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ABSTRACT

The concept of the Damped Fourier Transform (D, F. S.) has
been developed through an understanding of the nature of the response of
a damped oscillator to input ground accelerations., It has been shown

that such a transform serves as a lower bound to the corresponding

damped velocity spectrum curves.

A review of the statistics of the maxima of a random function has
been done and its application to the determination of response spectrum
estimates has been studied, Such simple statistical estimates have
been found to be very useful in improving our physical understanding of

response spectra.



INTRODUCTION

In Earthquake Engineering and Strong Motion Seismology, Fourier

techniques present an important tool in understanding and interpreting

(1)

the frequency content of various time signals, Ambient vibration tests' /',

(2), response spectrum analysesB)

(4)

source mechanism studies ahd instru-

ment correction techniques are only some of the examples in which
Fourier representations arc widely used,

This paper attempts to study some of the specific properties of
these transform methods in the context of vibration theory, Starting with
the undamped oscillator, the concept of the Fourier transform is extended
to damped oscillations defining the damped Fourier transforms., A com-
parison of these damped transforms and damped velocity spectrum
curves is done, Smoothing techniques in the light of these results are
discussed,

The second part of this work deals with the applications of some
well known results from the theory of random functions, The purpose of
that section is to present the physical relations that exist between the
Fourier transforms and the response spectra as seen from the probability
point of view, It is shown that the computation of the response spectra
based on the statistics of maxima of stationary functions is simple and
economical, but it represents only the first approximation when com-
pared with the actual response to real earthquakes, Comparisons of the
damped Fourier spectrum, computed velocity spectra, and statistically
calculated maximum responses are presented for random stationary

processes and real earthquakes,



I, ANALYSIS OF FOURIER AMPLITUDE AND PHASE SPECTRA

The Undamped Oscillator

Some of the basic results from the theory of undamped oscillations
will be reviewed here, so that extensions can then be easily made,

The governing equation for the relative response, x(t), of an
undamped oscillator subjected to an absolute base acceleration, a(t), is
given by

| i+l = -H(t) (1)
where w_ (Fig. L 1a) is the natural frequency of the oscillator, Equation (1)

can be transformed into a first order equation through the substitution

n(wn,t) = X(t)+ iwnx(t)

to give

dn .. e

3 -l n =21, {2)
where

Z(t) = -H(t) .
The solution n(wn,t) of Equation (2) which shall be henceforth referred to
as the complex response of the oscillator, is given by

t
n(w,,t) = exp (iw t) [E[). Z(r) exp (~iw T)dT + ﬂo] . (3)

Here Mo is the value of 1 at t=0.. The real and imaginary parts of this
complex response can be further studied as follows.

Consider a new function Z*({t) such that

E¥(t) =

Z(t) 0 <t<t
0
{ (4)

0 . elsewhere .,

Then Equation {3) can be expressed as



n(w'n,to) = &(ty) + 1w x(t,)

s3]
:exp(iu)nto) jm'z'*('r) exp (—iwn'r) dr + g ©XP (iwnto) . (5)

In particular, at the natural frequencies

m:ZTrm m=12,...
n to ) E Rl »

Equation (5) reduces to
(o ) #(wfty) + i“Gr1nx<"*’:nm’to)

fe'e}
J‘mz*('r) exp (-1(1Jn T) dr+ o

= [X(w;n,to)+ :::0:| + i[Y (wf,t0)+ wz’“xo] (6)

where X(w?,t(]) and Y(w;:l,t()) are the real and imaginary parts of the

i

Fourier transform of #¥(t) evaluated at the frequency w;nzz-;rm/to , and,
X4 and ;':0 are the initial displacement and velocity respectively of an
undamped oscillator of natural frequency wnm.

Relation {(6) can be interpreted as follows: The velocity at time
1:=t0 of an undamped oscillator starting from rest (xO.—.;':O-_-O) at t=0 and
having a natural frequency w;n=21-rm/t0 is given by the real part of the
Fourier transform of the function Iz'*(t) (defined in Equation (4)) calculated
at the frequency w;n. Similar interpretations can be made regarding the
relation between the imaginary part of the transform and the pseudo-
velocity of the oscillator at time t:to. On the other hand, by setting
z(t)=0, for é,ll t in Equati.on (6), we get the free vibration problem, If the
time t, of observation is a complete multiple of the fundamental period

of the oscillator, then the velocity and displacement of the oscillator at
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Figure 1. 1 (a) A single degree of freedom oscillator subjected to
ground acceleration Z{t).
(E) A mass-spring-dashpot system and its equivalent
as interpreted through the phase of the complex
variable urp



time t, will be identical to the initial velocity and displacement, Simpli-
fying Equation (6) we have

. m je ol .
X(wn ’t0> = X(wn ’tO) +X0

and (7)

a1
I _ Zwm) ( m )
x(‘”n ’t0> = ( £ Yo, otp )t %o -

Thus the presence of a set of initial conditions on an oscillator of natural
frequency w;n causes the velocity and displacement of such an oscillator
at tizﬁe tO to be shifted by clonstants equal to the initial velocity and
displacefnent. We note that since the real and imaginary parts of the
transform of 'z'*(t) are related to the velocity and the displacement of an
oscillator (Equation (7)), they are not independent of ecach other. This
would constitute a physical proof for the theorem of causality(S) which
states that for a real causal Vfunctiorn the real and imaginary components
of its transform must be related to each other,

The complex response n(u}n ’tO) can also be expressed in terms

of its phase and amplitude as
n(wn ,to) = e exp (iv ),

where, ¢ is the phase of the complex response and J/e is its amplitude,
We shall now show that the phase ©, is related to the partition of the
oscillator energy, and that for the specific oscillator frequencies ujnzwi1
it is identical to the corresponding phase of the Fourier transform. We

have,

w x(t) 2
n ) _ {Pseudo Velocity Potential Energy attimet

- ( Velocity ) = \"Kinetic Energy attime t )
| (8)

tanchn(t) = ( ”
x



m »
For L!Jn :wn and XO:XO—O

. ’tO) = tan ﬂ;(w;n,to) (9)

31° B

ol e
o P
]
‘.!"I'
o
~

tan cp;n(to) =

where | is the phase of the transform of £¥(t). The numerator in
Equation (8) is the Potential Energy in the spring element while the
denominator is the Total Energy less the Potential Energy in the system.
The formulation of Equation (8) in this manner will be useful later on in
the understanding of damped oscillators whose phase relations will be
shown to be similar to those expressed above, The phase { of the trans-
form then gives infoi-matiqn on the partition of energy at time to in an
undamped oscillator of frequency w;n with zero initial conditions ('nozo)_

For durations of time, t., which are not complete multiples of the

0’
oscillator period, the partition of energy would not be definable in such
a simple manner.

Further insight into Equation (8) is obtained first through the
substitution to-t =ty in Equation (5) and then through a splitting of the
function 'z'*(to-tl) into its even and odd parts.

For n0=0

) 00 iGJtl
k(ty) +iw x(t,) = I [oo(t))+ 0ty )]e  ~dt)

- 00
m
= l cp(tl)cos c.ut1 dt1+1j \b(tl)s1nwt1 dt1
-0 =00 .

where cp(tl) and 111(1:1) are the even and odd parts of 'z'*(to-tl) respectively,
The velocity of the oscillator is then related to the even part of the function

and the displacement to the odd part. Also,



oo
_j‘ ¥(t,) sinwt dt,

e8]
0= : (10)

f ®(t,) cos wt, dt

=00 I

tan cpn(t

Assuming now that at w =w*, tan =0, we have

oo
J lli(tl) sinw tl =0,
-0

Letting w=w* + AW, the numerator of Fgquation (10) becomes

Q0

R
-EL \Lr(tl) sin(w + Aw)tldtl

mjmllf(tl) sinw™t [1- (Awt
-00

T,

Q0
+ f ¥(t) cos 0ty [Awt1+...]dt1 for |Aut,[<<1,
-0

If the phase (=0 at W = W + Au,

r % (Awtl)z o sk
! Wt )s:.nw tl———z— dtlz _[ tll(tl)cos w'tlAwtldtl.
-0 _ -0

Thus for small Aw, tan®w will be zero if

oo "
2-£0 tl tlf(tl) cos W 1:1d‘::1
A=

(11)

19t

@ 2 %
I t.oP () sinw™t
1 1
-00
It may be noted that except in the case of no oscillation both numerator and
denominator in Equation (10) cannot go to zero together, since they are
proportional to the Potential and Kinetic energies respectively. Hence, the

spacing between the consecutive zeroes in the phase angle will be decreased



as the duration of the record increases and as the function 11!(1:1) (and hence

z*(to-tl)) has larger and larger contributions at longer and longer times.
The energy of the oscillator, E, at any time t is defined as

1_,.2, 22 1 2 . . e e

smi(x +wnx ):-Zmlnl . Hence for an oscillator with zero initial conditions

2

2

2 - (s8]
=22, l‘[of*(t) exp (-iw t)dt] =e (12)

[n]

where e equals twice the energy per unit mass, The energy of such an
oscillator is not conserved since the system gains energy from the source
of the external field,

As mentioned earlier the complex variable n can be looked upon as
a vector in the phase plane (x, X). From Equation (12) the magnitude of
this vector equals /e While‘its phase angle is given by Equation (8). The

rate at which this vector rotates about the origin can be obtained.as follows:

w_x
tan - _...:—[.1-—
Pn = P
"Using Equation (1),
dep :'42+w2x2+x§ .o
= = —a . cc»s2 =W [1+§ (13)
gt Y :'{2 Pn= %n e )

Relation (13) indicates that for the free vibration problem the energy
vector e rotates at the natural frequency W about the origin, For forced
vibrations, the rate of rotation at any time will depend on the value of
4(t) and the value of e(t) at that particular time, |

The relative velocity response spectrum Sv(wn) value at frequency
w  can be defined as ]n]max'for when % is a maximum, x=0 so that
'ﬂlmax= Ii!max' The modulus of the Fourier Transform gives the valﬁ.e

lnlt:to’ and hence serves as a lower bound to the velocity spectrum value

defined as 1 n lmax .



The Damped Fourier Spectrum

The results of the previous section will now be extended to define
the Damped Fourier Spectrum (D, F. S.) which will bear the same relation
to the damped oscillator response as the Fourier spectrum bore to the
undamped oscillator response,

The governing equation of relative response x(t) of a damped linear

oscillator subjected to an absolute base acceleration a(t) is
K420 ER+ wix = -&=H(t) (14)
n Y™ = -

where £ is the percentage of critical damping,

Using the transformation y :xea‘t with a= wn§ we have

w_Et
§+ul(1-8%)y = E(t)e
orTr
w .Gt
5r'+w(21y = Z(t)e d (14%)

where wd:wn"/i-—gz’ the damped natural period of the oscillator, and
B=8//1-82 .

The damping thus has led to an exponential increase in the forcing
function of the reduced undamped system as seen from Equation (14')., As
before, we define the complex variable n:;:;}-i-iwdy. The solution of
Equation (14) is as before

” ) tO" wd[?)t-iuudt "
nd(to) = exp (1wdt0){f Z(t)e dt + ndo} (15)
0
and nﬁo is the value of ng at time t=0, Application of Equation (15) to the
time history Z(t) would lead to the determination of the damped oscillator

response, However, better understanding of the problem is achieved if
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we infer the nature of the damped system response directly from the
response of an undamped oscillator. To do this we take the integrand in

Equation (15) as a product of two functions g(t) and 'z'*(t), where

. 2
e(wng-lwn 1-7)t —oo<'c<t0
g(t)={ (16a)

0 otherwise

for '§>0 and wn>0 and

. Z(t) 0stst,
55(t) :{ (16b)

0 otherwise

First we recall Parsevals formula,

(0.8}
I= j ¥ (t)g (t) dt = E%T—‘[mz(-k)e(h)dh
-CD

-0

where

(0.0 .
Z (N :I 'z'*(t)e-l)\tdt

~ Q0

and

o0 .
G()) = ‘[ g(t)e'l)‘t dt .

=-C0

Using the definition of g(t) from Equation (16)

¢ S
W, g- 1w E .
G(M) = fo oM g

o)
there follows
[ E-i(w V182 + 0]t

G(N =2 . (17)

wng-i(wna/l—gz + )

Hence,
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. [wné-i(wnJ1-€z+ M,
1 e
I=5- J' Z(-) d\
T

B w, E-ilw -2+ 1)
[wng-i(wnh/l-gz -1t

Q0
:%J‘ zZ( 2 dx
=00 W E-i{w J1-2% -3
n n
. i\t
w._Et -1 .t a0 0
_ 1 "o dOJ‘ Z()e 4 (18)

T 21
- wn%;-i(wnﬁ/l-gz -2)

Using Equation (15},

| ¢ ,

¥

g E-ifw /1-20 ) 0

" 1
Mgl =3¢

But

Sk . . - . wngt wngt
nd(to) =y+ingy = (x+wn§x+1wdx}e = ng (20)

where

nd:x+ mn§x+ 1wdx .

Equation (19) then gives

o EM iw, /-85t —w_ gt
(t )__1 Z(Me dr ., . =© 0 e 170 (21)
Ta%o' T 2w J > ",
w, E-i(w ~1-87 -3)
iw l-fgzt -w_Et
= XMy, B.tg) Fi¥ Mg, B kg te Ondoe nT0 (22

where X*(wd,g,to) and Y*(wd,g,to) are the real and imaginary parts of

the "Smoothed or Damped Fourier Transform' defined by the integral in



Edquation (21). At the frequencies wgl: Z-Erm
0
ale it gt
nglty) = X"-'(wfin,g,t0)+iY*(wgn,§,to)+ Ny € n=0 (23)
‘ 0

Simplifying Equation (23) we get

(m : zﬂm\—l wf m -0, &

X\wd’g’to>= (“"to ) ¥ (‘”d’g"‘o)““xoe
(24)

of m kf m *{ m . "”ngto
#{0 2.t ) = ¥¥(0f ity ) - BY (a2t ) e
Equation (24) states that the pseudo-velocity of a damped oscillator

with zero initial conditions having a damped natural frequency of w1c‘1n and
the fraction of critical damping, &, is given by the imaginary part of the
smoothed Fourier transform evaluated at the frequency wgl_ Similar
interpretations on the basis of the real part of the smoothed Fourier
gspectrum are possible, Lastly we observe that Equation (24) reduces to
" Equation (6) as £-0, When X*EY*EO, we have the free vibration problem
of the damped oscillator indicating that the velocity and displacement of
an oscillator at time tg (a complete multiple of Z'rr/wgn) are respectively
equal to the initial velocity and displacement multiplied by the factor
e—wngto.

‘The phase of the complex variable q is given by
Aty

iy
tancpd(t}_: - -
x+ W Ex

n

(25)

When the oscillator starts from rest, for frequencies wgn ,
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Y*@Fﬁgt)
¥ (wgn, g -fb =tan “’d(‘”én’to )

where llrd is the phase of the smoothed Fourier transform of £ *(t), Equa-

(26}

tan cpgn(to) =

tions (25) and (26) are analogous to Equation (8) and (9), To study this

analogy further we consider

tan" o, = (27)
d :‘cz + 2x>':§wn+ wigzxz

I S Y1 (28)
m}'{z + cx + k{ E',x)2

Here k is the force per-unit displacement of the spring and c is the viscous
damping of the dashpot. As in Equation (8), the numerator of Equation (28)
is related to the potential energy of an equivalent spring while the denomi-
nator is simply the total energy less the potential energy of the equivalent
spring, The potential energy is reduced from the undamped case by a
term k(’ix)2 . This reduction may then be looked upon as being the cause
of a reduced natural frequency in the damped system, The damping thus

has the effect of reducing the apparent spring stiffness, Noting that

c2

k(%x)z = (m)xz :klxz, we observe that the dashpot can be interpreted as
acting as a negative spring of stiffness 'zfﬁ . We then propose that the
mass-spring-dashpot system can be looked upon as being composed of
three different elements (Figure I,1(b)): an equivalent spring (I), a spring
related to the damping characteristics of the dashpot (II), and a velocity
dependent dissipative element (III}), Element I, which represents the
equivalent spring, yields the frequency characteristics of the system while
element III yields the dissipative qualities associated with any oscillation

of the mass m,
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The parameter N4 then brings about a split-up of the energy which
can be expressed through its phase angle as

(P. E. )sming-(P' E')'da.mper spring'

2
tan .= .
d (K'E')massHD'E')dashpot+(P'E')’damper gpring'

2
W‘hen-&fﬁ:k, the equivalent spring in the system has zero stiffness

(keq:—: 0}, and an exponential decay sets in, thus leading to the concept of
critical damping. For such an oscillator, the phase of the smoothed
transform is identically zero for all frequencies wg] and for all times tO'

The complex number Nq can be looked upon as a vector whose

magnitude equals @ while its phase angle is given by Equation (25). Thus

ng=vey exp (ing) (29)

eq is a positive definite quantity and is given by

ed='_s.i;2+w§x2+ 2w _Exx=2(K.E.+P.E.+D.E.}/m ,
‘where K. E. represents the kinetic energy, P.E. the potential energy, and

D.E. the damping energy. The rate of rotation of this vector can be derived

in a form similar to that of Equation (13}.

dop . :
d_ Xa
Feoug 142 (30)
d
dep

For the free vibration case _Ei:g:wd’ the damped natural frequency of vibration.
Just as the Fourier transform gave the response (n) of an undamped

oscillator at the end of the excitation, tys so also the damped Fourier

transform (X*+1Y*) yields thé response of a damped oscillator ('l’]d) at time

t

0 max

|x +pw gt iwdxlmax for the damped case.

The velocity spectrum Sv( W £) can again be defined as lndl
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Equation (21) indicates that the damped Fourier spectral amplitude
cannot be directly obtained fromn the Fourier spectral amplitudes by the
use of a simple linear filtering operation performed on the Fourier spectrum.
This damped spectral amplitude for any particular damping § =€0 computed at the
end of the excitation will serve as a lower bound on the damped (€ =§0} velocity
spectrum for an oscillator with natural frequency W and percentage of critical
damping, E, The damped Fourier spectrum, Fd :X(wd,g, t0)+iY(wd,§,t0) is a

lower bound on the damped relative velocity spectrum Sv(g,wn).

Calculation of the Damped Fourier Spectrum (D. F.S,)

The damped Fourier spectrum Fd(wd, g, to) is defined {refer to
Equation 21) as

i?\to

1 0
Fd(wd’ g, to) = ?‘E‘. ‘[ Z( ?\) e d)\

. (31)
Bt wné -i(wnJ1-§2 ~%)

Physically, Equation (29) implies that the response of a damped oscillator
at any time to to a given excitation can be obtained if a knowledge of the
response at time ty (to that excitation) of undamped oscillators of all possible
frequencies is known., Since the calculation of Z()) is generally done using
the Fast Fourier Transform (¥, F.T.) its values are known only at
= _Z';r_n n=0,1,--+. Hence Z()\) needs to be reconstructed for intermediate
frequencies between these discrete values using the sampling theorem,
iwto wt
0 .
2rm\ ~ 2 inw 9111( 2 -n'rr)
zZw)= ) Z(42)e vl
: ‘to wto
(= - )

n=-Qo

Then
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iwt wt
iy 1 JPO > z(Zn'rr - 20 inw Sin( ZO"mT) ethO dw
4= 27 T )e ot .
o A
Wt iwto
oo . ]
s1n(———2— -n'rr) e 2 dw

I further w_= 2P
n 1:0
N N
N P B ol
albar St)= L 2\ ' (32)
0 5
_ n=-N zqug-izﬂ(mh-g -n)

The interchange of summation with integration can be justified on the grounds
that the signal is almost frequency band limited,
Though the summation in Equation (32) does not represent a simple
convolution, it is done on a product of Z{\} and a sharply peaked function
so that the actual summation may be truncated to a smaller number of
frequency estimates around the frequency of interest. This is what one
would actually expect, for at a given frequency the damped Fourier amplitude
spectrum ought to depend more closely on the Fourier spectral amplitude at
that and neighboring frequencies,
To illustrate the concepf of the damped spectrum, three accelerograms
were analyzed., They are shown in Figures L.2{a), (b) and (c), The spectrum

curves corresponding to these three acceleration time histories for various
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values of £ are shown in Figures 1.3, 1.4 and I,5. The spectra have
been obtained by taking 500 frequency estimates of the Fourier spectrum
around the frequency of interest,

The exponential decay of the dampéd oscillator leads to low
responses at higher frequencies, thereby quite appreciably reducing the
spectral amplitudes beyond about 2 cps, The upper solid curves in
Figures 2 and 3 are the Fourier amplitude spectrum, while the full circles
indicate the damped spectrum estimates for a damping value of ,01%. We
observe that these points lie below the spectrum curve, though they follow
it closely. As seen from the figures, the effect of damping on the response
as indicated by the damped spectral amplitudes is quite intense, For
damping values as low as 1%, the spectral amplitudes are reduced by about
half to a third of those obtained from the undamped spectra, It may be
noted that the spéctral curves for various damping occasionally cross each
other and that the curves for higher £ values show lesser undulations so

that the introduction of damping in this way effects a kind of smoothing,

On the Smoothing of Fourier Amplitude Spectra

Various investigators{5’6’7’8) have looked at the problem of
smoothing of spectra from the point of view of time series analyses. Most
smoothing operators suggested are linear, They show no preference for
any range of frequen;:ies and are so manipulated as to keep the area under
the smoothed curves identical to the area under the unsmoothed curves,

As observed from the damped spectra, the operation represented by the
integral in Equation (21) could be referred to as a smoothing operation
that yields smoother spectral curves (Figures 1.3, 1.4 and 1.5), However,

there are some marked differences between this operation and the smoothing
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operators that have been suggested by workers in time series analysis,
Firstly, it is impossible to convert Fquation (21) into the classical
convolution integral, The higher frequencies are meodulated to a
greater extent than lower frequencies. Secondly, the areas under the
smoothed curves are not identical to those under the unsmoothed curves,
These two results fall out naturally when we consider the fact that every
point on the smoothed Fourier spectrum curve corresponds to the response
of a damped oscillator which decays as e ”wngt, so that the higher frequencies
become attenuated fo a greater extent, The dissipation of energy through the
dashpbt in the damped system causes the area under the smoothed and
unsmoothed curves to be different,

This effect can be best illustrated through a simple example as
follows. Let #(t)=8(t), so that Z(X)=1. Then,
it

1 oz 0
F =5:+wn§x+ iwg f () e dA . (33)

d ooy T2
t=t, - wng-i(wnn/l-gz- 7\)

Integrating we get

Fd:em}n 1-E 1:0 e-wngto (34)
- Et
| f=e 2 0. (35)

But, ‘Z(wn, to)l is the energy of an undamped oscillator caused to oscillate by
the delta function pulse (see Eq. 12), Also, lF(wd,tO)l is the energy of a damped
oscillator. We observe that this energy, unlike in the undamped case, is a
function of the frequency and the time duration ty- In this case, the unsmoothed
and the smoothed spectra would be represented as in Figurel.6, The damped

curves represent the response at time tzt0 of an oscillator of natural
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frequency w_ and damping £ to a delta function applied at time t=0. The
nondimensional frequency clearly indicates that for a given damping
value, the response at larger times (to) for smaller natural frequencies
(wn) will be the same as the response at shorter times at higher fre-
quencies provided the product w, ty is the same, As observed from
Figure 1.6, at higher frequencies the damped oscillator shows a very
short memory of past excitation,

Accelerograms are far from ergodic since they generally
represent bursts of energy arriving with the various wave phases, The
response of a heavily damped oscillator which has a rather short lived
memotry tends to follow these bursts of energy, The longer memory
(theoretically o) of an undamped oscillator generally leads to a response
which does not fluctuate so much in time, the oscillator trying, as
it were, to'compensé.te for the short durations of lower level excitations
which occur between successive energy bursts, by utilizing its memory
of larger past motions, This observation would be useful in under-

standing some aspects of the analyses presented in Part IL

II, STATISTICAL DISTRIBUTION OF
THE MAXIMA OF A RANDOM FUNCTION WITH
APPLICATIONS TO RESPONSE SPECTRUM ANALYSES

Introduction

The purpose of this section is to summarize some of the well-

known results in the theory of random functions and to use those results
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in the interpretation of response spectra. The specific properties of
random functions which will be of most interest in this context are
related to the distribution of extreme vaiues; the expected values of the
maxima in a given interval of time, and the relationship of these maxima
to the root-mean-square value of the same function. It is through these
relationships that it will be possible to relate the response spectrum

and Fourier amplitude spectrum curves in the most physically meaning-
ful way to the extreme value statistics of the problem,

Strong earthquake ground motion is, of course, not an ergodic
process in time(g’ 1o, 11), and conseqguently, the response of an oscil-
lator to such an input is likewise not ergodic. Many earthquake records
show slowly dying-out tails leading to responses, in particular of
damped systems (which do not for all practical purposes have infinite
memory) that may be far from ergodic. In order to highlight the possible
relationship between the Fourier amplitude spectrum and the extreme
values of the oscillator response, as a first approximation we will
assume that the response may‘be described approximately by the theory
of random ergodic processes,

Though the results of this section can be extended to functions
as Z(t) = e(t) s(t) where e(t) is the envelope function of the ergodic pro-
cess s(t), the main objective here is to explore the nature of the above-
mentioned relationships from a qualitative and physical point of view,

It is felt that such an assumption, though strictly invalid, may lead us

to a better understanding of the nature of structural response,
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The Distribution of Maxima of a Random Function

The random function of time, f(t), shown in Figure IL.1, can re-

present, for example, the response of an oscillator to the earthquake

ground motion, Following Cartwright and Longuet—Higgins(lz), f(t) may be
represented as the sum of an infinite number of sine waves
f(t)—vc cos{w_t+teo ) (1)
_é n n' %

with frequencies @ distributed densely in the interval (0, ). The phases
¢, are assumed to be random and uniformly distributed between 0 and 2m.

E(w), the energy spectrum of f(t}, is related to the amplitudes <, through

w+dw

z %CizE(w)dw ) | (2)
wn:w

The total energy per unit length of the record, corresponding to the first

moment of E(w) about the origin, is
@
mO:J E{w)dw (3)
0

while the nth moment is defined by

o I
mn:j‘ E(wlw dw . (4)
0

Detailed analysis of the statistical distribution of the maxima of

f(t)(lz’ 13) show that this distribution depends on only two parameters: the

1/2

root-mean-square value of £(t), mg" -, and a parameter € measuring the

relative width of the frequency spectrum E(w), and defined by

(5)
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From the Cauchy-Schwartz inequality, € cannot be imaginary.

After normalizing f(t) by

-

£(t) /mg =1 (6)
the probability digtribution of the heights of the maxima of f(t) /m-'(l)/2
becomes(lz)
1 v , 1—-62)%
1 iy s - 'ﬂie—_%xz
pin)=—-| ce +(1- %)% ne I e dx (M)
(2m)= oo

and is shown in Figure II.2. The statistical distribution of the minima is
the reflection of {7) in the mean levél n=0.

Ph.ysica.lly', the parameter € is a measure of the relative propor-
tions of the various frequencies contained in a signal. To fix our ideas on
this parameter, let us determine values for the three energy spectra
indicated in Figures II.3a, b, c. Figure II.3a indicates the spectrum of a
pure sine wave. The values of the zeroth, second and fourth moments are
a, awz and aw4 g0 that € = 0. The corresponding distribution given by

0 0

Eguation (7) then reduces to

nzo0
p(n)= (8)
0 n<o0
showing that for an infinitely narrow spectrum, p(n) becomes a Rayleigh
distribution.
For the rectangular block shown in Figure II.3b, €=2/3. The
flat nature of the spectrum is indicative of egual proportions of high and

low frequency contents. Figure II.3c indicates two delta functions at

frequencies W, and 6w0 of strengths a and b(=Ba). For such a spectrum,
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(a)
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4
E (w)
4
b
a
wo Swg W
(c)

Figure II,3 Three types of energy spectra illustrating the
dependence of ¢ on the shape of the power
spectrum,
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2 . (1+8%p)2
e =1w y)
(1+8)(1+&67B)

the value of € depends on the relative strengths of the two waves together

with their fregquency separation, For a fixed &= 60, if p—0, or B~oo, -0

1/2

and we get the single sine wave case. When, for example, &~1/B and

B—0, e—l1 thereby indicating a shift towards a Gaussian distribution. The

1/2
0 -

we might expect equal number of positive and negative maxima of £(t)/m

In this case,
1/2
0

distribution of maxima tends to the distribution of f(t)/m

and therefore a p(mn) symmetric about N=0. Indeed, setting €=1 in (7} we

obtain

1.2
=

e 2N (9)

p(n)= T
(2m)=

which is the Gaussian distribution. For values of ¢ between 0 and 1, p(n)

lies between the Rayleigh and Gaussian distributions as shown in Figure II.Z2.
A typical example in Figure II.4 illustrates how ¢ rﬁeasures the

relative width of the power spectrum of the response of a single degree of

freedom system to a stationary excitation having a power spectrum as

given by

cI:(uu):—-——E-m—jE . (10)

o

1+

The transfer function of the single degree of freedom system is given by

1

5 (11)
wn-w -21wn§.u

H{w)=

The dimensionless parameter

g:.ﬁ_ (12)
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Figure II.4 Graph of ¢ as a function of the percentage of critical
damping, E, of a single degree of freedom system
subjected to the band limited (from 0 to & radians/sec)
signal &(w).
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is a measure of the width of the input spectrum relative to the natural fre-
quency of the oscillator considered. Figure II.4 then shows that when &,
the fraction of critical damping, tends to zero, i.e., when the peak of the
transfer function H(w) at w:wn becomes sharper and higher, the oscillator
becomes increasingly more sensitive only to the input frequencies ww
and the output spectrum reduces to a narrow band centered at w=w with
e<<1l, In the other extreme case, when £ -1 the oscillator "feels'' all
frequencies between 0 and w equally well, the oufput specirum broadens
and e~1. In addition to this effect of £, the influence of the cut-off fre-
quency Q= gwn of the input spectrum on ¢, also shown in Figure II. 4,
demonstrates that for the broad band excitation only small £ leads to a
"na;rrow“ output spectrum as measured by ¢,

The probability q(n) of 1 exceeding a given value is given by

Q0
q(n):e[ p(n)dn . (13)
Using (7) and (13) it can be shown (12) that
2.+
(1-e™)®
a0 2 a1 .1 2 1 i 2
g{n)= (21 ); J/ e%'x dx+(1-e2)2e%'”j ¢ e%X dx| . (14)
ng K € - 00D

For the Rayleigh distribution of peaks of f(t) /m})/2 corresponding to €= 0
1 n=0
q(ﬂ )= 1 2 (15)
e ZM ! =0

while for the Gaussian distribution of peaks (e=1)

(8o}
J X gy . (16)

g(n)=——
(2m)=

The curves of q(n) for ¢=0, 0.2, 0.4, 0.6, 0.8 and 1 are shown in Figure IL.5,
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Functions with Narrow Frequency Band

The root-mean-square amplitude of successive peaks of f(t), having
a narrow power spectrum and centered at w5 will now be considered. We

a A in the interval of time NT/2,

denote the peaks of f(t) by a;, a

22"t 3pa1

where the interval between the successive crests is approximately equal to
T=27 /wO (Figure II,6). The root-mean-square of the peak amplitudes, a,

is then defined by

1 .
- f1,2 2 2.2
a= -N-(a1+az+... +aN)} ) (17)

The root-mean-square of the function f(t), a o is defined by

T 1

a___ {—%j £2(t) dt}i . (18)
5

[k}

Statistical properties of B1s Ao ees A, described later in this section can
all be scaled relative toa. Since it is the a_ s that can be related directly
to the Fourier transform of £(t), it is useful to derive a simple relationship
between the 2 and 2 ms' For a sine wave, for example, given by
f(t):A.Osinwt (19)

a=A, and a‘rms:AO/“/Z—' For a narrow band process, that can be approximated

by
f(t)zB(t)sinth (20)
we next show that
a‘rms:i% (21)

still holds. To show that (21) is indeed correct we approximate f(t) in
Figure II.6 by

f(t)z%(sinwot ; tkStStk_I_I (22)
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for k=1, 2, ..., n. The root-mean-square of this approximate f(t) then

becomes
lN 2 22t 2 1 N
. T
me 105 2] emPEt e} {1} ) o } ' 23)
i=1 0 i=1
Recalling (17) we have
B
CEN > (24}

An alternate approach to the derivation of the result analogous
to {21) is as follows. Again we start by assuming that (20) holds. Then the
transform of the envelope B(t) is B(w,wo), as shown in Figure II.7a.
Noting that

B(w,wO)EX(w,wO)-l- iY(w,wo) (25)
F(, ©,)= Z(w, ©)+iW (W, ©,) | (26)

and that the Fourier transform of sin wot is im [6(w+w0)-6(w-w0)], where §

designates the delta-function, the transform of f(t):B(t)sinth becomes

F(w,wo):iz[B(w+w0, wo)-B(w-wO, wo)_] . (27)

The real and imaginary parts of F(w, wo) are plotted in Figure II.7b, Next,

observing that @ is now B and using Passeral's theorem

ng(t) h(t) dt= 5= ImG(w)H(-w) dw . (28)
o Joo
We have
® L
ems T 3 | PO [Faw? 29
and
]

™

Ez{%%— ImIB(w, wg) Izdw} (30)

-
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Blw, wg) = X{w, wy)+ iY (w, wo)

X {w, ""0)

Z(w, wo), W (w, wo)A

W{w, wp)

N

Flw, wg) = Z (w, wp) + i Wiw, “’0)

IR oo
7 X(0,w \ ‘T/
{ | ‘ -w
"20)0 —~wo wo ,'2(00
| N ;
~|_~

Figure II, 7
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From Figure IL. 7 it then follows that

_J:IF(w,wO)Izd» =i2 _EIB(w,wO)Izdw (31)

and finally from (29), (30) and (31), we get (24). Using (24}, & can be cal-
culated from 2 ms .which in turn may be computed from F(w,wo) using

Parseval's theorem (28),

The Expected Value of the Maximum Wave Amplitude, E(amax)

The probability distribution of 2 ax will be derived here by assum-
ing that the sampling of the peak amplitudes is at random. Strictly, this
assumption does not hold, since the sample consists of N consecutive peaks
bou.nded.by a slowly fluctuatiz;g amplitude, and there must be some correla-
tion between the consecutive peaks expecially when the power spectrum of
f(t) is narrow. However, as pointed out by Longuet-—Higgins(M), fluctuations
of the envelope function may act as a ''randomizing' process leading to a
better agreement between the observed and theoretical distributions.

(14)

Following Longuet-Higgins , we begin by considering the pro-

bability that any of the a's in the sample should be less than r

1'2 1’.‘2
r — ——
B 2r B ac
P{aS r} —J. 55 © dr=1-e . (32)

It is noted here that we are considering the case of € = 0 corresponding to
the Rayleigh distribution of peak amplitudes, with3 =ﬁarms=ﬁm]6/ 2, The
probability that every a in the sample of N will be less than r becomes

(assuming independence)

1_2
37 N
P{aiSr|i=1,2,...,N}=(1-e ) , (33)
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and the probability that at least one a shall exceed r is

P{a 2r|1 1, R N} (1 e_g)N . (34.)

Using (33) and (34) the probability that a shall lie between r and r+dr becomes
P{rSaiﬁ r+dr}=P ai2r|i=1, 2, .., N}-P 2> r+drli=1, 2,..., N} (35)

and

1_2

P{rs a,is r+ dr}z —d|:1- (1- (;-gé-)N] . (36)

From (36) we have that the probability distribution of I is

2 2
X N- .
=5 2 =]
p(r):N(z- e o ) -_aée o (37)
The expected value of & ax’ E(amax) then becomes

B

Ea__ ) —j rd[l )N] (38)

(14)

 and can be shown to be equal to

E(a ) N+1
max N_N(N-1) N(N-1)(N-2)_ 1
R o S IRIC) I | D

E(amax)/i is plotted in Figure II. 8 and tabulated in Table I for N between
1 and 20. For values of N larger than about 20, (39) becomes difficult to
calculate because the binomial coefficients become too large for routine
computations, It is of interest to consider an assyrnpfotic expression for
E(a.max) /& wvalid for large values of N, It can be shown(M) that this

expression becomes
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10
11

12

13

14
15
16
17
18
19
20

E(amax)/ &

0. 886
1.146
1.290
1,389
1,462
1.520
1.568
1.609
1.645
1.676
1.704
1.728
1.751

1.772

S 1.792

1.810
1.829
1.845
1.853

1.869

44~

TABLE I

b (Bmax!/a

0.707
1,030
1. 188
1.291
1. 366
1,426
1.475
1,516
1.552
1.583
1,611
1,636
1.659
1.680
1.699
1,717
1.734
1,749
1.764

1,778

[N ®

0.0

0.833
1,081
1,177
1.269
1. 339
1.395
1.442
1.482
1,517
1.549
1.576
1.602

1.625

- 1.646

1.665
1.683
1.700
1.716

1.731
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B3 ey % 1 ’%
w?ax ~(1oN) "+ y(4nN) (40)

where Y is Euler's constant equal to 0.5772. This approximation is plotted
in Figure II. 8 and agrees well with the exact value of E(amax)/?i?. The

' |
difference between (40) and (39) is of the order of (4nN)2 and apparently

does not affect the approximate result (40) even for small values of N

(Figure I1,8). For nonzero values of € (40) becomes(lz)
1 1 1 i
E(a ) 3z a5 5 ==
— 2% fin(1- )N 243y [tna-&2n ]2 . (41)

As =0 {41) reduces to (40). Figure II, 9 and Table II give the values of
E(amax) /& for =0, 0.2, 0.4, 0.6 and 0.8 derived from (41). From
Figure I1.9, we observe that the value of E(amax)/"a— does not vary appre-
ciably with either N or ¢, The most critical factor then in the determination
of E(a'rnax) is the value of @, Damping in the system has two effects; it
changes the r.m.s, of the response, which is related to the total energy
of the oscillator and, it affects the value of ¢, which is related to the
distribution of this energy among the different frequencies.

When e-1, (l-ez) N is not large compared to 1 and the above
approximation, (41) ceases to be valid. The limiting form corresponding

(15)

to €=1, i.e., when p(n} is normal, was considered by Fisher and Tippett .

We get
1
E(a ) -3

e IDAX o 2Oy (42)
a 2
14+m
11,2
where m is the mode of the distribution of 2 hax given by (2'rr)2rne2 =N.

Table II gives the exact values of E(a‘rna.x) /& calculated by Tippett(lé) for
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Figure I1, 9 Asymptotic approsdmatioil for
: value E(a,, ) when (1-¢ )1/2

' 1
: /2 =l/2
E(ag /3 = [In(1~€2)/2N]" "+ y/2[In(1-€2)/2N]
3 =
2 | .
e
£=0.9990
i N
/ Tippett (1925)
0.990 (exact result for e=1)
: |
0 | .

the expected peak
N is large,




wdh -

¢=1. However, for values of N between 10 and 1000, most frequently en-
countered in spectral analysis, €=0,990 and the approximate expression
(41) give results that are within 3 percent of the exact (Tippett's) calcula-

tions (see the last two columns in Table II and, Figure II.9 for ¢=0,990).

The Most Probable Wave Amplitude, M(a,, )

The most probable value of 2 ax’ of course, corresponds to the

peak of the probability distribution p(r) (see equation (37)). Writing

rzl"aTzE 8, (37) becomes

L
N(- 'G)N—l 3_e__e—e

and the most probable value of 8 is then given by the solution of

1 .
-% (1-e" ON-142,- 9]:0 . (43)
The exact most probable value of a s Hla ), calculated from (43) is
max max

tabulated in Table I for N < 20 and plotted in Figure II. 8 for N< 105. Per-

forming the differentiation in (43) and taking the natural logarithm of the

result gives(M)
5= &nN—&n[l- (1- e 9):| . (44)
When N is large we have
8= AnN+0(4aN)"! (45)
and thus
pa ) 1 1
—Hax - =02~ [nN]? ,_ (46)

Approximation (46) is given in Table I and is plotted in Figure II.8, The

results show that for N2100 {46) becomes an excellent approximation to

pe

-



10

20

50

100

200

500

1000

2.124

2,280

2,427

2.609

2.738

u,

e¥=0.2 ¢20.4 ¢°=0.6 €=0.8

1.490

1. 701

1. 892

2.119

2,276

2.423

2.605

2,734

wd B

TABLE Il

1,468

1.682

1.875

2,103

2,261

2,409

2.592

2,722

* Approximation (41)

+ Exact (Tippett, 1925)

E (a

max )

1.423

1. 642

1.838

2,071

2,231

2,381

2.565

2,697

/a

1,323

1.554

1.759

2,001

2.166

2,320

2.509

2,643

£*=0. 990

1,079
1,301
1. 604
1.804
1.985
2,203

2.354

€

t=1.0
0. 822
1.088
1.321
1.587
1.773
1.942
2. 147

2,292
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The Upper Bound Confidence Level For a,,,

Here we consider the probability of 2 ax exceeding a given level,
with the objective of calculating an estimate of the upper bound of 2 nax
that depends on N and the preselected probability that 2 hax will not exceed
it. We choose to call this curve "'the upper bound confidence level"” and
designate it by AMAX, C? where C specifies the confidence level selected.

It was shown above that the probability distribution of 3 asx is

1'2

o= & -

The probability that a ax will exceed a given level r is then given by

- w ., i e
p(r)=j dl:(l-e 3 )N]=I-(l-e az )N . (47)
r

By defining r 0 by the equations

_(ra/.ga)
=3 0 1
rg/ag =BO=‘{’;nN; e =N (48)
..o (14)
Longuet-Higgins'® ' has shown that
d e_(rg_rzo)-/az N d _e—(rz-—r%)/ag
&% ) w5 (49)
The approximate probability that a will be less than r is therefore
2y
- /T)
e Ne | (50)

and that it will be greater than r is

p0=1— e . {51)
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The exact and approximate results, (47) and (51), are compared in Figure II.
10 and it is seen that for N10 (51) becomes an excellent approxirmation to (47).
The upper bound confidence level VAX, C becomes the solution

of the following equation

2 -2
( -(aMAX, C/a ) N
1-{1-e

) =1-¢ (52)

or, using the approximate probability Py given by (51), it becomes

—-(az /Ez)
1-e~Ne "MAX, C°5 "y ¢ (53)
Solving for AMAX, c/T:t in (52) we obtain
_1\_/%,_3{_:_9{.4’,11(1_ cy 2 (54)
and from (53)
a 1
MAX, C _ -N ]2
3 _E{’n(’ﬂnC) ) (55)

Both (54) and (55) are tabulated in Table III for three typical values of C
and for values of N up to 10, 000. The agreement between the exact and
approximate results is excellent. Ten different ay ) C/'Ef curves for C
ranging from 0.90 to 0.99 are compared with E(amax)/"a“ curve for €=0 in

Figure II.1].

Applications to Response Spectrum Analysis

The response r(t) of an oscillator subjected to an input ground
motion ~Z{t) can be obtained in frequency space as the product of the trans-
fer function of the oscillator and the Fourier transform of zZ(t). It shall be

assumed in what follows that the oscillator started from rest.



10, 000 3.385
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TABLE III
N aviax, ¢/ 2 2Max, ¢/ 8
{exact) (approximate)
1 2. 146 2. 145
10 2,627 2,627
100 3. 034 3.034
1, 000 3.392 3.392
10, 000 3.715 3,716
1 1.731 1,723
10 2,297 2,296
100 2,752 2,752
1, 000 3,143 3,143
10, 000 3.490 3. 490
1 1.517 1.500
10 2,135 2,134
100 2.618 2,618
1,000 3.026 3,026

3. 385

C
{confidence level}
0.99
0.99
0.99
0.99

0.99

0.95
0.95
0.95
0.95
0.95

0.90
0.90
0.90
0.90
0.90
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[ !
P {amax < ayax |for N peaks and e=0}=c
3
{=]
\
>
<I
=
o
- 2
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S
*
o
£
o €
t /2 1/2
E (A, /a = [In(-€A2N]" + 5 /2 [In(1-€2) /2 N]
E L 7 —
0 ! |
0 I 2 3
-log N
Flgure I1.11 Upper bounds for a,, for different confidence

levels plotted versusaf)e logarithm of the number
of peaks,
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Hence

R(w)=H(w) Z{w)
where H{w) is the transfer function of the oscillator, Z{w) is the transform
of the input function, and R(w) is the response.

As seen from the previous section, the two parametérs which in-
fluence the response of such an oscillator are ¢, which is a measure of the
distribution of energy among the various frequencies, and a s’ which is
a measure of the total energy of the system. The computation of 2  can

be done in terms of the values of H(w) and Z(w) as follows

T 00 oo
ol =] Pwat o [ IR aw= 55 | lE@ [z@)a  (56)
. 0 w0 - 00
- |
aims: 'TH—%["(J; lH(w)]2|Z(w)]2 dw . | (57)

This can be easily calculated for any given input and any desired oscillator
transfer function H(w), The corresponding values of ¢ can then be calculated
by computing the zeroth, second, and fourth moments of lR(UJ)|_.

Next an estimate of the total number of maxima, N,. is required.
We shall assume here that the oscillator acts as a narrow band filter and
that the value of N cé.n be taken as the ratio of the durafion of the record and
the fundamental period T of the oscillator. A knowledge of these parameters
enables the calculation of the expected value of the maximum peak
(Equation (41)), the expected value of the most probable peak (Equation( (46)),
and the 95 percent confidence level (Equation (55)).

Statistics on the pseudo velocity were obtained by multiplying by
w each of the three quantities statistically determined. Statistics on the
velocity spectrum were generated by considering the function (UJR(UD))Z

instead of (R(w))2 in Equation (56),
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A Case Study on Three Accelerograms

The statistical approach outlined above has a large number of
assumptions. The ability of the method to give an indication of the velocity
and pseudo velocity spectra was checked using three different types of real
accelerograms.

The first accelerogram used was the Eureka 1954 record shown
iﬁ Figure I.2a. The a;celeration consists cf a short burst of energy about
five seconds long preceeded and followed by much smaller motions.

Figure II.12a and 12b show the pseudo velocity and the velocity spectral
curves. The lowermost curve is the damped ¥ourier spectrum drawn ‘for
2 percent damping, while the statistical curves are indicated by dashed and
dotted lines, The calculated true and pseudo velocity spectrum (€= 0, 02)
are shown by circles. The length of record analyzed was 20 seconds.

We note that the damped Fourier spectrum curve (§=0,02) is
below the pseudo velocity and velocity spectrum points (full circles)
(E=0.02). From our discussion in Part I, this is exactly what we would
expect. These damped spectral curves can then be used as lower bounds
for the damped velocity spectra. Statistical curves for frequencies below
2 cps show good correlations with the computed veiocity and pseudo velocity
spectra, However, at higher frequencies rather large divergences (5-10
percent) occur, This is caused by the nonstationary nature of the excitation.
The lack of high frequency contents in the signal tends to reduce the scal-
ing factor, @, when averages over longer and longer time lengths are taken.
However, we observe that the general trend in the statistical curves do
follow the trends in the velocity and pseudo velocity spectra.

To study this point further 2 percent damping curves were calculated
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for the first 10 seconds of record (Figure II.13a and b). We observe an
improved correlation between the statistical bounds and the calculated
spectral values up to about 4 cps.

The next accelerogram tested was the El Centro event of 1940, The
curves corresponding to a 30 second length of this accelerogram (Figure I,
2b) show a good correlation all the way to 5 cps (Figure II.14a and b). The
near stationary response of a lightly damped oscillator to this acceleration
history makes the statistical estimates excellent indications of the true
spectral values.

The third accelerogram tested was the Kern County accelerogram
(Figure I.2c). This accelerogram is representative of a large number of
real accelerograms in that it starts off with the high frequency arrivals
(S and P waves) and carries on with the various surface wave modes. As
we go along the accélerogram, the frequency content changes, there being
less and less higher frequency components in the surface wave arrivals,
Thirty-five seconds of record were analyzed, and the 2 percent damped
spectra were obtained as shown in Figure II.15a and b, The figures show
that up to about 1.8 cps the spectral points (full circles) are pretty much
straddled by the darhped Fourier spectrum curve and the 95 percent con-
fidence level curve, At higher frequencies again a noticeable fall off in
the statistical values occurs. The maximum difference between the statistical-
ly expected maxima and the actual spectral values is about 10 percent.

The above three accelerograms have been chosen as representa-
tives of a large number of real accelerograms obtained during stroﬁg
ground shaking, The results indicate that statistical studies can be made
very fruitfully if we consider lengths of record which are stationary with

respect to the frequencies of interest to us. The fact that the higher
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frequency components dies out earlier in the record necessitates a shorter
time segment of record for statistical analysis of real accelerograms to
get better estimates at higher frequencies, than would be generally re-
quired for longer periods. However, the lengths of the record analyzed
should contain a sufficiently large number of cycles (at least 4-5) of the

oscillator so as to make such a statistical approach meaningful.

Discussion

The chief assumption in the derivation of the results of Section
II.a are (1) that the signal being analyzed is stationary in time and (2) that
the frequency spectrum is a narrow band.

To check the statistical estimates, a study on white noise was
performed. Two samples of white noise {referred to as whi’ce noise No, 1
and white noise No. 5) were considered. Figure II.16 shows a white noise
acceleration record. The computed spectra together with the statistical
estimates are shown in Figure 17, The figures show excellent agreement
for frequencies beyond about 1 cps. At frequencies below 1 cps, the
statistical estimates tend to be above the actual computed values, This
has been principally attributed to the numerical errors in integration which
arise when the transfer function H{w) is peaked around zero frequency.
These errors tend to overestimate the area expressed by Equation (57).

In order to minimize this error, the Fourier transform was linearily
interpolated between two consecutive frequency estimates and the area then
computed. A befter method would be the use of the sampling theorem to
define Z(w) continuo-usly and then an integration of the product Z(w)H(w).
Also, it must be remembered that statistical estimates for values of N

which are less than 2 or 3 may not be meaningful, for the analysis assumes
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that the time length of record is long enough to ensure that the sample of
wave heights is sufficiently representative.

The effect of various percentages of damping has been indicated
for white noise No. 5 (Figure II, 18), in Figures II.19, II.20 and II.21. We
observe that larger and larger amounts of damping cause the function H(w)
to be less and less peaked, hence reducing the numerical inaccuracies at
the lower frequency end of the spectrum.

In addition to the overestimation of the spectral amplitudes at
lower frequencies (N<4), other errors arise in dealing with real accelero-
grams. Here the major problem is the lack of stationarity of the data. At
any given site, the motions created by an earthquake indicate the arrivals
of various phases at various times. Characteristically, the S and P waves
which arrive early in the complete time history show larger proportions of
higher frequency.contents than the later arrivals of the longer period sur-
face waves. A proper statistical analysis based on the assumption of
stationarity would require that the time length of recording chosen not be
too long, so that in this time the frequencies and amplitudes do not change
s;ignificantly. This has already teen illustrated through the study of two
different time lengths of the Eureka earthquake record (Figures II.12 and
I1I,13).

Furthermore, the effect of damping which leads to an exponential
decay of an oscillator once the excitation has stopped would tend to under-
estimate the root-mean~square value of the response, in general, thus
leading to underestimates of the spectral values (Figure I1.22). We
observe (Figure II, 22) that low statistical estimates are obtained for E=0.1
alrmost always lying below the pseudo velocity values -computed. The

figure once more illustrates the excellent correlation of trends in the
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10 percent damped Fourier amplitude spectrum and the 10 percent damped
pseudo velocity curves. The damping ratio also affects €. Larger damp-
ing ratios will generally lead to larger €'s and broader band processes.
Though the most probable level and the confidence level curves corréspond |
to values of €= 0, they can be used as conservative upper bound.s for €=0
since these curves for ¢ =0 will cause an overestimation of the spectral

estimates,

CONCLUSIONS

It has been illustrated that given the Fourier transform of the
input ground motion Z(t), statistical estimates of the maximum response
of any single degree of freedom linear system can be easily determined
if the assumption of stationarity is approximately satisfied. The two para-
meters of importance are the relative distribution of energy among the
various frequencies and the r.m. s. level. These parameters depend on the
nature of the input spectrum and on the damping ratio of the oscillator.
Larger damping ratios cause relatively wider response energy spectra
and hence lead to increased values of €. Typically, for most earthquakes
the values of € tend to be between about 0.2 and 0.5, When ¢~0, we get to
a pure sinusoid while with ¢ -1, p(n) tends to a Gaﬁssian distribution.
Though the assumption of stationarity is far from correct in
dealing with real accelerograms, it has been demonstrated that with a
judicious choice of the time of the record, estimates of the damped spectra
to within 10 to 15 percent of the true values can be easily obtained. The
success of the statistical method is greatly due to relative insensitivity
of factors such as the estimated number of waves and the spectral width

€. Its strong dependence on the r.m.s. level is, however, a serious limitation
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in that it requires a careful choice of the time length needed to simulate
stationary conditions.

Extensions of this statistical approach to amplitude modulated
stationary signals wiil no doubt yield even better comparisons with actual
velocity and pseudo velocity spectra. However, even there, the change
in the frequency content with time in a non-random manner would be a

serious limitation.
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