ],
E[?;ET] and EE??:T], the probability distribution of peaks and the
average frequency of a narrow-band process are all dependent on
the instantaneous correlation matrices., If one ‘is only concerned
with the instantaneous correlation matrices, then a very straight-
forward and direct approach can be used, In this approach, the
mean vector and the instantaneous correlation matrices are derived
directly from the equation of motion, and only matrix algebra and

some special properties of stationary vector processes are involved,

2.3.1 Mean Vectors

The mean vector of the response process X, r"ﬁ—}z , can be
found in the following way.
Taking expectations of both sides of (2.1) gives

ME§3+CE[§]+KE[§]:EE]:5? (2.39)

From the stationarity of % it follows that 'rEE is a constant vector,

and
E&j:ﬁ—t E[®]=0
(2.40)
d2
E[$]=-5 E[%]1=0
dt
Hence, Eq. (2.39) reduces to
Efx]=K '@y | (2.41)

This is the same equation as (2.24).
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2.3.2 Instantaneous Correlation Matrices

The equations governing the instantaneous correlation

T « T T™
. Elmx ] and ELxx . can be obtained as follows.

Postmultiplying through {(2.1) respectively by %! and %’

matrices Erx %

and then taking expectations of both sides of the resulting equation
gives
T“ ...T_"

+CE(‘§§Ti+KEf§x Efo
| —

MELx_T-[
(2.42)

ME[xx J+CELxxT - *KELXXF_I ELf ’-T]
Postmultiplying the. second equation in (2.42) by MT and adding the

resulting equation to its transpose yields

ME[%% -E[xg’ MTscE[xE" M7
/ —_—
+NEI|:§‘§ET IcT +KE; % “"T M +ME[“‘— T
=E£_?xT ML+ ME] xf 1 (2.43)

For a stationary random process which is differentiable, it may be

shown that (see Appendix B for details)

i
E[T{?{TJ-FFV;EET =0

- (2.44)
7 u_T7 PP o
Elx%T =B %%T = -E[%%" |
- — ] ol
r:......r_T '___...T
Thus E} xx _Ji is antisymmetric and El XX _J is symmetric. Upon

using the relations in (2.44), Eq. {2.43) and the first equation in

(2.42) become



] ME[E?T] +CE[XT' |+KE T
ME [i:«ffTJ cty CEE&'&T ]MT +ME [‘)":E‘T_IKT

o
Eif XT:IMT

+KE

,_.._T:,fMT:
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L

_I

—

I

(2.45)

The matrices E[ESET] and E[;'ii'{T_] are clearly sfmmetric and the

matrix E‘_xx _lls antisymmetric, as noted. Suppose that E[xf

and Efo _J exist and can be evaluated, then there are {nxn) +n(n+l)/2

unknowns in (2.45). The first matrix equation in (2.45) gives nxn

component equations and because of symmetry, the second one

furnishes only n(n+1)/2.

the number of unknowns. Let
| 0 -I
A =
M_lK MWIC
- e
X =
EFET| EXET
L
and
o E[;—c‘f”T] M
B =
M E[FxT |

M"IE[?“;ET]+E[§T.T] (M‘I)T

Then (2.45) can be put into the following form

AX +XA

T:B

The number of equations is just equal to

>(2.46)

J

(2.47)
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It may be shown that X can be uniquely determined from (2.47}) iff 20
)\k+Ki¥O k,j=1,...,2n (2.48)

where ), are the eigenvalues of A.

The instantaneous correlation matrix for accelerations is

given by
r - P | e - e rp
MEkE jcT-ce[xET IMT=kefEe cTor[#%T K]
M T T foe =T
+E|T% Jc +CEXT (2.49)

which is obtained in the same way as in deriving the second equation
in (2.45).

Now we turn our attention to the determination of the matrices

ro_Te P MTe o[~
E?{EFJ, E[:}.fT_J and ElXET . It follows from (2.11) that

- {0 _ ~ 00 _ W
?:(t)=J Gt-m) (v} = G(7)f{t-v)dT
- oo

Lo o)

. p OO0 - ©°,
5t)=] Glt-rR(dr=] GO (-ndr ) @ .50)
-0 -G
. - ~ 00, _ PO
X(t)-M f(t)= ] Gt-tJf(7)dT= | G(T)f(t-T)dTJ
- 00 - Q0

provided all these stochastic integrals exist., Hence, postmultiplying

through (2.50) by ?T(t) and taking expectations of both sides of the

resulting equations, we obtain
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[0 0]
Ese?T]:f G(TRF(1)AT )
o}

T m,
E[§ T}:fo G(TIRZ(T)dT

e

. (2.51)

E[ﬁf—T]—M'IRf(O)=JOOG(T)R?(T)dT y
: o

The lower limit of each integral in (2.51) has been changed from

-00 to 0 since G(7), G(T), and (i(t) are null matrices for T<0, The

impulse response function matrices G(t) and G(t) are given by {2.7)

and (2.9), and &G(t) can be found from G(t)' by direct differentiation.
The integrals in {2.51) are real and can readily be evaluated.

Suppose that

R7(7) =Ab(T) - (2.52)

where A is a symmetric, constant matrix. Then from (2.7) and
(2.8), we know that each integral in (2.51) takes one of the following

two forms:

~ 0O
J b(‘r)e“m‘cosﬁTdT h
o

or 5 (2.53)

(o)
f b(m)e * T ginpTdr y
[8]

where o and B are positive constants. If b(T) is specified, then,
usually, these integrals can be found in standard integral tables.
After evaluating the integrals in (2.51), the instantaneous correla-

tion matrices can be determined by solving the linear equations
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in (2.45). Hence, this method is particularly simple and easily

adapted to digital computation.

2.3.3 Instantaneous Covariance Matrices

The instantaneous covariance matrix of X, ‘F;, is defined

asg
= e — — T f==T7 — T
"i’;{-:EL(}_{-—rn}-{-](—--rn—}E) ]—E[xx - m_m_ {2.54)
With the aid of (2.41), Eq. (2.54) becomes
-E[x% K '@y mrk )T (2.55)

Hence, the instantaneous covariance matrix of X is identical to its
instantaneous correlation matrix if the mean vector of the excitation
'n_z? vanishes. Howewver, all the other instantaneous covariance
matrices are the same as their corresponding instantaneous correla-
tion matrices since from (2.40) we know that?f:.-.ﬁ and fﬁi are two null

vectors,

2.3.4 Special Cases

White Noise Excitation: If the excitation .i:(t) is a white noise

vector, that is,

Fir=0, Rg(T)=2mWAa(T) (2.56)

in which W represents the spectral density matrix of f{t) and &(T) is
the Dirac delta function, then upon using (2.56) and (2.10), thke first

two equations in (2,51) become
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E[;TT} o
2.57)
E ?{f’f]:wlvx‘lw
Hence Eq. (2.45) reduces to
. . .,
MEE}EET]- CEL?;?;T]- KE ESET} o A
ME[EE [cTror[Es” MTeMEfEE" KT ) @.58)
+KE[§§T_!MT:sz )
.

Eq. (2.58) is the same as Eq. (2.38), but, here, the excitation is not
necessary to be Gaussian.

For white noise excitation, the integral in the third equation
in (2.51) does not exist because both G(T) and R—f('r} go to infinity at
T=0. Hence, the instantaneous correlation matrix of the accelera-
tion which depends on the third equation in (2.51), becomes meaning-
less, However, in some problems, the instantaneous correlation
matrix of the absolute acceleration may exist even though the instan-
taneous correlation matrix of the relative acceleration does not
exist, For example, consider an arbitrary system excited at some
point by a white noise acceleration input, 'J':o(t). Let Xj denote the
displacement of the jth mass relative to the excitation point. Then
it may be shown that E[ﬁ?cT_[ does not exist. For this example, the

absolute acceleration of the jth mass aj will be

aj(t) = iij(t) +%_(t) ' " {2.59)
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and the excitation vector f(t) in (2.1) becomes

my

£(t) = -( m, | %_(t) (2.60)

-
\'m
n
Substituting (2.59) and (2.60) into (2.49) and noting that

/:}nl(} (}\

mz....

0 ]
L. e . (2.61)
\o O.....mn/

=
il
—

we have
T 7 e T
MERZ! (C+CE za M=KE¥% |cT
— | | -
e B A
+CE[xxTJKT 2.62)

-
It is now obvious that E[&ET_J exists.

Filtered White Noise Excitation: A white noise has been

widely used as an ideal excitation. If not only simplifies the analysis,
but also gives very reasonable results for some lightly damped
systems. Sometimes, the use of a white noise as an approximation
may not be acceptable, but one may still use a filterad white noise.
For ecxample, an zarthquake may be approximated by passing a white
noise through a viscously damped linear oscillator. In the following,
a more general filter will be considered,

A random process n{t) is said to be a filtered white noise

if it satisfies the stochastic differential equation
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T
Z —"%{—n(t)—s(t) a 40 2.63)

where the ak's are constants. The excitation s(t) is a white noise
whose mean and auto-correlation function are given by

r A
Eis(t) (=0
AN (2.64)

E[s(t) s(t-7) |=2mw 5(7)
where w is the speétral denszity of s(t).

Consider an n-degree-of-freedom system excited at some
point by a filtered white noise acceleration input n{t). Let Xj denote
the displacement of the jth mass relative to the excited point. Then
in (2.1)

my

o) = -mnlt) = o[ w, | n(t) (2.65)
n;ln

Combining (2.1) and (2.63) and using (2.65) yields

. .
4 (M% + Cx +Kx ) = -ms(t) (2.66)

kdt

T+

a
-0
For simplicity, we rewrite (2.66} as

ri2 o
ZB x(t)——ms(t) B_,,=a M 3% =x 2.67)

where Bk’s are constant matrices. Postmultiplying through (2.67)

=T .
g PR {drH /at* )ET and taking expectations

of both sides of the resulting equations yields

respectively by ET s
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n+2 ;
_ & T
kZOBkaj——mE[s(t):l:j—x ] (Z.68)

where

- ) Ex

j=0,1,..., 7+l

(2.69)

Analogous to the second order system (2.1}, we define the impulse
response function matrix G(t) of (2.67) as the solution of the follow-

ing system

r+2
ZB “F G(t) 15(t) (2.70)
with initial conditions
dr+1
G(0) = = G(O)— =77 G(0)=0 (2.71)
dt

J
Then d

=~ G(t), j=1,...,r, is continuous at t=0 and

G(t) B” +2 (2.72)

Using (2.71} and (2.72) we obtain

k
E s(t):i——x (t)_|--m J E[s(t)s(t—'r)—l—d—EG (T)dT
t

k

T -%(—GT(O"'):O;k:l, coo T (2.733)
dt

= ~T W



-28-

r+l r+1
E[s(t) diﬂ ':‘:T(t)]z Wi L —~d—r¢—1- cToh
dt
. T '
= W B;jz) (2.73b)
Thus Eq. (2.68) becomes
r+i
Z ByXyi = BriaXes1,j1 0L
k=0 |
. (2.74)
r+l r+l
T T L, T
B2 Z X1, kPt Z ByXx, r+1Bp42 =27wmm
k=0 k=0
where the relations
_(._\E8t
Rgn = (+1° "Xy
' gth=jtkig, h,j,k=0,1, ..., r+l (2.75)
htky,

Xgh = (') _]k
have been used (these relations have been proved in Appendix B).
Equations (2.74) and {2.75) can be used to determine all the instan-

taneous correlation matrices provided that they are independent.

2.4 Comparison of Various Approaches

In the second section of the present chapter, we have dis-
cussed the impulse function approach, the spectral density approach
and the Fokker-Planck approach. In the third section, a fourth
approach, a matrix algebra approach; \;;ras introduced. The {first
three approaches can be used to find the correlation function matrices

as well as the instantaneous correlation matrices for the response
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process, whereas the last approach can only be used to find the instan-
taneous correlation matrices. This limitation may not, however, be
severe as was mentioned earlier,

We will now give a discussion of comparison of various
approaches applied to stationary problems.

(1) The Fokker-Planck equation can be used only if the
excitation is a Gaussian white or a filtered Gaussian white noise.
In this case, both the Fokker-Planck approach and the matrix algebra
approach lead to the same equations for the determination of the
instantaneous correlation matrices. However, the matrix algebra
approach can also be applied to arbitrary excitations provided that
the integrals in (2.39) exist.

(2) In the spectral density approach one needs to evaluate
a separate integral for each independent element in each instantaneous
correlation matrix., From (2.21) and (2.20) we know that these
integrals are in general different and their integrands may be real
or complex., Furthermore, the matrix H(w) in the integrands must
be found analytically from the expression {2.22) and the difficulties
involved in the integrations increase with increasing the number of
degree-of-freedom of the system. Hence, for complex systems
one is generally forced to evaluate these integrals one by one
numerically.

In the matrix algebra approach, if the excitation is white,
then the instantaneous correlation matrices can be found by solving

the system of linear algebraic equations (2.58) without evaluating
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any integrals. If the excitation is non-white, it is necessary to
evaluate some integrals also, but ea.ch.of these is real and takes one
of the forms in (2.53), Usually, these integrals can be found in
standard integral tables.. After evaluating the integrals in closed
form, again one can find the instantaneous correlation matrices by
simply solving a system of linear algebraic equations, Therefore,
this approach is very suitable for digital computation,

(3) Both the impulse response function approach and the
matrix algebra approach use the idea of impulse response functions.
In the first approach the correlation function matrices are expressed
in terms of double integrals. In the second approach, one, first,
has to evaluate some integral as in (2.53); then, the instantaneous
correlation matrices are found by solving a system of linear algebraic
equations. Since it is very time consuming to evaluate double integrals
numerically, the matrix algebra approach is usually faster in use
than the impulse response function approach.

As an illustration, the spectral density approach and the
matrix algebra approach were programmed to solve a three-degree-
of-freedom system under the excitation of a white noise vector.

The program using the spectral density approach is limited to three-
degree-of-freedom systems and cannot be generalized to arbitrary
systems. For this special excitation, the intégrals are evaluated
by calculating the residues at the singuiarities of _the integrands-.

It takes about 200 milliseconds on an IBM 360/75 computer to find

the matrix E [x xT].
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The program using the matrix algebra approach can be used
for arbitrary systems under white noise excitation. Also, the pro-
gram itself is simpler than that using the spectral density approach.
It takes about 150 milliseconds on the same computer to find the

1

- .y P -
matrices Ei§§TJ, EE—:;T 1, and EL§§TJ

2.5 Examples

In order to illustrate the application of the matrix algebra
approach, we consider two examples below.

In the first example, a single-degree-of-freedom system
under clipped white noise excitation is considered. This is a very
simple example, but it contains all procedures needed for more
complex systems. This problem has also been solved by using the
spectral density approach, Both approaches lead to the same solu-
tion.

In the second example, we consider a n-degree-of-freedom
system under the excitation of a clipped white noise. It is shown
that the matrices EE}EET:] and E FEET] can be expressed in terms of
the same two types of integrals as in the first example and can there-
fore be easily evaluated. Only additional computation is the solu-
tion of a system of linear algebraic equations. The results of a
particular 3-degree-of-freedom system are plotted. From the

figures, some expected phenomena can be observed,
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2.5.1 Single-Degree-~of-Freedom Systems Under Clipped White Noise
Excitation ' '

Consider a mass-spring-dashpot system governed by the
equation of rmotion

3‘c+2gwnx+wﬁx=f(t)/m (2.76)

The constants m, wn, C are respectively the mass, the undamped
natural frequency, and the ratio of the actual damping to the critical
damping of the system. The excitation f(t) is a clipped white noise
with cutoff frequency w,- It is specified by its mean my and its

auto-correlation function

E[f(t)f(t-’r)]: 5}"- sin w T " (2.77)

where w is the spectral density in the frequency range |w |<wc. The

impulse response functions g(t) and g(t) can be easily found to be

1 -Gt

_ . Y
g(t}—wd sin wgt, wy=w VI-C

d
(2.78)

¢ .
. - fw,.t Wt - sin .t
g{t) =e” ~Unt{€08 ¥ ﬁ d_:[

Then from (2.51}) one has

Elxfl=

. 00 sinw 7
> J g(1) —= dr
m o

PO -LWw, T
= Zzw J 9-—-——;—!'1——“ sin wC'T sin Wy dr (2.79)
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and

n GO sing T
E[xf]:gl”zj (1) ——=dr
m o

2w " P e Clh 7

=25, — sinwcTcos wgTds - (g Exf]

By using the 1'esul*l:s21

n -r
OOE———i-UE: sinw,.TcoswaT d’l’=i tan_] 2 Cntte
J T C d 2 z2 2
o ty - U
- 2 2
J —T—‘ Sin%'l' sin [Ud'T dT:Z in ) 3
o (Cwp) +(wg- wg) ™

Eqgs. (2.79) and {2.80) reduce to

(Cwn)2+ (w.+ wd)z

W
Exfi= 5 An - > 5
dem (C wn) +(wc-' (.Ud)

P +{we fan )+ 2/1- 2 (g )
= Ln

demz I +{we /wn)z— 2 1—C2(wc /w)

. - -1 wc-l-wd -1 U{:—wd—a
E[xf]=-—-2w [tan ——— ttan o J° Cw Exf]
m €y = Un J &

2 Clw, /wn)
:j% ta.n-1 -—~——-—9---x1-2— - CwnE[xf]
m 1-(Luc/wn}

(2.80)

{2.81)

(2.82)

(2.83)
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Upon using Exx]1=0, Eq. (2.45) now becomes

wEE[x‘z]-E[;'f]:E[xﬂ

4gwnE[5;21=2E[5;f]

Thus,
EfT =~ (2Cw_Eft]+E &)
Zgwn
__TwW !' u}a.: 3 %
_Z_C 3 21_1(@;' C/J’ez("&;’{;)]
E[5*1= 575 Bli]
n
- o, (55, ¢) - (52 )]
‘ Cw
where

2C(w, /w,) A
el(k,g)ziwnq( c nz)
®n w 1-(w_/wy)
2
We We \
0 C 1+ ()t 2/1- ¢ () ?
= = fn
2 a/1-¢¢ .

(2.84)

(2.85)

(2.86)

(2.87)
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2.5.2 Multidegree-of-Freedom Systems Under Clipped White Noise

Excitation
Consider an n-degree-of-freedom system governed by
Mx + CE+Kx =T (t) (2.88)
The excitation f(t) is a clipped white noise vector with cutoff frequency
We. Itis specified by its mean vector T~ and correlation function

f

matrix

sinwc'?
Rf(T)=2W- = ' {2.89)

where W is the spectral density matrix for luJ| <W.. The impulse

response function matrices G(t) and G(t) are given by {2.7) and (2. 9).

Thus,
I i _
El:xf JmJo G(T)Rf('r)d'r
=4é\_ ka‘Jo 7 sinw _Tcos Bk'rd'r
k=1
n ~00  ~0T
-42ka; S—- sine_ sin B, Td7 (2. 90)
o
k=1
- A 00
E -:‘z?Tfj G(7) Ry (7) dr
o
n. rcoe—a.kT
= - 42 (Xkc.k+ Ykﬁk)WJo -w—;r-_-cosﬁkT mnwc'l'd‘r (2.91)

k=1
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-n
~ 00 e"’ak'r

| ) . .
- 42 \Xk[sk Ykak>WJo “—— sin ﬂkT sinw_ 7dT (2.91)

k=1

cont'd

where Oy s [3k’ Xk and Yk are defined in (2.8). As mentioned before,

here one meets the same two types of integrals as in the single-

degree-of-freedom system discussed in Example 1,

Upon substitution of (2. 81) into (2.90) and {2.91), one has

finally

E[‘ ]2ZXW9_YYW h

k=1 k=1

n
L T
Ext J“ZZ (Xkak+YkBk)Wek
=1

n
Z (X Py Yy ) Wy,
where

chak )

S |
% =tan (—z+—z—i
O +P k™ Y

cf,k+(w +i3k)

P crk+(w ﬁk) J

) 2. 92)

> (2.93)
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The instantaneous correlation matrices E EET_!, E[f"'zT],

and E[‘:‘;RT} can be determined by simply solving the linear algebraic

equations in (2.45).

If this problem is solved by the spectral density approach,
the matrices E 2}_CT] , E[}‘:ﬁTJ, and EE‘:‘:—ET:] are given by

[{1]
E[sziT]:f © H(w)WH*(w)dw ~
o]

W
ES&E’ET =-ij CILI(uJ)'V&TH*(uu)wdu; & {Z2.94)
[a]

E iiT]anwcH(w)WH*(w) oy <
o
where
H(w) = (-Mo?+1 CwtK) 2.95)
In the above equation the resultant matrix in the brackets is a function
of w, so its inversion must be done analytically., Ewven if the matrix
H(w) has been found, the evaluation of the integrals in (2.94) for a
complex system is not trivial. Usually, these integrals are evaluated
one by one numerically by computer, but this will generally take con-
siderable computer time.
The matrix algebra approach has been applied to the system

shown in Fig. 2.1 with n=3 and 3&0 is a clipped white noise with unit

spectral density. The mean square displacements E[y? |y E[yg_j, and
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E[yg:,, where Yj is the displacement of the jth spring, a.re. plotted
against various cut-off frequencies in Figs. 2.2 and 2.3.

In Fig. 2.2 the mean square displacements for the system
shown in Fig. 2.1 with C proportional to M is shown. It will be
noted from this figure that the contributions from the modes higher
than the first one are not negligible. For example, consider E[y?]
The contribution from the first mode is about 5.8, from the second
mode is about 2.9, and from the third mode is about 0.4. Hence,
the contribution from the second mode is as high as 59% of that from
the first mode.

In Fig. 2.3, the mean square relative displacements for the
system shown in Fig, 2.1 with C proportional to K is shown. The
proportionality constant is chosen so that the system would have the
same part of critical damping in the first mode as the system con-
sidered in Fig. 2.2. The primary difference between Fig. 2.2 and
Fig. 2.3 is that the contributions due to frequencies beyond w,, the
second natural frequency, are almost completely damped out in
Fig. 2.3. This phenomenon is expected since the modal damping
in the first system decreases with increasing modal frequency while

that in the second system increases with increasing modal frequency.
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II. STATIONARY RANDOM RESPONSE OF
MULTIDEGREE -OF -FREEDOM
NONLINEAR SYSTEMS

3.1 Introduction

Since most real physical systems exhibit some kind of non-
linearity for sufficiently large motions, it is important that one be
able to investigate nonlinear systems as well as linear systems. Of
course, the analysis of nonlinear systems is more difficult than that
of linear systems since very few nonlinear differential equations can
be solved exactly.

One exact method of studying the stationary random response
of 2 nonlinear system is the Fokker-Planck approach, If the excita-
tion is a Gaussian white noise, then the transitional probability
density of the response process is governed by the Fokker-Planck
equation, As mentioned in Chapter 2, this transitional probability
density can completely define the response process, However, no
one has succeeded in solving the complete Fokker-Planck equation
for any second-order nonlinear system, The first probability density
is governed by Eq. (2. 33) which can be solved in some cases, From
the first probability density, one can deduce all the instantaneous
correlation matrices,

Since the exact solution is available only for limited cases,
attention has also turned to approximate solutions, If the nonlinearity
is small, several approximate methods have been devised, One of

them is the normal mode approach in which the approximate solution
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can be found by solving several single-degree-of-freedom systems,
However, in using this approach, one must impose some conditions
on the excitation as well as on the system.

Another method of generating a.pproximate solution is the
perturbation approach. In this approach it requires that the non-
linear terms of the system must be small compa.re;i to the linear
terms and the excitation level also has to be sufficiently low.

In this chapter, we will consider a more general approach for
multidegree —of —freedom systems. The only restrictions on this
approach are that the excitation be stationary and Gaussian., Before
introducing this approach, a brief discussion of the Fokker-Planck
approach, the perturbation approach, and the normal mode approach

is given below.

3.2 Fokker-Planck Approach

The equation governing the first probability density for the
stationary response process of a nonlinear system has only been
solved under the foilowing rather restrictive conditions:

{1} the damping force is proportional to the velocity

(2) the excitation is a Gaussian white noise

(3) the correlation function matrix of the excitation is propor-

tional to the damping matrix of the systein
Under the above conditions, the equa.tipn of motion may be written

as follows:

1\4‘;-‘:+c§z+a_x =T(t) (3:1)
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with
'1:"1"1%-:0

{3.2a)
Rz(T) =2y CA(T)

where v is a constant, u(x) is the potential energy of the system and

8y
Dx,
ou) _ | .
=} (3.2b)
du
Ex
n

Suppose that there exists an orthogonal matrix A which car simul-
taneously diagonalize M and C:

A¥a=1 |
ATma-v 7 (3.3)

i
|
ATca-a
where V and A are two diagonal matrices. Then, upon using the

transformation X =A% and noting that

n

T 9u{x) _ Ta'zﬁg(_i_)_i ou(z
Amr A RT L mPik Tz =hi..om
. k
jr k=1
_dufz)
Tdz

=%§@ (3.4)
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Equation (3.1) becomes

Dulz) _ ATHt)=Bit) | (3.5a)
o :
and the correlation function matrix of b(t) is given by
R(T)=2vA5(T) {3.5b)
The stationary Fokker-Planck equation associated with (3.5a} is

given by

n ‘az
K

where A. and v, denote the jth diagonal element of A and V, p is the
abbreviation for the first probability density of the Markovian vector

(j . The solution to (3.6) may be written as follows:
n
_ o 171 2, T
P(z,Z)—ﬁeXP{-Y[ZZVj 2 +u(Z)JJL (3.7)
21

This solution was first obtained by Ariarathanzz for a two-degree-
of-freedom system (n=2), and it was extended to the above form by
Caughey23. The constant B in (3.7) is a normalizing factor such
that

. . . | )
J:OO...J-mp(z,z)dzl...dzndkl...dzn=1 “{3.8)
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In the original coordinates, Equation (3.7) becomes

p(i,_'“x) =3 expj:- %’{‘% :iTMZ-’—C +u(i}:ij (3.9)

It will be noted that the terms in the square brackets are respec-

tively the kinetic energy and the potential energy of the system.

Equation (3.9) may also be written as

p{X, %) = B expy- %35 MTfj exp]:- %u(i)j’ (3.10)

Hence X and X are linearly independent.

3.3 Normal Mode Approach

Consider an n-degree-of-freedom system governed by the

equation of motion

M + C(O)i +K( 0)32 +uplk, ®) = f(t), u=a small parameter (3.11)
The matrices C(O) and K(G) are respectively the damping matrix
and the stiffness matrix of the system due to the linear part of the
damping forces and the spring forces, and ug(X, %) represents the
nonlinear forces of the systemn. f(t) is a stationary Gaussian random
vector. Without loss of generality, assume that —-f: Q.

In using this approach, the following two conditions must
be satisfied:

(1) the linear system obtained by neglecting the nonlinear

term g(fc,i} in (3.11) must possess normal modes
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(2) the correlation function matrix Rf('T) must be diagonalized

by the same matrix which diagonalizes the matrices

M, C(O} and K(o).

The second condition is quite restrictive and is seldom realized in

real systems.

Assume that the above restrictions can be met, then there

exists a matrix A such that

ATMA——-I
T {0)y _~f0)  (0)_ (o)
ATKY A =0V, wkj =y akj 5

Tel0)y _alo)  J(0) _ (o)
A'CA =A v Ny mA B

T
ATRATIA =D(7), dy =dy (7) by /

By using the transformation =A%, Eq. (3.11) reduces to

74805 10005 1 AT, ) = ATRT) =B(t)
where the correlation function matrix of b is

R‘B(T)=D(T)

In component form, Eq. (3.13a) becomes

2 n
z.+(w§°’)z.+za g (%, 2) =b.(t)
i Jk ] kj*k j

2. 4+ X0
it

and Eq. {(3.13b) becomes

E[bk(t)bj(t+'r):l:dk('r) b Bk=l...n

3

3

.12)

.13a)

.13b)

.14a)

.14b)
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The differential equations in (3.14a) may be written as

Z,+A.Z, +*.LEZ. te (2, 7)=b. (t)
] v 1] J 3
j=1,...,n (3.15)

where the deficiency term e, is given by

2
_ (@) (°) ,
e, =08 5z +[(wJ ) ¢J]7J
n
+uZ akjgk(ﬁ,?.) j=1,...,n (3.16)
k=1

If the quantities KJ. and w? are chosen in such a way that some measure
of the deficiency term is minimized, then it seems reasonable that
the statistics of the response of the nonlinear system can be approxi-
mated by those of the linear system described by

. . 2
f.t Az, +vw. s =hat) j=1,...,: 3.1
zJ JZJ JJ_zJ J() j=1 n { 7)

-

At this stage, the differential equations are uncoupled and the
excitation b(t) is an uncorrelated vector process. Hence, each
uncoupled differential equation can be solved separately.

In order to determine J\j and wjz » Caughey chose them so as
to minimize the mean square value of the deficiency term &. This

can be achieved by requiring that

9 [_T_'w_
-53;]1_: e E!_[—O
ji=l,...,n (3.18)
o0
A
O’
(wJ)

£ =0
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Substituting (3.16) into (3.18) and interchanging the order of differen-

tiation and expectation, we obtain

1n
Aj = )fj") + ‘;Z fkj E[sz gk(‘z‘, 7) ] /E [z? ]

i=l,...,n

n
_w?z (w§0))2+ ") 21y BL78 (2 E)J/E[ZJZ] (3.19)
k=1

Equations (3.17) and (3.19) can be used to find various mean square

values of the response process.

In certain cases, the contribution from the first mode may

be dominant. In these cases, we may let xj =a.j1z1 in the above

derivation, Then

n
“’? = (”’(10)}2*'“2 ajl'E[zlgj(.Zl’ =) /E[z?]
j=1

(3.20)
n
Ap = 7‘?*“2 251 E[élgj (2, Zl)J/EEZﬂ
i=1

This is a rather rough approximation, but it is very simple, and in
some cases, it does give reasonable approximate solution as will

be demonstrated later.

3.4 Perturbation Approach

Consider the same problem defined in the previous section

whose equations of motion are

M +C %4k sk ) T (3.21)
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Assume that |1 is so small that the solution of (3.21) can be approxi-
mately represented by

X=X +uxX

o ) (3.22)

Substituting (3.22) into (3.21), neglecting terms involving uz, ;_13, .
and equating corresponding coefficients of " and ul yvields the
following sets of linear differential equations:

M%O+c‘°%{o+1<‘°)§o=f‘(t) (3.23a)

%3 +c:(°)i1 +K(°)321 = ~F(% ft), % (t)) (3.23b)

Correct to the same order of accuracy, the instantaneous correla-

tion matrix for displacements becomes

E[sch}E % L +u{EEfc0§r1r] +E'§1§E]} {3.24)

o o
Note that
- . T
-~ =TT _ L LTIIN
Eonxl ]— (E X % J/ {3.25)

The matrix EE‘:O?:TO] can be found from (3.23a) by the various approaches
discussed in the previous chapter, and E ?coitlr_’ may be evaluated as
follows. Since (3.23a) and (3.23b) are linear, their stationary

solutions are

m =3

T{O=J G(t-T)E(T )dT (3.26a)
-0
- 00

?c]«:-J G(t-T)g(7)dT (3.26b)
-0

where G{t) is the common impulse response function matrix of

(3.23a) and (3.23b) and g(T) is the abbreviation of _g(':'T:O(T),‘iD(T) ).
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Thus,

EE;EO}{IIJ: - J{l

The matrix E[T{Tl)“g“T('rz)]can be evaluated with the help of properties

@© o _T | T
mJ—OOG(t-Tl)E[f(Tl)g (—rz)]a (-5)dndy,  (3.27)

of Gaussian processes. Therefore, we can find E ib"ﬁlT]and hence
o7

Usually, the eva.lua;tion of the integrals in (3.27} is not easy,
so Tung has developed a different approach to generate E[?;TcT} from
(3.23a) and (3.23b). He applies IE‘oss’s24 method to uncouple (3.23a)
and (3.23b) into first order differential equations and then solves the
resulting equations to find various instantaneous correlation matrices.
For detail, see Reference (14).

This approach will fail if the damping matrix C(o) is a null
matrix. In this case, Equation (3.23a) does not have a stationary
solution since all of its correlation functions will finally go to infinity.
Another limitation of this approach is that not only the nonlinearity of
the system has to be small, but also the excitation has to be sufficiently

low. This will be demonstrated in Section 3.6,

3.5 A Generalized Equivalent Linearization Approach

The normal mode approach is quite powerful if it applies,
since it reduces the problem to one of the solution of uncoupled single-
degree-of-freedom linear oscillators. However, due to the conditions
imposed on the excitation, its application is rather limited. The

perturbation approach also has its restrictions. In order to geta



-49.

reasonable approximate solution, both the nonlinearity of the system
and the excitation have to be sufficiently small.

In this section a more general approach will be introduced.
Except that the excitation must be stationary, the only additional
restriction to this approach is that the excitation be Gaussian,
According to the central 1imit theoremzs, many random processes
in nature can be assumed to be at jeast approximately Gaussian
distributed, so this restriction may not be too severe.

In this approach, we define an auxiliary set of linear differen-
tial equations for the original nonlinear system. Some coefficients
of the auxiliary set may still be unknown. The solution of the original
nonlinear system is approximated by the solution of the auxiliary set
and the unknown coefficients are chosen in such a way that some
measure of the difference between the two sets of equations is a
minimum., With the help of some properties of Gaussian processes
and the approach derived in the last chapter, the approximate instan-
taneous correlation matrices of a nonlinear system can be found
from the solution of 2 set of algebraic equations. Although these
algebraic equations are in general nonlinear, they may be solved
linearly by a specific iteration scheme.

Consider an n-degree-of-freedom system connected by non-
linear elements. The equation of motion may be written as

M% + (%, %) = f(t) (3.28)
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where
: . : .th
Xj is the generalized displacement of the j  mass

gj(:s*(,i) is the total force acting on the jth mass by the non-

linear elements .
f(t) is a stationary Gaussian random vector representing the
excitation to the system .
It is assumed that the system possesses a stationary solution.
By way of obtaining an approximate solution of (3.28), con-

sider the following linear differential equation

M% + Cx + Kx = f(t) {3.29)
where C and K are two arbitrary matrices. Let the solution to {3.29)
be also the approximate solution to (3.28), then the difference of (3.28)
and (3.29), &, will be

e=p(%,%)- Cx-K=x (3.30)
Note that here X is the solution of (3.29). The matrices C and K,
which are still arbitrary up to this point, will be chosen so as to
make some measure of the vector  as small as possible. Then it
is assumed that the solution to the linear system (3.29) will furnish
a good approximate solution to the nonlinear system (3.28). This way
of defining an auxiliary set for (3.28) has been applied by Iwan26 to
nonlinear systems under deterministic excitation. In that case, the
criterion was that the squared error per cycle was a minimum. But
here we shall use the criterion that the mean square value of & is a
minimum, that is, |

E':E"T_e:! = Minimum {3.31)
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The necessary conditions for (3.31} to be true are

T_ 4 _ -
ggM:ZE[ET 22 _l-2efex, [0 )
Cjk dcjk J k. !
> (3.32)
BEEET“é | I Tog ) |
T :ZEi_e K J—-ZE & X = 0 y
jk ik

Upon using (3.30), they became in the matrix form

Eas‘zT}E[g-(i,f)iTlc_Efxx |-KE[®®" =0

[?}T ‘| [g(iz,rc)szT_!-CE e K EE:XT_I—
The conditions in (3.32) will give a true minimum (as opposed

to a maximum) if the following inequality holds

n n n n
VLY Ve a & R
£ 9%k %Crg Bc, BC “ik dc.. 0k
J:l k=1 r=] s=1 k rs k
9% g2 N e
+dkjk dcrs Bkjkgcrs +dkjk dkrs ijkakrstLe E.FG

(3.34)

Differentiating (3.32) with respect to Chg and krs, substituting the
results into the left-hand side of Inequality {3.34) yields
dk, \T / ‘
- )1 /dl.‘jl\
. (%55 Efrx '":\ [
|5 J L ...j dk.n \
. 20 (3.35)

tES‘c?{T] E"“T]/J des) }

de,
1| i1
: \
\dc. \dc. //

Jjn jn

dk.,
Jn

2
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Hence (3.31) will be a true minimum if (3.33) and (3.35) hold.

The square matrix in (3.35) is just the instantaneous correla-
X
Since the excitation is assumed

tion matrix of the vector process
x

to be Gaussian, the vector process is also Gaussian. It can be

k-

shownZ'7 that for a Gaussian process, the instantaneous correlation
matrix is non-negative definite. Therefore, (3.35) is always true
and the conditions in (3.33) do define a minimum for E[‘é‘T“é].

In order to solve (3.33) for K and C, it is first necessary to
express El:g(fc",i)}_(T] and E[g(i_c,i)i‘:T:l in terms of E[?;SET] , E[TciT] and
E[EET] Let Yir denote the displacement of the kth mass relative to
the rth mass and let the approximate force acting on the kth mass by
the nonlinear element connecting the kth mass and the rth mass be

denoted by s Then

krwkr’ Ykr)'

Mo ol . 7
g & %), ] —Z E[skr(ykr’ Vier %5 |
r

vk (3.36)

r
rik
where the sum is taken over all nonlinear elements connected to the
th

k™" mass., Since X is a Gaussian vector, it follows that the quantities

Vi’ iy’ Xj’ and Xj will be Gaussian distributed. Hence

E[skr(srkr’ ykr)xj j - E[skr(?kr’ Ykr)grkr ]' E,}erj :J /E[Vlfr}
(3.37)

. ' ‘ B S 20
+E[skr(ykr’ Ykr)ykr ]'E[Yerjj /E[ﬁcrj
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. . | _wl . . ] oo n20
E[Skr(ykr’ ykr)xj] - ELSkr(Ykr’ Ykr)ykr ' Etyerj_, /E!_}i(r '

(3.37)
+E[ kr(ykr Ykr)ykr:l EtyerJ:I/ELYkr
These two results are proved in Appendix C. Let us define
_ . ) .2
Yer = E[Skr(ykr’ Ykr)ykr:' /Ebﬁ{r]
k#r (3.38)
Mkr =B i— kr(Ykr’ Ykr)ykr]/E[Yer
Then equation (3.37) reduces to
E[s (¥, sy, )x ]:El:(v Voot vy Ix |
kr ke’ “kr'"j krVkr” k¥ kr jd
(3.39)

. . T

E[Skr(srkr’ Ykr)kj J - E[(Ykrirkr+%krykr)5{j_l
Hence, there exists a linear system with spring constants My and
damping coefficients Ykr defined by {3.38) such that if the nonlinear
system is replaced by this linear system, the expectation values
El:'g(”i':,i)SET;I; and EEg(?;,‘j‘()?cT] will not be changed. Note that up to this
point this linear system is not necessary to be a system which niin:"t—
mizes E[ETE]

Substituting (3.39) into (3.36) gives

-
3
i
—

=B z(\kr?kr{_nkrykr)xj]
ik (3. 40)

[gk(x x)x

- d |
i . o ]
E[gk(x' X)x; =E Z(\i{rykr-'- e rYier %5 J
r
r#k
Let the stiffness matrix and the damping matrix of the linear system

defined by (3.38) be denoted by K®) and c{®), Then (3.40) can aiso
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e Tl T (o), |, fe)
ELgk(x, X)XthE’_.Z(CkS Xs+kksxs) xj:Ji
s=1
n
ELgk(x x)x_, Es Z( (e)x +k1(( )xs)i{j]’
s=1

(3.41)

since the right-hand sides of (3.40) and (3.41) are just two different
representations of the total force acting on the kth mass., In matrix

form, Eq. (3.41) becomes
BlgExx’ |=-c®E *xxT]JrK(e)E[xxﬂ
(3.42)
E[g(‘i?:,i)i_chz C(E)E[iiT] +K(e)E[5€5—<T]

Eq. (3.33) may now be solved for the K and C which minimize

E;réTé]. Substituting (3.42) into (3.33) yields

(- mlr=" [+ (0-c)ufi=" | -0 |
(3.43).

-
&-xDERz" |+ (c-c!®)Eke" -0
This set of equations may also be written as
T
-
sfet] mReT]y  /ex)
i
=0 (3.44)

EX:T:T] ELXX _I (C~C(E)>T

If the square matrix iz non- singular, the only solution to (3.44) is

K = k()

S (3.45)
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If the square matrix is singular, (3.45) is not the only solution. But
in this case, it may be shown that any solution to (3.44) will lead to
the same minimum for EI:ET§] . Since no criterion is available to
determine which of the solutions is the best, for simplicity, we still
use the solution in (3.45}.

We have thus shown that the linear system formed by replacing
each nonlinear element by a linear spring and a linear damper defined
by (3.38) will mininﬁze E[’éT'é:l provided that the excitation - is Gaussian.
This linear system will henceforth be referred to as the equivalent
linear system of the nonlinear system (3.28) and the quantities defined
in (3.38) will be called the equivalent linear stiffness and equivalent
linear damping coefficient of the corresponding nonlinear element,

In the following we will discuss a method of solution of this

general equivalent linear system,

3.5.1 Method of Solution

The first step in this approach is to find the instantaneous
correlation matrices for the equivalent linear system (3.29). This
can be done by solving (2.36). Hence, in order to find an é,pproxi-
mate solution for the nonlinear system (3.28), one rnust solve (2.36)
and (3.38). These are nonlinear algebraic equations and it is difficult
to solve them directly. However, they can in general be solved by
the following iteration scheme. Assume a set of values for Hkrs and
\itr‘s . Then {2.36) i.s reduced to a system of linear algebaic equations
and can be solved easily for the instantaneous correlation functions.

Substituting the results into (3.38) yields a new set of values for
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.I T
"kr ® and %m °. This procedure can be repeated until the required
accuracy is obtained. This scheme is particularly well suited to
digital computation and has been used successfully in solving the

examples in Chapter 4.

3.5.2 Special Case
Suppose that the force in a nonlinear element, say Sjkwjk’ ij)’
may be represented as the sum of separate functions of displacement
and velocity, i.e.,
. _ (1), (2)
S0 Y =87 (T 487y (3.46)
Since Srjk and ij are uncorrelated, Equation (3.38) reduces by the

substitution of (3.46) to

i = E[S(Z )(ij)yjk] /E[ijk]

| (3.47)
- (1) iy
\ﬁk"E[S (ij)ij] /E[ij]
If sjk(yjk’ ij) is linear, say,
Uiy = Oy
| (3.48)

(2) -1 {0}

where c(o) and k(o) are constants, then it follows from (3.47) that
_.(lo)
%k“k |
_ (3.49)
- (o) :
=

Hence the equivalent linear system is the original linear system itself.
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3.6 Accuracy of the Generalized Equivalent Linearization Approach

The accuracy of the generalized linearization approach, of
course, depends on the smallness of the nonlinearity. In order to
obtain some understanding of range of application, we consider some
problems which can be solved by the Fokker-Planck approach as well
as by the generalized equivalent linearization approach, It will be
shown that for the special problems considered, the generalized equiva-
lent linearization ap.proach gives quite satisfactory results even for
rather large nonlinearities. We also give a comparison of the results
of the generalized equivalent linearization approach with those of
the normal mode approach.

Consider the system shown in Figure 3.1. Its equation of

motion may be written as

= f(t) (3.50a)

where

X, is the absolute displacement of the ith mass,
¢ is a constant.
u(X} is the potential energy of the system,

Furthermore, let f(t) be a Gaussian white noise specified by

mf=o

(3.50b)
Rf(‘f) =2cv 8(T)I

where Yy is a constant. This problem will be solved for several forms
of u(X) first exactly by the Fokker-Planck approach, and then approxi-

mately by the generalized equivalent linearization approach.
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(1) Exact Solution - Fokker-Planck Approach

It follows from (3.10) that

pX) = ﬁlexp{- Zy XXy
(3.51)
- 1 ]
pI%) = By expi < u(x) f
where [31 and [32 are two normalization factors such that
r 00 po0 n 0O .00 ‘
Joee] pax ek =] L j p(E)x, ... dx =1 (3.52)
-0 - 00 - - oo
Straightforward calculations show that
E ;‘-:;*;T]: vI
(3.53)
[ .
Ex% =0
/
__T -
and E|:xx :‘depends on uf{x). Let

where

100 ...0
110 0
A=114 1 0
111 1

. . : h
and let Yj be the displacement of the Jth mass relative to the (j-1 )t

mass or the base if j = 1. Then Equation (3.51) becomes

P =B, exp {- 3; 7 AT A}
| (3.55)

n
p(y) = Bpexp - 1 ) ) f
k=1
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where uk(yk) is the potential eﬂergy of the kth spring. From (3.55),

one immediately finds

T

EFy |=va"la™) A
E?’?T-}o
$(3.56)
and
© 2 Lo (v 2 _u (),
E[kaj}&kjf_mvke ViR dyy ) C TRy
vy

The first two results are independent of the nonlinear springs, so they
will remain unchanged for all kinds of nonlinear springs. The third
equation implies that the nonlinear sprihgs are uncorrelated with one
another., Two kinds of nonlinear springs will be considered after the

discussion of the approximate solution.

(2) Approximate Solution - The Generalized Equivalent Linearization

Approach

The general equivalent linear system of (3.50a} is

% +cx +Kx = (1) (3.57)

and its correlation function matrices are given by

(3.58)
and
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Under the same transformation defined by (3.54), Equation (3.58)

becomes
. - - T
E[WT]: vatah (3.59a)
E[VJ?T}O (3.59b)
E[sj(yj)yj}—“y ; j=l,...,n (3.59c)

where Sj is the force in the spring connecting the jth mass and .
(j—I)th mass. Equations (3.59a) and (3.59b) are the same as those
obtained by the Fokker-Planck approach. Equation (3.59c) is different
from the third equation in (3.56), but both equations show that the non-
linear springs are uncorrelated with one another.

According to the above results, we know that the approximate
solution is different from the exact solution only in E‘I_szjx j=1,....,n.
Moreover,. since the equations for the determination of the El-yjz:!‘s
are uncoupled, it is sufficient to consider one equation for each type
of nonlinear spring.

In the following, two types of nonlinear springs, a hardening

spring and a softening spring, will be considered.

3.6.1 Cubic Hardening Spring

Consider a cubic hardening spring having a force-deflection
relation
s(y) =k{y+ay?); k{0, a>0 (3.60)
Using the formulas derived in this section, we have the followiﬁg

results.
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(1) Exact Solution

The first probability density for the displacement is given by

(0) (0]
p(y) = exp {— lgy 2 OL 4}/j exp{ (y +2 4)}dy (3.61)

and the mean square displacement 05 is defined as

2 27 [ 2 _
cg—%y]—LmVPWHV (3.62)

Expanding the exponential functions in p(y) into a Taylor's series

about y =0 and integrating the resulting series term by term vields

%= f1 3 +24( 297( 3'+ 1 (3.63)
Y- k() ‘k( 51/ 7Y‘)/ w0/ T -

If—&Y—

k(O)
2
to the true value of Uy .

<<1, the sum of the first two or three terms will be very close

Consider another situation. Let k(o) tend to zero, but let
k(0)

a approach some finite value ¢. In other words, the nonlinearity

parameter @ tends to infinity. In this case, one has

[0 8]
13'(3r)=exp{/—4iY 4}/j exp {%Yﬂdy (3.64)
- 0O

and
2 © 2 e 4 r© e 4
Uy= y exp{-ﬂy}dy/lj exp{-ﬂy}dy (3.65)
- 0o -
. 28
Upon using the result
r OO b
JI Vae-(ry) dy = a:-}-l r(a}-}l—l)’ a+l, b, r>0 (3.66)
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where I () is the Gamma function, Eqns. (3.64) and (3.65) reduce

to
1/4

o= (3) exn [ " | Ar(d)

and
1/2 1/2
2_2 T(7/4) i} v

% =3 eI s)  =0-6760 (€)

or

/4

=0 8222/—Y>1 3 68)
Oy~ . \s (3.

{2) Approximate Solution

The response process is of course Gaussian and the mean

square displacement E[yz] is governed by
4 5
k(o)kE[y2]+a E[y4:|)=y (3.69)

2
Noting that E[Y4:J= 3E[y ]for a Gaussian process, one can solve {3.69)

for E[yz‘]:

2__m27_ 1( 1 CLY)

k

If —g'-(%)<—l—12—, the second term in the brackets can be expanded into the

k
following power series

2 3
oy 1 oy 1 ay I ay N
a/”lzk(o) =143 (lzk(o)>_ 3 (zzk(o)) +l—6-(12k(0))
=1 +6~°—LL-18(OW \2+108(23’-——'3 (3.71
NON Y NV -7
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Thus

2_ y ooy .,Q_L B}
q§,.k(o)t1-3(k(o))+-ls(kﬁo) . (3.72)

Again let k(o) tend to zero and let k(o)cx approach ¢. Then Eq. (3.69)

reduces to

1/4
4 52)

From the above calculations, we have the following results:

)1/4 5.73)

:0.7600(%

When %)<<1, we know from (3.63) and (3.72) that the approximate
solutiol; for GY shows good agreement with the exact one. When the
nonlinearity of the spring is very large, from (3.68) and (3.73) we

find that the efror for the approximate UY is about (0.822 - 0.760)/0.822

=7.5%. For an arbitrary nonlinearity, one might expect that the error

will be less than 7. 5%.
o

For comparison, the exact and approximate values for EY

o
have been plotted against ;‘r—%‘ in Fig. 3.2. c is the linear solution

for GY and is equal to Y/k(o). Both the exact and approximate cry decrease
as the nonlinearity parameter a increases. The approximate solution
is always less than or equal to the exact solution, but the error is
less than 7.5%.
Also plotted in Fig. 3.2 is the first order approximate solu-
tion found by the perturbation approach. It is clear that this approach
is valid only if both the nonlinearity of the system and the excitation

are sufficiently small.
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3.6.2 Softening Spring

In deterministic theory, a softening spring can also be
represented by (3.60} with a<0. But in probabilistic theory this_
representation often leads to unbounded solutions. In order to avoid

this difficulty, here, the following representation will be used.

. (o)
s(y)zgfutan_l(%l—y) (3.74)

in which fu is the ultimate force of the spring and k(o) is the initial
slope of the load-displacement curve. Fig. 3.3 shows some general

features of this type of springs.

(1) Exact Solution

The potential energy of a spring specified by (3.74) is given

by
2
- (o) f (o)
2 -1/mk A u 7 k N
u(y)=-1?fu{ytan ( 7t Y)-ﬂk(o){,nﬁ +(§ ————-qu ) if (3.75)

The first probability density and the mean square displacement are

given by
(y)= {—l-u()i/'mex {——l-u()d (3.76)
ply)=expi- yuly)j/] exp Y e pdy :
2 27 ® 5
0Y=E[Y ]—Imv ply)dy (3.77)

Now consider a special case. Let k(o)/fu-*oo. Then

Eq. (3.74) becomes
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fu if y>0
s{y) =( 0 if y=0 (3.78a)
-f, ify<0

and the potential energy u(y) reduces to

| 2
_ lim 2 fw kg By (o)

uly) = fﬂw?%@tan (3 o R *’I"L,”‘\“"z"f;y‘)}fu”' (3.78b)

1o 8

k(0

where |y| denotes the absolute value of y. The first probability

density now becomes
f To's) | f
| P(Y)=eXP{'%IY!}/_[(‘DEXP{"$“IYI Jay
f lo o] f
1 u [ "u ]
=5 exp{-—;—ly |}/J; expi-—\-{-—yfdy

£ £
:ﬁexp{-lelj’ (3.79)

and the mean square displacement is given by
02=f005~1~ YZeXP{-El-lvl}dv
AN Y
2 2
= % (3.80)
u

(2) Approximate Solution

First, we shall evaluate E s(y)y]:
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E T=
[s(y)y Y

! J.oo qu '_2‘%— tan” ! (———Mz(fi) )dY
Yy

3/2 w 2 2
hY
(2 qf azf re ® Ttan"lrar (3.81)

™ yu

where we have set 0L=‘/§fu/1‘rk(o)oy and used the change of variable

r =1Tk(o)y /2 fu. Integration by parts and using the resultz'9

2 2
@ -0 r v 0'.2
—————dr=5e erfc{a) (3.82)
2 2
o) 14r
where erfc ( ) is the complementary error function, yields
2 2
0 22 -1 e~ T _1 oo o) -azrz
-o rtan rdr=-S——s—tan r 1 e
re 2 2 + 2 7 dr
-0 a -0 201 -0 14r
2
=1T—2 ecJt erfc{a) {(3.83)
20

Substituting (3. 83) into (3.81) gives

2
E s(y)y]: E cyfueq' erfc(a_) (3.84)

Then it follows from (3.59c) that

X (3.85)
1

As k(o)/fu-*oo, this becomes

_ _
oyz\/; }3": |  (3.86)
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From (3. 80)7a.nd (3.86) we know that the error of the approximate
o, for k(o)/.fu--oois about (1-/7 /2) = 11.4%.

For comparison, Equations (3.77) and (3.85) have been solved
numerically and the results are plotted in Figure 3.4. The approxi-
mate solution is always bigger than the exact solution, but the error
is less than 11.4%.

We have considered two types of nonlinear springs for the
problem defined by (3 .50) using the exact approach and the generalized
eqﬁivalent linearization approach. Both approaches can diagonalize
the matrix E ??T] and therefore we consider only one element of

this matrix. If the same system is solved by the normal mode
approach, the matrix EE}??T] is not diagonal, so we must consider
dha particular system. The system as shown in Figure 3.1 whenn=3

will be used. The parameters of this three-degree-of-freedom system

are as follows:

my = m, =Mmg =1 \
3 .

s.(y.)=k(.°)(y.+0',y.) , j=1,2,3

3 ) J J J (3.87)

(0)_ (o)_ (0)_

kl =3, kz =2, k3 =1

c=0.1

R?(T):O.Zy 6(1-)1 ) ﬁfzo )

where 0 and Y are constants. Again, this approach yields
E|%%" |=vI

(3.88)

B[z |0
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Hence for these two matrices both approximate approaches give the
exact solution, This is because the exact velocity process is Gaussian
and both approximate approaches recognize that the velocity process is
uncorrelated with the displacement process.

The mean square values for the displacements o'yj from the exact
approach and two approximate approaches are plotted against the spec-
tral density of the white noise excitation in Figs. 3.5t03.8 for different
a's. From these figures one sees that both approximate approaches
give reasonable results, As far as the percentage of error is con-

cerned, the three percentages of error for o X and cy3 given by

Yo’
the generalized equivalent linearization approach are more uniform
than those for o'Vl, GY , and Uy3 given by the normal mode approach.
In the above example, the damping matrix of the system is
proportional to the spectral density of the excitation. This problém
can be solved exactly as well as approximately., Heére we are going to
consider another example in which the damping matrix is proportional
to the stiffness matrix formed by the linear part of the nonlinear
springs. This problem cannot be solved exactly, but can be s@glved by
both approximate approaches, The results are shown in Fig, 9. Also
plotted in Fig, 9 are the results from the one mode approximation
discussed at the end of section 3.3, The system considered here is
the same one used in Fig, 3.6 except that the damping matrix is now
proportional to the stiffness matrix formed by the linear part of the
nonlinear springs., The proportionality constant is chosen in such a

way that both systems used in Figs, 3.6 and 3.9 have the same amount

of damping in the first mode. Since in this case the modal damping in-
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creases with increasing modal frequency, contributions from higher
modes are nearly damped out. That is the reason why the results
in Fig. 3.9 are muc? lower than those in Fig. 3.6. By the same
reasoning the results given by the one mode approximation are not

too bad,
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Iv. EXAMPLES

In this chapter we shall consider two examples which can be
treated by the generalized equivalent linearization approach described
in the previous chapter.

It is well known that damping plays an important role in
structural dynamics. In order to simplify analysis, it is usually
assumed that the damping force is directly proportional to velocity.
However, in some systems, this force does not obey such a simple
linear law. For example, the damping force in the landing system of
certain aircraft is found to be proportional to the square of velocity30.
The vibration of submerged structures furnishes another example in
which the external damping force, the resistance to the surrounding
water, can often be considered to be proportional to the square of
velocity. Hence in the first example, we consider a multidegree-of-
freedom system connected by linear springs, but having dampers
whose resisting force is proportional to the square of velocity.

The system is excited by a base acceleration which is a white noise.
This problem cannot be solved exactly by the Fokker-Planck approach
because the conditions listed in Section 3.2 are not satisfied. The
perturbation approach fails because the damping matrix C(o)vanishes.
An equivalent linear system which possesses normal modes may be
constructed, but the modal exictation process is correlated. There-

- fore, the normal mode approach is also not applicable.

Many structures can be considered as linear in analysis

without significant error if the excitation is sufficiently small.
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However, for severe excitation, the linear treatment are often not
accurate enough. Hence, the systems must be considered as non-
linear. For example, buildings subjected to severe excitations often
behave like lightly damped softening systems, that is, the stiffness
of the system decreases as the displacement increases. In addition,
the effective damping in the first few modes is often only a few per-
cent of the critical damping. As a second example we consider a
multidegree—ofdree‘dom system of this type. The springs in this
system are nonlinear and follow the arctangent law discussed in
Chapter III, The dampers are linear and arranged in such a manner
that the quivalent linear system has normal modes and the equiva-
lent damping in each mode is known. This system is excited by a
base acceleration which is a Gaussian white noise. This problem
cannot be solved exactly by the Fokker-Planck apprdé,ch since the
conditions listed in Section 3.2 are not satisfied. The perturbation
approach is not applicable because the damping matrix C(O) is not .
known. Although the equivalent linear system is assumed to possess
normal modes, the normal mode approach also fails since the modal

displacement process is correlated.

4,1 Example 1

Consider the system shown in Figure 4.1. n equal masses
are connected by n identical springs and n identical dampers. The
springs are as sume.d to be linear. The dampers are nonlinear and
their damping force is proportional tb the square of the relative

velocity. The base acceleration ao(t) is a Gaussian white noise
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which is specified by its spectral density w. Let yj denote the
displacement of the jth mass relative to the (j-l)t}1 mass or the

base if j=1. Then the equations of motion of the system will be .

MY +K¥ +E(¥) = (t) (4.

where

fj(t):—mao(t) s Jj=l,...,n (4.

The gj(_.f) are given by

: 2 .2 .
g;(¥) =v| ¥y sen(y;) - ¥,y senlyy )]

(4.
j=l,...,n yn+l=0
where Y is the damping coefficient of the dampers and
-1 if y.<0
sgn(y.)= J (4.
J Hif §5>0
The equivalent linear system of (4.2} can be written as
MYy +Cy +Ky = £(t) (4.

Let cj be the equivalent linear damping coefficient of the damper
between the jth mass and the (j—l)th mass, Then from (3.38), we

obtain

Since ao(t) is Gaussian, irj will also be Gaussian. Hence

;= YE[%Bsgn(ij):[/E[%z] (4.

1)

2)

3)

4)

5)

6)

-2

3T 1 *.3 . Vi :
E]:yJ sgn(yj)j= > j 5 sgn(y;Jexpt —p—=) ay. (4.7)

A S D
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.2
_ 2 PO, 3 b4 .
‘/“TJ Vi eXP AT 2] ay.
Z'rrE[y:jJ 0 ZEYjJ

=«/§(E[%2] )3/2 (4.7)

cont'd

Therefore,

c; =(8y2El:§'jzjl/Tr)l/2 | (4.8)

The instantaneous correlation matrices of the equivalent
linear system are given by (2.58). In order to reduce the number
of unknowns in computation, the matrix E[?c"'iT:l, which is known to be

antisymmetric, will be eliminated from (2.58) to give

ME §§T]CT+CE['§'§T]MT- CE[’:E&T]KT- KE[XET]CT= o

L] 2 - - _- - - - - \T
ME[EET]CTJrCE[SZ"Ix ]MT+Mc’1MEL§":[x ]KT+KE[§_TX J(MC M)
T
_ _ - |
—KE[:_;XT:KMC 'x) -mc 'KE xE [KT=2ew  (4.9)

where W is the spectral density matrix of f(t). If the base excitation
is a clipped Gaussian white noise, Equation (4. 8) is still valid, but
Equation (2.58) has to be replaced by (2. 45).

By using the iteration scheme discussed in Chapter III,
Equations {4.9) and (4. 8) can be solved numerically. The results
of a three-degree-of-freedom system are plotted in Figures 4.2 to
4,10,

Figures 4.2 and 4.3 show the general behavior of the non-
linear system. As in a linear system, the mean square displacements

increase with increasing excitation level w and decrease with increas-
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ing damping coefficient y. But they do not increase linea.ﬂy as in

a linear system when the excitation level increases and they decrease
faster than those in a linear system when the damping coefficient

vy increases.

The base excitation used in obtaining Figure 4.4 is a clipped
Gaussian white noise with cutoff frequency w,. Here the mean square
displacement is plotted against W, When @ is not close to the first
modal frequency of the equivalent linear system Wy 5 the curves are
very flat but they rise sharply from nearly zero to values corres-
ponding to solutions for a Gaussian white noise excitation in the
neighborhood of W, - Hence it is apparent that for a Gaussian white
noise excitation the greatest contribution to the mean square displace-
ment comes from the first mode of the equivalent linear system and
contributions from higher modes are nearly damped out. This indi-
cates that the equivalent linear damping in the higher modes is much
greater than that in the first mode. The slope field of this figure
represents approximately {exactly for linear systems) the spectral
density for the displacement. Hence from Figure 4.4 we also observe
that the spectral density has its most significant peak in the vicinity
of ®; - We therefore conclude that the displacement y; will be essen-
tially narrow band processes.

In order to obtain more insight into the damping behavior
of the nonlinear system, it is instructive to consid_er a linear system
which has the same M, K, f(t), and instantaneous correla_tion matrices

as the nonlinear system (4.3). Assume that this system possesses
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normal modes. Then the damping ratio Ci in each mode of this
linear system can be determined without difficulty. This will give

a measure of the damping in the nonlinear system. As expected,
the damping ratio for the second and third modes is much higher
than that for the first mode (the damping ratios are roughly propor-
tional to the modal frequencies). The damping ratio Ql for three
different v's is plotted against the excitation level w in Figure 4.5.
It increases as eithér the damping éoefficient or the excitation level
increases. Sinée, for a linear system, damping is not a function of
w, the Cl curve will be just a horizontal line. Thus in Figure 4.5
we can compare the nonlinear system with a linear system which

is different from the nonlinear system only in the dampers used.
For example, a nonlinear system with y=1 will be more effective
than a linear system with 4= 0.15 in reducing mean square displace-
ments if the excitation level w is greater than 0.2 /2r. However,

if w is less than this value, the linear system will be better.

On the basis of the above observations, the following con-
clusions can be made.

(1) Since the response is essentially a narrow band process,
only those components of the spectral density of the excitation which
are in the neighborhood of + w, are important. Thus, if the spectral
density is slowly varying in these neighborhoods, then the excitation
can be approximated by a white noise whose spectral density is just
equal to that of the original excitation at w= W - In this way the
analysis of the equivalent linear system can be much simplified

.because the stationary response of a linear system subjected to a
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white noise excitation can be found by just solving a systefn of linear
algebraic equations. |

(2) The dampers used in this example are effective in reduc-
ing the mean square displacements only when the excitation level is
high. Hence, if the excitation of a system is usually very severe,
then the use of this kind of dissipation could be beneficial. However,
if the excitation level of a system is in general rather low, then the
need for additional linear viscous dampers is indicated.

Although these conclusions are drawn from a three-degree-
of-freedom system, it is not difficult to see that they are also valid

for n-degree-of-freedom systems.

4.2 Example 2

Consider the system shown in Figure 4.6. n equal masses
are connected by n identical nonlinear springs and linear dampers
(not shown in the figure). The linear dampers are arranged in such
a way that the equivalent linea,r system for the nonlinear system has
normal modes and the damping in each mode is 5% of critical damp-

ing. The spring force sj(yj) is governed by folloWing law

qu 1 Trk(o)y.
sj(yj)=Ttan ——-—-szu {4.10)

where fu and k(o) are the ultimate force and the initial spring constant
of the nonlinear springs. The base acceleration ao(t) is assumed to
be a Gaussian white noise with spectral density w. The equations of

motion of this system will be
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M7 +Cy +E(F) =1(t) (4.11)
where
gy =8y bys -850 s Yoo

(i=1, ..., n) (4.12)
fj(t} =-m ao(t)

and Cis an unknown matrix. The equivalent linear system of (4.11)

may be written as

M¥ +C¥ +Ky=1(t) O (4.13)
Since it is assumed that this system has normal modes, there exists

a matrix A such that

n oo

Z L ajrmjkakszﬁrs {(r,s=1,2,...,n) (4.14)
j=1 k=1

L L 2

Z Zajrkjkaks"—‘wrérs (r,s=1,2,...,7) (4.15)
j=1 k=1

n n ‘
Z zajrcjkaks Zgrwrars {r,s=1,2,...,n) (4.16)

1 k=1

where gr and w_ are respectively, the modal damping ratios and modal
frequencies of the equivalent linear system (4.13). Equations (4.16)

can be soclved for c., :
jk

n n n
K= Z z Z e jgrwrasrmsk (4.17)
. -_- = S: .

Since Cr are known, C can be determined from this equation once K

is known.
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Let kj denote the equivalent linear spring constant of sj(yj),

Then it is found that

kJ.: ::E: )YJ] =/ f o® %rfe(a) (4.18)

11'EL

where

‘2 f1.1
o= / 2] wk(o) (4.19)
J .

Following the same procedure as used in Example 1, we can
solve (4.18) and (4.13) numerically tb find all the instantaneous correla-
tion functions. The resﬁlts of a three-degree-of-freedom system are
plotted in Figures 4.7 to 4.10,

Figure 4.7 shows that, #s the excitation level increases, the
mean squé.re displacement of the first spring increases much faster
than that of the second and the third springs. Hence, if this nonlinear
system is subjected to severe excitation, the mean square displace-
ment of the first spring will be dominant.

In Figure 4.8 the mean square displacement is plotted against
the nonlinear factor k(O)/fu of the. springs. Note that when k(o)/fu

approaches zero, Equation (4.10)} reduces to

ity =xty, 1o © (4.20)
Hence the system becomes linear. Figure 4.8 shows that the mean
square displacement of the second and the third springs does not
differ too much from the linear solution'(_k(o)/fux 0). As the non-

linear factor k(o) /fu increases, the mean square displacement of
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the third spring actually decreases monotonously, while that of the
second spring increases slowly at first, then also decreases when
k(o)/fu is greater t.han 2. However, the mean square displacement
of the first spring differs considerably from the linear solution
when the nonlinear factor is large. For example, at k(o)/fuz 1.5
the mean square value, O:I » of the nonlinear system is about four
tiﬁes as large as that of the linear system.

In Figures 4.9 and 4.10 the excitation is a clipped white
noise. These figures show respectively the mean square displace-
ments of the first and the third springs as a function of w.. They
also indicate the contributions from different modes of the equiva-
lent linear system when the excitation is a white noise. For the
first spring the contribution from the first mode is the largest mean
square displacement in that mode while the contributions from the
other modes are considerably smaller. Hence in Figure 4.9 one
sees that the contributions to the first spring from the higher modes
is negligible compared to that from the first mode. However, for
other than the first spring the mean square displacement in the first
mode may be comparable with those in the other modes. Therefore,
in Figure 4.10 one sees that for the third spring the contribution
from the second mode may be of the same order of magnitude as
that from the first mode. Thus the response vy will be essentially
a narrow band process while the response V3 (also the response YZ)

may in general be much less so.
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From the above results the following conclusions can be
made.

(1) Since only the response of the first spring can be
accurately considered as a narrow band process, the use of a white
noise to replace an actual excitation may be not a good approxima-
tion in this case and the actual excitation should be used if possible.
This will, of course, be true for n-degree-of-freedom system,

(2) For the second and third springs the mean square
displacements obtained from the linear analysis and the equivalent
linearization approach are quite close. However, for the first
spring the two solutions will be close only if the excitation is suffi-
ciently low and the nonlinear solution will be much larger than the
linear solution if the excitation is large. Therefore, the usual
linear analysis furnishes a good approximation only for low excita-
tion. If the excitation is severe, the linear analysis is unconserva-
tive for design purposes and the system should be considered as
nonlinear. For large systems (n>3) the big difference between the

two solutions may not be limited to the first spring.
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V. SUMMARY AND CONCLUSIONS

A rn.atrix algebra approach for determining the méa.n vector
and the instantaneous correlation matrices of the stationary random
response of a multidegree—of_—freedom linear system is presented
in Chapter II. Its derivation is quite straightforward an.d involves
only some simple matrix algebra. Its application consists of two
steps: evaluating some simple integrals and solving a systém of
linear algebraic equations. The first step sometimes becomes very
trivial. For example, if the excitation is white, then the integrals
can be readily evaluated since their integrand contains a Dirac
delta function. The second step can be done by a digital computer
and a single program will be valid for any kind of multidégree—of- '
freedom linear systems. From the comparison of this approach and
the existing approaches, it seems that if one is only interested in
instantaneous correlation matrices, this approach will be simpler
than other approaches.

Several approaches are available for determining the stationary
response of a multidegree-of-freedom nonlinear system, but each of
them has certain limitations. In all these approaches the excitation
is assumed to be stationary and Gaussian. The Fokker-Planck
approach is the only approach available which can generate an exact
solution for some nonlinear systems, but its applicability is rather
limited because of the following restrictions:

(1) the damping force must be proportional to the velocity;
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(2) the correlation function matrix of the excitation must be
proportional to the damping matrix of the system;

(3) the excitation must be a Gaussian white noise.

The perturbation approach may be used only when the solu-
tion of a nonlinear system is close to its linearized solution. Hence
it requires that

(1) the nonlinear system possess a linearized solution,

that is, C(O) is not a null matrix;
(2) both the system nonlinearities and the excitation be suffi-

ciently small.

Under these conditions this approach reduces the nonlinear differential
equations of motion to several sets of linear differential equations,

The normal mode approach is perhaps the simplest one among
the existing approaches. It reduces an n-degree-of-freedom non-
linear system to n single-degree-of-freedom linear systems. How-
ever., 'I:hre restrictions imposed on this approach are rather severe.
It requires that the linearized system have normal modes and that
the correlation function matrix of the excitation be diagonalized by
the same rﬁatrix that uncouples the linearized system. The first
condition may not be too serious, but the second condition on the
excitation makes the application of this approach quite limited.

In the present study a generalized equivalent linearization
approach for determining the instanta.ﬁeous correlation matrices of
the stationary random response of a multidegree-of-freedom non-

linear system has been presented. The only restrictions on its
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application are that the excitation is stationary and Gaussian. The
equivalent 1iﬁea.r system is formed by replacing éach nonlinear
element in the original system by a linear spring and a linear damper.
After applying the matrix algebra approach to the equivalent linear
system and the special iteration scheme described in Chapter III, one
is led to the repeated solution of a system of linear algebraic equations.
It is implicitly assumed that in order to obtain a good approxi-
mate solution the nonlinearities of the system must be small. How- |
ever, this approach can also be used to generate approximate solu-
tion for systems with large nonlinearities. Two examples which can
be solved exactly by the Fokker-Planck approach were also worked
out by the generalized equivalent linearization approach. A compari-
son of the results shows that for a cubic hardening system the error
in the root mean square displacement is always within 7.5% of the
exact solution and that for an arctangent softening system the largest
error is 11.4%. Therefore, it seems that even for large nonlinearities,
this approximate approach still gives very reasonable results.
Two more examples which can be solved by the new approach
were given in Chapter IV. The first example, linear springs and
- dampers whose damping force is proportional to the square of the
velocity were used. The results show that the dampers used in this
example are particularly suitable for systems which are subjected
to severe excitation. In the second example, softening spfings which
follow an arctangent law, were used. The linear dampers were ar-

ranged in such a way that the equivalent linear system of the nonlinear
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system has normal modes and the damping in each mode is specified.
The results show that the usual linearized analysis is unconserva-

tive for design purpose.
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APPENDIX A

Multidegree-of-Freedom Systems Under Gaussian White Noise
- Excitation

Under certain conditions (see Section 2.2.3) Wang and
Uhlenbeck1 hajve solved the s.ystem {2.1) by the Fokker-Planck

approach. However, their approach can be extended to more
general problems.

Consider the following equation

MX +CX+KX =5(t) (A.1)
where s(t) is a Gaussian white noise vector.

Without loss of
generality, assume that

Efs(t)1=0
' | (A.2)
El-E(t)ET(t-T)]=21TW5(’r) |

where W is the spectral density matrix of 5(t). The stationary response

X, % will form a 2n dimensional continuous Markovian process z=(x, X)

whose first probability density p(z) is governed by the stationary
Fokker-Planck equation

2n 2n 2n 2
) 5t -3) ) 5 b, .p)=0 A3
. BZ. a’Jp “2 ) gzkgz‘ ( ka)" ( . )
j=1 } k=1 j=1 .
From (2.3]1) one easily finds that
O O _
B = y T (A.4)

O 2mM

wim™ by
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and

O I
a=Dz where D= -1 1 {A.5)
-M "K -M C
Instead of solving (A.3) directly we make first the linear transforma-
tion
Z =A% (A.6)

The matrix A is the matrix which diagonalizes D, so that:

AlpAa=na (A.7)

where A is a diagonal matrix which consists of the eigenvalues of
D. Since it is assumed the system (A.1) possesses a stationary
response, hence all eigenvalues will have a negative real part.
After applying the linear transformation {A.6), Equation (A.3)

takes the form:

2n 2n 2n 2
’\ﬁ—(“P) zL LY kJa—u%—“O (&.8)
j=1 k=1 j=1 J
where
1 1T
V=A""B(AT") (A.9)

Let h{¥) denote the characteristic function of T which is just the

Fourier tré.nsform of p(u):
2n
h(%) = f p(u)exP -12 {ijuj du;...du, (A.10)
j=1

Then in terms of h(£), Equation (A.8) becomes

Zn Zn Zn
ZAJ@J??(E’ FRE)) ) Vig gk | (A.11)
i=1 k=1 j=1
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By direct substitution it can be easily shown that
2n 2n

V
h(E)=exp(3) ) ri— ,\H 28 (A.12)
i1 k=1

From the definition of characteristic function and the properties of
a Gaussian distribution, one knows that 1 is Gaussian distributed with

zero means and its variances and covariances are given by

v, ' :
. Jk
Efou, I=- xJ.‘Lr+ , (A.13)
In the matrix form Equation (A.13) becomes

AELﬁﬁT]+E TxﬁTJA=-V (A.14)
Substituting (A.6) into (A.14), using (A.7) and (A.1)}, one finds that

DE[zz J+E T~’D =-B (A.15)

Substituting (A.4) and (A.5) into (A.15) and noting that

__T“ E[ _‘I']

77 ]= E[E_T] o[ (A.16)
one obtains
Elx% ]+E[ ]=O
ME[?:S:T}- CE[‘%‘ciT]-KE[?c?chzo A

ME[‘}‘:S’;T] T s ME [?c?cT] KL

Fe .7 T
i__'}“cTJiMT+KE ES:IJ!IVF=217W
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If M, C, K are symmetric and
TW =vyC
then by direct substitution it can be shown that the follbwing solution

found by Wang and Uhlenbeck
E[E¥ |=0
- =T -1
E[%% ]wK (A.18)
FfL.TT -
Ei':‘c:‘:T]: YM 1

also satisfies (A.17).
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APPENDIX B

Some Properties of the Correlation Functions of a Stationary

Random Vector Process

L.e't x(t) be a stationary random vector process which is
assumed to be differentiable in mean square to the required order
and R.}E(T) be its cross-correlation function matrix. Then we

have .
R.(r) = E[i(t)ET (t‘+rr)]= E[E(t— & (1) (B.1)

Differentiating (B.1) with respect to T gives

SR (n) =Bt (t4r) = -E%(t-T)xj(t)] (B.2)

[

The stationarity of X implies that (B.2) can be rewritten as

chFRSE(T) :E[ﬁ(t- ﬁ*‘;aT(t)]: -E[s'i(t)fT(H'r)] (B.3)

Differentiating (B.2) and (B.3) with respect to Tagain yields
dZ =T s T 7
< R () =E[ R0 (47 |= B[ 1) (0)

ar® * =

=-E[X(t- 1 (1) ;= -E[_s‘z(t)"iT 0] . (B.4)
Finally, setting r=01in (B.2) and (B.4) gives
E[ES;I:]+E[3E§T]= 0

o e M e o
E[;—c;':T}Eiiérj = -EEE |
L I J

(B.5)

where the common argument t has been omitted. Thus El_iic:r:l is

antisymmetric and E’_ix"T—, is symmetric.
- -
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Further, the above results can be generalized to give

g h j- k N
E[ 4° .d_._J> =(_)SE d_“') a4 T
(dtg )(dthx J [(dt] ) dth)]
where
gth=j+k, s=g+j or s=h+k
g:h:jsk=0:1:---:1‘

and d¥/dt* X is the highest derivative of X that exists.

(B.6)
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APPENDIX C E[xlf(xz, %, )]

Suppose that X)» Xp and x, are Gaussian distributed. Then

1.7,-1_1
E[xlf(xz, )] 3/2 ijxlf(xz,x )exp{ X A xJ'chcld.xzdx?J
/det(AY
{C.1)
where
akj=E[xkxj] k,j=1,2,3
det(A) =the determinant of A

We may also write {C.1} as follows:

Etxlf(XZ’xs)]'(z )3/2‘/--———.”.rﬂ"rX )exP{ 2(%; 2+a * +2“"23”’2”‘3)}

X exp{ +2x ( "12 +-C—L—--—x )]}dx dx, dx
%1

(2n)3/2@(_‘ _”f(xz’ )eXP{ Za r("“u"‘zz'ﬁz

+ (“33%1‘“?3)’% *‘2(0‘23“11"’*12”'13)"2"3_]} |

Q0 r ] 2 .
'U *19%PL" 7o (“11"1*“12"2“1 3"3) ]dxl}d"zd"

_ (C.2)
where akj =the (k, j) element of A 1=’che co-factor of a‘jk in A,
Now consider the integral
0 1 7 2
b=f_mx1eXp[' Za; ( 11X1+°“12'f"2+°‘13x3)_-,dx1 (C.3)
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3 2
which reduces by the change of va.riablg 22:2;—11 }_ aljxj to
the form j=1
a 2 .
[T B, )2 e
Ot11 %11 a;,
By making use of results
o0 2 oo 2
I e ? dz =4 , j ze 2 dz =0 . (C.5)
-0 oo
(C.4) reduces to
b=- 2T ( = xz'+a13 x;) (C.6)
91 11
Hence (C.2) becomes
Elx flxy, x3) 1= 7 «/Zw f (a Xt a13 ) ey %)
@2r)> Jaga—3 %1 11 11 _

eXP{ A{f zzl}dx dx

0‘.

a
(G E xy gy, x4 22 B L3y, x )} ¢

1 1
where

222 23
A“:the minor of a7 (C.8)
a432 2333

and the following relation has been used
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| | y
cxllakj'o-lkalj K+ ®rs " det(A ) a_,
oy =1 det(R | |)/det(R)” (- ”. Fetla, ) (C.9)

k,j, r;8=2,3 r=s#k  if k=j
r=k, s=j if k#j
With the aid of the definition of the cofactor, we have finally,

ay1233~ 223831
822333~ 2233432

E[xlf(xz,x3 )] = E[XZf(XZ,X3 )]

_221%32”*31%22

Elx, f(x,,x,)] (C.10)
3222337 223332 3T
If X..2 and x4 are uncorrelated, for example, X,y = '2, then 33723,
=E[x2,x3n= 0. Thus,
E[le(xz, }]‘— E[X f(xza 3)]"‘ E[X f(xza 3)] (C.11)
az2 233
Replacing 215 by E[xkxj'], we obtain
Ebeox, ] EDxyx) ]
Efxlf(xz, X3}] =-—-—2—E[X2. X3)] +~—2—E[x3_f(xz, 2!3)] (C.12)
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Figure 4.1: An n—deg.ree-of-freedom nonlinear
system
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Figure 4.6: An n-degree-of-freedom nonlinear
system (linear dampers are not shown)
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