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Abstract

A pragmatic and versatile statistical system identification framework is pre-
sented and applied to seismic response records of structures. The framework is based
on the interpretation of probability as a measure of plausibility and on Bayesian sta-
tistical inference. Various classical system identification techniques can be derived
and viewed as the special cases of the framework. However, the framework can

provide a more informative interpretation of the identified optimal model.

When the number of sampled input and output data from structures is large, use-
ful asymptotic approximations of the analytical results are available. These asymp-
totic approximations are incorporated into the framework by introducing the defini-
tions of system identifiability and model identifiability. New asymptotic approxima-

tion results are derived for the system un-identifiable case.

From the viewpoint of asymptotic approximations, the system identification
problem is a non-trivial global optimization problem. Two generalized trajectory
methods, the homotopy scheme and the relaxation scheme, are presented which can
be combined to provide a very robust numerical procedure for global optimization.

Both methods can also be applied to find the roots of a set of nonlinear algebraic

equations.

Structural model updating is useful because it can be applied to structural health
monitoring and is also desirable since the theoretically based stiffness matrix of a
structure can be improved by using the measured structural response data. However,
no well-accepted solution to this difficult problem has emerged primarily because
it is an ill-conditioned and non-unique inverse problem. A single-stage structural
model updating approach using the least-squares prediction-error system identifica-
tion method and a substructuring technique is proposed and applied to simulated

and real structural response data.
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Chapter 1

Introduction

1.1 Motivation and Objectives

For centuries, strong earthquakes happening around the world have caused a
tremendous loss of lives and property in human society. Although the occurrence
of strong earthquakes cannot be prevented, society has been trying to devise effec-
tive approaches to reduce the impact of future strong earthquakes. Researchers and
professionals in the field of earthquake engineering have been making significant and
continual contributions to this goal for several decades. From the perspective of
earthquake engineering, it is essential for civil structures such as buildings, bridges,
and dams to have adequate capability to resist future strong earthquakes in order
to avoid collapse or reduce structural damage. Numerous studies and experimental
work have been conducted to study the behavior of structures during strong earth-
quakes. The results of analysis are incorporated in various design codes to regulate

earthquake-resistant design of different types of civil structures.

To study the seismic response characteristics of structures, mathematical mod-
els are needed to describe the relation between the input and output of structures
when subject to earthquakes. The predictive capability of a structural model can be
assessed by using measured input and output of the structure. System identification
is employed in the field of earthquake engineering to improve mathematical models
of structures by using measured structural response and possibly measured earth-
quake ground motions. In classical system identification approaches, a single “best”
model among a chosen class of models is identified by minimizing some least-squares
fit between the measured structural response and the model response. Even though
these techniques have been applied to real seismic response records for a long time,

some of their fundamental limitations and discrepancies still need to be resolved.
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First of all, the identified “best” model can ouly be interpreted in the classical
least-squares sense in these system identification methods. It is not clear how to
determine a “best” model when different “best” models are identified from separate
sets of measurement data. Furthermore, the accuracy of the estimated “best” model
and the prediction accuracy of this model cannot be assessed in these methods. If
there is more than one “best” model in the chosen class of models, the correct way
to incorporate these “best” models is also not clear in these approaches. These fun-
damental limitations and discrepancies of classical system identification techniques
are due to a lack of a unified and versatile system identification framework which can
provide more knowledgeable interpretation of the identification results and handle

the various aforementioned difficulties.

An innovative statistical system identification framework was proposed by Beck
[1-2]. The framework is based on the interpretation of probability as a measure of
plausibility and on Bayesian statistical inference. It turns out that various classical
system identification techniques can be derived from the framework by making appro-
priate choices for the class of probabilistic models. However, the framework provides
more insight and information about the identified optimal model than classical sys-
tem identification techniques. Furthermore, all types of uncertainties in structural
dynamics can be explicitly incorporated and the situation of multiple optimal mod-
els can be handled systematically. When the number of sampled input and output
data from structures is large, which is typical in experimental testing and seismic
structural response records, useful asymptotic approximations are available to sim-
plify the computation of analytical results. In that case, the system identification

problem is converted into a nontrivial global optimization problem.

Global optimization has been a challenge from the perspective of both theoret-
ical studies and numerical approaches for decades. In contrast to finding only local
extrema, which can be characterized by the local behavior of the objective function,
no practical and general criteria have been derived to guarantee whether a global

extremum is found. Because the objective function in the aforementioned asymp-
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totic approximations in the statistical system identification framework is not convex,
there may be multiple optimal models in the parameter space. Various numerical
approaches for global optimization have been devised and proposed in the literature
[3-4]. Most methods use special heuristics to improve the efficiency of the search but
cannot offer an absolute guarantee of locating the global extrema. However, from
the application point of view, it is still worthwhile to explore new and more robust

numerical global optimization methods.

Several system identification techniques have been applied by using seismic re-
sponse records from different types of civil structures to estimate their modal prop-
erties such as natural frequencies and mode shape amplitudes [5-12]. In spite of
its successful and broad applications, the modal identification technique has some
limitations. First of all, no information about the uninstrumented degrees of free-
dom of a structure can be directly extracted from the measurement data. Therefore,
in order to predict the response at these degrees of freedom, some approximation
method, such as an interpolation, is needed. Furthermore, modal identification does

not estimate the stiffness matrix of a structure directly.

Much attention has been drawn to the challenging problem of structural model
updating in the system identification community in recent years. In this case, a finite-
element model is modified to be more consistent with vibration data from a structure.
Structural model updating is useful because it can be applied to structural health
monitoring and it is also desirable, since the theoretically based stiffness matrix of
a structure can be updated using the measurement data directly to provide more
accurate response predictions. However, no well-accepted solution to the structural
model updating problem has emerged primarily because it is an ill-conditioned and

non-unique inverse problem.
1.2 Outline of this Dissertation

The statistical system identification framework with intended applications in
the field of structural dynamics is presented in Chapter 2. The problem of system

identification is first discussed and several different types of classical system identi-
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fication techniques are reviewed. Two types of uncertainty in structural modeling,
parameter uncertainty and modeling error, are explained. To describe the uncer-
tainty using probability, a more useful interpretation of probability as a measure of
plausibility is explained. The steps in the statistical system identification procedure
are outlined after the introduction of Bayesian statistical inference. For illustration,
a time-domain prediction-error approach, which is a special case of’the framework, is
described in detail. Definitions of system identifiability and model identifiability are
then presented and the relation between them is also discussed. Finally, asymptotic
approximations of the analytic results for both the system identifiable case and the

system un-identifiable case are shown.

In Chapter 3, two generalized trajectory methods for global optimization are
proposed. The nature of the global optimization problem is first described followed
by an overview of several classes of existing global optimization methods. The two
generalized trajectory methods, the homotopy scheme and the relaxation scheme,
are explained in detail after introducing the notation and assumptions. An efficient
numerical algorithm for tracking both homotopy trajectories and relaxation trajec-
tories is then illustrated. Properties of the homotopy trajectory and the relaxation
trajectory are discussed from the perspective of differential topology and some char-
acteristics of the behavior of the homotopy trajectory and the relaxation trajectory
are explained. The strategy for dealing with multiple trajectory components is also
discussed. Finally, a numerical example is presented to demonstrate the application
of both the homotopy scheme and the relaxation scheme to locate all the global

extrema of an objective function.

The application of a least-squares prediction-error approach to the problem of
structural model updating is presented in Chapter 4. The least-squares prediction-
error method is derived by modeling the prediction error as a zero-mean stationary
Gaussian stochastic sequence. Calculation of the optimal model parameters and
prediction accuracy parameters is demonstrated. Asymptotic approximations for

this particular approach are summarized. Modal analysis of linear time-invariant



— 5 —
models with classical normal modes is then reviewed, and some model identifiabil-
ity results of both linear modal models and linear structural models are presented.
An example of applying the relaxation scheme to find the multiple equivalent stiff-
ness models for a uniform six-degrees-of-freedom linear chain model is given. Issues
about the uniqueness and accuracy in structural model updating are presented and
discussed. A single-stage structural model updating approach using the least-squares
prediction-error method and the technigue of substructuring is presented. Finally,
an analytic expression of the gradient vector of the objective function in the least-

squares prediction-error method is derived.

In Chapter 5, four examples are presented to demonstrate the application of
the proposed single-stage structural model updating approach to both simulated
and real structural response data. In the first example, the identification of the
natural frequency and damping factor of a simulated single-degree-of-freedom linear
oscillator is considered. The results of identification of the stiffness parameters of a
simulated two-story structure with known damping are shown in the second example.
Measurement noise is added to study its influence on the identified optimal model.
In the third example, the same simulated two-story structure is considered but the
damping factors are now part of the unknown model parameters. In the last example,
seismic response records of a ten-story building, the Great Western Bank, during
the 1984 Morgan Hill Earthquake are used. The seismic response characteristics
of the building in both the transverse and longitudinal directions are analyzed and
the earthquake-induced base shear force, base overturning moment, interstory shear

force, and interstory drift are also estimated.

A summary of the research presented in this dissertation is presented in the first
part of Chapter 6 along with some comments and conclusions. Finally, several future

research topics are suggested.
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Chapter 2

Statistical System Identification in Structural
Dynamics

2.1 System Identification
2.1.1 Introduction

In the field of structural dynamics, one main interest is to study the dynamic
behavior of civil structures such as buildings, bridges, and dams under the influence
of external excitations like earthquakes and wind. To facilitate such study, math-
ematical models are used to describe the dynamic behavior of these structures. In
constructing models for the structures, various assumptions are made and the theory
of mechanics such as Newton’s laws is applied. These models describe the mathemat-
ical relation between external excitations and structural response and the interaction

among different components of complex structures.

Mathematical models of structures are useful for engineering applications if they
can describe the behavior and characteristics of structures reasonably well. There are
several motivations to have useful mathematical models for civil structures. First of
all, the behavior of a structure under the influence of future external excitations can
be predicted by using its model. Secondly, the knowledge and expertise acquired in
constructing models of existing structures can help when designing new structures.
Finally, the model of a structure can be used in other applications such as structural

control design and structural health monitoring,.

Civil structures and their associated mathematical models are of different nature
and cannot be compared directly. Therefore, a model of given structure can never
be rigorously validated and claimed as the frue model of the structure. It is only

possible to conclude that one model is more or less plausible than another model
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even though no perfect objective judgment can be made. To assess the capability of
a model in describing the behavior of a structure, measured inputs and outputs of
the structure are an important source of quantitative information. These data can
be obtained from experiments conducted on structures or by measuring the response

of structures under the influence of natural external excitations.

The objective of system identification in structural dynamics is to improve math-
ematical models of the dynamics of structures by using measured response and pos-
sibly measured external excitations. Unfortunately, the dynamic behavior of large
scale civil structures cannot be studied as complete systems in the laboratory due
to their huge dimension and mass. Even in field experiments, it is also difficult
to shake these structures to generate large structural response. As an alternative,
these structures can be instrumented to record their response during earthquakes in
order to quantitatively assess their mathematical models. This approach has been

demonstrated to be practical and economically feasible.

Several system identification techniques have been applied to recorded seismic
response of civil structures to identify modal properties and a large number of struc-
tures of different types have been studied as reviewed in [1-2]. Most of the records
studied were recorded at various locations in multi-story buildings during earth-
quakes in California [3-11]. The modal identification methodology has also been
applied to recorded seismic response from a highway bridge [12] and an off-shore oil
platform [13]. More recently, this methodology has been applied successfully to study
the behavior of tall buildings by using ambient vibration records [14]. These studies
have shown the level of structural damping and substantial variation of structural

stiffness during strong earthquakes.

System identification of a structure is an iterative process and includes three
major steps. A class of mathematical models is first constructed to model the struc-
ture. The modeling process makes use of existing theory of mechanics and any prior
information about the structure. Alternatively, a “black-box” approach which adopts

some convenient general mathematical models such as autoregressive and moving-
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average {ARMA) models or neural networks has also been used. In the second step,
the “best” model within the given class of models is estimated by using the measured
input and output of the structure and certain criteria which relate to the accuracy
of different models. Finally, an assessment of the identified model is necessary to
determine whether the model is adequate for its intended application. If not, a new

class of models is selected and the entire identification procedure is repeated.
2.1.2 Classification of System Identification Techniques

A survey of the system identification literature reveals all kinds of methods in
different fields of science and technology. FEven though the class of mathematical
models used in different fields vary a lot, most of these techniques share similar
concepts and properties regardless of the particular field. A recent review and eval-
uation of some system identification techniques for structural dynamics application
are given in {15-16]. In structural dynamics, there are various practical issues which
make the successful application of system identification techniques to real structures

a challenge.

First of all, the measured structural response is usually incomplete relative to
the level of detail desired to understand the structural behavior. For example, the
number of measured degrees of freedom is usually much less than the number of
model parameters of interest, such as those relating to the distribution of stiffness.
This is mainly due to the cost of instrument deployment. Also, some response quan-
tity such as nodal rotation cannot be measured reliably, and some measurement may
not even be possible because certain locations in a structure are not accessible. Fur-
thermore, all measurement data is inevitably contaminated by measurement noise.

Finally, any chosen mathematical model can only describe the behavior of a structure

approximately.

All the system identification techniques in structural dynamics can be roughly
classified in three aspects. Depending on the form and nature of mathematical
models, there is distinction between parametric and non-parametric identification. In

recursive identification, the estimation of model parameters and the measurement of
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input and output of a structure is conducted simultaneously. On the other hand, the
estimation of model parameters is performed after a segment of measured data has
been collected in non-recursive identification. Finally, time-domain and frequency-
domain identification differ in the domain where the measured input and output of

a structure are used for identification.
2.1.3 Parametric and Non-Parametric Identification

In parametric identification, mathematical models of a structure are constructed
based on the theory of mechanics. Then, the measured input and output of the
structure are used to estimate the parameters of the model which is the “best”
within the given class of models based on certain criterion. A central aspect is
the criterion for choosing the “best” model in the model set. Usually, it involves
a measure of how well a mathematical model can fit the structural response. The
main feature of parametric identification is that the identified parameters have clear
physical meaning. Most system identification techniques which have been developed

are classified as parametric.

Parametric identification can be used to estimate some physical characteris-
tics of a structure such as the equivalent viscous damping which cannot be derived
directly from theory. These techniques can also be used to assess and improve fi-
nite element models which are used for designing new structures or predicting the
dynamic response of existing structures. However, for many complex nonlinear dy-
namic systems, it is not yet clear how to derive appropriate mathematical models
from the existing theory of mechanics. Therefore, some attention has been devoted
to non-parametric identification. However, non-parametric identification has limited

usefulness in improving analytic modeling required in structural design.

Non-parametric identification refers to techniques which do not assume any the-
oretical knowledge or model of a structure. Instead, they adopt a “black-box” ap-
proach and try to estimate a general functional relationship, such as transfer func-
tions, between the input and output of a structure. Traditionally, non-parametric

identification techniques used the Volterra series or the Wiener-Kernel approach [17].
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However, these approaches have restrictions on the type of input signal which can
be used and on the nature of dynamic systems to be identified. Furthermore, the
evaluation of higher-order terms in the functional expansion requires a prohibitive

amount of numerical effort.

More recent development in non-parametric identification has been devoted to
alleviate some of the aforementioned problems associated with traditional approaches
[18-19]. It was realized that it is more efficient to use a parameterized form of the
involved functional relationship. Usually, the functional is approximated by a series
of orthogonal, e.g., Chebyshev, polynomials. Therefore, it is still required to estimate
the coeflicients in the series of the polynomial expansion. The conceptual difference
with respect to parametric identification is that these coefficients are not physical
parameters based on the theory of mechanics and their number can grow as required

by the estimation procedure.

Based on the idea and research of biological neural networks, artificial nenral
networks have been adopted in the structural dynamics community as a new non-
parametric identification approach [20]. In this type of method, the relation between
the input and output of a structure is represented by a set of neurons which are
connected to each other with links. Each neuron performs certain processing of its
inputs and sends output to adjacent neurons. Non-parametric identification with
neural networks is achieved by systematically adjusting the weights of links in the
network by using certain training or learning algorithms until desirable relation be-

tween the input and output of network is accomplished.
2.1.4 Recursive and Non-Recursive Identification

Recursive identification is also referred to as on-line, real-time, sequential, or
adaptive identification in the literature. In recursive identification, an updated es-
timate of the model parameters of a structure is made at each sampling instant.
In theory, recursive identification technigues can be helpful in applications such as
adaptive structural control and real-time structural health monitoring in which the

estimation of time variation of model parameters is essential. A review of several well-
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known recursive identification techniques such as least-square, instrumental variable,
and extended Kalman Filter can be found in general texts on system identification
[21-22]. The application of recursive identification to identify degrading structures

is presented in [23].

Perhaps the most widely adopted recursive identification technique is the ex-
tended Kalman Filter. The Kalman Filter was originally developed as a tool to esti-
mate the states of a linear and time-invariant dynamic system subject to stochastic
input disturbance and measurement noise. In applying the Kalman Filter algorithm
to system identification, an extended state vector is constructed which includes the
model parameters to be estimated. Therefore, the model parameters and states of
the structure are estimated simultaneously. But the stability and convergence of the
extended Kalman Filter depend on the initial guess for the model parameters and
for the disturbance and noise variance matrices. To improve convergence and ensure
statistical consistency, a weighted global iteration procedure and an adaptive filtering

procedure have been proposed for the extended Kalman Filter algorithm [3,24-25].

To successfully track the time variation of model parameters, recursive identi-
fication algorithms need to have excellent convergence capability. Convergence is
especially difficult to achieve in the presence of measurement noise and uncertainty
of structural modeling which is the case in structural dynamics. On the other hand,
non-recursive identification methods estimate model parameters by using a segment
of measured input and output of a structure. Since more information is incorpo-
rated in the identification process, the estimated model parameters are more reliable
even though they only represent the averaged value during an interval of time. To
investigate the time-varying behavior of structures parameters using non-recursive
identification, overlapping subintervals in time can be used to estimate the model

parameters successively. This technique has been proven to be useful in practice.
2.1.5 Time-Domain and Frequency-Domain Identification

The governing equations of the mathematical model of a structures are generally

expressed in the time domain. However, the governing equations of simple mathemat-
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ical models, such as those that are linear and time-invariant, can be transformed into
the frequency domain by the Fourier integral transform. But, for complex dynamic
systems which have nonlinear or hysteretic behavior, only time-domain mathemat-
ical models are usually available. In general, the choice between time-domain and
frequency-domain mathematical models is dictated by the prior knowledge of the
structure and the intended use of the model. Actually, time-domain and frequency-
domain mathematical models complement each other and describe the behavior of a

structure from different perspectives.

In time-domain identification, measured input and output time histories from a
structure are used to estimate model parameters. This approach is natural since all
the data is measured directly in the time domain. Beck and Jennings [26] developed a
very efficient time-domain identification technique to estimate the modal parameters
of linear time-invariant models of a structure. The methodology has been extended
by Beck to handle multiple excitation inputs and implemented in a computer pro-
gram called MODE-ID. MODE-ID is a least-squares output-error method based on
matching the structural response and the corresponding model output using an ef-
ficient “modal sweep” optimization algorithm. More recently, this method has been
extended to identify structural models with non-classical modes of vibration [27].
Identification techniques using the least-squares equation-error approach have also

been developed [28-29].

When linear and time-invariant mathematical models are used in identifica-
tion, it is also feasible to transform the measured input and output of a structure
to the frequency domain and estimate the model parameters. McVerry [30] devel-
oped a frequency-domain identification technique to estimate the modal parameters
by a least-squares fit over a specified frequency band between the unsmoothed and
complex-valued finite Fourier transform of the measured output and the correspond-
ing model output. A similar approach which incorporates spectral smoothing is
presented in [31]. Without using the measured input, Benedetti and Gentile [32]

used the amplitude ratio of the Fourier transform of structural response measured
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at two different locations to estimate modal parameters.

2.1.6 Structural Model Updating

Some special system identification techniques have been developed for the pur-
pose of structural model updating which can be applied to structural health monitor-
ing or damage detection. Structural damage in a structure can be assessed in terms
of local reduction in the structural stiffness. Usually, the identification of stiffness is
done in two stages. In the first stage, modal parameters, such as natural frequencies
and the mode shape amplitudes, of a structure are estimated by using modal identi-
fication methods. In the second stage, the estimated modal parameters are used to
identify the structural stiffness. Unfortunately, there is no well accepted solution and
several approaches have been proposed. These methods include minimizing the error
norm of the eigenvalue problem which relates modal parameters with the mass and
stiffness matrix [33], using a least-squares fit of the measured modal parameters and
corresponding model values [34-35), and using the sensitivity of modal parameters

to the local change of structural stiffness [36].
2.2 Uncertainty in Structural Modeling
2.2.1 Types of Uncertainty

Although seismic structural response records can help earthquake engineering
researchers understand the dynamic behavior of civil structures during strong earth-
quakes, the analysis of these records does not match the rate these records are col-
lected. This situation may be due to insufficient funding for these type of studies.
On the other hand, system identification tools for extracting the dynamic charac-
teristics of structures from seismic response records are still not widely available for
researchers and engineers. This situation leaves a great deal of uncertainty about
the detailed dynamic behavior of structures and their capability to resist strong

earthquakes.

The underlying motivation for applying system identification to measured seis-

mic response of structures is that it is currently not possible to accurately predict
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this response by using mathematical models of structures. This is due to inherent
uncertainty in constructing the mathematical models. Once a class of models has
been chosen to describe the behavior of a structure, there are model parameters
which need to be assigned values in order to choose a particular model from the class
of models. There are two types of uncertainty when modeling a structure, param-
eter uncertainty and modeling error. Parameter uncertainty arises simply because
the most appropriate values of the model parameters to be specified are not known
a priori. For example, the material properties of structural members, such as the
Young’s modulus £ and the effective moment of inertia I, are uncertain because of

manufacturing and construction process.

For any given mathematical model of a structure, the predicted response may
differ from the actual structural response because any mathematical model is only
an approximation of the actual behavior of the structure. It is always possible that
some secondary dynamics of the structure is not modeled explicitly in the given
mathematical model. This type of uncertainty is referred to as modeling error. For
example, the modeling of the material constitutive behavior, e.g., stiffness, damping,
nonlinearity, and time-varying behavior, is only approximate. Even when a reliable
constitutive model is available at the structural component level, the complexity
of component interactions, e.g., there are no exactly pinned or rigid beam-column
connections, makes it difficult to build up a complete mathematical model based on
theory. Also, there is discrepancy due to the spatial discretization of a distributed
structural system when applying the finite element formulation. Modeling error can
be described in terms of prediction accuracy which represents the uncertain error in

the response prediction given by any mathematical model.
2.2.2 Description of Uncertainty

Traditionally, probability is defined to be the limiting relative frequency of oc-
currence of a repeatable random event in the long run [37]. Tt turns out that this
definition is unnecessarily restrictive because there are many cases where it is de-

sirable to quantify uncertainty but the interpretation of probability using relative
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frequency makes no sense. Since parameter uncertainty and modeling error are not
repeatable events, the classical interpretation of probability is not applicable in de-
scribing the uncertainty in structural modeling. However, another more useful inter-
pretation of probability as a measure of plausibility is more appropriate to describe

the uncertainty in modeling civil structures.

Starting from the observation that human brain does plausible reasoning in a
fairly definite way, it was shown that there is only a single set of rules for doing plau-
sible reasoning which is consistent and in qualitative correspondence with common
sense [38]. It turns out that these rules match the axioms in classical probability the-
ory and they can be deduced without resort to the concept of repeatable event and
frequency of occurrence. Therefore, a re-interpretation of the probability concept
can greatly extend the power of probability and statistical methods for applications

in science and engineering.

Actually, there have been two principal lines of thoughts about plausible rea-
soning in the literature {2|. One is based on decision theory and views probability as
a personal expression of an individual’s degree of belief about a certain proposition
given some information [39]. The other line of thought emphasizes that plausibil-
ity should be uniquely determined by objective criteria, such as the Principle of
Mazimum FEntropy, once the incomplete information available has been studied in
a suitable explicit form [40]. Nevertheless, both lines of thoughts end up with the

same set of mathematical relations for plausible reasoning.

In this dissertation, the notation P(alb) is used to represent a measure of the
plausibility of proposition a given the information stated in proposition b. Proposi-
tions @ and b may refer to hypotheses of mathematical models of civil structures or
they may refer to observations or measurement of data. It was demonstrated that
to quantify plausibility, one is led to the calculus of mathematical (Boolean} logic

together with the following three additional axioms {41]:
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1}  0<Palb) <1 and P(ala)=1,
2)  P(alb) + P(not alb) =1, and
3)  P(a,blc) = P(a]b,c)P(blc),

where “ represents the propositional conjunction “and.” From this point of view,
the calculus of plausibility is a generalization of the calculus of mathematical logic
since the latter assumes that the information given in proposition & is complete
enough to deduce that either “b = a”, i.e., P(a|b) = 1, or that “b6 = not a”, ie,
P{alb) = 0.

2.3 Statistical System Identification

2.3.1 Bayesian Statistical Inference

In classical statistical inference problems, one is to decide on the basis of mea-
surement or observation which probability distribution in a given family of distri-
bution functions could represent the distribution of some random quantity. It is
implicitly assumed that there is a true probability distribution in the given family of
distribution functions, but this point of view is questionable. Several types of point
estimate such as mazimum likelihood, minimaz, and methods of moments have been
proposed in the literature trying to estimate the true probability distribution. The
difficulty with these types of estimate is that their quality is unknown.

To overcome this discrepancy, the idea of confidence interval is used. Unfor-
tunately, confidence intervals need to be interpreted by using the limiting concept
of a repeatable event in the long run and so they do not indicate the quality of
estimate given only finite observation data. The difficulty of classical statistical
inference approaches is rooted in the interpretation of probability as the limiting
relative frequency of occurrence of a repeatable random event. By using the plau-
sibility interpretation of probability, a more powerful Bayesian statistical inference

framework has been proposed in the literature [38].
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In Bayesian statistical inference, the observation of some quantities, such as
the input and output of structures, are used to update the probability of other
unobservable quantities, such as those relating to models of material constitutive

behavior. For illustration, the axioms of probability give the following relation:

P(a,blc) = P(alb, c)P(b|c) = P(bla, c)P(alc).

By rearrangement, the Bayes’ formula is obtained:

P(ald, c)P(b|c})
Plalc)

P{bla,c) = = kP(alb,c)P(b|c) < P(al|b, c)P(b|c),

where k is a constant if proposition a is observed. P(blc) is called the prior proba-
bility of proposition b since it represents the probability of proposition b before the
observation of proposition a. P(bla,c) is called the posterior probability of proposi-
tion b because it indicates the probability of proposition & after the observation of
proposition a. P{alb, ¢) is called the likelihood function of proposition b for given
observation of proposition a and represents the influence of observation data on the
plausibility of proposition b.

A Bayesian statistical inference framework is appealing because it provides a
systematic approach to explicitly introduce the prior probability of some proposi-
tions and prescribes how their posterior probability is obtained when observations
become available. Indeed, the inference framework provides continual update of the
probability of certain propositions as more observations are taken. For example, af-
ter an initial observation of a, a;, becomes available, the posterior probability of & is

given by:

P(blay, ¢) x P{ai1|b, c)P(b|c).

After another independent observation of a, as, is taken, the posterior probability of
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b given observations a; and a; becomes:

P(blay,az,¢) o« Play,az|b, c)P(blc),
x  Plaglay, b, c)P(ai(b, c)P(blc),
x  P(aalb, c)P(blas,c).

It is noted that the posterior probability P(b|a1, ¢} plays the role of prior probability
when deriving the posterior probability P(b|a;, as, c) as the observation as becomes
available. Obviously, this procedure can be repeated when more observations are

taken.
2.3.2 Statistical System Identification Framework

In classical system identification techniques, the prediction accuracy of the iden-
tified model is typically not quantified. When the identified model is used o predict
the structural response, the accuracy of prediction is usually judged only based on
how well the identified model fits the available measurement data. Furthermore,
most system identification techniques only identify one “best” model from the given
class of models, but it is also important to assess the precision of the identified model.
A posterior sensitiﬁty study of the criterion for choosing the model gives some clues
but does not solve the problem. Another approach is to use expensive Monte Carlo
simulation to estimate the statistical properties of the identified model [42-43]. How-
ever, if there are multiple “best” models in the given class of models based on the

measurement data, it is not clear how to proceed in these techniques.

Because of parameter uncertainty and modeling error, the process of system
identification is best addressed within a probabilistic framework. But this involves
dealing with the probability of mathematical models, which are of course not repeat-
able events. Beck [2,44] proposed a statistical system identification framework based
on the interpretation of probability as a measure of plausibility and on Bayesian sta-

tistical inference. The framework addresses all of the previously mentioned practical
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difficulties in the application of system identification techniques to real structures.
One of the main aspects of system identification is the criterion for choosing the
“best” model within the given class of mathematical models. In the statistical sys-
tem identification framework, the choice of this criterion is done in a very natural
way. Furthermore, it provides an integrated approach to handle the situation when

there are multiple “best” models.

The statistical system identification procedure is an iterative process and in-

cludes four major steps:

1. Specify a class of deterministic mathematical models, which describe the mod-

eled dynamics of a structure,

2. Embed the class of deterministic models within a class of probabilistic models

which provide a probabilistic description of the uncertain prediction accuracy,

3. Determine the prior probability of model parameters based on all the available

information and knowledge, and

4. Use the measured input and output of the structure to infer the posterior

probability of model parameters.

The statistical system identification framework has several features and advan-
tages over classical system identification techniques. First of all, the framework
explicitly treats all types of uncertainty in structural dynamics including parameter
uncertainty, modeling error, measurement noise, and uncertain external excitation.
Furthermore, the framework can be applied to any type of mathematical models, e.g.,
parametric, non-parametric, time-domain, frequency-domain, etc. Besides, no spuri-
ous concepts such as the “true” model are used in the framework, and the framework
does not depend on the concept of ensemble average or need to be interpreted in the
long run. Therefore, the statistical system identification framework is pragmatic and

versatile for practical applications to civil structures.
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By making appropriate choices for the class of probabilistic models, several
classical system identification techniques can be viewed as the special cases of the
statistical system identification framework. But the statistical system identification
framework provides more information and insight than the classical system identifi-
cation techniques. For example, the classical least-squares output-error method can
be derived if the uncertain prediction accuracy is modeled as a stationary Gaussian
white noise sequence with zero mean. The least-squares output-error approach has
been the dominant method in the application of system identification to real struc-
tures because it does not rely on the measurement of all the degrees of freedom of a

structure.
2.3.3 Time-Domain Prediction-Error Approach

The statistical system identification framework is very general and is applicable
for any type of mathematical models. The framework can also be applied in other
fields such as soil mechanics and seismology by using suitable models to describe the
dynamics of systems and external excitations. For illustration, a particular statistical
system identification technique developed by Beck [2] is presented. It is assumed that
a class of mathematical models M has been chosen to model a structure. The N,
model parameters ¢ € S, C RM= need to be assigned values in order to indicate
a particular model in M. The model output and system input is only required at
discrete time. This is typical of modern seismic records which are recorded using

digital instruments.

The class of models M provides a functional relationship between the model
output z(n;a) € R at time nAt and the system input Z? = {z(m) € R" : m =

1,...,n}
z(n; a) = z(n; a, Z7', M),

where z(n; a} contains N, model output quantities and z contains Ny system input

quantities. In the following, the dependence of model output z on the system input
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Z7 and the class of models M will be suppressed in the notation for simplicity. Only
the observed model response quantities are contained in z(n;a). For example, if
the acceleration response of a structure is measured, z{n; ¢) contain the acceleration
predicted by the class of models M at the observed degrees of freedom. When
carthquake excitation is considered, the system input Z' consists of the ground

acceleration induced by earthquakes.

To embed the class of deterministic models M within a class of probabilistic
models, the prediction error e(n;a) is defined as the difference between the model

output z{n;a) and the measured system output y(n), ie.,

y(n) = z{n; a) + e(n; a). (2.3.1)

The prediction error actually accounts for the effects of both measurement noise
and modeling error. But for modern structural response measuring instruments, the
measurement noise is usually negligible compared with the modeling error. Therefore,

the measured system output is essentially equal to the actual system output.

A class of probabilistic models P is chosen to describe the uncertainty in the
prediction error. P is parameterized by N, prediction accuracy parameters ¢ €
Sy C RMz, and prescribes a function hy; which gives the probability distribution of

a sequence of M prediction errors B}Y = {e(n;a) € R :n=1,...,M}, ie,

p(EM|a, P) = harle(1),. .., e(M); 0). (2.3.2)

After the classes of models M and P are chosen, a class of probabilistic models Mp
can be defined and parameterized by the parameters o = [a7,c7]" € Sy C RNe
where N, = N, + N,. The class of models Myp prescribes a function fu which
gives the probability distribution of the system output Y/ = {y(n) € RY : n =
1,...,M}, ie,
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p(VPMla, 28, Mp) = fuly(), ., y(M); e, Z3), (2:3.3)

= hu(u() —z(La),...,y(M) — z(M;a); g).
The function fus is determined by substituting (2.3.1) in (2.3.2).

To account for the parameter uncertainty of o, a prior probability distribution

m(a) over the set S, of all possible parameter values of ¢ is chosen, i.e.,

plajMp) = m(a).

The choice of w(a) reflects prior engineering judgment about the relative plausibil-
ity of different models in the class of models Mp. For simplicity, m(c) is usually
approximated by using a smooth and slowly-moving function.

The probability distribution p(Y*|q, ZM, Mp) in (2.3.3) prescribes the predic-
tion accuracy of the system output for a particular model in the class of models Mp.
Before using any measured system input and output, the probability distribution of

the predicted system output Y;¥ based on the class of models Mp is given by:

p(YM|ZY Mp) = /SP(YlM:QZiM:MP)dQ:
= fs p(YMa, 2, Mp)p(a|Mp)da, (2.3.4)
— [ 0, Z)r(a)de

The probability distribution in (2.3.4) is a weighted average of each individual proba-
bility distribution given in {2.3.3) over the entire class of models Mp. The weighting
of each individual probability distribution is given by the prior probability of each

model.

Let Dy denote a set of measured system input Z¥ = {f(n) € RN : n =
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1,...,N} and system output ¥}V = {#(n) € R = n = 1,...,N} recorded at
discrete time. Based on the new information contained in Dy, a posterior probability

distribution of parameters a can be derived by using the Bayes’ formula:

pla|Dy, Mp) = kp(Vi¥|a, ZF, Mp)pla) Mp),

A ) (2.3.5)
= kfn(YN;a, ZV)n(a),

where the normalizing constant k& can be evaluated by using (2.3.4) and is given by:
k7 = PN ZY, Mp).

(GGiven the measured data Dy, the probability distribution of the predicted sys-
tem output ¥;¥ in (2.3.4) can be replaced by an updated probability distribution of
the predicted system output for the next (M — N) sampling time and a prescribed

future system input Zaf,; by using (2.3.5) as follows:

PN, 2 M) = [ p(Yih, 0lDi, Z¥,0, Mp)da,

= [5' p(ylj\fv{l-l[gz Zj\}‘f{-{-la M?)p(Q{DN; M’P)d@, (236)

= k fs p(YN Y o, ZN, Z¥, |, Mp)p(a| Mp)de,

= k[ Pl ¥k 20, 2 n(a)da.

The updated probability distribution in (2.3.6) can be viewed as a weighted average
of each individual probability distribution p(Y¥,|a, Z3, 1, Mp) over the entire class
of models Myp just as in (2.3.4). But, the weighting of each individual probabil-
ity distribution is now given by the posterior probability of each model given the

measured data Dy.
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2.4 Identifiability and Asymptotic Approximations

2.4.1 System and Model Identifiability

It is noted that the exact updated probability distribution given in (2.3.6) does
not require parameter identification in the usual sense. However, the difficulty with
the analytic expression in (2.3.6) is that the multi-dimensional integral cannot be
evaluated analytically nor numerically if the dimension of the parameter space S, is
too high. Fortunately, the multi-dimensional integral in (2.3.6) can be approximated
to simplify the computation if the number N of sampled system input and output is
large which is usually the case with dynamic tests or records of structural response

during earthquakes.

Assume the vector of parameters & = [@T,QT]T € S, globally maximizes
I (YN, a, ZN), which is the likelihood function in the inference equation (2.3.5),
and the attained global maximum is at an isolated point. Consider any parameters

« in the neighborhood of &. In most situations,

fN(}}IN; ’Z{v) _
In(E ) = OV) (2.4.1)

)

e (I2

It is clear from (2.4.1) that the function fa(Y}Y;a, ZN) is very peaked at & for a large
nuimber N of measured system input and output. Besides, the contribution of these
parameters which only locally maximize W a, ZN) will eventually diminish as
N increases. Furthermore, if the prior probability distribution 7(«) is a smooth and
slowly-varying function, the posterior probability distribution in (2.3.5) is also very
peaked at & In that case, & is an approximate local maximizer of the posterior

probability distribution p(a|Dy, Mp) and the accuracy is O(N1).

Motivated by the above observations, the optimal parameters & for the class of
models M given the measured data Dy are defined to be the values of parameters
a € S, which globally maximize the function fN(ﬁN ;Q, 21” ). Since the defined
optimal parameters are equivalent to the maximum likelihood estimates in classical

statistical inference, the traditional maximum likelihood estimation approach can
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be justified and interpreted within the more general statistical system identification
framework. Let SgFY(Dn) C S, represent the set of all optimal parameters, the

following definition of system identifiability is introduced in [45]:

o A parameter «; of a is globally system identifiable for the class of models Mp
and the measured data Dy if SF(Dy) contains only one vector of optimal

parameters, or, if not, then:
Q{l),Q(E) c ,S’;p*(’DN) — &gl) . @1(2).

e A parameter oy of o is system identifiable for the class of models Mp and the

measured data Dy if there exists a positive number ¢; such that:
a®,a® e ST (Dy) = 6!V — &?| > € or &Y = &7

e A parameter «; of o is locally system identifiable for the class of models Mp
and the measured data Dy if it is system identifiable but not globally system
identifiable.

e A parameter oy of o is system un~identifiable for the class of models Mp and
the measured data Dy if it is not system identifiable.
Furthermore, the above definition can be extended as follows:
e The vector of parameters ¢ is (globally) system identifiable if all of the param-
eters «; are (globally) system identifiable.

e The vector of parameters a is locally system identifiable if it is system identi-

fiable but at least one parameter «; is only locally system identifiable.

e The vector of parameters ¢ is system un-identifiable if at least one parameter

«; is system un-identifiable.
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¢ The class of models Mp is (globally) locally system identifiable given the mea-
sured data Dy if o is (globally) locally system identifiable.

e The class of models Mp is system un-identifiable given the measured data Dy

if ¢ is system un-identifiable.

If the class of models M is system identifiable given the measured data Dy and S,

is bounded, there is only a finite number of optimal parameters in Sg*(Dy).
It is of interest to note that any two different optimal parameters a® and @

in S (Dy) need not produce the same model output given the measured system

input ZV, ie.,

& = a7, 50" € SPDy) and & = @@, 60" € SP(Dy)

= z(n;aV) = z(n; a?).

However, it is true that for given optimal parameters & in S&pt(’DN), any other
parameters o in S, which produce the same model output as & are also optimal

parameters, i.e.,

z(n;a) = z(n; &) and & = [a",6"|7 € SP(Dn)

= a—[d",&"]" € SF(Dn).

Due to the complex nature of system identifiability as explained above, the
definition of another type of identifiability becomes necessary. Let & = [@T,QT]T
be a vector of optimal parameters in SP*(Dy) and S;(ZY) contain all the model

parameters a which produce the same model output as the model specified by &, i.e.,
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Then, the following definition of model identifiability is introduced:

o A parameter a; of a is globally model identifiable at @ given the measured system
input ZI if S;(ZY) contains only one vector of model parameters, or, if not,

then:
a0 € 5,(20) = & = a”.

o A parameter a; of a is model identifiable at @ given the measured system input

.ZiN if there exists a positive number ¢; such that:
a® a® e 52Ny = ol — aP| > g oral) = &,
o A parameter a; of a is locally model identifiable at & given the measured system

input Z{V if it is model identifiable but not globally model identifiable.
o A parameter a; of a is model un-identifiable at @ given the measured system
input Z{V if it is not model identifiable.
Similarly, the above definition can be extended as follows:
¢ The vector of model parameters g is (globally) model identifiable at a if all of
the parameters a; are globally model identifiable at a.

e The vector of model parameters a is locally model identifiable at @ if it is model

identifiable but at least one parameter a; is only locally model identifiable at

=
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e The vector of model parameters g is model un-identifiable at a if at least one

parameter a; is model un-identifiable at a.

¢ The class of models M is (globally) locally model identifiable at @ given the

measured system input Z if ¢ is (globally) locally model identifiable at .

e The class of models M is model un-identifiable at @ given the measured system

input ZV if @ is model un-identifiable at 4.

If the class of models M is model identifiable at & given the measured system input

va and S, is bounded, there is only a finite number of model parameters in S; (ZN).

Tt is noted that if the vector of model parameters a is not globally model identi-
fiable at & given the measured system input Z¥, the parameters ¢ cannot be globally
system identifiable given the measured data Dy. Furthermore, in the locally identi-
fiable case, the number of optimal parameters in S&pt(DN) must be at least as large
as the number of model parameters in S@(ZA{V ). Therefore, a system identifiability
problem can be theoretically decomposed into multiple model identifiability subprob-
lems. But the difficulty is that the number of model identifiability subproblems is

not known a priori.
2.4.2 Asymptotic Approximations in System Identifiable Cases

Assume the vector of parameters ¢ is system identifiable given the measured
data Dy. Hence, if S, is bounded, there is a finite number of optimal parameters
in SPP*(Dy). Denote these optimal parameters by &® k= 1,..., K and assume
that they all lie in the interior of S,. Each &® globally maximizes the likelihood
function fn(Y{Y;a, Z) and so locally maximizes the posterior probability distribu-
tion p(a|Dy, Mp) if the prior probability distribution m(a) is a smooth and slowly-
varying function.

By expanding In fN(}A’lN P Q, Z{V ) in a second-order Taylor series about the opti-
mal parameters &* | the following approximation of fN(EA’lN R Z{V ) in the neighbor-

hood of Q(k) can be obtained:
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- - - - 1
N0, 2 ~ fu(V5a0, 2 exp | {a = 60T Ay (@) (@ - &Y))
(2.4.2)
where the N, x N, Hessian matrix An(@™) of In fy(Y{; o, ZN) is assumed to be

positive-definite and is given by:

& In fn(Y{¥: a, ZN)
AN N\t &, 41
[AN (Q )]"‘J aaiaaj

Because the elements of Ay{a) are O(N) in most cases, fn(Y{";a, ZNY is very
peaked at each vector of optimal parameters &® for a large number N of sampled
measurement. By using Laplace’s method [46] for asymptotic expansion of multi-

dimensional integrals and {2.4.2), p{a|D~, Mp) can be approximated by:

K
p(e| Dy, Mp) = 3 wGla; &P, AR (@™)), (2.4.3)
k=1

where

Gla; @™, At (a®h) =

1 1
G AT Emy O [T le e An(@T e =&

and

/

Wy

— ot wy = [Ap(@®)[7 2 (@®), (2.4.4
Z{il wl k [ )l ) )

Wy

From (2.4.3), it is noted that p(a/Dn, Mp) turns out to coincide with a scaled
N,-dimensional Gaussian distribution for ¢ with mean Q(k) and covariance matrix

AR (Q(k)) in the neighborhood of &*. Furthermore, each vector of optimal param-
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eters « in Sg’t (Dn) may be interpreted as a locally most probable model within the
class of models Mp given the measured data Dy, and the covariance matrix can be

used to examine how precisely the optimal parameters are identified.

By using the asymptotic approximation of p{a|Dy, Mp) in (2.4.3), an asymp-
totic expansion of the analytical integral for the updated probability distribution

given in (2.3.6) can be obtained [2]:

K
P(YJ\JKHDN, ZIJ\‘I{H:MP) ~ Z ka(ng/‘-rH PQ(k)a Z]j\‘,fd+1= MP): (2'4-5)
k=1

where

N vM a(k) N M
M a(k) M _ p(Y; :YN+1|QJ , 25 g1, Mop)
p(YYL16®, ZY ., Mp) = A A ,
( N-I-].I N+1 P) p(Kng(k),Z{V,MP)
fM(YlNa Y§V11§@(k)a ZA'iN: ZJJ\%A}
Fu (YN, &™), 2

Therefore, the continuous weighted average of the updated probability distribution
in (2.3.6) is approximated by a discrete weighted average of the updated probability
distribution for each vector of optimal parameters in the class of models Mp given
the measured data Dy. The weighting of each optimal parameter vector is equal
to the volume of p(a|Dy, Mp) under its corresponding Gaussian-shaped peak. It
is noted from (2.4.4) and (2.4.5) that the prior probability distribution 7(a) is not
required over the entire parameter space S,. Indeed, only the relative values at each

vector of optimal parameters &%) need to be specified.

It should be emphasized that the exact updated probability distribution in
{2.3.6) does not require parameter estimation in the usual sense. However, the
asymptotic approximation in (2.4.5) does. Therefore, the system identification prob-
lem is converted to a nontrivial global optimization problem. Because the optimal

parameters are equivalent to the traditional maximum likelihood estimates, these
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estimates can be interpretated in terms of an asymptotic approximation to the exact
probability distribution in (2.3.6). However, the asymptotic approximation in (2.4.5)
is still applicable when there are multiple vectors of optimal parameters. But this

situation cannot be dealt with in the classic maximum likelihood estimation.
2.4.3 Asymptotic Approximations in System Un-Identifiable Cases

Suppose the class of models Mp is system un-identifiable given the measured
data Dy and the prior probability distribution #{a) is a smooth and slowly-varying
function. It is assumed that SP*(Dy) contains a finite collection of smooth and non-
intersecting d-dimensional manifolds or hyper-surfaces in the parameter space S, and
let H4 denote any one of these manifolds. Based on the definition, each vector of op-

timal parameters & in Hy globally maximizes fy (Y7¥;, ZF) (or In fn (Vs 2, Z)).

Consider a local parameterization of a neighborhood NQ of & on the manifold Hgy
by a smooth function ¢, : U +—— N, where U is an open set in R* and [ (0) = &

Since ¢ (u) € Ny, Yu € U, the following is true:

Vinfu(VY: ¢, (u), 1) =0, Yue U, (2.4.6)

where the gradient is with respect to a. By differentiating (2.4.6) with respect to u

and evaluating at u = 0, (2.4.7) is obtained:

(VY In (¥ Z20)][Ve,(Q)] = 0 (247)

Let An{(@) denote the N, x N, Hessian matrix —VViIn (YN &, ZN) of
In fx(Y{¥: &, ZN) which must be positive semi-definite. By definition, the tangent
space, Ta(Haq), of the manifold Hy at & is the image or range of the linear map
V¢, (0). Therefore, it is clear from (2.4.7) that the tangent space Ta{Ha) is a sub-
spa;e of the null space of Ax(&). Since the manifold H is d-dimensional, the tangent

space Ta(Hy) is also d-dimensional. It is assumed for simplicity here that the null

space of Ay{&) is also d-dimensional and, therefore, the tangent space Ta(Ha) and
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the null space of Ay (&) are identical.
By expanding In fN(‘f’lN |, Z{V ) in a second-order Taylor series about the opti-
mal parameters &, the following approximation of fN(f’lN ; Z{V } in the neighbor-

hood of & can be obtained:

~ ~ N Lo 1 . . .
e, 2Y) ~ (v (4, 20 ) exp | —S(a - )T An(@) @~ )| . (248)

Because the null space of Ay (&) is d-dimensional, Ay (&) has exactly d zero eigenval-
ues. Since Ay(&) is symmetric, it is always possible to find a set of orthonormal eigen-
vectors for Ay (&). Let {A1, ..., Ag, Adits -« - An, b and g, 0g, Vg, - - ,Un, t de-

note the set of eigenvalues and corresponding orthonormal eigenvectors of Ay (&) in

which Ay = ... = Ay =0 and Agyq, ..., Ay, are positive and are O{N) in most cases.
Let
Iy = [Tg,TJ], TQO = [y, - vl Ty = [yd-?—l? 7QN2:]7
and
) 0 0 o _
An{&) = , AR(&) = diagihar1, - AN,
0 AY(@)

Since T} is an orthogonal matrix, i.e., T = T3, and An(&) = T3 An(&)Ts. There-
fore, by applying the following linear coordinate transformation in the neighborhood

of &:

a-a=Tf =I5, 151 ~ > (2.4.9)

(2.4.8) can be rewritten as:
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e, 20 = I 4, va)exp(uéﬁ_i“ﬁ./\.}(g)g*). (2.4.10)

Because the eigenvalues Ag.i, ..., Ay, are O(N), it is noted from (2.4.10) that

fN(l}IN ca, ZNY is very peaked at each vector of optimal parameters & for a large
number N of sampled measurement when compared with any other parameters ¢ in
the neighborhood A of & which is not on the manifold #H4. Furthermore, the vector
a — & is a linear combination of the eigenvectors vy, g, ..., uy, of Ay (&). Since the
integration of p(a|Dy, Mp) over the entire parameter space S, is equal to unity, the
following approximation can be obtained by using (2.4.10) and assuming that H, is

the only manifold in SZ*(Dy) for the time being:

= k /Sg IV a, ZYyr(@)da,

2

k; %d {/Ng fN(}?&N;Q, E{V)W(g)dﬁ+}da?{d’

~ kfn(Y; & 20)

X [H d { fN ’ exp(m%gﬂA;(@)gﬂdgr} m(@)day,. (2.4.11)
Both the linear coordinate transformation (2.4.9) and the fact that the transfor-
mation matrix T is orthogonal have been incorporated in deriving (2.4.11). The
integrals in (2.4.11) perform an integration over the manifold 4 and the neighbor-
hood W, g . The symbol day, represents an infinitesimal component of the manifold
H,. In the simplest case when H, is a smooth curve, day, is just an infinitesimal
arclength which is usually denoted by dl in caleulus. In (2.4.11), fx(¥; &, Z1) can
be pulled outside the integrals because all the optimal parameters & in Hy give the

same global minimum of fx(¥{:q, zM.
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Furthermore, the inner integral in (2.4.11) can be easily computed by noting that
the integrand is nothing but a scaled (N, — d)-dimensional Gaussian distribution for

A1 with zero mean and covariance matrix (A5 (&)) ! Therefore,

[ (=38 M@ )BT ~ (2m) M A (@) (24.12)

&

By substituting (2.4.12) into (2.4.11), the following approximation is obtained:

1 k(2m) M D2 1y (VY &, fv)/ w (&) dagy,, (2.4.13)

Ha
where w'(&) = |[AR(&)|"/*7(&).
By using the same approximation approach as in deriving (2.4.11), the exact

updated probability distribution in (2.3.6) can be approximated by using (2.4.12)
and (2.4.13) as follows:

p(YJ\%-l I’DN? Z%—f—lr MP)

= [ Pl 2, Me)p(alDy, Me)da,

= k fS p(Y ¥ e, ZY 1, Mp) (Y a, ZNyr(@)da,

&

b L POl 2o Mo (570 20 (g o,
d

&

X

b e, 27)
Hq
1 . . .
X { /M exp(—gﬁﬂf&ﬁ(@é*)dﬁ*}p(YzG’illg, Za, Mp)m{@)day,,

(2m) Mo 2 (VY6 20 [ (Vi 2, M) A& (@) do,,
d

Q
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[ @p(V e, 2., Mp)da,

~ d
! ~ l
/?—[d (@)da,

-

Therefore, an asymptotic approximation of the exact updated probability distribu-

tion in (2.3.6) can be obtained as follows:

PN, 2 Me) [ w(@p(YVih|a 2 Mpddar,,  (24.14)
d
where
i) = w (@) and w' (&) = |AL (&) n(&). (2.4.15)

w(_@) - ]Hd wt(é)d,’ag{d

If there is more than one manifold in the set of optimal parameters S&pt(DN),

the asymptotic approximation given in (2.4.14) and (2.4.15} can be generalized as

follows:
PV lDy, 2, M) = [ w(@p (Ve 2,0, Mp)das,,  (24.16)
d
and
w@ - —28 @ ap@ ). 24
|, w(@daw,
Uig

The integration in (2.4.16) and (2.4.17) is now performed over the union of all the

manifolds H4’s in S (D).

The multi-dimensional integral for the exact updated probability distribution in
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(2.3.6) is therefore approximated by a continuous weighted average of the updated
probability distribution for all of the optimal parameters in the class of models Mp
given the measured data Dy. Although integration is still needed in the asymptotic
approximations (2.4.16) and (2.4.17}, the order of integration has been reduced from
N, dimensions in (2.3.6) to d dimensions in (2.4.16) and (2.4.17). It is also noted
that the prior probability distribution 7(a) is not required over the entire parameter
space S,. Indeed, only the relative values at the optimal parameters & in the Hy

manifolds need to be specified.
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Chapter 3

Generalized Trajectory Methods for Finding
Multiple Extrema and Roots of Functions

3.1 Global Optimization Problem
3.1.1 Introduction

Many problems in engineering and science can be formulated as global optimiza-
tion problems. In some applications, not only the global extrema but also all the
local extrema are significant and need to be found. In any case, determination of
these local extrema can be one step in a procedure to find the global extrema. Since
the objective functions in many practical applications are not convex, they may have
multiple local and global extremal points in the region of interest. Finding all these
multiple extrema is a challenging computational problem. Also, in contrast to local
extrema, which can be characterized by the local behavior of the objective function,
no practical and general criteria exist to determine whether a global extremum has
been found. Therefore, global optimization remains a major challenge from both

mathematical and computational points of view.

In this dissertation, two generalized trajectory methods are presented which
can be combined to provide robust computation of the multiple local extrema of
an objective function. The first trajectory method is the homotopy scheme which
provides a robust algorithm to find a stationary point of the objective function.
The second trajectory method, which is called the relaxation scheme, starts at one
stationary point and systematically connects the stationary points in a region by a
network of trajectories. Both the homotopy and relaxation schemes actually solve
the stationarity conditions and so they can also be used to find the roots of a set of

nonlinear algebraic equations.
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3.1.2 Overview of Existing Methods

A large number of publications have appeared in the literature during the past
three decades on the subject of global optimization which present a variety of deter-
ministic and stochastic methods [1-2]. A common feature of these global optimization
methods is that some sort of global search strategy is incorporated in the algorithms.
These strategies are essential due to the lack of “local” criteria for ascertaining global
extrema, which may be located anywhere in the region of interest and so they can

be found only by systematic search of the region.

The challenge is to perform this search in an efficient manner, since it is not
computationally feasible to search exhaustively over a fine mesh unless the dimension
of the space is small. Most proposed global optimization methods use heuristics
to improve the efficiency of the search and do not offer an absolute guarantee of
finding the global extrema. Increasing the reliability of finding these extrema while
maintaining efficiency is the major challenge in research into global optimization

methods.
Random Search Methods

Random search methods typically use random sampling of the objective function
as the global search strategy along with some local optimization approaches to yield
candidate global extrema, although pure random search methods simply use the
“best” sampled values of the objective function as the estimated global extrema. A
simple extension of pure random search is the single-start method which performs
a single local optimization from the best sampled point. On the other hand, the

multi-start methods use each sampled point to start a local optimization search.

One further improvement of pure random search is to find and label sampled
points in the region of attraction of a local extremum and then start a Jocal search
from just one point in each identified group of sampled points. This kind of strat-
egy is called clustering and can avoid locating a particular local extremum several

times. Different clustering techniques have been proposed such as density clustering,
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multilevel clustering, and vector quantization multi-start clustering [1]. A different
clustering method using topographical information about the objective function by

directed graphs is given in [3].
Covering Methods

The basic idea of covering methods for global optimization is to divide the region
of interest into subregions and discard ¢nfeasible subregions which cannot contain the
global extrema. The remaining feasible subregions are split into smaller subregions,
and so on. Several algorithms have been used to check whether a given subregion is
feasible or not. Some are based on the limit on the rate of change of function, i.e.,
the Lipschitz condition [4-6]. Another approach, which does not need the derivative
of the objective function, uses interval arithmetic to estimate the upper and lower

bounds on the objective function and to decide the feasibility of a given subregion
[7].
Trajectory Methods

The basic idea of trajectory methods for global optimization is to search for
global extrema by following certain trajectories in the region of interest. Most al-
gorithms in this category make use of the solution trajectory of certain ordinary
differential equations [2,8]. These differential equations are devised so that their
equilibrium points correspond to the stationary points of the objective function. By
choosing suitable initial conditions, some of the local extrema can be reached by
following the solution trajectory of the differential equations. Tt is unlikely, however,

that all the local extrema can be located by following just one solution trajectory.

Penalty Methods

Penalty methods combine local optimization methods with some technique to
avoid duplicate convergence to a local extremum. After some local optimization
method has been used to find a local extremum, a so-called tunneling process is
introduced to other irrelevant local extrema in its neighborhood in order to locate a

new starting point for another local optimization search which is expected to reach a
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better local extremum [9]. Tunneling is accomplished by finding a root to a tunneling
function which is constructed using the objective function and some penalty function.
Unfortunately, finding such a root is also a global search problem which may be as
difficult as the original optimization problem. Furthermore, tunneling is difficult and

not robust for high dimensional optimization problems.
Decomposition Methods

In decomposition methods, variables of the objective function are partitioned
into two groups. The original global optimization problem is then transformed and
split into a primal subproblem and an associated dual subproblem that provides
upper and lower bounds respectively on the global optimum. These kinds of meth-
ods are only applicable to global optimization problems involving quadratic and/or

polynomial terms in the objective function [10].
Stochastic Methods

Stochastic methods for global optimization use stochastic models to model the
objective function. The search for global extrema is then governed by optimizing
using some criterion of rationality. This derived optimization task is usually easier
than the original optimization problem. Since statistical elements are incorporated in

the algorithm, the probability of finding global extrema can be explicitly estimated.

Simulated annealing is the most well-known stochastic method for global op-
timization. The idea comes from statistical mechanics based on the observation
that when certain liquids are cooled slowly, they develop orderly stable molecular
structures as solids. When applied to global optimization problems, the artificial an-
nealing is kept slow to avoid getting trapped at local extrema. Initially this procedure
was applied to combinatorial optimization problems such as the traveling salesman
problem, but the idea has since been extended to continuous function optimization

problems [11].
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3.2 Generalized Trajectory Methods

3.2.1 General Formulation and Assumptions

Let f(z) be a sufficiently smooth scalar function, the objective function, where
z € B C RM: where B is an open region. The problem of interest is to find the points
in B which give the greatest local maximum (GLM) and the least local minimum
(LLM) of f(z), if any. In many applications, prior knowledge of the objective function
and the choice of the region B can be used to conclude that the largest or smallest
value of f(z) on the closure B of B is achieved in . In this case, the GLM or LLM
of f(z) in B gives the global mazimum or minimum of f(z) over B. In any case,
to find the global maximum over B, one strategy is to calculate the GLM in B and
the largest value of f(z) on the boundary of B and then take the maximum of these
values. A similar strategy to find the global minimum over B employs the LLM in B.
Therefore, for these reasons, it is desirable to develop algorithms which compute the
GLM and LLM of f(z) in B. Clearly, these points can be found if all the stationary
(“critical” ) points of f(z) in the region B are located, where it is assumed in this
dissertation that their number is finite, so that they can each be checked for a local

extremuim.
Stationary points of the objective function f(z) satisfy the N, conditions:
Vf(z)=0. (3.2.1)

Therefore, the problem of finding all the stationary points of f(z) in B is reduced
to the problem of finding all the roots in B of the system of nonlinear algebraic
equations given in (3.2.1). The basic idea of the proposed generalized trajectory

method is to embed (3.2.1} in a new set of algebraic equations:

g(z,\) =0, NER, (3.2.2)

where g(z, A) € RV and all the roots of (3.2.1) also satisfy (3.2.2) for some particular
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value of A, say A = 1. Under some generic regularity assumptions on g, the solutions
of (3.2.2) are one-dimensional manifolds or trajectories in R™z*1. All the roots of

(3.2.1) can then be found by tracking these trajectories defined by (3.2.2).

Two special forms of (3.2.2) are used in the proposed generalized trajectory
methods for global optimization. If stationary points of f(x) exist in B but they are
difficult to find using local optimization methods due to the lack of suitable initial
guesses, a homotopy scheme can be used to find at least one stationary point. 'To
find other stationary points in B, a relazation scheme starting at an initial stationary

point can then be applied.
3.2.2 Homotopy Schemes

Several different names, such as embedding, invariant embedding, and parameter
continuation, have been associated with the homotopy scheme, which is used in this
dissertation as a generic term for this group of methods. The essence of a homotopy
scheme is to smoothly transform a known solution to a simple problem into a solution
of a target problem which is difficult to solve by embedding the simple and target
problems in a more general problem. The function describing the transition between
the two problems is called a homotopy, and the transformation is parameterized by
a homotopy parameter. The simple solution can be evolved into the target solution
by continuously varying the homotopy parameter. This often provides a novel way

to find the solutions of difficult problems.

In early algorithms to track the solutions of the transformed problems, the ho-
motopy parameter was only allowed to vary monotonically. It was assumed that the
solutions of the transformed problems would change continuously as the homotopy
parameter increased or decreased. But it was soon discovered that this may not al-
ways be the case, especially for complicated problems. Most modern algorithms allow
the homotopy parameter to increase and decrease as the homotopy transformation

proceeds.

The major feature of homotopy schemes is that they usually have a greatly
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expanded domain of convergence in the sense that it is possible to have solutions of
the simple and target problems far apart and still have convergence. This property
makes homotopy schemes drastically different from local iterative methods which
need good initial guesses in order to converge. Homotopy schemes are therefore
particularly suitable for highly nonlinear problems for which good initial solution

estimates are difficult to obtain.

Recently, there have been some applications of these schemes to engineering and
applied science problems. They have been used, for example, to solve the forward
kinematics problem of relatively complex variable-geometry trusses [12]. Multiple
solutions for system identification problems in structural dynamics were solved by
a homotopy algorithm [13]. Wayburn and Seader [14] used homotopy schemes in
chemical engineering to solve the equilibriumn equations of distillation columns. A
multi-objective control-structure optimization problem was solved by using homo-
topy [15]. Also, Chen et al. applied homotopy schemes to generalized eigenvalue

problems with applications to hydrodynamic stability analysis [16].

There are two canonical homotopy schemes for finding a stationary point of
f(z). The first scheme is called Newton homotopy and is given by defining g in
(3.2.2) as:

gulz,A) = Vi) — (1 - ANV Fz) =0, (3.2.3)
where z, is a fixed arbitrary point in 8. When A = 0, (3.2.3) gives the following
simple problem:

gn(2,0) =V f(z) — Vf{zo) = 0 (3.2.4)

It is apparent that one of the solutions of (3.2.4) is just z,. On the other hand, the

original problem given in (3.2.1) is obtained when A = 1.

The solution trajectory of a Newton homotopy as A varies from 0 is called the
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Newton flow or Newton {rajectory through z,. Furthermore, the algebraic equations
(3.2.3) can be differentiated with respect to A and rewritten in the form of a system
of ordinary differential equations in z(\), which are called the Newton equations.
The strategy of finding stationary points of f(z) by solving the Newton equations
is called Global Newton method or Branin’s method. Some relations between the
Newton trajectory orientation and the direction given by the Newton equations are

presented in [17].

The second canonical homotopy scheme is called Fized-Point homotopy and is

given by defining g in (3.2.2) as:

9p(@A) = (1 - N Mrp(z — 2,) + AV f(z) =0, (3.2.5)

where z, is a fixed arbitrary point in B and My is a non-singular NV, x N, matrix.

When A = 0, {3.2.5) gives the following simple problem:

gp(2,0) = Mp(z — 2) =0, (3.2.6)

which has only one solution, i.e., ;. Again, the original problem given in (3.2.1) is
obtained when A = 1. The Fixed-Point homotopy is used in the numerical example

presented later.

The application of homotopy schemes to global optimization problems is there-
fore quite straightforward. An arbitrary point o is chosen and the homotopy tra-
jectory defined by either (3.2.3) or (3.2.5) is traced by allowing A to change from 0.
Whenever the homotopy trajectory reaches A = 1, a stationary point of f(z) is found.
It is noted that the homotopy trajectory may cross A = 1 several times. Therefore,
it is sometimes possible to locate more than one stationary point by tracking a single
homotopy trajectory. On the other hand, if there are no stationary points inside
region B, the homotopy trajectory will typically reach the boundary of B without

A = 1 being achieved.



3.2.3 Relaxation Schemes

Homotopy schemes are useful when no stationary point has been found and
a good initial estimate of the location of a stationary point is difficult. Suppose,
however, that at least one stationary point has been found. To determine other
stationary points in B, if any, trajectory methods of another type which is called
the relaxation scheme can be used. The basic idea of the relaxation scheme is to
have a special case of (3.2.2) which is as simple as possible and which needs only the

information of one stationary point.

One simple relaxation scheme is given by defining g in (3.2.2) as:

gz, A) = V) - (1-Nu=0, (3.2.7)

where v is a given normalized constant vector in RVz. Tt is apparent that all the
stationary points of f(z) satisfy g.(z, 1) = 0. To apply relaxation schemes, an
arbitrary constant vector v is chosen and the relaxation trajectory defined by (3.2.7)
is traced from the known stationary point by allowing A to change from 1. Whenever
the relaxation trajectory crosses A = 1, another stationary point is found. Like
homotopy trajectories, more than one stationary point can be located by tracking a

single relaxation trajectory.

Mathematically, the gradient at each point on the relaxation trajectory defined
by (3.2.7) is a multiple of the constant vector v. This is also true for the Newton tra-
jectory and the constant vector in that case is V f(z,). The difference between those
two schemes is that the constant vector can be arbitrarily chosen in the relaxation

scheme given in (3.2.7) but it cannot in the homotopy scheme given in (3.2.3).

This feature can be used systematically to find multiple stationary points. In
particular, v can be chosen to be the vectors {¢;,€,,...,0r e Na} which form the stan-
dard orthonormal basis for RNz, If v is equal to ¢;, the mathematical interpretation
of (3.2.7) is that in order to find other stationary points of f(z), the ith stationarity

constraint on the gradient of f(xz) is released (relaxed} while all the other constraints



- 51—
remain enforced. The vector v can be systematically set to each basis vector in turn
in order to relax a different constraint on the gradient of f(x) each time. Therefore,

multiple relaxation trajectories can be tracked from each stationary point.
3.2.4 Trajectory Tracking Algorithm

Both homotopy and relaxation trajectories need to be tracked by numerical
algorithms in order to locate stationary points of the objective function. Therefore,
only a finite number of discrete points on a trajectory can be computed. To step from
one point on a trajectory to an adjacent point on the same trajectory, some iterative
scheme is required. The basic idea is to generate an initial guess for that adjacent
point and then use some local iteration method to converge to the trajectory point.
Different algorithms for trajectory following have been proposed [18-22]. Special

algorithms suitable for parallel computers are also available [23-24].

All these algorithms need to compute either the tangent vector of the trajectory
or the Hessian matrix of the objective function, both of which are numerically expen-
sive for complicated problems. Therefore, it is desirable to have numerical algorithms
which avoid such computations. This motivates the following new and efficient al-
gorithm to track both homotopy and relaxation trajectories, which is illustrated in

Figure 3.1.

Let p = [z, A]7, so (3.2.2) can be rewritten as:

g(p) =0, pc BxR. (3.2.8)

Suppose I is one component of the solution trajectory of (3.2.8) and p, is the current

point on I'. To find an adjacent point p_ . on the same trajectory, 20 is used as

i+l
an initial approximation. To render p°, the secant direction which is determined by

points P, and P, is used. If u is the unit vector in that secant direction, then 1_90

is chosen so that ;20 =p + du where § is a given small number which controls the

closeness of p°. It is noted that secant directions are much easier to compute than

tangent directions.
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Since p, , is on I, it must satisfy (3.2.8). But some additional constraint needs
to be imposed in order to precisely determine the position of p, e In the proposed

algorithm, Py is chosen to be a root of the following set of equations:

glp) =0,

9(p) (3.2.9)
u-(p—p)—0=0

The second equation in (3.2.9) is the imposed constraint for p, , and its geo-

metrical meaning is that the projection of vector p, | —p, in the u direction is equal

to 6. Therefore, this constraint prescribes how far the step should be along I'.

Equations (3.2.9) are just a set of N,+1 algebraic equations with N;+1 variables.
Given an initial guess on (3.2.9) can be solved by using any local numerical iteration
method for finding roots of set of equations. Since therootp, should not be far away
from the initial guess p° if § is small enough, convergence is almost guaranteed. In
the proposed trajectory tracking algorithm, (3.2.9) is first transformed to a nonlinear
least-squares optimization problem which is then solved by either the Gauss-Newton
or Levenberg-Marquardt method. These numerical algorithms are available in most

general purpose computational software packages.

A suitable choice of § is essential to prevent divergence of the tracking algo-
rithm and to minimize overstepping of a stationary point. Both the curvature of a
trajectory and the accuracy requirement of tracking influence the selection of 4. In
practice, a suitably small default value of § is chosen for a problem. If stepping from
one point on a trajectory to an adjacent point on the same trajectory is not achieved
in certain number of local iterations, the default value of & is halved and a new initial
guess p° is rendered to restart the search for roots of (3.2.9). Once convergence has

been achieved, & is reset to its default value to find the next trajectory point.
3.2.5 Computation and Classification of Stationary Points

As discussed before, one stationary point of f{z) is found whenever the trajec-

tory crosses A = 1. Stationary points cannot be located accurately by simply stepping
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through discrete points on the trajectory. Local iteration must be performed in order
to compute the stationary point accurately. It is clear that stationary points satisfy
(3.2.1) and can be found by local iteration using the last point on the trajectory in

the tracking process as the initial guess.

It is well-known that stationary points can be local maxima, local minima, or
saddle points. If the Hessian matrix H(z*) = VV f(z*) at a stationary point z* is
non-singular, z* is called a regular stationary point and the following second-order

optimality conditions can be applied:

H{z") is positive-definite == 2" is a local minimum,
H(z") is negative-definite == z" is a local maximum,

H(z*) is indefinite == z" is a saddle point.

Most stationary points of problems in real applications should be regular. Regular
stationary points are also isolated from each other. If non-regular stationary points
are present, more elaborate classification criteria are available based on higher order

derivatives of f(z) [25].
3.3 Properties of Homotopy and Relaxation Trajectories
3.3.1 Differential Topology Aspects

The function g(z, A) in (3.2.2) can be viewed as a smooth map from B x i to
RNz A point [_SQ*T, M|T € B x R is called a regular point if the Jacobian J(z, ) of
g(z, \) at point [z, *]T is surjective (“onto”), i.e., the rank of J(z", A*) is equal to
N,. In this case, by the Implicit Function Theorem, there is a unique and smooth
one-dimensional solution trajectory of (3.2.2) in the neighborhood of [z*", A*]T which
passes through [Q*T, M. A point in B x R is called a critical point if it is not a

regular point. A point y* € RNz is called a regular value if all the pre-images of y*

in B x R are regular points. A point in Rz is called a critical value if it is not a
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regular value.

Ify e R¥z is a regular value, the Pre-Image Theorem in differential topology
asserts that the pre-images of y* form one-dimensional manifolds or trajectories in
B x R. Therefore, the solution of (3.2.2) will be smooth one-dimensional trajectories
if 0 € RMz is a regular value of the map g(z, A). Fortunately, Sard’s Theorem [26] in
differential topology asserts that almost all the points in R™= are regular values, i.e.,
all the critical value in Rz is a set of measure zero. Furthermore, the Parameterized
Sard’s Theorem [27] can be applied to the Fixed-Point homotopy scheme and the
relaxation scheme to conclude that it is almost certain that 0 € R™z is a regular

value for almost every point z, € B and vector v € RNz,

Therefore, it is almost certain that the homotopy and relaxation trajectories
are smooth and non-intersecting one-dimensional curves in B x R. A singularity
occurs along a trajectory if there is a bifurcation in which two or more trajectories
intersect at a single point. Unfortunately, bifurcations can not be treated with a
simple analytic approach because of the huge variety of different types of bifurcation
[28-31]. Each type has its own distinct properties and needs to be classified and

studied separately.

There have been some attempts to deal with some simple types of bifurcation
using numerical procedures. One strategy is to derive either necessary or suflicient
conditions for the tangent directions of smooth trajectories intersecting at a simple
bifurcation point [32-33]. Another approach is to perform an exhaustive search in
the neighborhood of a bifurcation point for points on all the related bifurcating
trajectories [34-35]. Both methods require extensive computational effort and can be
justified only when the computation of bifurcation points and intersecting trajectories

is essential to the problem at hand.

The philosophy taken in this work is that it is not worthwhile to handle bifur-
cations explicitly by analytic approaches because bifurcation is so rare. Anyway, a
trajectory is not followed exactly but is only tracked approximately by any numer-

ical algorithm, so the computed trajectory is actually a perturbation of the exact
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trajectory. Since bifurcation is intrinsically unstable, any small perturbation of the
trajectory will destroy the bifurcation. Therefore, the basic idea is to avoid direct
attack on the bifurcation problem and invest effort in improving the robustness of

the proposed global optimization algorithm by using multiple relaxation trajectories.
3.3.2 Trajectory Behavior

The Jacobian matrix of the Fixed-Point homotopy scheme defined in (3.2.5) is

given by:

Vgplz, ) =1~ NMp + AVV f(z), —Mp(z —z0) + Vf(z)]. (3.3.1)

At the starting point p, = [zZ',0]” on the homotopy trajectory, the Jacobian matrix

is equal to:

Vg (o, 0} = [Mp, V f(z,)]. (3.3.2)

Since the matrix Mp is nonsingular, the Jacobian matrix in (3.3.2) has full rank.
Therefore, p, s a regular point and there is a unique and smooth one-dimensional
solution trajectory of (3.2.5} in the neighborhood of p, and passing through p,. As-
sume this trajectory segment is parameterized by its arc length s in the neighborhood

of p,, Le.,

(3.3.3)
A=A(s), A0)=0
then (3.2.5) can be differentiated with respect to s at p, and the result is:
Mpi(0) + A(0)V f(z) = 0. (3.3.4)

It is clear from (3.3.4) that
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2(0) | —Mp'V f(z)

o) 1 (3.3.5)

Therefore, the unit tangent vector of the homotopy trajectory at the starting point
p, can be computed from (3.3.5) and used as the starting value for the unit vector u

in the trajectory tracking algorithm.

If the nonsingular matrix M in (3.2.5) is symmetric, the function g, (z, A) can

be integrated with respect to z and the result is:

Grlz,A) = f_ gp(z A)dz = (1 - A)%(& —20) Mr(z — zo) +Af(z).  (3.36)

Tt is clear from (3.3.6) that the homotopy Gr(z, A) is made up of a simple quadratic
function 1(z—zo)" Mr(z —z,) and the objective function f(z). Assume that there is
no bifurcation of the homotopy trajectory, then it is most likely that the homotopy
trajectory will reach a local maximum of f(z) if matrix Mp is negative-definite since
the simple quadratic function has a unique global maximum at zy. On the other
hand, a local minimum of f{z} will be reached by following the homotopy trajectory

if matrix My is positive-definite.

The Jacobian matrix of the relaxation scheme defined in (3.2.7) is given by:

Vgg(z, A) =[VVf(z), o] (3.3.7)

If z* is a regular stationary point of f(z), the Jacobian matrix at p* = [z, 17 is

equal to:

Vgp(z" 1) = [VVf(z'), u]. (3.3.8)

Since the Hessian matrix VV f(z*) is nonsingular because z* is regular, the Jacobian
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matrix in (3.3.8) has full rank. Therefore, p* is a regular point and there is a unique
and smooth one-dimensional solution trajectory of (3.2.7) in the neighborhood of p*
and passing through p*. Assume this trajectory segment is parameterized by its arc

length s in the neighborhood of p*; ie.,

¢

r=uxz(s), z{0l=z
z=a(s), 2(0) (3.3.9)
A=A(s), A0)=
then (3.2.7) can be differentiated with respect to s at p* and the result is:
VV f(2)£(0) + M0y = 0. (3.3.10)
It is clear from (3.3.10) that
c(0 —(VVf(z*))™
2O) N | VDT (3:3.11)
A(0) 1

Therefore, the unit tangent vector of the relaxation trajectory at the starting point
p* can be computed from (3.3.11) and used as the starting value for the unit vector

u in the trajectory tracking algorithm.
3.3.3 Multiple Trajectory Components

Under generic regularity assumptions, a generalized trajectory is a smooth one-
dimensional curve in R¥zt1 based on the Pre-Image Theorem of differential topology.
But it is quite possible that a trajectory has more than one component. In that
case, not all the stationary points of the objective function lie on a single connected
trajectory component. To find all the stationary points, all the separate components
of the trajectory need to be found. There is no guaranteed complete solution for this

task. This remains as the major problem with the generalized trajectory method.

Conditions on the objective function which guarantee only one trajectory com-

ponent were given in [36]. But those conditions have only mathematical merit since
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they are too strong and difficult to apply in most applications. There have been
several proposals to deal with multiple trajectory components for general objective
functions. One approach is to connect the separate trajectory components using cer-
tain one-dimensional curves which connect the trajectories through touching points
[37-38]. Since not every trajectory component has a touching point, it is not guaran-

teed that all the trajectory components can be so connected.

Another approach is trying to connect different trajectory components at plus
and minus infinity [39-40]. The problem with this method is that connection at
infinity is not always possible because some trajectory components may be closed and
remain bounded. Furthermore, reaching plus and minus infinity at the same point
by different trajectory components is not always guaranteed. To connect bounded
trajectory components, complex bifurcation techniques can be helpful [41]. Another
approach [42] is to investigate empirical criteria for choosing the simple solution
in the Fixed-Point homotopy scheme in the hope that there is only one trajectory

component.

In this dissertation, a new approach is proposed to deal with multiple trajec-
tory components. Instead of using only one relaxation scheme and dealing with the
problem of connecting separate trajectory components, multiple applications of the
relaxation scheme are used in a systematic way. Thus, for every stationary point
found, a multiple of relaxation trajectories is traced. For example, for each station-
ary point z* that is found, v in {3.2.7) can be chosen in succession as the orthonormal
basis vectors {e;, e, . .. ,QNE} to generate N, relaxation trajectories through z*. The
application of multiple relaxation generates redundancy and increases the chance of
finding all the stationary points. Furthermore, the multiple trajectories issuing from
a stationary point can be traced simultaneously on a parallel computer to increase

efficiency in high dimensional spaces.
3.4 Numerical Example

In this example, the goal is to find all the points giving the global maximum of

the objective function:
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4
flz) = > wiG(z;m;, %), z=[x1,22]" € BC R?, (3.4.1)
i=1

where w; is a weighting factor and

1

Glzym,, X)) = ;1-——\/[2_16)(1) [—5(_3;— m ) T e —my)|, (3.4.2)

is the two-dimensional Gaussian distribution function with mean m,; and covariance
matrix ¥3;. The weighting factors w; and means m; used in this example are given in
Table 3.1. The covariance matrices £; are equal to 2 x 2 identity matrices and the

region of interest B is set to be [—5,5] x [—5, 5].

The three-dimensional mesh plot of the objective function f(z) is given in Figure
3.2 and the corresponding contour plot is shown in Figure 3.3. It is clear from the
plots that the objective function has nine stationary points in B. Four of them give
local maxima as marked by “x” in Figure 3.3 and one of them gives a local minimum
as marked by “*” in Figure 3.3. The remaining four are saddle points as marked by
“0” in Figure 3.3. Two of the local maximum points are also global maximum points
with the same largest function value. The local minimum is not a global minimum

because f(z) takes on smaller values on the boundary of B.

The Fixed-Point homotopy scheme defined in (3.2.5) is first applied to find one
stationary point of the objective function. The matrix MF is set equal to the negative
of the 2 x 2 identity matrix since it is desired that the homotopy trajectory converges

to a local maximum of the objective function. Three different initial guesses:

P]- = [w11 O]T: P2 = [_43 ]-]T: and P3 = [_2?4]T7

are used in the Fixed-Point homotopy scheme and the homotopy trajectories are

shown in Figure 3.4. It is noted that all three trajectories reach the same local
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maximum point A = [—2,2]7. The three-dimensional plots of these trajectories are
depicted in Figure 3.5 where the variation of the homotopy parameter A along the

homotopy trajectory is illustrated.

Using the stationary point A, the relaxation scheme is applied to find the other
stationary points of the objective function in B. By relaxing the constraint on each
gradient component of the objective function, two relaxation trajectories I'y and I';
going through A are tracked and four more stationary points, B, C, D, and F are
located as shown in Figure 3.6. By checking their Hessian matrices, points B and D

are found to be saddle points while points C and E give local maxima.

Starting from point B, the relaxation trajectory I'; is tracked and two more
stationary points F' and G are found. Point F gives a local minimum while point &
is a saddle point. By following the relaxation trajectory I'y from point C', two more
stationary points H and I are reached. Point H is a saddle point and point I gives
a local maximum. Tt is noted that these stationary points can also be reached by

tracking the relaxation trajectories I's and I's.

All the relaxation trajectories through the stationary points which have been
found so far have now been tracked and no new stationary points are found. It is
concluded that the nine points summarized in Table 3.2 are the only stationary points
of the objective function in region B. Furthermore, point C' and point E are local
maximum with the same largest function value. Therefore, they give the greatest
local maxima and, in fact, they give the global maximum of the given objective
function in the region B because the boundary values of f(z) are all less than this

value.
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Table 3.1: Weighting Factors and Means of the Two-Dimensional Gaussian Distri-
bution Function in (3.4.2).

1]1.0] [25,2.5]

2 1.0 | [-2.5,-2.5]T

3105 [2.0,—2.0]7

4105 [-2.0,2.0"

Table 3.2: Locations and Types of the Stationary Points of the Objective Function
in (3.4.1).

Stationary Point Location Type

A [-2,2]T local maximum
B [0.061,2.229]T saddle point
C [2.5,2.5]T global maximum
D [—2.229, -0.061]7 saddle point
E [-2.5,—2.5]7 | global maximum
F [0, 0]F local minimum
G [-0.061, —2.229]T |  saddle point
H [2.229,0.061]7 saddle point

1 [2, —2]T local maximum
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Figure 3.1: llustration of the Trajectory Tracking Algorithm.
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Figure 3.2: Three-Dimensional Mesh Plot of the Objective Function in (3.4.1).
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Figure 3.3: Contour Plot of the Objective Function in (3.4.1).
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Figure 3.4: Fixed-Point Homotopy Trajectories in the Search of the Global Extrema
of the Objective Function in (3.4.1).
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Figure 3.5: Three-Dimensional Plot of the Fixed-Point Homotopy Trajectories in

Figure 3.4.
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Figure 3.6: Relaxation Trajectories in the Search of the Global Extrema of the
Objective Function in (3.4.1).



_71,

Chapter 4

Least-Squares Prediction-Error Approach and
Structural Model Updating

4.1 Least-Squares Prediction-Error Approach
4.1.1 Probabilistic Prediction-Error Model

In the time-domain prediction-error approach presented in Section 2.3.3, a class
of probabilistic models P is chosen in order to describe the uncertainty in the predic-
tion error EM. By making appropriate choices for the class of models P, several clas-
sical system identification methods, such as the least-squares output-error method,
can be derived and interpreted as the special cases of the statistical system identifi-
cation framework. However, by viewing these methods within the statistical system
identification framework, the prediction accuracy of the identified “best” model and

the precision of the identified model parameters can be evaluated.

For illustration, the derivation of a least-squares prediction-error approach based
on [1] is presented. Consider a choice for the class of models P which assumes the pre-
diction error EM is a zero-mean stationary (N, M)-dimensional Gaussian stochastic

sequence with both temporal and spatial independent components, i.e.,

No

har (B o) = Pj(\/— )M ( fi )}

Therefore,

) =TT | e (50 ) ~ sl @1

’Ln—
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The assumption of temporal independence implies that if one knows the prediction
error at other time instants, this does not influence one’s uncertainty of the prediction
error at a specific time instant. The assumption of spatial independence means that
if one knows the prediction error for the structural response at certain degree of
freedom in a structure, this does not affect one’s uncertainty of the prediction error
for the structural response at other degrees of freedom. From the point of view of
Bayesian probability, the probability density function in (4.1.1) is just a particular
choice for modeling the incomplete knowledge of the actual structural response. For
simplicity, it is also assumed that the uncertainty of the prediction error at each time

instant has the same probability distribution.

For this particular class of models P, N, is equal to N, and the prediction
accuracy parameters o are the set of independent standard deviations {ay,...,on,}
of the (N,M)-dimensional Gaussian distribution given in {4.1.1). In the special
situation where there is only one type of measured structural response, such as
acceleration which is typically measured in practice, and the structural response at
all the measured degrees of freedom is of the same order of magnitude, all of the
standard deviations o;’s can be assumed to be equal for simplicity. Therefore, there
is only a single prediction accuracy parameter ¢ and (4.1.1} can be simplified as

follows:

1 No M
(Y52, 200 = (Varo ot &P ( Bye) > 2 lyi(n) — ziln; a)]Q) (4.1.2)

i=1 n=1

The following derivation is done only for the case in which all of the standard devia-
tions o;’s are assumed to be equal. The results can be extended to the more general

case.
4.1.2 Calculation of the Optimal Parameters

As explained in Section 2.4.1, the optimal parameters & = [_@T, &7 for the class

of models Mp given the measured data Dy are determined by finding the global



maximum of the function fn(¥{¥;q, ZN) (or In fx(Y¥;2, Z))) in the parameter

space S, where In fy (YY; @, ZV) can be calculated from (4.1.2) as follows:

n fx (VY 0, ZN) = —N,N In(v2r0) — Z Z[y1 — z;(n; a)]*. (4.1.3)

i=1n=
Assume the model parameters g are fixed for the time being, the maximum value of

In fx(Y:a, Z¥) in (4.1.3) is achieved when o satisfies:
1 1

2

n;a)]”. (4.1.4)

g
[}
Q)

QNN

i=1 n=1
Therefore, the optimal prediction accuracy parameter for given model parameters o

is equal to the RMS of the prediction error at all of the measured DOF of a structure.

To find the optimal model parameters @, (4.1.4) is substituted into (4.1.3) and

the result is:

In fx(YV;0,6(a), Z2Y) = "JVD—;V1H[2TFBC}2(Q)]. (4.1.5)

It is clear from (4.1.5) that the optimal model parameters 4 can be calculated by

minimizing the function Jg{a) defined by:

Je(a) = 6%(a), (4.1.6)

with respect to a. Tt is noted that Jg{a) is just the arithmetic average of the RMS
prediction error at all the measured DOF of a structure. The optimal prediction

accuracy parameter & is then given by (4.1.4) when a = g, i.e,,

— zi(n; &)]2. (4.1.7)

|Eb>

z—ln. 1

From (4.1.6), it is noted that the optimal standard deviation & is unique even in the
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case when there are multiple optimal model parameters & in the parameter space ;.

Since the optimal model parameters @ are determined by minimizing the ob-
jective function Jg(a) given in (4.1.6), the derived least-squares prediction-error ap-
proach is essentially eqguivalent to the classical least-squares output-error system
identification method. For civil structures, the model output z;{n;a) is generally a
nonlinear function of the model parameters g even if the structure is modeled by us-
ing & class of linear models. Hence, there may be multiple optimal model parameters
because the objective function Jg{a) is generally non-convex and so might attain ifs
minimum value at more than one vector of model parameters & in the parameter

space S,.
4.1.3 Asymptotic Approximations in System Identifiable Cases

Suppose the class of models Mop is system identifiable given the measured data
Dy and S, is bounded, then SP*(Dy) contains a finite number K of optimal param-
eters &™) = [@(k)T, 5]Y,k=1,..., K. For each vector of optimal parameters &% the
probability distribution of the predicted system output for the next (M — N) sam-
pling time and a prescribed future system input Z M., can be obtained from (4.1.2)

and is equal to a [N,(M — N)|-dimensional Gaussian distribution given by:

(YN+1|O‘ ZN+1: Mp) =

- exp | — ! % % Y — zi(n; a2 ). (4.1.8)

(/27 ) No(M—N) 26% = 7L
Therefore, the asymptotic approximation of the updated probability distribution
of the predicted system output y; at time instant m, (N < m < M}, can be obtained

from (2.4.5) and is equal to:

p(yi(m)ipNuZm+laMP Zwk

2ma
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xexp (=5 lulm) - ai(ms )P
K

~ > weG(yi(m); zi(m; a*h, 67). {4.1.9)
k=1

In (4.1.9), the weight w; corresponding to the optimal parameters &'® can be deter-

mined by using (2.4.4} which is repeated below:

wy, = Zwk L wy = |An (@) 2 (@ ®), (4.1.10)
=1 W

In the above, G(y;(m); z:(m; &), %) denotes a Gaussian distribution for y;(m) with
mean z;(m;a"®) and variance 2. It should be noted from (4.1.9) that unless the
class of models Mp is globally system identifiable given the measured data Dy, i.e.,
K =1, the asymptotic approximation of p(y;(m)|Dn, Z}.,, Mp) is not a Gaussian

distribution even though each term in (4.1.9) is a Gaussian distribution.

The asymptotic approximation of the mean of the predicted system output y;(m)

can be determined by using (4.1.9) and is equal to:

o0

ys(m)p(yi(m)| D, 237 .1, Mp)dyi(m)},

s
=
S
Il
T

—Q

wi{ [ i) Glm)s(ms ), )dui(m) |

2
[M]=

b
I}

1

wiz;(m; a®)). (4.1.11)

|
Nk

o
i

Based on (4.1.11), the mean E[y;(m)] is a weighted sum of the model output for each
optimal model with parameters 4™ Similarly, the asymptotic approximation of the
variance of the predicted system output y;(m) can be obtained by making use of the

result in (4.1.11) as follows:
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Varly(m)] = Ely}(m)] — Elys(m)]?,
wg { | m)G(m);zi(mia®), &z)dyi(m)} — Elg(m)P,

Pl
N

o
Il

1

wi[6? + 22 (m; a®)] — Elyi(m))?,

I
N

-
Il
—

K
= &+ wri(m;a®) — Elyi(m)]”. (4.1.12)
k=1

To determine the weights wg's in (4.1.9), the Hessian matrix An(a) of

In fn(Y¥;a, Z¥) needs to be evaluated at cach vector of optimal parameters ",

The components of Ay(&*)) can be determined by using the definition:

P vV a, Z))
An(@®  — 4.1.13
A= - TSR @113)
By combining the results in (4.1.3) and (4.1.4), the following is obtained:
"2
In fn (Y0, Z2V) = —N,N [ln(\/ 7o) + C(r )} (4.1.14)

Tt can be shown by using (4.1.13) and (4.1.14) that An(& *)) is a block diagonal

matrix, i.e.,

By (@ 0
An(a®) = wa™)

0 Cn (&™)
The N, x N, matrix B N(Q(k)) corresponds to the model parameters a and the scalar
Cn{é (k)) corresponds to the prediction accuracy parameter o. Moreover, the com-

ponents of By (&™) and Cx (& %)} can be computed by using the following formulas:

N,N &*5*(a)
26’2 Bajaal g._:&(k) ’

[Bx(&®)]; = (4.1.15)
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2N,N

CN(Q(k)) = )
o

(4.1.16)

It is noted from (4.1.16) that the value of Cx(&™) is the same for each vector of

optimal parameters a®,

As explained in Section 2.4.2, the posterior probability distribution of the pa-
rameters o given the measured data Dy in the neighborhood of optimal parameters
& can be asymptotically approximated by a scaled N,-dimensional Gaussian dis-
tribution with mean &%) and covariance matrix Azt (Q(k}). Since the Hessian matrix
An (@™} is block diagonal, the (marginal) posterior probability distributions of the
model parameters a in the neighborhood of a® is Gaussian with covariance matrix
B (Q(k)). Similarly, the (marginal) posterior probability distribution of the predic-
tion accuracy parameter ¢ in the neighborhood of & is also Gaussian with variance
Oy (@®)). Furthermore, the determinant of the Hessian matrix A (&™) is equal to
the product of the determinant of matrix By(&®) and the value of C (a&™®). Since
the value of Cy(@®)) is the same for each vector of optimal parameters &%, (4.1.10)

can be simplified as follows:

Uk

= K
dim Ui

Wy . v = | By (@%)| Y2 (a.

4.1.4 Asymptotic Approximations in System Un-Identifiable Cases

Suppose the class of models Mp is system un-identifiable given the measured
data Dy and the prior probability distribution () is a smooth and slowly-varying
function. It is assumed that S&pf(DN) contains a finite collection of smooth and
non-intersecting d-dimensional manifolds or hyper-surfaces H,’s in the parameter
space S,. For each vector of optimal parameters & = [@T, 5|7 in the manifolds Hy’s,
the probability distribution of the predicted system output for the next (M — N)
sampling time and a prescribed future system input Z§,, can be obtained from

(4.1.2) and is equal to a [N,(M — N)]-dimensional Gaussian distribution given by:
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(YN+1 ZJJ\‘;IH: MP)

1 1 e
- exp Z yi(n) — z(n;a))° ] .(4.1.17)
(V2mg)NetM=N) ( 26° i= 1n—¥+1 )

Therefore, the asymptotic approximation of the updated probability distribution
of the predicted system output y; at time instant m, (N < m < M), can be obtained
from (2.4.16) and is equal to:

P(m)| Dy, Z, M)~ [ w(@) =
UH, 2ra

1 X
x €xp (*‘ﬁ[yi(m) - $i(m;g)]2) day,,

/u?{d w(@)G(y:(m); zi(m; 4), 6% )day,.  (4.1.18)

Q

In (4.1.18), the weight w(&) corresponding to the optimal parameters & can be

determined by using {2.4.17) which is repeated below:

w@) = ——2 @ @) =A@ @) (4119)

w
& R (24
w da;q 4
UHg

As before, G(y;(m); z;(m; &), %) denotes a Gaussian distribution for y;{m) with mean

® =

z;(m; &) and variance 62, It is noted from (4.1.18) that the asymptotic approximation
of p(y:i(m)| D, ZF.1, Mp) is not a Gaussian distribution even though the integrand
n (4.1.18) is Gaussian.

The asymptotic approximation of the mean of the predicted system output y;(m)

can be determined by using (4.1.18) and is equal to:

Blym)] = [ sulm)p(us(m)| Dy, Z51, M )ds(m)
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/um w(&) {/0:0 y(m)G (i(m); z:(m; &), &Q)dfy@(m)} day,,

-/ ., (@)zi{m; d)dar,. (4.1.20)

Q

Based on (4.1.20), the mean Fly;(m)] is a continuous weighted average of the model
output for each vector of optimal model parameters @. Similarly, the asymptotic
approximation of the variance of the predicted system output y;(m) can be obtained

by making use of the result in (4.1.20) as follows:

Varly(m)] = E[y}(m)| — Ely:,(m)l%,
~ fuud w(d) {/_O; y; (m)G (yi(m); z:(m; &), 5—2)dyi(m)} day,
—Ely:(m)?,
= fuﬂd w(&)[6? + z2(m; &)|day, — Elyi(m)}?,

= &+ ” w(@)xi(m; a)day, — Elyi(m)]*. (4.1.21)

To determine the weight w(&) in (4.1.18), the Hessian matrix Anx(c) of

In fy(Y:a, ZN) needs to be evaluated at all of the optimal parameters & in the
manifolds H,'s. All of the related formulas derived for the system identifiable case to
calculate the Hessian matrix Ax{a) are still applicable for the system un-identifiable
case. However, the scalar Ciy (&) is positive, therefore, the matrix By (&) must have d
zero eigenvalues under the assumption that the null space of Ax(d) is d-dimensional.
Furthermore, the determinant of A%(é&) is equal to the product of all the positive
eigenvalues of matrix By (@) and the value of Ciy(@). Since the value of Cy(G) is the

same for each vector of optimal parameters &, (4.1.19) can be simplified as follows:

w(@) = —"Y ) = (AT @) (@),

&)d
], v@dax,

where AT(&) denotes the product of all the positive eigenvalues of matrix By(é).
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4.2 Identifiability of Linear Modal and Structural Models

4.2.1 Linear Time-Invariant Models

The modal identification technique using the class of linear time-invariant mod-
els with classical normal modes has been applied to seismic response records of
different types of structures such as buildings and bridges to estimate their modal
properties, The results of identification show that a small number of linear classical
modes can reasonably approximate both the translational and torsional vibration of
tall buildings when the earthquake-induced ground acceleration is not very high so
that there is no significant structural yielding and damage. In that case, the identi-
fied modal properties of structures are reasonably close to the corresponding values
derived from theoretically based finite element models. Therefore, the class of linear
time-invariant models is usually adopted as a first step towards system identification

of structures.

Strictly speaking, all civil structures are spatially continuous and therefore con-
tinuous mathematical models such as partial differential equations are suitable to
describe their behavior. But it is usually difficult to solve these partial differential
equations either analytically or numerically. Therefore, in the analysis and design
of most structures, it is usually assumed that a finite number of suitable degrees of
freedom can be chosen to represent the possible configuration of a structure. By
applying principles of mechanics, such as Newton’s laws and the principle of virtual
work, and finite element modeling, a set of ordinary differential equations in terms
of the chosen degrees of freedom can be derived which approximates the dynamic

behavior of the structure.

Assume Ny, suitable degrees of freedom are chosen to describe the configuration
of a structure. It is also assumed that the structure is subject to ground acceleration
induced by earthquakes and the ground acceleration %(t) is considered to be uniform
across the base, which is the case when the size of the base of the structure is
small compared with the wave length of the incident seismic waves. Therefore, the

vibration of the structure can be described by using the following set of ordinary
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differential equations:

Mi(t) + C4(t) + Kq(t) = —Mrz(t), ic. ¢(0) and ¢(0). (4.2.1)

The Ngop X Ng,p matrices M, C,andK are the mass, damping, and stiffness matrix
respectively, where the mass matrix M and stiffness matrix K are symmetric and
positive-definite, except if there are degrees of freedom with no associated inertia

such as in the lumped mass approach, then the mass matrix is positive-semidefinite.

In theory, the damping matrix €' can be constructed from the damping of each
individual structural component. However, the energy dissipation characteristics of
structural material are not well understood and a portion of damping in structures
also comes from joints and other non-structural elements. Therefore, the damping
of structures is usually defined directly at the structural level rather than in terms
of individual components. It is a well-known result that the class of linear time-
invariant models possesses classical normal modes, i.e., the mode shapes are the
same in both the undamped and the damped case, if and only if the damping matrix

C satisfies the following condition [2]:

CM'K=KM™'C, (4.2.2)

or, equivalently, M 1C and MK commute. This type of damping is usually re-
ferred to as classical or proportional damping. Instead of specifying the damping
matrix itself, the damping is prescribed directly in terms of the damping factor of

each classical normal mode.

The vector g(t) contains the relative structural displacement at each degree of
freedom with respect to the base of a structure. The vector r contains the pseudo-
static influence coefficients for all the degrees of freedom and this can be determined
from the geometry of the structure and the direction of ground motion. In the spe-

cial case where only the vibration of a structure in one direction is considered and
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the ground motion is also parallel to that direction, all of the components of r are
just equal to one. Typically, the initial conditions ¢{0) and ¢(0) are assumed to be
zero if the structure is considered to be at rest prior to the ground motion. In this

dissertation, the initial conditions will be assumed to be equal to zero.
4.2.2 Modal Analysis

In general, the set of ordinary differential equations in {4.2.1) is coupled and
needs to be solved simultaneously which will be very expensive if there are many
degrees of freedom in the structural model. Under the assumption of classical damp-
ing, the set of coupled equations can be transformed into a new set of uncoupled
equations by using a particular coordinate transformation. Let w; and gé(j ) denote
the jth natural frequency and corresponding mode shape of the structural model

and they satisfy the following generalized eigenvalue problem:

Ko9 = MW, j=1,..., Nuo. (4.2.3)

Since both the mass matrix and stiffness matrix are symmetric, it can be shown that
different mode shapes Q(j) and Q(I) are orthogonal with respect to the mass matrix

and the stiffness matrix, i.e.,

Q(j)TMQ(l) — QU)TKQ(” =0, ifj#L (4.2.4)

The orthogonality properties in (4.2.4) still hold even in the case of repeated
natural frequencies. Since mode shapes are determined only to within a constant
multiplier, they can be scaled in any convenient way. Usually, mode shapes are
normalized so that they are orthonormal with respect to the mass matrix. The
modal matriz © of the structural model is a Ngo5 X Ngoy matrix whose individual

column is the corresponding mode shape, i.e.,

P = [Q(l), o 7Q(Ndof)]_
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Therefore, by combining the results in (4.2.3) and (4.2.4), the following relations are

obtained:

®TM® =1 and ®TK® = Q, (4.2.5)

where Q = diaglwi, ..., wk,, |

Under the assumption of classical damping, the mode shapes are also the gen-
eralized eigenvectors of the mass matrix and the damping matrix. Therefore, the

mode shapes also have the following orthogonality property:
eV eV =0, ifj#£L

Let the damping factor ¢; of the jth classic normal mode be defined by:

qﬁ{j)TCqS(j)

ij

Gy

Then, the following relation is obtained:

dTCP = A, (4.2.6)

where A = diag[2Ciwy, . . . )QCNdowadof]'

By using the orthogonality properties in (4.2.4), it can be shown that the mode
shapes are also linear independent vectors in RNews  Therefore, they qualify as a
basis for the vector space RM#s and the displacement vector g(t) can be expressed

as a linear combination of the mode shapes, 1.e.,

g(t) = y(t). (4.2.7)

The components of the vector n(t) are usually referred to as principal or normal
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coordinates of the structural model. By substituting (4.2.7) into (4.2.1), premulti-
plying by ®7, and using (4.2.5) and (4.2.6), the following set of ordinary differential

equations is obtained:

i(t) + Ag(t) + Qn(t) = —pz(t), (4.2.8)

where p is the vector of modal participation factors and is given by p = O Mr.

Since the matrices A and 2 are diagonal, the set of ordinary differential equa-
tions in (4.2.8) contains a set of Ny,y uncoupled equations in terms of the principal

coordinates (%), ie.,

i () + 2Gwm; (E) + wing(t) = —p;E(t), 3=1,..., Naog. (4.2.9)

Let ¢ (t) represent the contribution to the displacement vector g(t) from the jth

classic normal mode, i.e.,

g (t) = 6Wn;(2).

Therefore, (4.2.7) and (4.2.9) can be rewritten as:

i o (4.2.10)

and

GO (t) + 2Gw; gD (1) + g9 (1) = —BDVE(R), 5=1,..., Naos, (4.2.11)

where g(j ) is the vector of effective modal participation factors for the jth mode and

is given by Q(j ) = pjg(j }[3]. It is noted that the effective modal participation factors
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are independent of the normalization chosen for the mode shapes. Furthermore, the

effective participation factors satisfy the following constraints:

Naog
3 9D =3p=0d"Mr=r. (4.2.12)
j=1 -

It is a fact that the contribution of higher modes to the structural response is
usually negligible when compared with the dominant modes. This is because the
higher modes are intrinsically more difficult to excite and typical earthquake ground
accelerations also do not have enough energy in the high frequency range. Therefore,

it is usually assumed that only the first N,,(< Ngys) dominant modes contribute to

the structural response and (4.2.10) can be approximated by:

g(t) ~ 3" g9 (). (4.2.13)

o,
Il
'

By solving each ordinary differential equation in (4.2.11) and using (4.2.13), the

seismic response of a structure is obtained.
4.2.3 Model Identifiability of Linear Modal Models

When the modal analysis approach presented in Section 4.2.2 is adopted to ana-
lyze the response of linear time-invariant models, the model parameters involved are
the natural frequencies w;’s, damping factors (;’s, and effective modal participation
factors Q{j)’s. Since all of the model parameters in this case are related directly to
the classical normal modes, this type of linear time-invariant models is usually re-
ferred to as modal models. System identification techniques which use the class of
modal models are classified as modal identification methods. It is of interest to note
that modal models can be derived without the need to develop a structural model
involving the mass, damping, and stiffness matrices and this is the major advantage

of the modal identification approach.

Because usually the structural response at a small number Ny(< Naog)} of de-

grees of freedom is measured, only those effective modal participation factors which
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correspond to the measured degrees of freedom can be estimated in modal identifica-
tion. A theoretical study of the model identifiability of the class of modal models is
given in [3]. It is shown that the class of modal models is globally model identifiable

given any finite-duration input if and only if the following conditions are satisfied:

1. There are no repeated modes, i.e., no two modes have the same natural fre-

quency and damping factor.

2. For each mode, there exists at least one measured degree of freedom such that

the associated effective modal participation factor is not zero.

It is clear that if the first condition is not satisfied, the effective modal participation
factors of the repeated modes at a measured degree of freedom cannot be determined
uniquely. On the other hand, if the second condition is not satisfied, the particular
mode will have no contribution to the model output and therefore the associated

natural frequency and damping factor cannot be determined.

Because the energy content of typical ground acceleration records falls off at
the high frequency range and higher modes are intrinsicly difficult to excite, the
contribution of higher modes to seismic structural response is usually negligible.
Therefore, the higher modes cannot be identified reliably if they are included in
the modal model. Furthermore, there is a decrease in the signal-to-noise ratio for
higher modes in modal identification of real structures because of an increase in the
noise at the high frequency range. Therefore, it is concluded that only the modal
parameters of the first N,,(< Nyf) dominant modes can be estimated reliably from
seismic structural response data and these modal parameters are also globally system

identifiable if the measurement noise and modeling error are not too large [3].

A very efficient computer program MODE-ID based on the least-squares output-
error method was developed by Beck for modal identification using real seismic struc-
tural response records. In MODE-ID, the estimation of the modal parameters of the
dominant modes is accomplished by using a modal minimization procedure which

consists of the following steps:
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1. Successive modal sweeps consist of a sequence of minimization with respect to

the modal parameters of a single mode.

2. For each modal minimization, the original minimization problem is simplified
so that only the natural frequency and the damping factor of a mode are

considered as parameters.

3. A sequence of alternating one-dimensional minimization with respect to the

natural frequency and the damping factor is performed until convergence.

4. Additional sweeps are performed if necessary until the change in the fit between

the model output and measured structural response is insignificant.

In spite of the broad application of modal identification techniques to real seismic
response records, modal identification has its own limitations. First of all, no direct
information can be extracted from the measured data regarding the unmeasured
degrees of freedom of a structure. More specifically, the effective modal participation
factors at the unmeasured degrees of freedom can not be estimated directly from the
measured data. Therefore, it is not possible to predict the future structural response
at these unmeasured degrees of freedom and estimate the level of earthquake-induced
force such as the base shear. As an approximation, the mode shape amplitudes
at the unmeasured degrees of freedom are estimated by using simple interpolation
or extrapolation based on the identified mode shape information at the measured
degrees of freedom. Even though this method is straightforward, it is not a very

rigorous approach.

Another limitation of modal identification is related to the constraints on the
natural frequencies and effective modal participation factors. In modal identification,
the natural frequencies are only required to be positive and in ascending order. For
the effective modal participation factors, they are only required to satisfy (4.2.12).
However, when prior knowledge is used to impose certain constraints on the stiffness
matrix, corresponding constraints will also be imposed on the natural frequencies

and effective modal participation factors. For example, the class of linear chain
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models constitutes a subclass of the linear time-invariant models with particular
tridiagonal stiffness rnatrices. This prior knowledge is not easily utilized when a

modal identification approach is used.
4.2.4 Model Identifiability of Linear Structural Models

Instead of using the modal parameters {w;, (;, g(j) :j =1,..., Naos}, the ele-
ments in the damping matrix ' and the stiffness matrix K can also be designated as
the model parameters g for the class of linear time-invariant models. It is implicitly
assumed here that the mass matrix M is known. Because all of the model parameters
in this case have clear physical meaning on the structural level, this type of model
is referred to as a structure! model. Moreover, it can be shown that knowing all
the modal parameters and given the mass matrix, a unique damping matrix C' and

stiffness matrix K can be determined by the following formulas:

Ndof . .
C=MPAS™M = M ( 3 zgjwjg(f@(fﬂ') M, (4.2.14)
=1
and
Naoy _ o
K =MQ3"M =M > wigWgl" | M. (4.2.15)
=1

A theoretical study of the model identifiability of the class of structural models
was presented in [3]. It was proven that a subclass of structural models whose
corresponding modal models satisfy the two conditions for global model identifiability
in Section 4.2.3 is locally model identifiable if and only if the structural response is
measured at no less than half of the total number of degrees of freedom. Furthermore,
the subclass of structural models is globally model identifiable if and only if the
structural response is measured at every degree of freedom. Because of the highly
restrictive conditions on the number of measured degrees of freedom in a structure,
the subclass of structural models is too general to guarantee unique determination of

a model from its input and output unless all of the degrees of freedom are measured.
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If the subclass of structural models is further restricted, more relaxed conditions
for model identifiability can be obtained but this may also reduce the modeling
capability for real structures. One such example is the class of linear chain models.
In this case, the damping matrix and the stiffness matrix have the property of being
tridiagonal. Moreover, they have only N independent parameters compared with
2Ngos — 1 independent parameters for a general symmeiric and tridiagonal matrix
of order Ny,s. The class of linear chain models is often used as simplified models for

planar-frame buildings with Ny, stories.

A theoretical study of the problem of determining the damping matrix and the
stiffness matrix of the class of linear chain models given the horizontal ground motion
and the model response at only one degree of freedom was presented in [4-5]. It was
shown that the class of linear chain models is globally model identifiable if the model
response at the first floor is available. Furthermore, the class of models is only
locally model identifiable if the model response at any other floor is available. In
addition, upper bounds on the number of equivalent solutions of interstory stiffness
were estimated for the local model identifiability case. The degree of non-uniqueness
of the stiffness matrix is found to monotonically increase as the model response at
a higher and higher floor is measured. In the case of forced vibration tests in which
shakers are used to excite the building, results on the global model identifiability of
some of the damping and stiffness parameters of the class of linear chain models were
given in [6].

Based on the results in [4], there are at most Nyof! different equivalent solutions
of interstory stiffness when the model response at the roof is available. However,
there is no immediate answer to the problem of determining the exact number of
solutions or of calculating these solutions. A novel numerical approach which sys-
tematically searches the parameter space of interstory stiffness was presented to find
all the solutions of interstory stiffness [7]. The idea is based on the global model
identifiability of the natural frequencies and effective modal participation factors.

Since these modal parameters are uniquely determined given any ground motion, all
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the equivalent solutions of interstory stiffness must produce the same corresponding
modal parameters as the nominal interstory stiffness. Therefore, different solutions
of interstory stiffness can be found by systematically relaxing the constraints on

matching these modal parameters.

Actually, the mentioned model identifiability problem of the class of linear chain
models can also be solved by using the relaxation scheme presented in Section 3.2.3.
For illustration, consider a class of six-degrees-of-freedom linear chain models which
is used to model a six-story building as shown in Figure 4.1. The mass matrix M

and stiffness matrix K are given by:

- . &, + 0, —8, 0
1 0
. —0, B,+8; O,
M=m, . and K =k, 0 ,
. 05 +0s —bs
0 1
- - 0 —05 &

where m, is the mass of each floor and k&, is some nominal interstory stiffness. These
two parameters are assumed to be known and the stiffness matrix K is parameter-
ized by the vector of stiffness parameters, § = [f),...,0]7. In the particular case
considered here, the ground motion and the model response at the roof, ie., gs, are
assumed to be available. The problem is to determine the number of equivalent

stiffness models consistent with these data.

Udwadia [4] showed that there is at most 6! = 720 equivalent stiffness mod-
els in this case. Later, it was shown in [7] that there are only eight equivalent
stiffness models if the nominal stiffness model is assumed to be parameterized by
8=1[1,1,1,1,1,1}7, ie, a uniform linear chain model. It turns out that all of these
equivalent stiffness models have the same natural frequencies as the nominal stiff-
ness model. Let wy,...,ws denote the six natural frequencies of a stiffness model and

w?,...,wg be the corresponding natural frequencies of the nominal stiffness model.
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Therefore, to find all of the equivalent stiffness models, the roots of the following set

of nonlinear algebraic equations need to be found:

(4.2.16)

As pointed out in Chapter 3, the homotopy scheme and the relaxation scheme
can be used to search for all of the roots of a set of nonlinear algebraic equations
such as (4.2.16). Since one of the roots of (4.2.16), i.e., the uniform stiffness model,
is assumed to be known already, the relaxation scheme is applied to find all the other
roots of (4.2.16). The stiffness parameters for the eight computed equivalent stiffness
models are summarized in Table 4.1. These computed models are the same as the

results in [7].

Twelve relaxation trajectories were tracked in searching for these eight equiva-
lent stiffness models. These relaxation trajectories are labeled as I'y,...,I"12 and all
of the different equivalent stiffness models which can be reached by each trajectory
are summarized in Table 4.2. A “o” mark is placed in Table 4.2 to indicate a par-
ticular equivalent stiffness model can be reached by a certain relaxation trajectory
while blanks mean the opposite. For each relaxation trajectory, the relaxed natural

frequency is indicated in the last column of Table 4.2, In Table 4.2, a “+” mark is

used to designate a relaxation trajectory which is a closed curve.

The connectivity of the network spanned by the twelve relaxation trajectories
can be reorganized as shown in Table 4.3, which is useful in determining whether
all the possible relaxation trajectories have been tried from each equivalent stiffness
model which has been found. Table 4.3 shows that all of the 48 possible cases for
relaxing each natural frequency at a time from each found equivalent stiffness model

has been covered by the 12 relaxation trajectories that are tracked.
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4.3 Structural Model Updating

4.3.1 Introduction

Partially due to the aforementioned limitations of modal identification, research
on the challenging problem of structural model updating has gained a lot of attention
in the system identification community in the last few years. The major motivation
to study structural model updating is to find suitable ways to match a theoretically
based model of a structure with measured structural response data. This problem is
important because structural model updating has the potential to be implemented
as a tool for structural health monitoring which can provide early warning of dam-
age of structural components [8-10]. From the perspective of system identification,
structural model updating is essentially a system identification problem in which the

stiffness matrix of a structure is to be estimated by using the measured data.

There are two major inherent difficulties in structural model updating using
real seismic structural response records. The first constraint is that the structural
response is usually measured at only a few degrees of freedom in a structure. If there
is no constraint on the structure of the stiffness matrix other than it is symmetric and
positive definite, the structural response must be measured at no less than half of all
the degrees of freedom in order for the stiffness matrix to be at least locally model
identifiable as discussed in Section 4.2.4. This requirement will impose a severe
restriction on the number of degrees of freedom allowed in the structural models
which subsequently causes the damping and stiffness distribution of a structure to
be modeled very poorly. Therefore, there is a mismatch between the desired detail

in the stiffness matrix and the sparse structural response records.

Another constraint in structural model updating is related to the accuracy of
stiffness matrix estimation and can be explained from the viewpoint of modal identi-
fication. It is recalled from (4.2.15) that the stiffness matrix is more sensitive to the
modal parameters of higher modes than to the modal parameters of the dominant
lower modes. As discussed in Section 4.2.3, only the modal parameters of the domi-

nant modes can be estimated reliably from real seismic structural response records.
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Since the modal parameters of the higher modes cannot be identified accurately, the
estimation of the stiffness matrix will not be accurate even when the stiffness matrix
is locally model identifiable in theory. These two constraints in structural model

updating are discussed in more detail in the following.

Because the natural frequencies w;’s and effective modal participation factors
g(j)’s of a stiffness matrix K are related by (4.2.3), the free parameters in the stiffness
matrix also need to satisfy these constraints, that is, the stiffness matrix must gener-
ate a set of compatible natural frequencies and effective modal participation factors.
The total number of constraints in (4.2.3) depends on N,,, the number of modes con-
sidered, and N,, the number of measured degrees of freedom in a structure. However,
there may be some redundancy among these constraints because of the particular
structure of the stiffness matrix and the relatioﬁs given in (4.2.12). Therefore, if
Ny, < Ny, there are Ny, (N, + 1} constraints in theory. But, if Ny, = Nyoy, there
are only N,,(N, + 1) — N, constraints in theory.

Apparently, if the number of free parameters in the stiffness matrix is larger
than the total number of constraints, the stiffness matrix becomes un-identifiable
and so cannot be determined uniquely given a set of compatible natural frequencies
and effective modal participation factors. To give precise description of the stiffness
distribution in a structure, the stiffness matrix needs to be at least locally unique or
identifiable. Hence, for a given number of modes and measured degrees of freedotn in
a structure, there is a limit on the number of free parameters allowed in the stiffness

matrix in order to make the stiffness matrix at least locally identifiable.

As discussed in Section 4.2.3, only the modal parameters of the dominant modes
can be estimated reliably from seismic structural response records. Based on the
formula in (4.2.15), the stiffness matrix is more sensitive to the modal parameters of
higher modes than to the modal parameters of the dominant lower modes. Therefore,
only the modal parameters of the dominant modes can be used in order fo make
accurate estimation of the stiffness matrix. Otherwise, the estimated stiffness matrix

will be unreliable even if in theory it is locally identifiable.
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The goal of structural model updating is to estimate a stifiness matrix which can
provide detailed description of the stiffness distribution in a structure. Therefore,
the more parameters in the stiffness matrix the better. However, because of the
aforementioned constraints, there is a trade-off between the uniqueness and accuracy
of the stiffness matrix and the detail of description of the stiffness distribution in a
structure. If the stiffness matrix has too many parameters, the stiffness matrix will
become un-identifiable and its estimation is also not reliable. On the other hand, even
if a stiffness matrix with few parameters can be uniguely and accurately identified
from the seismic structural response records, it may not suitably describe the stiffness

distribution int a structure.

The number of dominant modes whose modal parameters can be estimated
reliably from seismic structural response records depends on the frequency content
of the ground motion and the type of structure. For typical buildings, the number
of dominant modes in one direction is usually below five. In order to have more
detailed description of the stiffness distribution in a structure without sacrificing
the accuracy of stiffness estimation, an alternative way is to increase the number of
measured degrees of freedom in a structure so that more mode shape information
can be incorporated when determining the stiffness matrix. But this may not be
feagible in all situations because of economic reasons or technical limitations. In any
case, the limit on the number of free parameters of the stiffness matrix is not known

a priori and needs to be explored.
4.3.2 Single-Stage Approach

Basically, the structural model updating problem has been explored by using two
types of approaches. The first type of approach is to decompose the problem into
two stages as in [10]. In the first stage, modal parameters of the dominant modes are
identified by using the modal identification technique. In the second stage, several
methods have been proposed to adjust the stiffness matrix. One way is to minimize
the fit between the calculated modal parameters and the corresponding identified

modal parameters. Another method is to minimize the fit between the calculated
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modal response time histories and the corresponding identified modal response time
histories which can be artificially constructed from the identified modal parameters.
The main issue in these two-stage structural model updating approaches is that
there is no well-accepted guideline in selecting the weight for each dominant mode.

Different combination of weights will give different estimates of the stiffness matrix.

Another type of approach is to estimate the stiffness matrix using the measured
seismic structural response time histories directly without identifying the modal pa-
rameters first. Unlike the two-stage approaches, the estimation of the stiffness matrix
is accomplished in a single stage. The advantage of the one-stage approach is that the
estimated stiffness matrix depends on the structural response time history directly
and therefore only one class of probabilistic models My is needed in the statisti-
cal system identification framework. The problem of explicitly choosing weights for
each dominant mode does not arise. Furthermore, the identified posterior stiffness
matrix is based on the directly measurable structural response time history rather
than the modal parameters which can only be estimated indirectly by using modal

identification techniques.

To obtain a reliable and locally unique estimate of the stiffness matrix, a so-called
substructuring approach is used to reduce the number of parameters in the stiffness
matrix. The given structure is conceptually decomposed into a small number of Ny
substructures. The contribution of stiffness from different individual substructures
is specified by using a vector of normalized and non-dimensional stiffness parameters

§=10,...,0n,]" so that the stiffness matrix K is given by:

Ng

K=K0+Z_9;Kl, (4.3.1)
=1

where K, represents that part of the stiffness matrix which is considered accurately
known and so need not be parameterized, and K; represents the stiffness matrix of
the Ith substructure. All of the stiffness matrices K’s are symmetric and positive

semi-definite Ngor X Ngo5 matrices. The stiffness parameters 6;’s are usually scaled
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appropriately so that they are of the same order.

As discussed in Section 4.2.1, the damping of linear time-invariant models is
usually prescribed directly in terms of the damping factor of each mode. Therefore,
the damping factors of the first N,, dominant modes are also considered as part of the
model parameters a. Therefore, there are two types of model parameters: stiffness
parameters 6;’s and modal parameters {;’s. Let { = [(1,...,{n,,)7, then the vector
of model parameters is g = [QT, ¢ T]T and there are N, = Ny -+ N,, model parameters

in total.

For real seismic structural response, only the absolute acceleration is usually
measured because it can be done readily with an inertial (“seismic mass”) trans-
ducer. By subtracting the corresponding measured ground acceleration, the relative
acceleration of the structural response can be obtained. Let £° denote the set of
integers corresponding to the numbering of the measured degrees of freedom of the
structure. For each i € £°, let b;(n) denote the measured relative acceleration at the
ith degree of freedom of the structure at time instant n. The corresponding model
output at the same degree of freedom and time instant is §;(n; a). In the least-squares
prediction-error approach described in Section 4.1, the optimal model parameters &
are determined by minimizing the objective function Jg(a) given in (4.1.6). Let s:(a)
be the sum of squares of the prediction error of the relative acceleration at the ith

degree of freedom of the structure, i.e.,

si(@) = Y_[Bi(n) ~ Gi(m; ). (4.3.2)

> sila). (4.3.3)

When the class of linear structural models is locally system identifiable given

the measured data and the set of allowable model parameters S, is bounded, there is
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a finite number of optimal model parameters @. The generalized trajectory methods
presented in Chapter 3 can then be applied to find the least local minimum (LLM)
of Jg{a) in the parameter space S,, which in most cases gives the global minimum of

Jr(a) over the parameter space Sy. In particular, the Fixed-Point homotopy scheme:

gp(a ) = (L = N)Mp(a - a,) + AVJg(a) =0, (4.3.4)

can be applied to locate the first vector of optimal model parameters, and then the

relaxation scheme:

gpla,A) =VJe(a) - (1 -z =4, (4.3.5)

can be applied to systematically search the parameter space S, for other optimal

model parameters, if any.
4.3.3 Calculation of VJg(a)

In order to use the homotopy scheme in (4.3.4) and the relaxation scheme in
(4.3.5) to find all of the optimal model parameters @, the gradient vector of the objec-
tive function Jg(a) is needed. To reduce numerical round-off error and increase the
accuracy in tracking the homotopy and the relaxation trajectories, this gradient vec-
tor needs to be calculated by using analytical expressions instead of finite-difference
approximations. From (4.3.3), the gradient vector of Jg(a) can be calculated as

follows:

Z Vsi(a). (4.3.6)

Furthermore, the gradient vector of s;(a) can be computed from (4.3.2) as:

Vsila) = =2 Z_:l[?;i(n) — Gi(n; @) Véi(n; a). (4.3.7)
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The discrete-time model output §(n;a) and its associated gradient vector
Vii(n;a) can be obtained by solving the governing continuous-time equations of
motion using any suitable numerical time integration scheme such as the Newmark
average-acceleration scheme. From (4.2.13), the model acceleration response §;(t; a)

is given by:

where the contribution to the model acceleration response from the jth mode q(’ ) (t; 2)

satisfies the differential equation given in (4.2.11), i.e

it a) + 26w (5 0) + w2 (4 0) = —BVE(H). (4.3.8)

It is noted from (4.3.8) that qf’ )(t; a) depends only on the modal parameters of the

jth mode but not the modal parameters of any other modes. Theretore,

0§ (t0) _ 947 (a) _ 96 (t:0)
Ok Oy, a8

=0, ifj#k (4.3.9)

()
The differential equation which —‘%‘l must satisfy can be obtained by differ-

entiating (4.3.8) with respect to (;:

o)
(¢
+ 2w, (8, )+W?M =0. (4.3.10)

& 8¢9 (t; a) d |8¢7(t )

@ o 2% |~ 8¢,

D 3
To compute 8—‘1@;%:’—&), the chain rule and (4.3.9) are used. Therefore,

0§ (t:0) _ 07 (t:0) By 947 (t:0) 057

. . 4.3.11
ng 8&.?3' 391 )82(3) 391 ( )
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8¢ (1;0) aqt) (t;0)
- all - ]
wj QBIJ

Similarly, by differentiating (4.3.8) with respect to w; and ﬁ(J )

satisfy the following differential equations respectively:

& |83 (1; a) d |69 (t; a) 8¢9 (t; a)
dt? { Ow; 26w J'dt Buw; +2qu (8 ) +w _—*“awj +2w;q¥ (£;0) = 0,

(4.3.12)

and

P2 3@’(3)( ) aqm(t;g) 3q(3)( ) )

By solving the set of three differential equations (4.3.10), (4.3.12), (4.3.13), and
using (4.3.11), the gradient vector of the model acceleration response Vi? (t; a) can

be computed as:

8 (t; a) 837 (t; a) 0 04 (t; a) o

()
Vi (ta) = TN O, O T
and
N ,
Vita) =S Vil (t; ).
j=1
8,6"")

4.3.4 Calculation of the %“gl and —Si—

To compute % and a—ﬁL in (4.3.11), recall that the natural frequency w; and

mode shape Q(-’ ) satlsfy the generahzed eigenvalue problem:

K(0)Y = w;Mgl. (4.3.14)

It is assumed that there is no repeated natural frequency, therefore w; and 9(5‘)
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are smooth functions of the stiffness parameters §. By differentiating (4.3.14) with

respect to 6; and using (4.3.1), the following is obtained:

o Bw? _
K(f) — wa]g_Ql — a_nggm — KW, (4.3.15)

Pre-multiplying (4.3.15) with QU)T, and using (4.2.4) and (4.3.14), gives:

a(;)z- AT ; Ow; 1 VA i
i _ ) K )] e RSN (J)' 4.3.16
_91 =¢ 1M or % 2 j¢5 K¢ ( )

Because there is no repeated natural frequency, the matrix [K(¢) — w; ] has
rank Ng,;—1 and therefore has a one-dimensional null space which is actually spanned

by the mode shape ¢”. Since the coefficient matrix [K(§) — w?M] in (4.3.15) is
‘ Al

)
g;g! can not be solved from (4.3.15) without more constraints on —5;—.

singular,

Recall that Q(j) is normalized with respect to the mass matrix, i.e.,

Q(j)TMQ(J') = 1. (4.3.17)
By differentiating (4.3.17), the following is obtained:

3@(3‘ } B

(57 - 1.3
o M =0, (4.3.18)

Consider the combined set of equations {4.3.15) and (4.3.18), i.e.,

KO —w?M | 669 | Zipsd — K@
(#) —w; 9¢ _ | 9 ¢ L , {4.3.19)
¢(j)TM 06, 0

The {Ngos+1) X Ngop coeflicient matrix in (4.3.19) is of rank Ny, since the submatrix
|K(8) — w?M] has N4y — 1 linearly independent rows which are orthogonal to ¢

: . )
and from (4.3.17), the row vector QU)TM is not orthogonal to Q(’). Therefore, %%

can be obtained by solving the set of equations (4.3.19).
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An efficient way to solve (4.3.19) is to transform the following (Ny + 1) x

(Ngos + 1) matrix:

B . .
K(8) - wa %.!LMQ(J) _ K@(})
¢(j)TM 0

to the row-reduced echelon form by using elementary row operations [11]. The re-

sulting row-reduced echelon form is:

agpld)
I Bor
0 0

where [ is the identity matrix of order Niog.

apt
To compute B0, recall that:

a9 = pj¢§j) _ <;5§")Q(3’)TM£.

Differentiation of (4.3.20) with respect to 6; yields:

o6, a6, oo,

) &) i\ T
aﬁij _ (3@1 ) Q(j)TM£+¢£j) (aéj ) Mr.

(4.3.20)
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Table 4.1: Equivalent Stiffness Models for a Uniform Six-Degrees-of-Freedom
Linear Chain Model.

No. 01 5 ts 04 s Og
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.5848 0.6963 1.2875 0.7574 1.1766 0.7898
3 1.9970 0.7980 0.7095 1.3848 0.7113 0.8980
4 2.0000 1.0000 1.0000 0.5000 1.0000 1.0000
5 2.0932 1.0476 0.7240 0.7374 0.6705 1.2738
& 2.2911 0.6304 0.9321 1.1774 0.9515 0.6631
7 2.4913 0.8777 0.6514 1.1106 0.6672 0.9475
8 2.8252 0.6753 0.8826 0.9021 0.8753 0.7520

Table 4.2: Relaxation Trajectories and Reachable Equivalent Stiffness Models.

Equivalent Stiffness Model Relaxed

Trajectory | 1 2 3 4 5 6 7 8 W
*1'y . . . . . . . o wh
*Ty . o o . . . . . W
*T'y . . . . ws
*T'y . . . _ . Wy
*Ts . . ® . wWs
L'g . . We
*T' . . . . W
I's . . ws
L'y . . we
*T10 hd . hd hd s
T . . . . Wy

Tya L . . J W
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Table 4.3: Connectivity Table of Relaxation Trajectory Network.

Stiffness Relaxed Natural Frequency
Model W [155) W3 Wy Wy We
1 F] FQ Fg F4 FS FG
2 I, r, I's 'y ry I's
3 Fl | Pg F4 F5 I'y
4 F]_ Fz Flg ].—‘]_}_ F'T I‘S
5 Iy I's o Iy [ s
6 Fl Fz Fg F4 P? F12
7 Fl Fg FIO 1—‘11 FS PQ
8 Iy Iy I'o I'n Iy 2
P m, sensor
Ok
qs 1Mo 6%
>
05k
4 o | °
9,k
q3 mo 4850
e ——
01k
q2 l'n0 3 QO
——— >
6-k
q m, 250
—— -
Sensor 01k,

Figure 4.1: Six-Degrees-of-Freedom Linear Chain Model of a Six-Story Building.
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Chapter 5

Applications to Simulated and Real Structural
Response Data

5.1 Single-Degree-of-Freedom System

In this example, the class of single-degree-of-freedom linear oscillators is chosen
to model a single-degree-of-freedom system subject to earthquake ground motion

#(t). The equation of motion of a single-degree-of-freedom linear oscillator is given

by:

(1) + 2Cwq(t) + wiq(t) = —Z(t).

Therefore, the vector of model parameters g for the class of models considered con-
tains the natural frequency f = 32 and the damping factor (, i.e.,, a = [£,¢]F. The
particular earthquake ground acceleration record used is the SO0E component of the
1940 Imperial Valley earthquake recorded at the El Centro Imperial Valley [rrigation
District. Because that ground acceleration record has strong components in the fre-
quency range between 1 Hz and 3 Hz, the system to be identified is assumed to have
natural frequency f, equal to 2 Hz and damping factor {, equal to 5% of critical.
No modeling error and measurement noise is considered in this example. Thus, in

contrast to real structural systems, the system considered lies in the chosen class of

models.

By using the first 10 seconds of the selected ground acceleration record, the
relative acceleration of the system is simulated and treated as the measured response.
Then, the objective function Jg(a) is calculated for different values of the natural
frequency f and damping factor . Because of the absence of modeling error and

measurement noise, it is clear that Jg(a) has a unique global minimum at [for G|
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and the minimum value of Jg(a) is equal to zero. A contour plot of Jg(a) with the
natural frequency f in the range between 1 Hz and 3 Hz and the damping factor
¢ in the range between 1% and 14% is shown in Figure 5.1. The corresponding

three-dimensional mesh plot of Jg{g) is also shown in Figure 5.1.

It is noted from Figure 5.1 that the value of Jg{a} is generally decreasing with
increasing damping factor and the fluctuation with respect to the natural frequency
is not noticeable when the damping factor is large. This is due to the fact that the
response of a linear oscillator is less sensitive to the natural frequency and damping
factor as the damping factor increases. On the other hand, the value of Jg(a) is larger
when a linear oscillator has a small damping factor. This is also expected because
the response of a linear oscillator grows when its damping factor is smaller. The
exception is when the natural frequency of a linear oscillator is close to f,. In that
case, the value of Jg(a) increases as the damping factor deviates from (,. Another
feature of Jg(a) is that its value depends on the natural frequency in some periodic

fashion when the damping factor is small.

To identify the system’s natural frequency f, and damping factor ¢,, the Fixed-
Point homotopy scheme is applied to search for the global minimum of Jg(a) in
the parameter space specified above. The initial guess of [f,, (|7 for twelve differ-
ent homotopy trajectories {I',..., "2} are summarized in Table 5.1. All of these

homotopy trajectories successfully reach both f, and {,. Plots of these homotopy

»

trajectories are shown in Figures 5.2 - 5.4. In these plots, a “+” mark is placed at

each initial guess of [f,,{,])7, and a “o” mark is placed at [f,, ()"

For comparison, the popular Quasi-Newton method for optimization is also ap-
plied to identify f, and {, using the same 12 initial guesses as the homotopy scheme.
It turns out that the search is successful with only three initial guesses which cor-
respond to the initial guesses for homotopy trajectories I's, 'y, and I'y. A possible
reason for the poor performance of the Quasi-Newton method in this example is that
a suitable initial search direction is not found and the method lacks a mechanism to

resume the search when the search becomes not promising. On the other hand, the
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homotopy scheme is robust in the sense that if the homotopy trajectory reaches a
region in which no convergence to a solution is possible as the homotopy parameter A
approaches 1, the homotopy trajectory automatically makes a turn to avoid contra-
diction so that the homotopy parameter starts decreasing and new search directions
can be devised. This feature is demonstrated in the three-dimensional plots of the

homotopy trajectories shown in Figures 5.2 - 5.4.
5.2 Two-Story Structure with Known Damping

5.2.1 Without Measurement Noise

Consider the class of two-degrees-of-freedom linear chain models with classical
normal modes which is used to model a two-story structure subject to earthquake
ground motion £(t) as illustrated in Figure 5.5. The two masses m; and mgy of the
structure are assumed to be known and equal to m,. The damping factor of each
mode of the structure is also assumed known and set equal to 5% of critical. The two
stiffness parameters £, and &, of the structure are unknown and are parameterized
by using two normalized non-dimensional parameters #; and #; such that ky = 6,1k,
and k; = 6:k,, where k, is a nominal stiffness. The equations of motion of a two-

degrees-of-freedom linear chain model are given by:

where

mo 0 . 01 +6; —b:
Q(t) - [ﬂh (t)y 7] (t”T: M= s and A = 1{’}0
¢ m, -G, 4

The vector of model parameters a for the class of two-degrees-of-freedom linear
chain models contains the two stiffness parameters #; and 8,, i.e., a = 8 = |64, HQ]T.
The values of m, and k, are chosen such that the two natural frequencies of the

structure are equal to 1 Hz and 2.6 Hz for 8, = [1,1]*. By using the first 10
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seconds of the same carthquake ground acceleration record as in Section 5.1, the
relative acceleration of the structure at the top degree of freedom is simulated and
considered as the measured response. The objective function Jg(#) is then calculated
for different values of §; and #,. A contour plot of Jg(8) with @ in the range [0.7, 3.2] x
[0.3, 1.9] is shown in Figure 5.6. The corresponding three-dimensional mesh plot of

Jg(8) is also shown in Figure 5.6.

It is noted that there exists one major “banana valley” in Figure 5.6. This
feature can be explained in terms of the dependence of the two natural frequencies
wy and w, of a two-degrees-of-freedom linear chain model on the stiffness parameters

@. It can be shown that wy and w, are given by:

w1=(:\/91+292_\/9%+49% ,a.nd (521)
W2=C\/91+292+1/9%+49% ,

where ¢ = \/2]:30' By plotting the contour line for wy using the formula given in

(5.2.1), it turns out that the contour line for w; is essentially parallel to the valley
and therefore w, along the valley basically remains unchanged. Moreover, the valley
goes through the structure’s parameter values, i.e., 8,. Therefore, w; along the floor
of the valley is very close to the first natural frequency of the structure. Furthermore,
the variation of the modal participation factor of the first mode for the top degree
of freedom is slow along the valley. Hence, the response of the first mode of any
model along the valley is similar. Since the response of the first mode dominates
the total response, all of the models along the valley have a response similar to the
structure’s and so Jg(#) has a small value along the floor of the valley. Note also
that the minor “banana valley” appears in Figure 5.6 is where the natural frequency

of the first mode matches 1.5 Hz.

It has been proved that there exists an “output-equivalent” structure which also
lies along the valley and gives exactly the same two natural frequencies and modal

participation factors as the specified structure [1]. The equivalent structure has
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stiffness parameters g, = {2, 1]7. So, Jg(¢) has two global minima and its minimum
value is equal to zero. To identify the specified structure and the equivalent structure,
both the Quasi-Newton method and the Fixed-Point homotopy scheme are applied
to search for the two global minima of Jz(8), ie., 8, and 8,. Four different initial
guesses of 8, and @, are chosen. The result is that all four homotopy trajectories
{T'1,..., 4} successfully reach either 8, or 8,. Plots of these homotopy trajectories
are shown in Figure 5.7 with a “+” mark placed at each initial guess of 8, or ¢, and
a “o” mark placed at both ¢, and #,. It turns out that the Quasi-Newton method
is successful with only one initial guess which corresponds to the initial guess of the
homotopy trajectory I';. Since the other three initial guesses are quite far away from
the floor of the major “banana valley,” the Quasi-Newton method may have difficulty

in gelecting a suitable initial search direction and therefore cannot converge.

As explained in Chapter 3, the relaxation scheme can be applied to systemati-
cally search the parameter space and find other local minima of Jg{#) from any given
local minima (or more generally, any stationary point) of Jr(#). In particular, each

of the following stationarity conditions on Jg(8):

dJr(f)
o5 =" (5.2.2)
and
dJe(@)
o, =0 (5.2.3)

can be relaxed alternately to generate two relaxation trajectories from each given
local minima of Jg(8). Plots of these two relaxation trajectories are shown in Figures
5.8 and 5.9. From these plots, it is demonstrated that any one of the global minima of
Jr(#) can be reached by either relaxation trajectory given the other global minimum
of Jg(8). It is noted that these two relaxation trajectories are roughly parallel to the
major “banana valley” and are quite close to each other. This is because the valley

is very narrow. Furthermore, there exists a saddle point 8., which is marked by “x”
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in Figures 5.8 and 5.9, between @, and 8, along the valley. The particular model

corresponding to the saddle point has stiffness parameters ¢, = [1.307, 0.6541%.
5.2.2 With Measurement Noise

To simulate more realistic situations, a Gaussian white noise sequence is added to
the simulated acceleration of the two-story structure in Section 5.2.1 and the resulting
signal is treated as the measured response. Because of the existence of noise, both the
specified structure and the equivalent structure cannot exactly generate the measured
response. The optimal model § in the given class of models needs to be found by
searching for the global minimum (which is not zero) of the objective function Ji(8).
A serieg of case studies is performed to determine the change of é due to different
levels of noise. The standard deviation of the added Gaussian white noise sequence
is chosen to be a certain fraction of the RMS acceleration of the second mode of the
structure which is equal to 36.5 cm/sec/sec. Also, the sensitivity of § to the level
of noise is investigated by comparing the value Jz(8) with a reference value Je(8,),

where 8, is the saddle point in Figures 5.8 and 5.9.

For the level of noise between 0% and 460%, two optimal models Q(l) and é(z)
are found and the values of Q(l), which is closer to 8,, are shown in Figure 5.10
by using the mark “x” for lower levels of noise. The modal parameters of é(l) are
summarized in Table 5.2. The highest level of noise corresponds to 73% of the RMS
of the total structural acceleration. When no noise is added, QAG) coincides with
#,. As the level of noise increases, _6’:(1) start moving away from 8, along the major
“banana valley.” This is expected since, as long as the noise is not too much, the
second mode is influenced more by the noise than the first mode. Therefore, the
first natural frequency of the optimal model is very close to the structure’s. But the
second natural frequency of the optimal model is larger than the structure’s because
of the slight shift of the frequency content of the measured response towards the high

frequency range due to noise.

In Figure 5.11, JE@) and Jg{f,) are plotted as a function of the level of noise.

A “X” mark is used to denote the value JE(Q) for lower levels of noise and a “+”
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mark is used to denote the value Jg(€,) in Figure 5.11. When no noise is added,

Jg(@) is equal to zero. As the level of noise increases, both Jg(f) and Jg(8,) increase
but at the same time the two values are also getting closer to each other. The
result is that the floor of the major “banana valley” becomes flatter as the level of
noise increases. From the numerical point of view, this makes the estimation of the
second mode less reliable and subsequently the estimation of the optimal model 7
also is less reliable. From the standpoint of system identification, the second mode
becomes less observable and so the identification of the structure becomes more like

an un-identifiable case.

As the level of noise reaches 260%, two additional local minima Q(l) and Q(z) of
Jg(8) suddenly emerge. The values of Qm, which is further away from @, than Q(l),
are shown by using the “o” mark in Figure 5.10 for noise levels just above 260%.
The modal parameters of Q(l) are summarized in Table 5.3. The value JE(Q) for
these same noise levels is also shown in Figure 5.11 by using the “o” mark. Q(l) and
Q(Q) correspond to two particular models whose first natural frequency is close to the
first natural frequency of é(l) and é(z) but whose second natural frequency is slightly
higher. These two models also produce a good fit to the measured response but the
fit is not as good as the one produced by Q(l) and Q(z), until the level of noise is
greater than 360%, when the two local minima at ﬂ(l) and é(2) actually become the
global minima. The consequence is a sudden jump in the stiffness parameters of the
optimal models at a level of noise of about 360%, as illustrated in Figure 5.10. Based

on this observation, it is possible to have four optimal models at the same time for

a certain level of noise.

The results of identification of the specified two-story structure are presented
in detail for two cases. In the first case, the level of noise is equal to 100% and
represents the situation of less noisy measurement. In the second case, the level of
noise is increased to 300% to account for situations with much higher noise. The
topology of the function Jg(8) for these two cases is very similar to the case in Section

5.2.1 except for the details of the variation inside the major “banana valley.” In the
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first case, two optimal models Q(l} and Q(z) are identified by using the Fixed-Point
homotopy scheme as shown by the “o” mark in Figure 5.12. The two optimal models
have stiffness parameters é(l) = [0.999, 1.002]” and é(z) = [2.005,0.499]7 respectively.

Furthermore, é(l) and é(z)

are “connected” by the two relaxation trajectories and
there is a saddle point in between as shown in Figure 5.13 by using the mark “x.”
The particular model corresponding to the saddle point has stiffness parameters

8 = [1.307,0.654]".

In the second case, the Fixed-Point homotopy scheme identifies two local minima
é(l) and é(2) of Jg(#) and two optimal models Q(l) and Q{Z) as shown in Figure 5.14.
In Figure 5.14, a “#” mark is placed at é(l) and Q(2), and a “o” mark is placed at
Q(l) and é_(z). The two optimal models have stiffness parameters Q(l) = [0.997,1.011)T
and é(z) = [2.021, 0.498]T respectively. The relaxation scheme is applied at each local
minimum or optimal model which is found by the Fixed-Point homotopy scheme.
Actually, both relaxation trajectories connect the two local minima and two optimal
models as shown in Figures 5.15 and 5.16. It is interesting to note that in this case
there are three saddle points, marked by “x”in Figures 5.15 and 5.16, separating the
two local minima and two optimal models. The particular models corresponding to
these saddle points have stiffness parameters § = [0.936, 1.237]7, ¢ = [1.308, 0.654]7,
and § = [2.473,0.468]7 respectively. The measured acceleration and the output of
the two optimal models are shown in Figure 5.17 for comparison and the Fourier

amplitude spectra of the actual and measured accelerations are shown in Figure

5.18.

5.3 Two-Story Structure with Unknown Damping
5.3.1 Without Measurement Noise

The two-story structure identified in Section 5.3 is again considered and is mod-
eled using the class of two-degrees-of-freedom linear chain models. But, instead of
assuming the two damping factors of the structure are known, the two damping fac-
tors are now considered as part of the model parameters. Therefore, the vector of

model parameters a contains the two stiffness parameters and two damping factors,
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ie, a="8",¢"7T = [61,0 (1, (o]". The two-story structure to be identified is again
chosen to have stiffness parameters 8, = [1,1]” and damping factors ¢ = [5%, 5%]".
By using the first 10 seconds of the same earthquake ground acceleration record as
in Sections 5.1 and 5.2, the relative acceleration of the structure at the top degree of
freedom is calculated and used as the measured response. As explained in Section
5.2.1, there exists an equivalent structure which has the same damping factors ¢
as the specified structure but different stiffness parameters f, = [2, 3]7. Hence, the
objective function Jg{a) has two global minima and its minimum value is equal to

Zero.

The Fixed-Point homotopy scheme is applied to search for the two global minima
of Jg(a) using four different initial guesses for the model parameters of the specified
structure and the equivalent structure. The initial guesses for 8, and £, are chosen
to be close to these used in Section 5.2.1 in order to compare the behavior of the
homotopy trajectories, but the initial guesses of { also need to be chosen in this
example. All four homotopy trajectories successfully reach either one of the global
minima of Jg(a) as shown in Figure 5.19. In Figure 5.19, a “+” mark is placed at each
initial guess for ¢,, ., and ¢ while a “o” mark is placed at each global minimum
of Jg(a). Since there is a total of four parameters, giving a four-dimensional space,
the projection of each homotopy trajectory on the {; — (2 plane and #; — f; plane is

shown.

From Figure 5.19, it is noted that the projection of homotopy trajectory on the
6, — 0, plane is similar to these in Section 5.2.1 except for trajectory I';. This result
shows that considering the two damping factors as part of the model parameters
has little effect on the homotopy trajectory as far as the projection on the f; — 6
plane is concerned. This is reasonable since damping factors have less influence on
the response than stiffness parameters which control the natural frequencies and
modal participation factors. It is also demonstrated in Figure 5.19 that the conver-
gence of ¢, is much slower than {; and the convergence of each damping factor is

“monotonic” except for trajectory I'y. The robustness of the homotopy scheme is
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best demonstrated by trajectory I'y. The initial trajectory crientation is actually not
promising in reaching either global minimum of Jg{g), but the trajectory can make

turns and eventually reaches one of the global minima of Jg(a).

The relaxation scheme is then applied to search the parameter space for all the
local minima of Jg(a)} in the region considered by relaxing each of the following

stationarity conditions on Jg{a) alternately:

0Upla) _ . dJsl@) _

50, =0 and 56, =0, (5.3.1)
dJg(a) _ 0Js(a) _

3, =0 and 3, = 0. (5.3.2)

Four relaxation trajectories are generated and the projection of each relaxation tra-
jectory on the {; — (s plane and &, —#; plane is shown in Figures 5.20 - 5.23. Because
of projection, some of the trajectories seem to terminate prematurely. What really
happens to these trajectories is that they simply reach the boundary of the specified
parameter space. It is noted that there exists a saddle point, which is marked by
“x,” between the two global minima of Jg(g). The particular model corresponding
to the saddle point has stiffness parameters ¢ = [1.304, 0.652)7 and damping factors
¢ = [5.19%, 14.06%|"".

It is noted from Figures 5.20 and 5.21 that the two global minima of Jg(a) and
the saddle point are connected by the two relaxation trajectories which are generated
by relaxing the constraints in (5.3.1). On the other hand, the two global minima are
not connected by the two relaxation trajectories which are generated by relaxing the
constraints in (5.3.2). Still, one global minimum of Jg{a) can be reached by following
the first two relaxation trajectories from the other global minimum of Jg{a). These
two relaxation trajectories are quite close to each other just as the case in Section
5.2.1. This suggests that there may also exist some kind of “banana valleys” in the

four-dimensional parameter space in this case.



- 115 —
5.3.2 With Measurement Noise

To simulate more realistic situations, the same Gaussian white noise sequence
used in Section 5.2.2 is added to the simulated acceleration of the structure and the
resulting signal is considered as the measured response. To investigate the effect of
considering the two damping factors as part of the model parameters, the two cases

of system identification presented in Section 5.2.2 are again considered.

In the first case, the level of noise is set equal to 100% which corresponds to
16% of the RMS of the total acceleration of the structure. Two optimal models _a“fl)
and &® are found by using the Fixed-Point homotopy scheme. The projection of
these homotopy trajectories are illustrated in Figure 5.24 with a “o” mark placed
at both 4% and @®. The behavior of these homotopy trajectories is similar to
the case in Section 5.3.1. The two optimal models have the same damping factors
§ = [4.99%,5.77%]7 but different stiffness parameters QA(I) = [0.999,1.001]7 and
QA@) = [2.002,0.499])7 respectively. It is noted that the two optimal models have

similar parameter values as the specified structure and the equivalent structure except

that the damping factor of the second mode is slightly higher.

In the second case, the level of noise is equal to 300%. It turns out that only
two optimal models _@(1) and @{2) are identified. This result is different from the
second case in Section 5.2.2. In this case, no other local minimum of Jg(a) is found.
The projected homotopy trajectories are shown in Figure 5.25 with a “o” mark
placed at both Q(l) and Q@). The behavior of these trajectories is similar to the case
in Section 5.3.1 except that the convergence of the damping factor of the second
mode is very slow. The two optimal models have the same damping factors é =
[4.94%, 9.23%]7 but different stiffness parameters g = [0.985,1.046]7 and §® —
[2.091, 0.493]7 respectively. It is noted that the damping factor of the second mode
of the two optimal models is much higher than the corresponding damping factor of

the structure.

The projection of four relaxation trajectories in this case are shown in Figures

5.26 - 5.29. Unlike the second case in Section 5.2.2, there is only one saddle point,
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which is marked by “x” in Figures 5.26 - 5.29, between the two optimal models.
The particular model corresponding to the saddle point has stiffness parameters
8 = [1.304,0.652]" and damping factors ¢ = [5.15%,26.61%|7. It is noted that
the two optimal models and the saddle point are connected by three relaxation
trajectories which are generated by relaxing the two constraints in {5.3.1) and the
first constraint in (5.3.2). This is different from the second case in Section 5.2.2. It
is also noted from Figures 5.26 and 5.27 that these two relaxation trajectories are
quite close to each other just as the case in Section 5.3.1. Therefore, the existence
of “banana valleys” in the four-dimensional parameter space is also possible in this
case. The measured acceleration and the output of the two optimal models are shown

in Figure 5.30 for comparison.
5.4 Ten-Story Building
5.4.1 Background Information

The building considered in this example is the Great Western Bank located at
111 Market Street in San Jose, California. It is a ten-story rectangular reinforced-
concrete office building with overall plan dimensions of 190 ft. by 82 ft., a total
height of 124 ft. above the ground surface, and a single basement level of 17 ft.
below the ground surface. The story height is 12 ft. except for the first story whose
height is 16 ft. The building’s lateral force resisting system consists of exterior shear
walls in the transverse (East-West) direction and moment-resisting frames in the
longitudinal (North-South) direction. The foundation of the building consists of a
5 ft. thick reinforced-concrete mat. More detailed configuration information about

the building can be found in [2].

The California Division of Mines and Geology (CDMG) has deployed an array
of 13 strong motion accelerometers at the Great Western Bank under the California
Strong Motion Instrumentation Program (CDMG station number 57355). The de-
ployment of these accelerometers in the building is illustrated in Figure 5.31. This
accelerometer array can measure fransverse translations, longitudinal translations,

and torsional rotations at the roof, fifth floor, and the basement. In addition, the
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array also measures the longitudinal translations at the second floor, vertical trans-
lations, rocking rotations about the building’s longitudinal axis, and transverse de-
formation of the fifth floor diaphragm. The particular seismic acceleration records of
the building used in this example were recorded during the 1984 Morgan Hill Earth-
quake (M, = 6.2). The building is located about 12 miles west of the epicenter of

that earthquake.

There have been some studies of the seismic response characteristics of the build-
ing and references to previous studies can be found in [2]. In particular, the modal
identification technique has been applied to estimate the modal parameters of the
significant modes of the building by using the proven computer program MODE-
ID [2]. The identified mode shape amplitudes at the instrumented floors were used
to estimate the complete mode shape amplitudes at all the floors by using inter-
polation. Subsequently, the earthquake-induced base shear force, base overturning
moment, lateral interstory shear force, and interstory drift were estimated based
on modal superposition using the identified modal periods and damping ratios, as
well as the interpolated mode shape amplitudes. An assessment of the UBC seismic
design provisions as applied to the building was made by comparing the estimated

earthquake-induced responses with the UBC seismic design values.
5.4.2 Structural Model Updating

In this example, instead of using the modal identification approach, the
earthquake-induced response of the building is estimated by using a class of strue-
tural models with classical normal modes. The results of identification are compared
with the corresponding values obtained from the modal identification approach pre-
sented in [2]. Based on the results of modal identification, only five significant modes
of the building can be identified. They are the first two translational modes in the
transverse and longitudinal directions and the fundamental torsional mode. The
results also indicate that there is little coupling between the vibration in the trans-
verse and longitudinal directions. Therefore, the seismic response characteristics of

the building in the transverse and longitudinal directions are studied separately in
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this example. It is also assumed that rocking of the building about the transverse

axis can be neglected but rocking about the longitudinal axis needs to be considered.

In modeling the building, the same lumped mass of weight 2700 kips is used for
each floor. One degree of freedom is assigned to describe the rigid-floor horizontal
translation of each floor. Since only the fifth floor and the roof are instrumented
in both directions and only the first two modes in each direction are considered to
be significant, the stiffness matrix will become un-identifiable if it is overparame-
terized as discussed in Chapter 4. In this example, it is not feasible to have one
stiffness parameter for each story of the building since then there will be too many
parameters. Therefore, a substructuring approach is needed in which the building
is decomposed into a small number of substructures and a stiffness parameter scales
each substructure stiffness matrix. A convention is established to denote a particular
substructure configuration. For example, a notation like “4-6” means that there are
two substructures and the first substructure contains the lower four stories and the
second substructure contains the upper six stories. Each substructure is modeled by
using uniform linear chain models. The stiffness parameters are calibrated such that
when their values are all equal to one, the building is modeled as a uniform linear
chain model. The nominal stiffness is chosen such that the first two model natu-
ral frequencies are close to the values estimated by using MODLE-ID and is equal to
3.73 x 10° kips/ft in the transverse direction and 2.17 x 10° kips/ft in the longitudinal

direction.

To account for rocking about the longitudinal axis of the building, two different
types of models are used in the transverse direction in this example. The first type of
model is called the “rocking-base” model in which the vertical motion records at the
base of the building are included in the set of output measurement [2]. Therefore,
the identified mode shape amplitudes contain contributions from rocking rotations
about the base of the building. The second type of model is called the “fixed-base”
model in which the vertical motion records at the base of the building are included

in the set of input motions for the building [2|. Therefore, the effects of rocking
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rotations are contained in the pseudostatic response and the identified mode shape

amplitudes will not exhibit any rocking rotations.
5.4.3 Discussion of Identified Model Parameters

The seismic response characteristics of the building in the transverse direction
are considered first by using two substructures to model the building. To investigate
the change of optimal model parameters due to different substructure configurations,
five substructure configurations “3-77, “4-6”, “5-5”, “6-4”, and “7-3” are studied.
Two non-dimensional stiffness parameters 0; and f, are used to parameterize the
two substructures in each configuration. The Fixed-Point homotopy method was
used to identify the optimal parameters for the rocking-base model. The optimal
damping factors and stiffness parameters, along with the corresponding natural pe-
riods and optimal values of Jg, are summarized in Table 5.4. The corresponding
natural periods and damping factors obtained by using MODE-ID are shown in the

last column of Table 5.4 for comparison.

From Table 5.4, it is noted that the optimal models for the three substructure
configurations “5-5”, “6-47, and “7-3” are similar and essentially equivalent to uni-
form linear chain models. This result can be explained by using modal superposition.
In order for the model output to have a good fit with the measured acceleration, the
first two natural frequencies of a model need to be close to the first two dominant
frequencies in the measured acceleration. Furthermore, the ratios between the mode
shape amplitudes at the measured degrees of freedom are also important especially
for the first mode since it dominates the overall model response. An analysis is done
to study the change of the first two natural frequencies and mode shape amplitudes
of the five substructure configurations for different values of the stiffness parameters.
It turns out that substructure configurations “5-5”, “6-4”, and “7-3” are similar in
that aspect. Therefore, the optimal models for these three substructure configu-
rations are similar. The behavior of substructure configurations “4-6” and “3-7” is
different from the other three configurations so that the optimal models for these two

configurations are different from uniform chain models. In fact, the optimal model
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for configuration “3-7" shows a significant difference between the stiffness of the two

substructures.

For all the substructure configurations considered, the identified natural periods
are close to the corresponding values estimated by using MODE-ID. The identified
damping factors of the first mode are slightly smaller than the values estimated by
using MODE-ID. However, the identified damping factors of the second mode are
larger, especially for the substructure configuration “3-77. A possible reason is that
the optimal modal participation factor of the second mode at the roof is larger when
compared with the corresponding value of the other substructure configurations and
so the damping is increased to give a better match of the response amplitude. Based
on the optimal values of Jg, the output of all of the five optimal models has a
similar fit to the measured response, although the output of the optimal model for

the substructure configuration “3-7” has a slightly better {it.

The identified optimal damping factors and stiffness parameters, along with the
corresponding natural periods and optimal values of Jg for the fixed-base model, are
summarized in Table 5.5. The corresponding natural periods and damping factors
obtained by using MODE-ID are shown in the last column of Table 5.5 for compar-
ison. When compared with the results in Table 5.4, the lower substructure is much
stiffer in the fixed-base case. This is because no rotational spring at the base is
used in the rocking-base case to account for rocking so that the stiffness of the lower
substructure needs to be smaller in order to account for the rocking flexibility of the
base. It is noted that only the identified first natural periods are close to the value
estimated by using MODE-ID. The identified second natural periods are shorter.
Furthermore, the identified natural periods of the fixed-base model are shorter than
the identified natural periods of the rocking-base model. This is reasonable since
rocking has significant contribution in the transverse direction so that the apparent

stiffness of the rocking-base model is smaller.

The difference between the identified second natural periods and the correspond-

ing value obtained by using MODE-ID is more significant when the fixed-base model
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is used. It is noted that the ratio between the first and second natural period esti-
mated by using MODE-ID with the fixed-base model is about 2.43 but the ratio is
about 2.84 when the rocking-base model is used. Because of the intrinsic constraints
of the class of linear chain models, it turns out that all of the five substructure con-
figurations could not match the target ratio close enough when the fixed-base model
is used. Since the first natural period needs to be matched closely in order to have a
good fit with the measured response, the second natural period turns out to be not

estimated accurately.

The identified damping factors of the first mode are close to the value estimated
by using MODE-ID and are also larger than the corresponding values when the
rocking-base model is used. This is expected since the overall damping of the rocking-
base model is lower because the damping of rocking about the base of the building is
lower than the damping of the building itself. It is noted that the identified damping
factors of the second mode are much larger than the value estimated by using MODE-
ID. This may be due to the inaccurate estimation of the second natural period. By
comparing the optimal values of Jg, it is concluded that the optimal model for the
substructure configuration “3-7” is slightly better in matching the measured response
than the other four configurations. Furthermore, it is noted that the fixed-base model
is more capable in matching the measured response than the rocking-base model.
This is because rocking is better modeled by using the pseudostatic response as in

the fixed-based model.

For illustration, the identified seismic response characteristics of the building
in the transverse direction are presented in detail for the substructure configuration
“4.6” using both the rocking-base model and the fixed-base model. The projected
homotopy trajectories in the identification of the optimal model for these cases are
shown in Figures 5.32 and 5.33 respectively. It is noted that the convergence of the
damping factor of the second mode is very slow, just as in Section 5.3. The measured
acceleration at the fifth floor and the roof, together with the corresponding response

of the optimal model, are shown in Figures 5.34 and 5.35 for comparison. Generally
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speaking, the phase of the measured acceleration is matched reasonably well by both
types of models. But there is still some mismatch in the amplitudes. The time
history plots also demonstrate that the match using the fixed-base model is slightly

better than the one using the rocking-base model.

The seismic response characteristics of the building in the longitudinal direction
are investigated by using five substructure configurations “2-8”, “3-7", “4-6”7, “5-
57, and “6-4”. The identified optimal damping factors and stiffness parameters, and
corresponding natural periods and optimal values of Jg, are summarized in Table 5.6.
The corresponding natural periods and damping factors obtained by using MODE-
ID are shown in the last column of Table 5.6 for reference. Both identified natural
periods are very close to the values estimated by using MODE-ID. The identified
damping factors of the first mode are slightly larger than the value estimated by
using MODE-ID while the identified damping factors of the second mode are smaller.

Tt is noted that the optimal models for substructure configurations “3-77, “4-6",
and “5-57 are similar in the sense that they have a similar stiffness ratio between the
two substructures. This is because the change of the first two natural frequencies
and mode shape amplitudes at the instrumented floors due to different values of
the stiffness parameters for these three substructure configurations are similar. For
the same reason, the two substructure configurations “2-8" and “6-4” give similar
optimal models. For all of the five substructure configurations, the model output of
the optimal models for the substructure configurations “5-5” and “6-4" can fit the

measured response better.

Tt is also noted from Table 5.6 that the optimal models are not consistent with
common intuition since the optimal value of §; is smaller that the optimal value of
6,. In other words, the stiffness of the lower substructure should not be less than the
stiffness of the upper substructure for a typical building such as the Great Western
Bank. This discrepancy is mainly due to the modeling error in using the linear chain
models. In this case, the ratio between the first and second natural periods estimated

by using MODE-ID is about 3.42. Because of the intrinsic internal constraints of
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linear chain models, it turns out that, in order for linear chain models to have a
close match for the target ratio, the optimal value of #; needs to be smaller than the

optimal value of 0.

For illustration, the identified seismic response characteristics of the building
in the longitudinal direction by using the substructure configuration “5-3” are pre-
sented in detail. The projected homotopy trajectories in the identification of the
optimal model are shown in Figure 5.36. The measured acceleration at the fifth floor
and at the roof and the corresponding response of the optimal model are shown in
Figure 5.37 for comparison. Because both natural periods are identified accurately,
the phase of the measured acceleration is matched well. However, the match of the
amplitude is less satisfactory because the damping factors and mode shape ampli-
tudes at the instrumented floors are not estimated accurately. In this example, the
measured acceleration at the 2nd floor is reserved to assess the prediction accuracy
of the identified optimal model. The measured acceleration and predicted model
acceleration at the 2nd floor are shown in Figure 5.38. From the time history plots,

it is demonstrated that there is a good match between these responses.

The seismic response characteristics of the building in both directions are also
studied by using more than two substructures to model the building. However,
another important issue in structural model updating is noted. For example, the op-
timal model for the substructure configuration “4-3-3” using the rocking-base model
in the transverse direction has the stiffness parameters [1.16,0.81, 1.35]7. It is noted
that the stiffness of the top substructure which includes the top three stories of the
building turns out to be the largest. This is again not consistent with cormmon in-
tuition for a typical building in which the distribution of stiffness along the height
should be monotonically decreasing except for maybe the first story. Discrepancies
of this kind appear in all of the studied substructure configurations which have more
than two substructures. A possible cause of this discrepancy is explained in the

following.

In structural model updating, the process of searching for the optimal structural
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model can be interpreted as adjusting the stiffness of each substructure in order
to obtain a best fit between the measured data and model output. However, the
sensitivity of the model output at the measured degrees of freedom to the stiffness
of each substructure is different. Some substructures have a more “global” influence
on the model behavior in the sense that the model output at each degree of freedom
in a structure is significantly affected. On the other hand, the influence of other
substructures tends to be merely “local” in the sense that only the model output at
those degrees of freedom, which are within or near that substructure, will be affected.
In this example, a substructure which contains the lower stories generally will have
mote global influence on the model behavior than a substructure which contains the

upper stories.

During the identification process, the adjustment of the stiffness of substructures
which have less global influence on the model behavior is usunally larger when com-
pared with substructures which have more global influence on the model behavior.
For the identified optimal model to have a physically feasible stiffness distribution,
the stiffness of all the substructures are crucial regardless of their scope of influence
on the model behavior. Therefore, it is quite possible that the resulting optimal
stiffness of these insensitive substructures spoils the feasibility of the stiffness distri-
bution given by the optimal model. This possibility can only be ruled out when the
modeling error is negligible, which is not usually the case in practice. One way to
avoid this discrepancy is to measure the response at the degrees of freedom which
are either within or near these insensitive substructures so that more constraints can
be exerted to control the stiffness of these substructures. If this is not possible, us-
ing larger substructures may also avoid this discrepancy although then the stiffness

distribution in the structure may not be modeled appropriately.
5.4.4 Earthquake-Induced Force, Moment, and Drift

In Tables 5.7 - 5.10, the calculated peak interstory shear force and base over-
turning moment in the transverse direction by using both the rocking-base model

and the fixed-base model are summarized. The corresponding values obtained by us-
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ing MODE-ID and interpolation for the rocking-base case are also included in these
tables for comparison. According to [2], the corresponding fixed-base model quanti-
ties obtained by using MODE-ID should be close to the rocking-base model values.
From Tables 5.7 - 5.10, it is concluded that the base shear force and base overturning
moment estimated by using the fixed-base model are slightly larger than the values
estimated by using the rocking-base model. Moreover, the values obtained by using
the fixed-base model are slightly smaller than the values inferred by the results from
MODE-ID and interpolation. For illustration, the distribution of the peak interstory
shear force along the height of the building is shown in Figure 5.39 using the optimal
model for the substructure configuration “4-6”. The corresponding time histories
of the base shear force and base overturning moment and the corresponding UBC

design values are shown in Figures 5.40 and 5.41.

The peak interstory shear force and base overturning moment in the longitudinal
direction are summarized in Tables 5.11 and 5.12. The corresponding values obtained
from MODE-ID and interpolation are also included in these tables for comparison.
It is noted that the estimated peak interstory shear force is larger than the value
estimated by using MODE-ID, especially for the lower stories of the building. The
estimated peak base overturning moment is also larger than the value estimated by
using MODE-ID and interpolation. In this aspect, it is concluded that linear chain
models are less competent in modeling the structure in the longitudinal direction
than in the transverse direction. Nevertheless, the distribution of the peak interstory
~ shear force along the height of the building looks reasonable even though the stiflness
of the lower substructure of the optimal models is smaller than the stiffness of the
upper substructure. For illustration, the time histories of the base shear force and
base overturning moment estimated by using the optimal model for the substructure
configuration “5-5” are shown in Figure 5.42. The corresponding UBC design values

are also included in Figure 5.42 for reference.

The peak interstory drift in the transverse direction is summarized in Tables

5.13 and 5.14 along with the values obtained by using MODE-ID and interpolation.
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When compared with the latter results, the interstory drift at the upper stories
of the building is underestimated when using either the rocking-base model or the
fixed-based model. This is due to the use of a uniform linear chain model in each
substructure. Moreover, the distribution of peak interstory drift along the height of
the building is not always monotonic, because of a jump in the stiffness from the lower
substructure to the upper substructure. Because rocking rotations about the base of
the building are contained in the pseudostatic response when the fixed-base model
is used, the discrepancy in estimating the interstory drift by using the linear chain
model can be compensated to some extent. Therefore, the estimated interstory drift
by using the fixed-base model is more reasonable in the sense that the distribution

of interstory drift along the height of the building is more uniform.

The peak interstory drift in the longitudinal direction is summarized in Table
5.15 along with the values obtained by using MODE-ID and interpolation. When
compared with the latter results, the interstory drift at the upper stories of the build-
ing is underestimated while the interstory drift at the lower stories is overestimated.
This is due to the incompetence of linear chain models in modeling the structure in
the longitudinal direction. Although the distribution of peak interstory drift along
the height of the building is monotonic, there is still a noticeable jump in the distri-
bution of peak interstory drift which is due to a jump in the stiffness from the lower

substructure to the upper substructure.

In summary, reasonable response results are obtained in applying the proposed
one-stage structural model updating approach to the seismic response records of the
Great Western Bank even though some discrepancies are noticed. Tt is noted that the
stiffness distribution of the identified optimal model may become physically unreal-
istic if too many or too few substructures are used. If the selected class of structural
models is less competent in modeling the structure, as in the longitudinal direction in
this example, the resulting stiffness distribution of the identified optimal model may
also be physically unrealistic. In the case where the building is modeled by using

two substructures, the identified modal parameters of the first mode are close to the
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corresponding results obtained by using MODE-ID. The fit between the measured
data and the model output of the identified optimal models is also reasonable. Fur-
thermore, the estimated earthquake-induced base shear force, interstory shear force,
and base overturning moment in the transverse direction are in good agreement with
the corresponding values obtained by using MODE-ID and interpolation. However,
the estimated interstory drift is less satisfactory due to the use of a uniform linear

chain model in each substructure.
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Trajectory fo (Hz) Co ()
I' 1.4 2.0
I 1.5 9.0
I's 2.7 2.0
I'y 2.6 7.0
T's 1.2 3.0
Is 1.7 2.0
| 2.5 3.0
I's 2.4 9.0
[y 1.6 3.0
[0 1.4 6.0
' 2.3 2.0
' 2.8 4.0

.,Flg}.
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Table 5.2: Modal Parameters of Q(l) for Different Levels of Noise ( él), 52) - Modal

Participation Factors at Roof and ,Bfl), §2) — Modal Participation Factors at the 1st
Floor).

Noise (%) | fi (Hz) | fo(Hz) | B @ e i
0 (0.984 2.575 1.171 -0.171 0.724 0.276
20 0.984 2.576 1.171 -0.171 0.724 0.276
40 0.984 2.576 1.171 -0.171 0.724 0.276
60 (.084 2.576 1.171 -0.171 0.724 0.276
&0 0.984 2.577 1.171 -0.171 0.724 0.276

100 0.984 2.577 1.171 -0.171 0.725 0.275
120 0.984 2.578 1.171 -0.171 0.725 0.275
140 0.984 2.578 1.170 -0.170 0.725 0.275
160 0.984 2.579 1.170 -(0.170 0.725 0.275
180 0.984 2.579 1.170 -0.170 0.725 0.275
200 0.984 2.580 1.170 -0.170 0.726 0.274
220 0.984 2.980 1.170 -0.170 0.726 0.274
240 (0.984 2.581 1.170 -0.170 0.726 (0.274
260 0.984 2.582 1.170 -0.170 0.727 0.273
280 0.984 2.583 1.170 -0.170 0.727 0.273
300 0.984 2.584 1.170 -0.170 0.727 0.273
320 0.984 2.585 1.169 -0.169 0.728 0.272
340 0.984 2.586 1.169 -(.169 0.728 0.272
360 0.985 2.913 1.129 -0.129 0.823 0.177
380 0.985 2.919 1.128 -0.128 0.824 0.176
400 0.985 2.925 1.128 -0.128 0.825 0.175
420 0.985 2.930 1.127 -0.127 0.826 0.174
440 0.985 2.935 1.127 -0.127 0.827 0.173
460 0.985 2.939 1.127 -0.127 0.828 0.172
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Table 5.3: Modal Parameters of é(l) for Different Levels of Noise (ﬁél) éz) — Modal
Participation Factors at Roof and ,Bfl), §2) — Modal Participation Factors at the 1st
Floor).

Noise (%) | fi (Ha) | f» (He) | B} X P P
260 0.984 2.851 1.135 | -0.135 | 0.810 0.190
280 0.984 2.873 1.133 | -0.133 | 0.815 0.185
300 0.985 2.887 1.132 ; -0.132 0.818 0.182
320 0.985 2.898 1.131 | -0.131 0.820 0.180
340 (.985 2.906 1.130 | -0.130 | 0.822 0.178
360 0.984 2.587 1.169 | -0.169 | 0.729 0.271
380 0.984 2.589 1.169 | -0.169 | 0.730 0.270
400 0.984 2.591 1.169 | -0.169 | 0.730 (0.270
420 0.984 2.593 1.168 | -0.168 | 0.731 0.269
440 0.984 2.596 1.168 | -0.168 0.733 0.267
460 0.984 2.600 1.167 | -0.167 | 0.734 0.266
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Direction)} [Rocking-Base

Table 5.4: Optimal Model Parameters (lransverse
Model].
_ Substructure Configurations
“3-77 “4-6” “5-5” “6-4” “7-3” MODE-ID
A, 1.49 1.07 1.05 1.05 1.05 -
8, 0.79 1.01 1.04 1.05 1.07 -
T (sec) 0.616 0.615 0.615 0.616 0.616 0.608
Ty(sec) | 0.213 | 0209 | 0207 | 0207 | 0.206 0.214
(%) 6.1 6.2 6.3 6.3 6.3 6.9
(2 (%) 28.2 10.6 9.6 9.4 9.4 3.7
JE 0.260 0.261 0.262 0.262 0.262 -

Table 5.5: Optimal Model Parameters (Transverse Direction) [Fixed-Base Modell.

Substructure Configurations

a3 | w46 | ‘557 | “6-4” | “7-3" | MODEID

o, 2.96 2.03 1.86 1.72 1.60 -

0 1.05 1.07 0.99 0.94 1.04 -
Ti(sec) | 0503 | 0505 | 0505 | 0505 | 0506 0.51
Tp(sec) | 0.173 | 0182 | 0.189 | 0.192 | 0.183 0.21

¢1(%) 6.6 6.7 6.9 7.1 7.1 6.8
Ca(%) 37.8 32.4 24.4 20.5 28.3 4.2
Jg 0.168 | 0.169 | 0176 | 0184 | 0.191 -
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Table 5.6: Optimal Model Parameters (Longitudinal Direction).

Substructure Configurations

“-8" | 37 | “46” | “5-5" | “6-4” | MODE-ID

0, 0.47 0.61 0.69 0.73 0.75 -

0 1.53 1.42 1.39 1.56 2.51 -
Ti(sec) | 0914 | 0914 | 0914 | 0914 | 0914 0.914
Ty(sec) | 0.263 | 0.263 | 0264 | 0263 | 0.264 0.267

Gi(%) 43 4.3 43 4.2 4.1 3.9
G (%) 2.4 2.7 2.8 2.9 3.0 47
JE 0.200 | 0191 | 0188 | 0176 | 0.176 -




- 134 ~

Table 5.7: Peak Interstory Shear Force (kips x10°) (Transverse Direction)
[Rocking-Base Model].

Substructure Configurations
Story “3-7" “4-6” “5-5”" “6-47 “7-37 MODE-ID
ﬁlOth 0.48 0.47 0.47 0.47 0.47 0.58
9th 0.96 0.93 0.93 0.93 .93 1.06
8th 1.41 1.38 1.38 1.38 1.38 1.54
Tth 1.84 1.81 1.81 1.81 1.81 1.98
6th 2.23 2.22 2.21 2.21 2.21 2.40
5th 2.57 2.58 2.59 2.59 2.59 2.77
4th 2.85 2.91 2.92 2.92 2.92 3.06
3rd 3.07 3.19 3.20 3.20 3.20 3.39
2nd 3.25 3.41 3.43 3.43 3.43 3.54
st 3.40 3.58 3.59 3.60 3.60 3.75

Table 5.8: Peak Base Overturning Moment (k-ft x10°) (Transverse Direction)
[Rocking-Base Model].

Substructure Configurations
ﬁ(3_ 717 “4_61? C£5_571 ) 1L6_473 } “7_371 MODE_ID
Base 2.78 2.84 2.85 2.85 2.85 3.00
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Table 5.9: Peak Interstory Shear Force (kips x10%) (Transverse Direction)
[Fixed-Base Model].

Substructure Configurations
Story “3-77 “4-6" “5-5" “6-4” “7-3”
10th 0.54 0.54 0.54 0.54 0.53
9th 1.06 1.06 1.06 1.05 1.04
8th 1.54 1.55 1.54 1.53 1.52
Tth 1.98 1.99 1.98 1.97 1.96
6th 2.38 2.39 2.37 2.35 2.36
5th 2.71 2.72 2.70 2.70 2.72
4th 2.98 3.01 3.00 3.01 3.04
3rd 3.19 3.25 3.26 3.28 3.31
2nd 3.37 3.45 3.46 3.49 3.53
1st 3.51 3.60 3.62 3.65 3.70

Table 5.10: Peak Base Overturning Moment (k-ft x10%) (Transverse Direction)
[Fixed-Base Model].

Substructure Configurations

“3_773

“4_677

‘;(5_5”

C(6_4?7

“7_357

Base

2.92

2.96

2.96

2.97

2.99
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Table 5.11: Peak Interstory Shear Force (kips x10?) (Longitudinal Direction).

Substructure Configurations

Story | “2-8” “3-7" “4.6” “5-5” “6-4" | MODE-ID
10th 0.46 0.47 0.47 0.47 0.47 0.47
9th 0.92 0.93 0.94 0.94 0.94 0.92
8th 1.37 1.38 1.39 1.39 1.39 1.31
7th 1.80 1.81 1.82 1.83 1.84 1.66
6th 2.21 2.22 2.23 2.25 2.28 2.00
5th 2.60 2.61 2.62 2.64 2.66 2.29
4th 2.97 2.98 2.99 3.00 3.01 2.54
3rd 3.33 3.33 3.30 3.30 3.30 2.79
2nd 3.65 3.60 3.56 3.56 3.55 2.95
1st 3.87 3.80 3.75 3.75 3.74 3.13

Table 5.12: Peak Base Overturning Moment (k-ft x10°) (Longitudinal Direction).

Substructure Configurations

5(2_87?

CCS_?”

L€4_631

LC5_5TJ

N6_475

MODE-1D

Base

2.93

2.91

2.90

291

2.92

2.62
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Table 5.13: Peak Interstory Drift (cm) (Transverse Direction) [Rocking-Base
Model].

Substructure Configurations

Story “3-7" “4-6” “5-57 “6-4" “r-3" MODE-1D
10th 0.05 0.04 0.04 0.04 0.03 0.20
9th 0.10 0.07 0.07 0.07 0.07 0.20
8th 0.14 0.11 0.11 0.11 0.10 0.20
Tth 0.19 0.15 0.14 0.14 0.14 0.21
6th 0.23 0.18 0.17 0.17 0.17 0.21
5th 0.27 0.21 0.20 0.20 0.20 0.22
4th 0.30 0.22 0.23 0.23 0.23 0.22
3rd 0.17 0.24 0.25 0.25 0.25 0.23
2nd 0.18 0.26 0.26 0.26 0.27 0.23
1st 0.18 0.27 0.27 0.27 0.27 0.31
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Table 5.14: Peak Interstory Drift (cm) (Transverse Direction) [Fixed-Base Model].

Substructure Configurations
Story “3-7" “4-6” “5-5” “6-4" “7-3”
10th 0.10 0.10 0.10 0.10 0.10
9th 0.14 0.14 0.15 0.15 0.14
8th 0.18 (.18 0.19 G.19 0.18
Tth - 0.22 0.21 0.23 0.23 0.16
6th 0.25 0.25 0.26 0.18 0.18
5th 0.28 0.27 0.18 0.19 0.20
4th 0.30 0.19 0.20 0.21 0.22
3rd 0.15 0.19 0.21 0.22 0.23
2nd 0.15 0.20 0.21 0.23 0.24
1st 0.18 0.22 0.24 0.25 0.27
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Table 5.15: Peak Interstory Drift (cm) (Longitudinal Direction}.

Substructure Configurations
Story “2-8” “3-7" “4-6" “5-5” “6-4" MODE-ID
10th 0.04 0.04 0.05 0.04 0.03 0.21
9th 0.08 0.09 6.09 0.08 0.05 0.25
8th 0.12 0.13 0.14 0.12 0.08 0.28
Tth 0.16 0.17 0.18 0.16 0.10 0.32
6th 0.20 0.22 0.22 0.20 0.42 0.36
bth 0.24 0.26 0.26 0.50 0.49 0.39
4th 0.27 0.30 0.61 0.58 0.56 0.43
3rd 0.31 0.77 0.68 0.64 0.62 0.46
2nd 1.09 0.84 0.73 0.69 0.67 0.50
Ist 1.14 0.87 0.75 0.71 0.69 0.72
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Figure 5.1: Mesh and Contour Plot of Jg(a) of Single-Degree-of-Freedom Linear
Oscillators.
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Figure 5.41: Time Histories of Base Overturning Moment (Transverse Direction).



- 181 -

Base Shear Force (kips x 10%)

1 1 i 1 | 1 1

0 5 10 15 20 25 30 35 40
Time (sec)

Base Overturning Moment (k—ft x 10%)
=

_6 1 1 ] ] 1 !
0 5 10 15 20 25 30 35 40
Time (sec)

Figure 5.42: Time Histories of Base Shear Force and Base Overturning Moment
(Longitudinal Direction).



- 182 -

Chapter 6

Conclusions and Future Research

6.1 Summary and Conclusions

In this dissertation, a pragmatic and versatile statistical system identification
framework is presented and applied to seismic response records from structures. The
framework is based on the interpretation of probability as a measure of plausibility
and on Bayesian statistical inference. This interpretation of probability is more useful
than the classical interpretation in terms of the limiting relative frequency of occur-
rence of events and is appropriate to describe the uncertainty in structural modeling,
i.e., parameter uncertainty and modeling error. By making suitable choices for the
class of probabilistic models in the framework, various classical system identification
techniques can be derived and viewed as the special cases of the framework. How-
ever, the framework can provide a more informative interpretation of the identified

optimal model than classical system identification techniques.

Even though the exact posterior probability distributions of model parameters
and predicted system output in the statistical system identification framework do
not require parameter estimation in the usual sense, the multi-dimensional inte-
gral cannot be evaluated analytically, nor numerically if the number of parameters
is more than a few. Fortunately, when the number of sampled input and output
data from structures is large, some useful asymptotic approximations of the ana-
lytical results are available. To incorporate these asymptotic approximations into
the statistical system identification framework, definitions of system identifiability
and model identifiability are presented. For the system identifiable case, existing
asymptotic approximation formulas are described. The results are then extended fo
the system un-identifiable case to broaden the applicability of the statistical system

identification framework.
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From the viewpoint of asymptotic approximations, the system identification
problem is then converted into a non-trivial global optimization problem. Because
the objective function in the asymptotic approximations in the statistical system
identification framework is not convex, there may be multiple optimal models in
the parameter space. Two generalized trajectory methods, the homotopy scheme
and the relaxation scheme, are presented which can be combined to provide a very
robust numerical procedure for global optimization. The homotopy scheme provides
a robust algorithm to find a stationary point of the objective function while the
relaxation scheme starts from one stationary point and systematically connects other
stationary points in the parameter space by a network of trajectories. Since both
schemes actually solve the stationarity conditions, they can also be applied to find

the roots of a set of nonlinear algebraic equations.

An efficient numerical algorithm for tracking both homotopy trajectories and
relaxation trajectories is also proposed. Some properties and behavior of the homo-
topy trajectory and the relaxation trajectory are analyzed and results are presented.
To deal with multiple trajectory components, a new approach is proposed in which
multiple applications of the relaxation scheme are used in a systematic way so that
the chance of finding all the stationary points increases. It is not easy to claim that
one global optimization method is more efficient than another due to the lack of
generally accepted criteria for comparing global optimization methods. With the ad-
vance of computer technology, however, robustness of global optimization methods
has become more important than the efficiency, provided the computational effort is
not prohibitive. From this perspective, the proposed generalized trajectory methods
provide a very robust numerical procedure to find multiple local extrema as part of

a strategy for global optimization.

The modal identification technique has been applied by using seismic response
records from different types of civil structures to estimate their modal properties. In
spite of its successful and broad applications, the modal identification technique has

the limitations that no information can be directly extracted from the measured data
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regarding the uninstrumented degrees of freedom of a structure and the search for
optimal modal parameters is cumbersome when additional constraints are imposed
on the stiffness matrix of a structure. Partially due to the limitations of modal iden-
tification, much attention has been drawn to the challenging problem of structural
model updating in the system identification community. Structural model updating
is useful because it can be applied to structural health monitoring which can pro-
vide early warning of damage of structural components. It is also desirable since
the theoretically based stiffness matrix of a structure can be improved by using the

measured data to give more accurate response predictions.

However, there are two intrinsic difficulties in structural model updating using
real seismic structural response records. The first constraint is that seismic structural
response is usually measured at only a few degrees of freedom in a structure because
of economic reasons. Also, only a few dominant modes contribute to real seismic
structural response. The.se two factors impose a severe limitation on the number
of free parameters in the stiffness matrix if the identified stiffness matrix is to be
accurate and at least locally unique. The number of dominant modes depends on
the frequency content of the ground acceleration and the type of structure and it is
unlikely that this number can be significantly increased. The only alternative, themn,
is to increase the number of measured degrees of freedom in a structure so that more
mode shape information is incorporated if it is desired that the stiffness distribution

of a structure be described in more detail by using more parameters.

Most research in structural model updating uses a two-stage approach in which
a modal identification technique is first applied to identify the modal parameters of
the dominant modes and then the stiffness matrix is adjusted according to various
proposed methods so that it is consistent with the identified modal parameters. The
main issue in the two-stage approach is that there is no well-accepted guideline in
selecting the weight to give each dominant mode in the second stage. Diflerent com-
binations of weights will give different estimated stiffness matrices. A single-stage

structural model updating approach using the least-squares prediction-error method
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and a substructuring technique is proposed. The advantage of the single-stage ap-
proach is that the identified stiffness matrix depends on the structural response time
history directly and, therefore, only one class of probabilistic models is needed in
the statistical system identification framework. Furthermore, the identified stiffness
matrix is based on the directly measurable structural response rather than the modal

parameters which can only be estimated indirectly.

In the proposed single-stage structural model updating approach, the damping
factors of the dominant modes are also included as part of the model parameters so
that the damping in a structure can be identified as well. Both the homotopy scheme
and the relaxation scheme are applied to determine the optimal model parameters
by minimizing the objective function in the least-squares prediction-error method.
To reduce numerical round-off error and increase the accuracy in tracking both ho-
motopy trajectories and relaxation trajectories, the gradient vector of the objective
function is calculated by using analytical expressions instead of finite-difference ap-
proximations. The proposed structural model updating approach is applied to both
simulated and real structural response data. It turns out the approach works well
when simulated structural response data is used. However, another issue in structural

model updating is noted when real structural response data is used.

Since there is only a small number of measured degrees of freedom in a structure
with typical seismic instrumentation, the use of substructuring is necessary in order
for the stiffness matrix to be at least locally identifiable. However, another impor-
tant issue at stake is whether the identified optimal structural model can provide a
physically feasible description of the stiffness distribution in the structure. Because
each substructure has different scope of influence on the model behavior and a phys-
ically feasible stiffness distribution depends on the stiffness of all the substructures,
there is no guarantee that the small set of measured degrees of freedom can provide
enough constraints on the stiffness matrix so that the description of the stiffness dis-
tribution in the structure is physically feasible. 1t is possible that the model output

of an identified optimal structural model may fit the measured structural response
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reasonably well but it may not be considered plausible because its description of
the stiffness distribution in the structure is not physically feasible. This discrepancy
may be alleviated by increasing the number of measured degrees of freedom in a
structure. However, the selection of appropriate structural models and proper choice

of substructuring scheme are equally crucial as well.
6.2 Future Research

The proposed generalized trajectory methods are applicable when the stationary
points of an objective function are isolated. In system identification, this situation
corresponds to the system identifiable case in which there is a finite number of optimal
models. Tt is of interest to explore if both methods are still applicable when the class
of models is system un-identifiable and the set of optimal model parameters consists

of a collection of smooth and non-intersecting curves.

It is desirable to have more applications of the proposed single-stage structural
model updating approach using real structural response data. As discussed, seismic
structural response records at more degrees of freedom in a structure are crucial for
successful structural model updating. Since real seismic structural response records
are usually available at only a few degrees of freedom in a structure, the use of
experimental data remains as an alternative for future investigation of the structural
model updating problem. Also, the planned dense seismic instrumentation of some
structures using 50 to 100 sensors will provide better data for developing and testing
structural model updating approaches. Besides, how to constrain the stiffness matrix
such that the stiffness distribution remains physically realistic is also an important

research issue.

Severe vibration of structures during earthquakes may reduce their serviceability
or cause structural damage. Structural control consists of techniques to reduce struc-
tural vibration either by enhancing the energy dissipation capability of structures or
isolating structures from external excitations. Various structural control algorithms
and devices have been investigated and presented in the literature. Nevertheless,

structural control design considering inherent uncertainty in structural modeling is
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difficult to treat and it is recognized as an important area for research. From this per-
spective, robust structural control based on a probability distribution over the set of
possible models, in conjunction with the statistical system identification framework

presented here, is a promising area to explore.



