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Abstract 
 

Pre-replicative complexes (pre-RCs), containing the helicase Mcm2-7, are 

assembled on origins of replication during G1 phase of the cell cycle. This 

‘licenses’ origins for subsequent activation during S-phase. The loading of the 

Mcm2-7 complex requires ATP hydrolysis and the licensing factors ORC, Cdc6 and 

Cdt1, and results in the assembly of a head-to-head double hexamer of Mcm2-7 

bound around duplex DNA.  

 

To understand how the Mcm2-7 complex is loaded into a double hexamer, we need 

a better understanding of the stoichiometry and positioning of licensing factors 

relative to each other during pre-RC assembly. To address this, I used a tagging 

and immunoaffinity purification strategy. For this purpose, I generated purified 

protein preparations where subunits of the licensing proteins were fused to either a 

9x Myc or a 3x FLAG tag. These proteins were tested for their ability to support 

loading of the Mcm2-7 complex in vitro. 

 

I used the tagged proteins in an established in vitro pre-RC assembly assay 

coupled with an immunoaffinity purification approach. I found that in the absence of 

ATP hydrolysis, one molecule each of ORC, Cdc6 and Cdt1 recruit a single Mcm2-

7 hexamer to origin DNA. Using an ATPase mutant, I showed that ATP hydrolysis 

by Cdc6 is not required for Mcm2-7 double hexamer formation. I found that a 

conserved C-terminal region of Mcm3 is critical for Mcm2-7 recruitment to ORC-

Cdc6-DNA. Mutations in this C-terminal domain were lethal in vivo and inhibited 

Mcm2-7 loading onto origin DNA in vitro. I used the tagged proteins coupled with 

crosslinking and denaturing immunoaffinity purifications and found that Mcm3 

interacts with Orc2 and Cdc6 during Mcm2-7/Cdt1 recruitment to ORC-Cdc6-DNA. 

 

The results of this thesis suggest that Mcm2-7 is recruited to origin DNA via Mcm3 

interaction with Orc2 and Cdc6 and that the Mcm2-7 hexamers are loaded in a 

sequential manner. 
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Chapter 1. Introduction 

Deoxyribonucleic acid (DNA) is a polymer of nucleotides that provides genetic 

instructions to cells. Most DNA is composed of two polymer strands of nucleotides 

that are complementary to each other. These two strands are entwined in a DNA 

double helix, the structure of which was first elucidated in 1953 by Watson and 

Crick (Watson and Crick, 1953).  

 

The replication or copying of DNA is a biological process that occurs in all cell 

types, from the simplest bacterium to the most complex multicellular organism. This 

process takes place prior to cell division and acts as the basis for biological 

inheritance. During DNA replication, a multiprotein replication machine, the 

replisome, separates the two strands of double helical DNA and uses each as a 

template to assemble nucleotides into a new complementary strand. The outcome 

is a pair of DNA double helices, each identical to the original. This is referred to as 

semiconservative DNA replication.  

 

Accurate and efficient DNA replication is fundamental to ensure that daughter cells 

inherit an intact copy of the genetic material and to ensure a species’ genetic 

continuity from generation to generation. More than four decades ago, Jacob et al., 

proposed the “replicon model” of DNA replication to describe the regulation of 

Escherichia coli chromosomal duplication (Jacob et al., 1963). The model 

postulated that a trans-acting factor called an “initiator” would activate DNA 

replication through a cis-acting DNA sequence called a “replicator”. Indeed, 

replicators were subsequently identified in prokaryotes, DNA viruses and lower 

eukaryotes by their ability to confer DNA replication in extrachromosomal 

replication of plasmids. Initiator proteins were also identified by their ability to bind 

replicators. This largely validated the “replicon model” and revealed the basic 

mechanisms by which cells regulate their DNA replication (Bell and Dutta, 2002).  

 

However, it turns out that the replication of DNA is not as simple as an initiator and 

replicator; instead it is a highly orchestrated process that requires the concerted 

actions of several proteins. Initiator proteins not only recognize the “replicator” but 

also act together to load DNA helicase enzymes (replicative helicases) that unwind 
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the DNA duplex. Subsequently, strand synthesis machineries are recruited to 

complete replisome formation. These include; primases, DNA polymerases that 

copy single stranded DNA templates and polymerase clamp-loader complexes. In a 

further layer of complexity, specific “replicator” sequences have not been identified 

in higher eukaryotes.  

 

There are also several key steps involved in the accurate and efficient replication of 

DNA. The “replicator” or origin of replication must first be determined and then 

recognized. Next, in order for the duplex DNA to function as a template during DNA 

replication, the two entwined strands must first be exposed. DNA helicases, the 

enzymes that unwind the DNA, are incapable of initiating unwinding from a 

completely double-stranded DNA molecule. There is therefore an activity, other 

than the helicase, that induces the initial opening or melting of the DNA duplex. The 

DNA helicase also has to, somehow, be loaded onto the DNA in order to initiate 

DNA unwinding. Furthermore, a series of other steps are then required for the DNA 

polymerase to begin copying of the template strands and synthesis of new 

complementary DNA.  

 

There are therefore several issues that need to be overcome in order for efficient 

replication to take place. Organisms have developed elegant mechanisms to deal 

with each of the steps involved in replicating their DNA. This introduction will 

discuss these mechanisms with a focus on DNA helicases, their role in replication 

and how a DNA helicase is loaded onto origin DNA.   

 

Cells encode many different helicases that contribute to different aspects of nucleic 

acid metabolism. DNA helicases are motors that couple nucleoside triphosphate 

binding and hydrolysis to double strand DNA separation and translocation along 

single-stranded DNA (Lohman and Bjornson, 1996). Generally DNA helicases are 

oligomeric (mostly functioning as dimers or hexamers), which allows them to 

contact the DNA at multiple sites (Lohman and Bjornson, 1996). Unwinding of the 

DNA at replication origins results in the formation of two replication forks, which 

move in opposite directions. The replicative helicase tracks along with the 

replication forks unwinding the DNA. 
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In both prokaryotes and eukaryotes, loading of the replicative helicase at origins 

represents a key step in replisome assembly. This loading is mediated by initiator 

proteins and occurs before the recruitment of DNA polymerases that copy the 

template strands. In E.coli, DNA replication is initiated from a single sequence-

specific “replicator” or origin known as OriC by binding of the initiator protein DnaA. 

This binding triggers local DNA melting and loading of the replicative helicase 

DnaB with the aid of another protein, DnaC. In eukaryotes, the initiator origin 

recognition complex (ORC) binds at origins and together with two other proteins, 

Cdc6 and Cdt1, loads the replicative helicase Mcm2-7. It is still unclear at which 

stage and how initial DNA melting occurs in eukaryotes. Loading of the replicative 

helicase is tightly regulated in both bacteria and eukaryotes. The reason for this is 

to ensure that daughter cells inherit an intact and error-free copy of the genome. 

These mechanisms and their significance will be further reviewed later. 

 

The following discussion will focus on the mechanisms of helicase loading and 

regulation in prokaryotes and eukaryotes with particular focus on the bacterium 

Escherichia coli and the yeast Saccharomyces cerevisiae in which these events 

are best understood.  

 

1.1 DNA Replication in Escherichia coli 

1.1.1 E.coli Origin of Replication 

An origin of DNA replication is a site on the DNA at which DNA replication initiates. 

In bacteria, DNA replication initiates from a single well-defined “replicator” or origin 

on a circular chromosome. The time taken to replicate the chromosome is therefore 

proportional to its size. The E.coli origin of DNA replication, OriC was identified as a 

232-245 base pair (bp) region carrying the necessary information for autonomous 

replication (Oka et al., 1980). OriC was further characterised as containing five 9 bp 

elements (DnaA boxes) that bind the initiator protein DnaA (Fuller et al., 1984, 

Matsui et al., 1985) as well as three AT-rich 13 bp repeats that are unwound by 

DnaA binding (Bramhill and Kornberg, 1988). The three 13-mer repeats were then 

identified as a DNA unwinding element (DUE) that unwinds locally in the absence 

of replication proteins due to the effects of supercoiling (Kowalski and Eddy, 1989). 
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Details of DNA sequence motifs in OriC are reviewed in (Leonard and Mechali, 

2013). A schematic of OriC is shown in Figure 1.1. The main functions of OriC are 

to act as a site of replication fork assembly and DNA replication control, for a recent 

review see (Skarstad and Katayama, 2013). 

 

1.1.2 DnaA binding at OriC 

The E.coli replication initiator, DnaA is a member of the AAA+ (ATPase associated 

with various cellular activities) family and is highly conserved amongst bacteria 

(Katayama, 2008). DNA replication initiator proteins in most cell types share this 

membership in the AAA+ protein family. The AAA+ proteins are involved in a 

diverse range of cellular activities and usually couple ATP hydrolysis to their activity 

(Koonin, 1993). AAA+ proteins often assemble into oligomeric assembles where 

ATPase active sites are formed at dimer interfaces (Koonin, 1993). The AAA+ 

protein, DnaA exists in two states, an ATP-bound active form (DnaA-ATP) and an 

ADP-bound inactive form (DnaA-ADP).  

 

DnaA performs a central role in binding at OriC and initiating DNA replication. 

DnaA binds with highest affinity to the consensus sequence 5′-TTATCCAC-3′ 

within the DnaA boxes (Schaper and Messer, 1995). It binds to 3 of these 9 bp 

elements throughout the cell cycle and forms a nucleoprotein complex (Nievera et 

al., 2006). Upon initiation, DnaA-ATP rapidly forms a larger nucleoprotein complex 

of 20-30 monomers (Figure 1.1, step 1) by binding of extra DnaA at two lower 

affinity 9 bp elements in OriC (Nievera et al., 2006). This has been visualised by 

electron microscopy with negative staining (Fuller et al., 1984). The lower affinity 9 

bp elements in OriC preferentially bind DnaA-ATP (McGarry et al., 2004) and 

together with the high affinity 9 bp elements are essential for formation of the 

DnaA-OriC nucleoprotein complex (Miller et al., 2009). 

 

Assembly of the DnaA-OriC nucleoprotein complex, together with negatively 

supercoiled DNA, directly induces DNA unwinding at the DUE (Figure 1.1, step 1), 

therefore generating single-stranded DNA (open complex formation) suitable for 

helicase loading and subsequent replisome assembly (Bramhill and Kornberg, 
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1988). Following replication initiation, DnaA-ATP is prohibited from accessing OriC 

by several mechanisms including decreasing the levels of available ATP and 

blocking binding sites in OriC (reviewed in (Leonard and Grimwade, 2010)). This 

ensures that initiations from OriC are limited to once per cell cycle, and a complete 

copy of the genome is available for each daughter cell upon cell division. 

 

1.1.3 Loading of the replicative helicase in E.coli 

DnaB is the replicative helicase in E.coli (LeBowitz and McMacken, 1986). 

Purification and biochemical characterisation of this helicase found that it is a 

hexamer composed of six identical subunits (Reha-Krantz and Hurwitz, 1978a, Arai 

et al., 1981). DnaB was also found to preferentially bind to single stranded DNA 

and require Mg2+ to stabilize its structure (Reha-Krantz and Hurwitz, 1978b). In the 

absence of Mg2+, DnaB dissociates into monomers and trimers (Bujalowski et al., 

1994). Crystal structures of DnaB from other prokarya revealed that the DnaB 

monomer is a highly flexible molecule consisting of two domains when outside of 

the confines of the hexamer (Bailey et al., 2007a). Furthermore, electron 

microscopy data showed that DnaB can exist in a 3-fold symmetry conformation 

(trimer of dimers) or a 6-fold symmetry (all subunits equivalent) (Yang et al., 2002). 

DnaB is loaded onto single-stranded DNA and several studies have shown that the 

enzyme unwinds DNA by translocating in a 5'-3' direction (LeBowitz and McMacken, 

1986). A crystal structure of DnaB in complex with single-stranded DNA revealed 

that DnaB forms a closed spiral staircase structure around the DNA with each C-

terminal domain contacting two nucleotides (Itsathitphaisarn et al., 2012).  

 

In order for DnaB to be loaded onto single stranded DNA at OriC, it requires a 

binding partner called DnaC. Like DnaA, DnaC is a member of the AAA+ family of 

ATPases (Bell and Kaguni, 2013). It was first thought that DnaC had to bind ATP to 

interact with DnaB (Wickner and Hurwitz, 1975), however more recent studies, 

using mutants defective in ATP binding, have demonstrated that DnaC does not 

need to bind ATP to interact with DnaB (Davey et al., 2002). Three-dimensional 

reconstruction of cryo-electron microscopy revealed that DnaC binds to the C-
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terminal face of the helicase as three dumb-bell-shaped dimers that lock DnaB in 

the 3-fold symmetry conformation (Barcena et al., 2001). 

 

After single stranded DNA is exposed on OriC by formation of the DnaA-OriC 

nucleoprotein complex, DnaA loads two DnaB-DnaC complexes onto this unwound 

DNA at opposing sides of the resulting bubble (Figure 1.1, step 2), expanding it 

further (Fang et al., 1999, Carr and Kaguni, 2001). This presents an interesting 

problem of how to coordinate loading of two DnaB-DnaC complexes on opposing 

sides of the bubble, in the correct conformation and orientation. It is still unclear 

how this is achieved. One suggestion, based on structural studies of DnaC from 

Aquifex aelicus, is that DnaC functions as a molecular adapter that uses DnaA-ATP 

as a docking site to regulate correct spatial deposition of the helicase (Mott et al., 

2008). Another intriguing event that occurs during helicase loading is that the DnaB 

helicase must somehow open up at one of its interfaces to encircle the single-

stranded DNA. A recent study using electron microscopy and small angle X-ray 

scatter (SAXS) determined the ATP-bound structure of the DnaB-DnaC complex 

(Arias-Palomo et al., 2013). They found that DnaC adopts a spiral conformation 

that remodels both the N-terminal and C-terminal portions of DnaB, giving rise to a 

break in the hexameric ring (Arias-Palomo et al., 2013). This could possibly be a 

mechanism for DnaB loading onto single stranded DNA. Once the DnaB helicase is 

loaded, it is straight away active for DNA unwinding ahead of the replication fork.  
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Figure 1.1 Helicase loading at the E.coli replication origin, OriC 

The E.coli origin of replication, OriC, is shown at the top of the figure. Some 
sequence elements have been highlighted. In step 1, DnaA-ATP binds the 9-mer 
repeats (DnaA boxes) to form the DnaA nucleoprotein filament. This, along with the 
effects of negative supercoiling, induces DNA unwinding at the DUE. In step 2, 
DnaA loads the helicase DnaB in a complex with DnaC on to opposing sides of the 
replication bubble. In step 3, the primase DnaG binds to DnaB at its N-terminus. 
This binding and RNA primer formation (in red) is thought to induce release of 
DnaC (step 4). 
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After loading of the DnaB helicase, DnaC dissociates. DnaC bound to ATP (DnaC-

ATP), or the poorly hydrolysed analogue ATPγS, is capable of loading DnaB in a 

DnaA dependent manner (Davey et al., 2002). This indicates that ATP hydrolysis 

by DnaC is not required for DnaB loading. However, DnaC-ATP is inhibitory to the 

helicase function of DnaB and it must be hydrolysed after depositing the helicase 

(Davey et al., 2002). The combined presence of DnaB and single-stranded DNA 

seem to trigger this ATP hydrolysis, alleviating the inhibitory effect (Davey et al., 

2002). The hydrolysis does not however appear to induce release of DnaC, instead 

its dissociation seems to be induced by a primase (DnaG) that interacts with DnaB 

at its N-terminus (Figure 1.1, steps 3 and 4) (Makowska-Grzyska and Kaguni, 

2010). It is thought that DnaG synthesising a RNA primer whilst interacting with 

DnaB somehow alters the conformation of DnaB therefore inducing release of 

DnaC (Figure 1.1, step 4) (Makowska-Grzyska and Kaguni, 2010). 

 

1.1.4 Regulation of helicase loading 

Initiation of replication in prokaryotes must be regulated in two ways, firstly to 

ensure that the whole genome is replicated once per generation and secondly to 

prevent extra initiation events. One way to achieve this control is by regulating 

helicase loading. E.coli generally regulate helicase loading by controlling the 

production and activity of the initiator protein DnaA and by inhibiting its access to 

the origin (reviewed in (Skarstad and Katayama, 2013)).  

 

One way to prevent re-initiation during a single cell cycle, is to prevent DnaA 

binding to OriC. In E.coli this is achieved by binding of a protein called SeqA to 

newly replicated origins, which acts to sequester the origin, preventing excess 

initiations (Lu et al., 1994, von Freiesleben et al., 1994). SeqA is able to 

discriminate between unreplicated and newly replicated OriC by the methylation 

status of GATC sequences, which are enriched at the origin (Slater et al., 1995). 

Adenines in these sequences are methylated by Dam methylase and remain hemi-

methylated for a short while (about a third of a generation in the case of OriC) after 

the replication fork has passed (Campbell and Kleckner, 1990, Lu et al., 1994). 

SeqA recognises these hemi-methylated sequences at the origin and binds them, 

preventing re-initiation of replication and also Dam methylation (Lu et al., 1994, 
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Slater et al., 1995, Guarne et al., 2002). SeqA binds to OriC in a multimeric form 

altering the superhelical structure of the DNA and hindering DnaA access to the 

origin (Torheim and Skarstad, 1999). These mechanisms help to prevent re-

initiation of DNA replication within a single cell cycle.  

 

The transcription of DnaA varies with the cell cycle (Bogan and Helmstetter, 1997). 

An additional important mechanism of SeqA is to bind at the dnaA gene promoter, 

during which time the promoter becomes unavailable to the transcription machinery 

(Skarstad and Katayama, 2013). This occurs soon after origin firing, thus reducing 

the ability of DnaA to load the helicase and preventing re-initiation. DnaA also binds 

at sites other than OriC and acts as a gene regulatory protein. As regions are 

replicated, this doubles the number of DnaA binding sites and titrates the protein 

away from the origin, making it unavailable for helicase loading. Another 

mechanism is regulation of the nucleotide binding state of DnaA (Reviewed in, 

Skarstad and Katayama, 2013)). DnaA-ATP can bind OriC and load the replicative 

helicase, as discussed previously. The E.coli chromosome contains sequences 

called DARS1 and DARS2 that facilitate the release of ADP from DnaA, therefore 

activating it (Kaguni, 2006). DARS1 and DARS2 are regulated to ensure timely 

initiation of DNA replication, however the mechanism of this regulation remains to 

be elucidated (Kaguni, 2006).  

 

1.1.5 Events downstream of helicase loading 

Following primer formation by DnaG (Figure 1.1, step 4, red lines), the primers are 

extended by the bacterial replicase, DNA polymerase III (Pol III) holoenzyme 

(reviewed in (Johansson and Dixon, 2013)). Pol III requires a primer to initiate 

synthesis, and translocates in a 5' to 3' direction (Kornberg and Gefter, 1972). Pol 

III is composed of around 17 subunits, containing a polymerase core (αεθ), a 

sliding clamp (β2), and a clamp loader complex (DnaX) (Johansson and Dixon, 

2013). It is thought that a dimer of pol III functions at each replication fork (Maki et 

al., 1988, Kim et al., 1996). Pol III synthesizes leading and lagging strands 

simultaneously. The leading strand is synthesised in a continuous fashion. On the 

lagging strand, however, pol III is only able to synthesize Okazaki fragments up to 

the 5' end of a preceding RNA primer, at which point it is recycled to the next 
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primer at the replication fork, resulting in a gap (Kornberg and Baker, 1992). 

Another polymerase, pol I, then excises the RNA primers and extends the DNA 

primer filling in this gap (Kornberg and Baker, 1992). The activity of pol I leaves a 

nick with a 3'-OH and 5'-phosphate that is a substrate for DNA ligase which seals 

the nick, making a continuous lagging strand (Kornberg and Baker, 1992).  

 

1.2 DNA Replication in Eukaryotes 

The eukaryotic cell cycle is composed of four distinct phases; S phase, in which 

DNA replication occurs, M phase, in which segregation of sister chromatids and cell 

division takes place, and two gap phases G1 and G2 (Figure 1.2). The order of the 

cell cycle is as follows: G1, S, G2 and M and is shown in Figure 1.2. 

 

Replication origins are tightly regulated to ensure that they fire once and only once 

during a cell cycle and produce a single error-free copy of the genome. Loss of this 

control may cause genome instability, which can contribute to human disease 

(Arias and Walter, 2007). Re-replication during a single cell cycle has been shown 

to lead to gene copy number changes, which in turn may promote oncogenesis 

(Green et al., 2010).  

 

It is therefore crucial that eukaryotic cells have evolved mechanisms to regulate 

once per cell cycle replication. This is achieved by initiating DNA replication in two 

discrete steps. In the first step, the Mcm2-7 replicative helicase, which unwinds 

DNA, is loaded into pre-replicative complexes (pre-RCs) in an inactive form. This is 

in contrast to E.coli where the DnaB helicase is loaded in an active form. The 

loading of inactive Mcm2-7 into pre-RCs is known as origin licensing, and occurs in 

late M to G1 phase of the cell cycle (Figure 1.2). Importantly this can only occur 

when the level of CDK is low and that of the anaphase promoting complex (APC/C) 

is high (Diffley, 1996). In the second step, origins are activated by recruitment of 

initiation factors to pre-RCs, which induces replisome formation and unwinding of 

the DNA by the replicative helicase. This in turn allows polymerases to access and 

copy the template strands. Origin activation occurs in S phase of the cell cycle and 
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is triggered by an increase in the level of S-phase CDK and inactivation of the 

APC/C at the G1/S transition (Diffley, 1996).  

 

 

 
Figure 1.2 Cell cycle regulation of DNA replication 

The eukaryotic cell cycle is composed of four phases, M, G1, S and G2. Licensing 
of origins of DNA replication can only take place in late M to G1 phase, when the 
levels of CDK are low. This licensing involves assembly of the replicative helicase 
into pre-replicative complexes. At this stage the helicase is inactive. Upon transition 
into S phase, the levels of CDK rise and this triggers activation of the helicase and 
replisome progression. This temporal separation of assembly and then activation, 
ensures that DNA replication is restricted to once per cell cycle. 
 
 

1.2.1 Eukaryotic origins of DNA replication 

In contrast to bacterial genomes, in eukaryotic cells, DNA replication is initiated 

from hundreds to thousands of origins along chromosomes. The number of origins 
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used is generally related to the size of an organism’s genome and length of its cell 

cycle (Leonard and Mechali, 2013). This means that if all origins fire at the same 

time, the time taken to replicate the genome is directly proportional to inter-origin 

distance, as opposed to the size of the genome. The presence of multiple origins 

ensures that every region of the genome is replicated in a rapid and efficient 

manner. Origins of DNA replication act as sites where pre-replicative complexes, 

containing the replicative helicase, are assembled. The replicative helicases are 

then activated in a timely fashion in S phase, when DNA unwinding is required 

(Reviewed in Remus and Diffley, 2009).  

 

1.2.1.1  DNA replication origins in the yeast Saccharomyces cerevisiae 

The first “replicators” or origins in S. cerevisiae were identified due to their ability to 

confer autonomous replication to plasmid DNA (Stinchcomb et al., 1979, Struhl et 

al., 1979, Hsiao and Carbon, 1979). The first origin was termed Autonomously 

Replicating Sequence 1 (ARS1). Since then, many other ARSs have been 

identified and the S.cerevisiae genome is estimated to contain some 400 origins 

(Leonard and Mechali, 2013). Mutational analysis revealed that each ARS contains 

an 11 bp consensus sequence [5'-(A/T)TTTA(T/C)(A/G)TTT(A/T)-3'], called the 

ARS consensus sequence (ACS) (Broach et al., 1983, Van Houten and Newlon, 

1990). Three elements close to the ACS, termed B1, B2 and B3, have also been 

identified, and these appear to contribute to origin function (Marahrens and Stillman, 

1992, Huang and Kowalski, 1996). The B1 element, most proximal to the ACS, is 

important for binding of the origin recognition complex (ORC) (Rowley et al., 1995), 

the B2 element may be a binding site for the replicative helicase (Mcm2-7) (Wilmes 

and Bell, 2002) and the B3 element binds a DNA-binding factor Abf1 that functions 

in transcription (Diffley et al., 1994). 

 

Interestingly, S.cerevisiae is the only species for which a “replicator” or specific 

consensus sequence for origins has been identified. Even in other yeast species, a 

clear consensus sequence is not found. In addition to the ACS and B elements, 

S.cerevisiae origins exhibit a nucleosome-free region and the ACS is necessary to 

confer this nucleosome exclusion (Eaton et al., 2010). 
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1.2.1.2  DNA replication origins in metazoans 

Due to the larger size of their genomes, metazoans require activation of thousands 

of origins of replication in a single cell cycle. For example, in the early cleavage 

stages of the Xenopus leavis embryo, DNA replication initiates from some 300,000 

origins that are ~ 5-15 kb apart (Blow et al., 2001). Replication origins occur at 

specific sites in the genome, but their genetic characteristics are still somewhat 

unclear. A long-standing question has been whether metazoans initiate DNA 

replication from sequence specific “replicators” as per the replicon model and as in 

S.cerevisiae. This question still remains unresolved. However, genome-wide 

analysis of active sites of DNA replication initiation in mouse and drosophila cells 

highlighted a preference of an initiator protein, ORC, for CpG islands (Cayrou et al., 

2011). In addition, there appear to be G-rich motifs in 80-90% of replication origins 

close to sites of initiation (Cayrou et al., 2011). These motifs are termed origin G-

rich repeated elements (OGREs) and are capable of forming G quadruplexes 

(Reviewed in, Cayrou et al., 2012).  

 

Another feature of metazoan origins is that there are many more origins than 

needed during a cell cycle. Approximately, one out of every five potential origins 

fires during a single cell cycle (Cayrou et al., 2011). This is a feature shared by 

budding yeast origins (Friedman et al., 1997) and selection of which origins fire 

seems to occur stochastically. These excess origins may function as back up, 

which could be important for example if a replication fork encounters difficult to 

replicate regions that affect its stability (Blow and Ge, 2009). If a fork stalls and is 

unable to continue replication, spare or “dormant” origins could fire and replicate 

the DNA up to the stalled fork (Yekezare et al., 2013). There is an increasing body 

of evidence indicating that such dormant origins are important for genomic stability 

and cell viability, particularly under conditions of replication stress. For example, 

when dormant origin activation was inhibited in human cells, reduced viability was 

observed upon induction of replicative stress (Ge et al., 2007). 
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1.2.2 Loading of the Replicative Helicase – pre-replicative complex 

formation 

Several early studies revealed that, in eukaryotes, events during replication 

initiation are separated into distinct stages of the cell cycle. Cell fusion experiments 

using the mammalian cell line HeLa, showed that fusion of a G1 cell with an S 

phase cell resulted in rapid induction of DNA replication (Rao and Johnson, 1970). 

However, when an S phase cell was fused with a G2 phase cell, there was no 

effect on the normal course of S phase DNA replication (Rao and Johnson, 1970). 

This indicated that there were positive factors in S phase cells that caused G1 cells 

to initiate DNA replication. Other studies in Xenopus egg extracts showed that G2 

nuclei were unable to undergo re-replication when added to a G1 extract, unless 

the nuclear envelope was permeabilised, suggesting the existence of a ‘licensing’ 

factor that could only gain access to DNA during mitosis, after nuclear envelope 

breakdown (Blow and Laskey, 1988). 

 

Later, in vivo footprinting experiments in S.cerevisiae revealed that during G1 there 

is a more extensive protection pattern on origins when compared to S, G2 and M 

phases of the cell cycle (Diffley et al., 1994). These data indicated that origins are 

in a ‘pre-replicative’ state in G1 and then a ‘post-replicative’ state in later stages of 

the cell cycle. The pre-replicative state visualised by footprinting represents a pre-

replicative complex (pre-RC) at the origin that is lost upon entry into S phase 

(Diffley et al., 1995). This pre-RC footprint is due to binding of the replicative 

helicase and its loading factors at origin DNA (Santocanale and Diffley, 1996, 

Aparicio et al., 1997, Labib et al., 2001). Therefore, the term ‘pre-RC formation’ has 

become synonymous with helicase loading and origin licensing. 

 

We now know that origins are licensed in G1 phase by pre-replicative formation, 

which essentially results in loading of an inactive replicative helicase and then in S 

phase the poised helicase is activated for replication. 
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1.2.2.1  Helicase Loading Proteins 

The eukaryotic replicative helicase Mcm2-7 (MCM) is loaded onto origin DNA by 

the combined actions of three proteins, the Origin Recognition Complex (ORC), 

Cdc6 and Cdt1.  

 

ORC 

The very first step in loading the eukaryotic replicative helicase is binding of the 

origin recognition complex (ORC) to origin DNA. ORC was identified by footprinting 

studies on S.cerevisiae ARS1, followed by fractionation and purification (Bell and 

Stillman, 1992). ORC was found to be a complex consisting of six subunits. 

Subsequently, genetic evidence showed that ORC plays a pivotal role early on in 

DNA replication (Micklem et al., 1993, Foss et al., 1993, Bell et al., 1993). In yeast, 

ORC is bound at replication origins throughout the cell cycle and requires both the 

ACS and the B1 element for this binding (Diffley and Cocker, 1992, Diffley et al., 

1995, Rowley et al., 1995).  

 

Following studies in yeast, the ORC subunits were found to be conserved in other 

eukaryotes and play a crucial role in their DNA replication (Gavin et al., 1995, 

Gossen et al., 1995, Carpenter et al., 1996, Muzi-Falconi and Kelly, 1995). 

Whereas ORC binds a specific sequence in yeast, the determinants for ORC 

binding in metazoans are less clear. Interestingly, human ORC binds to a WD40 

repeat-containing protein called ORCA that interacts with methylated nucleosomes 

(Shen et al., 2010, Chakraborty et al., 2011). This could be one method of directing 

ORC to compacted chromatin.  

 

ORC is a heterohexamer consisting of Orc1-Orc6. Five of these subunits, Orc1-5 

are part of the AAA+ family of proteins, but only Orc1 and Orc5 have been shown to 

bind ATP (Klemm et al., 1997). Binding of ATP by ORC is essential for its binding 

to the ACS (Bell and Stillman, 1992) and for pre-RC formation (Klemm and Bell, 

2001). Orc1 but not Orc5 has been shown to hydrolyse ATP in vitro (Klemm et al., 

1997) and an arginine finger in Orc4 is critical for ATP hydrolysis by Orc1 (Bowers 

et al., 2004). In addition, a mutation in this arginine finger of Orc4 that blocks ATP 

hydrolysis by Orc1 was shown to block re-iterative Mcm2-7 loading (multiple 
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Mcm2-7 molecules are loaded at origins of replication) (Bowers et al., 2004). 

Studies from Drosophila melanogaster have shown that dmORC binds DNA and 

chromatin in vitro in an ATP-dependent manner, similar to S.cerevisiae (Remus et 

al., 2004). Interestingly, in human cells ATP binding by Orc4 and Orc5 seems to be 

required for assembly of hsORC (Siddiqui and Stillman, 2007). It is probable that 

the ATP binding and hydrolysis functions of ORC differ across domains of life.  

 

ORC1, -2, -4 and -5 contain potential winged helices at their C-termini, which could 

play a role in ORC-protein and ORC-DNA interactions. Electron microscopy studies 

coupled with epitope tagging, using S.cerevisiae purified ORC, have identified the 

subunit arrangement within the ORC hexamer (Chen et al., 2008). 

 

Cdc6 

Cell Division Cycle 6 (Cdc6) was first identified in S.cerevisiae, in a screen for cell 

cycle mutants (Hartwell et al., 1973). Cdc6 was thought to play a role in replication 

since temperature sensitive mutants of CDC6 resulted in mini-chromosome loss, 

and it was presumed that this protein functioned at the beginning of S phase in 

replication initiation (Hogan and Koshland, 1992). However, later studies showed 

that Cdc6 was in fact required for pre-RC formation (late M to G1 phase), but not 

for ORC binding at origins (Santocanale and Diffley, 1996, Cocker et al., 1996). 

Concurrently studies in Xenopus identified a Cdc6 homologue that is essential for 

replication initiation (Coleman et al., 1996). Data showed that xCdc6 can only bind 

chromatin in the presence of Xorc2 and moreover it was required for loading of 

xMcm3 (part of the Mcm2-7 replicative helicase), suggesting that ORC, Cdc6 and 

MCM proteins associate with chromatin sequentially (Coleman et al., 1996). 

 

Furthermore, Cdc6 was also found to be required for loading the replicative 

helicase Mcm2-7 onto chromatin in S.cerevisiae (Donovan et al., 1997). Cdc6 can 

only bind origins in the presence of ORC, and interacts directly with this complex 

(Liang et al., 1995, Seki and Diffley, 2000). 

 

The Cdc6 protein, like Orc1-5, DnaA and DnaC, is also a member of the AAA+ 

family of proteins and it binds and hydrolyses ATP. Mutations in the Walker A and 

B motifs, responsible for ATP binding and hydrolysis respectively, indicated 
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genetically separable roles for these functions in pre-RC assembly (Perkins and 

Diffley, 1998). Genetic data suggested that ATP binding by Cdc6 is required for its 

interaction with replication origins in G1, whereas ATP hydrolysis is required for 

loading Mcm2-7 onto chromatin (Perkins and Diffley, 1998, Weinreich et al., 1999). 

In vitro data using yeast G1 extracts also suggested that ATP hydrolysis by Cdc6 is 

required for Mcm2-7 loading, and that this occurs prior to ATP hydrolysis by ORC 

(Randell et al., 2006).  

 

Orthologues of Cdc6 have been identified in higher eukaryotes by sequence 

homology to the S.cerevisiae protein, and these also play a role in pre-RC 

formation (Coleman et al., 1996, Williams et al., 1997).  

 

Cdt1 

Cdt1 (Cdc10 Dependent Transcript 1) was first discovered in S.pombe as a cell 

cycle regulated gene required for DNA replication (Hofmann and Beach, 1994). 

Subsequently homologues of Cdt1 were identified in Xenopus laevis, human cells, 

Drosophila and S.cerevisiae and this protein was found to play a role in pre-RC 

formation (Maiorano et al., 2000, Tanaka and Diffley, 2002, Nishitani et al., 2000, 

Nishitani et al., 2001, Devault et al., 2002, Whittaker et al., 2000). Cdt1 is quite 

poorly conserved in terms of primary sequence, but all Cdt1 proteins identified 

contain a pair of winged helices towards their C-termini (Bell and Kaguni, 2013).  

 

In the absence of Cdt1, Cdc6 can still bind origins when ORC is already bound, 

both in vivo and in vitro (Maiorano et al., 2000, Nishitani et al., 2000, Remus et al., 

2009). In contrast, Cdt1 is unable to bind origins in vitro in the absence of Cdc6 

(Randell et al., 2006, Remus et al., 2009). Having said this, in Xenopus extracts 

depleted of Cdc6, Cdt1 is still able to bind the origin but Mcm2-7 loading is not 

supported in this scenario (Gillespie et al., 2001). Cdt1 binds to Mcm2-7 via its C-

terminal winged helices (Zhang et al., 2010, Ferenbach et al., 2005). It primarily 

binds to the C-terminus of Mcm6 (Yanagi et al., 2002).  In the yeast S.cerevisiae, 

Cdt1 is constitutively bound to Mcm2-7 and together this complex is shuttled into 

the nucleus for pre-RC formation in late M/G1 phase of the cell cycle (Tanaka and 

Diffley, 2002). These studies show that there are probably subtle differences in 

Cdt1 function and interaction with Mcm2-7 in different species.  
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Mcm8 and Mcm9 

In all eukaryotes, Mcm2-7 loading is dependent on ORC, Cdc6 and Cdt1. 

Metazoans may employ additional proteins for loading of the Mcm2-7 complex. For 

example, Mcm8 and Mcm9 are proteins related to the Mcm2-7 subunits that may 

act to assist in the loading of Mcm2-7 onto chromatin (Lutzmann and Mechali, 2008, 

Volkening and Hoffmann, 2005, Maiorano et al., 2005). Mcm8 and Mcm9 have also 

been implicated in homologous recombination (Lutzmann et al., 2012) and may 

function as a complex that recruits Rad51 to sites of DNA damage (Park et al., 

2013). 

 

1.2.2.2  The Mcm2-7 helicase 

The MCM proteins were identified in a screen for mutants defective in 

minichromosome maintenance in yeast (Maine et al., 1984). It was later shown that 

two of these proteins, Mcm2 and Mcm3, are required for initiation of DNA 

replication and their subnuclear localization is temporally regulated with respect to 

the cell cycle (Yan et al., 1993, Hennessy et al., 1990). These proteins localise to 

the nucleus at the end of mitosis and then exit at the beginning of S-phase, and 

once in the nucleus both Mcm2 and Mcm3 bind tightly to chromatin. Evidence that 

the role of the MCM proteins is conserved, came from studies in Xenopus eggs 

whereby a homologue of Mcm3 was identified and found to be important for 

licensing (Kubota et al., 1995). Furthermore, several studies showed that the MCM 

proteins form a complex, composed of Mcm2-7, that associates with chromatin in 

G1 in an ORC and Cdc6-dependent manner (Donovan et al., 1997, Romanowski et 

al., 1996, Thommes et al., 1997). In addition, the Mcm2-7 proteins were found to 

be loaded onto chromatin in a salt-stable complex (Donovan et al., 1997), 

indicating that this complex is topologically linked with the DNA. ORC and Cdc6 are 

required to load the Mcm2-7 complex onto chromatin in late M to G1 phase, but 

neither is required for maintenance of the complex on DNA (Donovan et al., 1997). 

 

It was first thought that the Mcm2-7 complex was a poor candidate for the 

eukaryotic replicative helicase, since a subcomplex containing Mcm4/6/7 has 

limited helicase activity (acts 3'-5') in vitro and is non-processive (Ishimi, 1997). The 
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full Mcm2-7 complex displayed no helicase activity in vitro (Lee and Hurwitz, 2000). 

Also, yeast genetic analysis showed that these proteins are not essential for 

replication elongation (Nasmyth and Nurse, 1981, Yan et al., 1993) and 

mammalian studies failed to show co-localisation between Mcm3 and replication 

fork foci (Kimura et al., 1994).  

 

However, a later study, using an in vitro replication system derived from Xenopus 

egg extracts, showed that DNA unwinding at an early stage of replication is 

dependent on Mcm2-7 (Walter and Newport, 2000). An Archaeal protein related to 

the eukaryotic MCM proteins was found to act as an ATP dependent DNA helicase 

with a 3'-5' polarity similar to the Mcm4/6/7 subcomplex (Shechter et al., 2000). 

Importantly, Mcm2-7 was shown to be required for progression of DNA replication 

forks (Labib et al., 2000). Finally, biochemical experiments in Drosophila provided 

evidence that Mcm2-7 stably associates with a protein called Cdc45 and a complex 

GINS, forming a CMG complex, and that this large assembly has an ATP-

dependent helicase activity (Moyer et al., 2006). The Mcm2-7 complex was 

therefore found to be a helicase that is activated only upon the G1-S phase 

transition by association with these accessory factors, Cdc45 and GINS (Ilves et al., 

2010). This provided an answer as to why the Mcm2-7 complex did not exhibit 

helicase activity on its own in vitro.  

 

The eukaryotic replicative helicase therefore consists of the Mcm2-7 complex 

associated with Cdc45 and GINS, forming the CMG. Mcm2-7 is composed of 6 

essential and related subunits, Mcm2, Mcm3, Mcm4, Mcm5, Mcm6 and Mcm7 

(reviewed in (Bochman and Schwacha, 2009). Whilst DnaA and ORC belong to the 

same clade of AAA+ proteins, the Mcm2-7 complex is not an orthologue of DnaB. 

This suggests that whilst some aspects of replication may be conserved, helicase 

function and loading are likely to be different. The six eukaryotic MCM proteins 

share significant sequence similarity with each other, particularly in a central region 

that encodes a AAA+ domain (ATPase active site) (Koonin, 1993). In addition, the 

Mcm2-7 proteins have characteristic N and C terminal extensions that are 

conserved amongst eukaryotes (Figure 1.3A). This suggests that the Mcm2-7 

subunits have distinct functions. The MCM proteins contain unique insertions in 

their AAA+ domains that are predicted to form β-hairpins that may interact with 
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single-stranded DNA during unwinding (Bochman and Schwacha, 2009). As is 

common with members of the AAA+ family and replicative helicases, the Mcm2-7 

proteins oligomerize into a toroidal complex (Figure 1.3B). Electron microscopy and 

subunit interaction studies have shown that the Mcm2-7 subunits interact in a 

defined order (Figure 1.3B) forming a ring with a positively charged central channel 

(Remus et al., 2009, Bochman et al., 2008, Costa et al., 2011, Davey et al., 2003) 

(Figure 1.3). Interestingly, a direct interaction between Mcm2 and Mcm5 has never 

been observed, instead the subunit arrangement depicted in Figure 1.3B has been 

inferred from interactions between the other subunits and the ring structure 

observed by EM (Davey et al., 2003, Bochman et al., 2008). Consistent with this, 

the Mcm2-7 complex has been visualised both as a closed ring (Remus et al., 

2009) and a gapped ring (Costa et al., 2011). This discontinuity in the ring may be 

important for helicase loading and DNA unwinding.  

 

AAA+ proteins form ATPase active sites at dimer interfaces whereby one subunit 

contributes a Walker A motif (involved in ATP binding) and a Walker B motif 

(orients a nucleophilic water molecule) and the other subunit contributes a 

catalytically essential arginine finger (contacts the γ-phosphate of ATP) (Bochman 

and Schwacha, 2009). This is true of the Mcm2-7 complex, where ATPase active 

sites are formed at the interfaces between subunits and these sites appear to play 

distinct functional roles (Bochman et al., 2008), which remain to be fully 

characterised. 
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Figure 1.3 Structure of the Mcm2-7 helicase 

(A) The Mcm2-7 proteins share a conserved AAA+ domain consisting of a walker A 
motif (WA), a walker B motif (WB) and an arginine finger (Arg finger) They also 
have unique C-terminal and N-terminal extensions, which are absent form Archaeal 
MCMs. (B) The Mcm2-7 proteins assemble into a toroid. In a ring there is a single 
copy of each subunit and these are assembled in the order indicated, around a 
positively charged central channel. 
 
 
 

1.2.2.3  Mechanism of Mcm2-7 loading 

Here I will discuss what was known about the mechanism of Mcm2-7 loading at the 

beginning of my PhD. More recent published studies from the end of my PhD will 

be presented in the results and discussion chapters, as they are relevant to our 

current work. 

 

Origin licensing takes place in late M to G1 phase of the cell cycle and involves the 

assembly of pre-replicative complexes that contain the Mcm2-7 helicase. The first 

step in helicase loading is binding of ORC to origin DNA. ORC then cooperates 
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with Cdc6 and Cdt1 to load the Mcm2-7 complex onto DNA in a reaction requiring 

ATP binding and hydrolysis. Although ORC, Cdc6 and Cdt1 are required to load 

the Mcm2-7 complex onto DNA, they are not required to maintain it (Donovan et al., 

1997, Edwards et al., 2002, Rowles et al., 1999). Upon ATP hydrolysis, and 

therefore helicase loading, Cdc6 and Cdt1 are released from the origin, which 

explains why in vivo chromatin immunoprecipitation assays only detect ORC and 

Mcm2-7 at origins (Aparicio et al., 1997, Tanaka et al., 1997). The replicative 

helicase is inactive at this stage and DNA unwinding is not yet detected (Geraghty 

et al., 2000, Walter and Newport, 2000). The absence of detectable single-stranded 

DNA, suggested that the Mcm2-7 complex may be loaded onto double-stranded 

DNA.  

 

Recent work has greatly enhanced our understanding of helicase loading. 

Reconstitution of pre-RC formation in vitro has played a large part in this work. This 

began with the assembly of pre-RCs in Saccharomyces cerevisiae G1 extracts by 

the addition of exogenous ARS1 DNA (Seki and Diffley, 2000). Using this system, 

the authors tested the requirements for nucleotides in pre-RC assembly and found 

that ATP is required for the binding of ORC to origin DNA (as shown in vivo by Bell 

and Stillman, 1992) and for the association of Cdc6 and Mcm2-7 with ORC (Seki 

and Diffley, 2000). Subsequent studies using similar extract-based systems 

proposed that there are distinct functions for the ATPase activities of ORC and 

Cdc6 (Bowers et al., 2004, Randell et al., 2006). As mentioned previously, a point 

mutation in the Walker B motif of Cdc6, that inhibits ATP hydrolysis but not ATP 

binding, appeared to block Mcm2-7 loading. In addition, blocking ATP hydrolysis by 

ORC, by mutating a catalytically essential arginine finger in Orc4, seemed to 

reduce the number of Mcm2-7 complexes bound at origins (multiple Mcm2-7 

complexes are normally loaded at origins) (Bowers et al., 2004). Importantly, 

mutations that eliminate ORC ATP hydrolysis in S.cerevisiae do not support 

viability (Bowers et al., 2004). This led to a model that sequential ATP hydrolysis by 

Cdc6 then ORC is required for proper Mcm2-7 loading at origins. In addition, Orc6 

was found to interact with Cdt1, thus providing a mechanism for Mcm2-7/Cdt1 

interaction with ORC-Cdc6 (Chen et al., 2007). In light of these data, it was 

proposed that ORC-Cdc6, is not just a landing pad for factors, but rather acts as a 

molecular machine to load the Mcm2-7 complex onto DNA. 
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Since relatively little was known about the biochemical mechanisms of pre-RC 

assembly, it was necessary to reconstitute the pre-RC with purified proteins. This 

was achieved by using purified S.cerevisiae ORC, Cdc6 and Mcm2-7 in complex 

with Cdt1 and assembling a loading reaction on origin DNA coupled to beads (Evrin 

et al., 2009, Remus et al., 2009, Tsakraklides and Bell, 2010, Kawasaki et al., 

2006). Results from these studies showed that ORC, Cdc6 and Cdt1 are sufficient 

to perform Mcm2-7 loading in vitro, consistent with previous work (Kawasaki et al., 

2006). Incubation of ORC, Cdc6 and Mcm2-7/Cdt1 in the presence of ATP with 

origin DNA coupled to beads, allowed Mcm2-7 loading onto DNA-beads in a salt-

resistant manner. In this reaction Cdc6 and Cdt1 are released. In contrast, when 

ATP hydrolysis was blocked by performing the loading reactions in the presence of 

the non-hydrolysable ATP analogue ATPγS: ORC, Cdc6, and Mcm2-7/Cdt1 were 

all detectable on the DNA in low salt but were quantitatively removed by high salt 

extraction (for a schematic of these reactions, refer to Figure 1.5). This has led to 

the model that before helicase loading, ORC, Cdc6 and Mcm2-7/Cdt1 are 

“recruited” to origins in a short-lived complex and upon ATP hydrolysis, Cdc6 and 

Cdt1 are released and the Mcm2-7 helicase is stably “loaded” onto DNA. 

 

Using electron microscopy, these studies demonstrated that single heptamers of 

Mcm2-7/Cdt1 are stably loaded onto origin DNA as head-to-head double hexamers 

connected by their N-terminal rings (Evrin et al., 2009, Remus et al., 2009). 

Similarly, double hexamers of Mcm2-7 have been observed at licensed origins in 

Xenopus egg extracts (Gambus et al., 2011). The loaded double hexamer of 

Mcm2-7 is reminiscent of structures observed for Archaeal MCM homohexamers 

(Chong et al., 2000, Fletcher et al., 2003). However, unlike the Archaeal MCMs, the 

eukaryotic Mcm2-7 double hexamer is only detected after loading onto DNA 

(Remus et al., 2009). The double hexamer of Mcm2-7 appears to be stable, as it is 

capable of surviving gel filtration and treatment with DNase (Gambus et al., 2011, 

Evrin et al., 2009). It also appears to be able to slide along the DNA (Remus et al., 

2009). Importantly, EM data indicate that the Mcm2-7 double hexamer encircles 

double stranded DNA that runs through its central channel (Figure 1.4) (Remus et 

al., 2009, Evrin et al., 2009). There are several lines of evidence that show that the 

Mcm2-7 double hexamer encircles double stranded DNA. Firstly, EM with rotary 
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shadowing was performed on the double hexamer using a technique that does not 

allow visualisation of single-stranded DNA (mica adsorption) and strong contrasts 

of DNA molecules going through the central channel were observed (Evrin et al., 

2009). Secondly, when Mcm2-7 double hexamers were bound to circular DNA, the 

DNA appeared to be relaxed, consistent with the absence of single-stranded DNA 

(Remus et al., 2009). Finally, studies showed that the double hexamer encircles 

and slides non-directionally on DNA, indicating that this DNA is double-stranded 

(Remus et al., 2009, Evrin et al., 2009). 

 

Since single hexamers of Mcm2-7 were never observed on DNA by EM (Remus et 

al., 2009) and multiple Cdt1 molecules were detected in ATPγS (Takara and Bell, 

2011), it was thought that both Mcm2-7 hexamers are loaded at the same time, in a 

concerted manner. In addition, Cdt1 was found to interact with Orc6 and this ORC 

subunit appeared to have two Cdt1 interaction sites (Takara and Bell, 2011, Chen 

et al., 2007). This gave a possible mechanism for loading of two Mcm2-7 hexamers 

at the same time via Cdt1 interaction with Orc6. Information about the stoichiometry 

and interactions of loading factors would provide additional insight into this 

mechanism. In addition, it is still unclear when during the loading process, the 

Mcm2-7 ring opens and whether the DNA enters the central channel through the 

Mcm2-5 weakest interface.  

 

Towards the beginning of my PhD project, the discussed published data seemed to 

suggest the following model for Mcm2-7 loading: ORC recruitment to the origin is 

first directed by sequence (in budding yeast), local chromatin structure and 

interaction with other proteins (e.g. ORCA in human cells). Upon entry into G1, 

ORC recruits Cdc6 and this interaction is dependent on ATP binding. This perhaps 

reveals two Cdt1 binding sites on Orc6 allowing for the recruitment of two Mcm2-

7/Cdt1 hetero-heptamers. It is unclear whether the Mcm2-7 ring is open at this 

point. If the ring were open, this would indicate that the two hexamers would be 

aligned to form a single open gate for loading onto the DNA. ATP hydrolysis by 

Cdc6 then triggers release of Cdc6 itself and Cdt1 and closure of the Mcm2-7 

double hexamer around double stranded DNA. Finally, ATP hydrolysis by ORC 

would probably cause its release from loaded Mcm2-7 and ORC would then be free 

to direct a new loading event. This model shall be discussed further throughout this 
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thesis with new data, both published and unpublished shedding light on various 

steps. A basic model of Mcm2-7 helicase loading is shown is Figure 1.4, whereby 

ATP binding and hydrolysis lead to assembly of a head-to-head double hexamer 

bound around double-stranded DNA.  

 

 

 
Figure 1.4 Schematic of Mcm2-7 helicase loading 

The Origin Recognition Complex, ORC, binds to replication origins. In late M to G1 
phase, ORC along with Cdc6 and Cdt1, recruits then loads a double hexamer of 
the Mcm2-7 helicase around double stranded DNA in a reaction that requires ATP 
binding and hydrolysis. 
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Figure 1.5 Schematic of in vitro reconstitution of pre-RC formation 

Purified ORC, Cdc6 and Mcm2-7/Cdt1 are incubated with biotinylated origin-
containing DNA coupled to streptavidin coated magnetic beads. This is performed 
in the presence of ATP or ATPγS. All reactions are washed in low salt. Reactions 
can then be washed in low salt or high salt wash buffers. For reactions set up in 
ATP, a low salt wash gives rise to ORC and Mcm2-7 on the DNA, as Cdc6 and 
Cdt1 are released upon ATP hydrolysis. Under high salt wash conditions, ATP 
reactions give rise to a loaded double hexamer of Mcm2-7 whilst other proteins are 
washed away. For reactions set up in ATPγS, a low salt wash shows that all 
proteins are bound (recruited) at the origin. In contrast, under high salt wash 
conditions, all proteins are washed away. (Evrin et al., 2009, Remus et al., 2009).  
 



Chapter 1 Introduction 

 38 

1.2.3  Comparison of helicase loading in E.coli and eukaryotes 

There are several similarities between helicase loading in E.coli and eukaryotes. 

Firstly, helicase loading in both relies on recognition of the origin by an initiator 

protein, DnaA in E.coli and ORC in eukaryotes. The replicative helicases in E.coli 

(DnaB) and eukaryotes (Mcm2-7) assemble into six-subunit rings. Interestingly, 

helicase loading in both is dependent on at least one additional factor. In E.coli, 

DnaC binds DnaB and is required for its loading. In eukaryotes, Cdc6 and Cdt1 are 

required for Mcm2-7 loading and share some properties with DnaC. Cdc6, like 

DnaC belongs to the AAA+ family of proteins and has weak ATPase activity on its 

own. Cdt1 on the other hand shares with DnaC the ability to associate with its 

helicase. Finally, the replicative helicase must be activated, either by release of 

DnaC in E.coli or by recruitment of GINS and Cdc45 in eukaryotes. 

 

However, there are a number of important differences both in the mechanism of 

helicase loading and helicase function. In terms of structure, DnaB is a 

monohexamer that contains a RecA-like ATPase domain (Bailey et al., 2007b), 

whereas Mcm2-7 is a heterohexamer composed of AAA+ ATPase domains 

(Bochman and Schwacha, 2009). Whilst in prokaryotes origin DNA is unwound and 

the helicase loads around single-stranded DNA, in eukaryotes no DNA unwinding 

is observed before S phase and the helicase is loaded around double-stranded 

DNA. In addition, unlike DnaB, Mcm2-7 appears to track along the DNA in a 3'-5' 

direction. I.e. DnaB moves along the lagging-strand whilst Mcm2-7 moves along 

the leading-strand template. DnaB is loaded as two single hexamers on either side 

of the replication bubble whereas Mcm2-7 is loaded as a head-to-head double 

hexamer around double stranded DNA. 

 

These differences are likely due to activation timing of the helicase. In E.coli, DnaB 

is rapidly activated after loading, whereas Mcm2-7 is not activated until S phase. 

This means that the eukaryotic helicase needs to be restrained in an inactive form 

for longer. Probably, the Mcm2-7 complex assembles into a double hexamer since 

this structure is more difficult to activate and therefore restrains origin firing. In 

addition, the double hexamer perhaps encircles double stranded DNA to reduce 

the time that single-stranded DNA is exposed and maintain genome stability.  
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In fact, the Mcm2-7 helicase is more reminiscent of the simian virus 40 large T-

antigen and the papilloma virus E1 helicase which form hexameric or double 

hexameric rings around DNA and move in a 3'-5' direction (Enemark and Joshua-

Tor, 2008). 

 

1.2.4 Regulation of Mcm2-7 helicase loading 

The loading of the Mcm2-7 helicase is tightly restricted to late M/G1 phase of the 

cell cycle, therefore ensuring that DNA replication occurs once per cell cycle (Arias 

and Walter, 2007, Symeonidou et al., 2012, Siddiqui et al., 2013). This restriction to 

late M/G1 is mainly mediated by inhibiting helicase loading at other stages of the 

cell cycle. The mechanisms of this control vary amongst organisms.  

 

In the yeast S.cerevisiae, inhibition of helicase loading outside of late M/G1 is 

primarily achieved by CDK-mediated phosphorylation. CDK phosphorylates Orc2 

and Orc6 (Nguyen et al., 2001), which is thought to disrupt an interaction between 

Orc6 and Cdt1 therefore impeding Mcm2-7 loading (Chen and Bell, 2011, Chen et 

al., 2007). In addition, CDK-phosphorylated ORC was recently shown to recruit 

Mcm2-7 to origin DNA in vitro, but ATP hydrolysis then promotes Mcm2-7 release 

(Frigola et al., 2013). This indicates the presence of an ATP-dependent quality 

control mechanism that inhibits licensing outside of G1 phase. CDK also 

phosphorylates Cdc6, which promotes its degradation by the SCF-Cdc4 complex 

(Drury et al., 2000). Finally, Mcm2-7 in complex with Cdt1 is regulated by CDK 

phosphorylation of Mcm3, which results in soluble Mcm2-7/Cdt1 being exported 

from the nucleus (Labib et al., 1999, Liku et al., 2005). Together these mechanisms 

act to inhibit re-replication by blocking helicase loading outside of G1 phase. 

 

In metazoans, Cdt1 is the primary target for regulation of helicase loading. Outside 

of G1 phase, Cdt1 is bound by a protein called geminin that inhibits its association 

with Mcm2-7 (Wohlschlegel et al., 2000). In addition, Cdt1 is degraded during S 

phase in a PCNA or CDK-dependent manner (Fujita, 2006). Cdt1 is believed to be 

the main target for regulating once per cell cycle replication since deregulation of 
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metazoan Cdt1 is sufficient to cause significant re-replication (Fujita, 2006). Cdc6 is 

also targeted in metazoans by CDK phosphorylation which mediates its nuclear 

export (Petersen et al., 1999). Finally CDK phosphorylation of ORC inhibits its 

interaction with origin DNA during G2 and M phases of the cell cycle (Siddiqui et al., 

2013). These pathways act to prevent re-replication during the cell cycle in order to 

preserve genome integrity.  

 

1.2.5 Activation of the replicative helicase 

In S-phase the loaded replicative helicase is activated, promoting unwinding of the 

DNA duplex and allowing DNA polymerases to access and copy the template 

strands. This step is triggered by an increase in S-phase CDK activity and 

inactivation of the APC/C at the G1/S transition (Diffley, 1996). Activation of the 

helicase occurs through the action of two protein kinases, CDK and DDK. In yeast, 

CDK phosphorylates two proteins, Sld2 and Sld3. This generates binding sites for a 

set of tandem BRCT repeats on another protein, Dpb11 (Zegerman and Diffley, 

2007, Tanaka et al., 2007). Sld3, with its binding partner Sld7 (Tanaka et al., 2011), 

and Cdc45 associate with origins in a mutually dependent manner (Kamimura et al., 

2001). It is thought that Sld3-7 together recruit Cdc45 onto pre-RCs. Sld2, as part 

of a multi-protein complex, is thought to guide GINS to origins (Muramatsu et al., 

2010). 

 

In vertebrates, TopBP1 is the orthologue of Dpb11, whilst Treslin/TICRR was 

recently identified as the orthologue of Sld3 (Boos et al., 2011, Sanchez-Pulido et 

al., 2010). Treslin/TICRR has additional domains over Sld3 and was found to 

interact with a protein called MTBP which is required for GINS, Cdc45 and PCNA 

recruitment to chromatin in S phase (Boos et al., 2013). It was therefore suggested 

that MTBP in higher eukaryotes could play a similar role to Sld7.  

 

DDK, comprising a heterodimer of Cdc7 and Dbf4, phosphorylates several of the 

MCM subunits specifically once they are loaded on chromatin (Francis et al., 2009). 

Phosphorylation of Mcm4 relieves an auto-inhibitory activity and promotes S phase 

progression (Sheu and Stillman, 2006, Sheu and Stillman, 2010). DDK also 
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phosphorylates Mcm2 and Mcm6 (Randell et al., 2010), although the exact function 

of this is currently unknown.  

 

These events and the action of other factors such as Mcm10, lead to formation and 

activation of the CMG complex. This complex has been described in Drosophila 

melanogaster embryo extracts (Moyer et al., 2006) and Saccharomyces cerevisiae 

lysates (Gambus et al., 2006). The recruitment of Cdc45 and GINS activates the 

Mcm2-7 complex (Ilves et al., 2010). The Mcm2-7 helicase in complex with Cdc45 

and GINS, translocates along single-stranded DNA in a 3'-5' direction on the 

leading strand, displacing the lagging strand as it moves (Fu et al., 2011). In 

addition, the CMG has been found to contain just one copy of Mcm2-7 (Moyer et al., 

2006).  

 

Therefore transition from a Mcm2-7 double hexamer to an active CMG complex is 

a highly complex process (reviewed in (Boos et al., 2012)). For one, the loaded 

Mcm2-7 double hexamer must split into two individual hexamers upon or after its 

activation. Additionally, the Mcm2-7 ring must have to open to extrude a strand 

from its central channel and retain the correct strand within. It is still unclear how 

these events occur and in what succession. It is likely that the Mcm2-7 complex 

itself induces origin melting. Recent development of an assay for in vitro DNA 

replication (Heller et al., 2011) will be useful in addressing these questions.  

 

1.2.6 Replisome progression 

This thesis focuses on the mechanism of helicase loading in eukaryotes, here I will 

only briefly describe events downstream of origin unwinding. Replisome mechanics 

are described in detail elsewhere (Pomerantz and O'Donnell, 2007, Johnson and 

O'Donnell, 2005, Zheng and Shen, 2011).  

 

Due to the anti-parallel nature of DNA and the direction in which nucleic acid 

synthesis occurs (5'-3'), leading and lagging strands are synthesised continuously 

and discontinuously, respectively. Once origin unwinding occurs, a specialised 

RNA polymerase called primase is recruited and synthesizes short RNA primers 
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(~12 nucleotides in length) which are extended by DNA Pol α/primase (Frick and 

Richardson, 2001). These primers are required since cellular DNA polymerases are 

unable to initiate synthesis in their absence (Kornberg and Baker, 1992). Synthesis 

of the leading strand is thought to require only one or very few of these priming 

events and is hence said to occur in a continuous manner. In contrast, synthesis of 

the lagging strand requires multiple priming events and occurs as a series of 

discontinuous Okazaki fragments (Kornberg and Baker, 1992).  

 

A clamp loader, replication factor C (RFC), recognizes the RNA-DNA primer 

synthesised by Pol α/primase. It is then able to displace the primase and recruit the 

sliding clamp PCNA that acts as a processivity factor for DNA polymerases. RFC 

loads PCNA in an ATP dependent manner and contact with primed DNA stimulates 

ATP hydrolysis by RFC, leaving PCNA encircling the DNA (Bowman et al., 2004). 

This is reminiscent of ORC-Cdc6 loading the Mcm2-7 complex in an ATP binding 

and hydrolysis-dependent manner. The leading strand polymerase, Pol ε (Pursell et 

al., 2007), uses only one or very few sliding clamps since synthesis occurs in a 

continuous and processive manner. The lagging strand polymerase, Pol δ (Nick 

McElhinny et al., 2008) which physically interacts with Pol α (Johansson et al., 

2004), is in contrast recycled amongst several PCNA sliding clamps to synthesise 

multiple Okazaki fragments.  

 

Once synthesis of Okazaki fragments is completed, Pol δ initiates removal of the 

RNA primers (Zheng and Shen, 2011). It does this by regulating displacement of 

the 5' end of a downstream Okazaki fragment creating a 5' flap substrate on the 

RNA primer for nucleases called Dna2 and Fen1 (Garg et al., 2004). The Okazaki 

fragments are then joined together to form an intact lagging DNA strand. 
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1.3 Summary 

Much progress has been made in the field of DNA replication over the last 25 years. 

Many of the events involved in replisome formation in E.coli are now relatively well 

understood and mechanistic details are being unravelled. Studies in E.coli have 

served as a platform for understanding the mechanisms of DNA replication in 

eukaryotic cells. 

 

The advance in biochemical assays to study replication in eukaryotes has greatly 

enhanced our understanding of pre-RC assembly and we now know that ORC, 

Cdc6 and Cdt1 function together to load a double hexamer of Mcm2-7 around 

double stranded DNA. We also know that in S phase, the Mcm2-7 replicative 

helicase is activated by incorporation into the CMG complex that tracks along 

single stranded DNA in a 3'-5' direction to unwind the DNA. With such advanced 

knowledge, many more fundamental questions about the mechanistic details arise.  

 

It is still unclear how exactly ORC, Cdc6 and Cdt1 are able to coordinate loading of 

a double hexamer of Mcm2-7. Is one ORC molecule required for this loading? Or is 

the loading achieved by binding of two ORC molecules on either side of the origin? 

A similar question may be asked of Cdc6. How are the ATPase activities of the 

loading proteins coordinated for double hexamer formation? Which proteins are 

required to interact during helicase loading? Answering any of these questions 

would enhance our understanding of how a pre-RC is assembled. 

 

Equally there are many questions surrounding eukaryotic replisome assembly and 

helicase activation. It is intriguing how the helicase must transition from a double 

hexamer around double stranded DNA to a single hexamer around single stranded 

DNA.  

 

This thesis will focus on characterising the biochemical architecture of pre-

replicative complex formation using the yeast S.cerevisiae as a model system. In 

particular the stoichiometry of loading factors and some of their interactions are 

revealed. The results of this thesis give some insight into how the Mcm2-7 double 

hexamer is loaded onto DNA. 
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Chapter 2. Materials & Methods 

2.1 Solutions 

TBS 

20 mM Tris-HCl pH 7.5, 150 mM NaCl 

 

TBST 

20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM Tween 20 

 

TE 

10 mM Tris-HCl pH 8.0, 1 mM EDTA 

 

Western transfer buffer 

48 mM Trizma base, 39 mM glycine, 0.0375% SDS, 20% methanol 

 

Milk TBST 

5% Marvel Milk in TBST 

 

TAE 

40 mM Tris acetate, 1 mM EDTA 

 

2.2 E.coli manipulation 

2.2.1 Cell growth 

Cells were grown in suspension in LB (0.5% bacto-tryptone, 0.25% bacto-yeast 

extract, 170 mM NaCl, pH 7.0) at 37°C. For growth on solid media, LB was 

supplemented with 2% agar. For selective growth, media was supplemented with 

ampicillin (75 µg/ml) and/or chloramphenicol (34 µg/ml). 

 

All media was obtained from Cancer Research UK, Clare Hall laboratories, media 

services. 
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2.2.2 Transformation 

DH5α cells (NEB) were used for routine transformation and cells were transformed 

according to manufacturer’s guidelines (NEB).  

 

BL21 CodonPlus RIL cells (Stratagene) or BL21 DE3 Codon+ RIL cells 

(Stratagene) were used for protein expression and cells were transformed 

according to manufacturer’s guidelines (Stratagene). 

 

2.2.3 Plasmid DNA preparation 

2 or 5 ml of cell cultures were grown overnight in selective LB to amplify plasmid 

DNA. Plasmid DNA was purified using a Mini-Prep kit (QIAGEN) according to 

manufacturer’s guidelines. 

 

2.3 Yeast manipulation 

2.3.1 Cell growth 

Cells were grown in suspension in YP (1% yeast extract, 2% bacto-peptone) with 

2% glucose, galactose or raffinose at 30°C. For growth on solid media YP was 

supplemented with 2% agar and 2% glucose (YPD agar).  

 

For selective growth, drop-in media (2% agar, 1x yeast nitrogen base, 2% glucose 

in ddH2O) was supplemented with the required amino acids (adenine 5 mg/ml, 

uracil 2 mg/ml, leucine 10 mg/ml, tryptophan 2 mg/ml, histidine 10 mg/ml).  

 

For selection of the NatNT2 marker, cells were grown on YPD agar supplemented 

with 100 µg/ml Nourseothricin (LEXSY NTC, Jena Bioscience)  

 

For G1 phase arrest, alpha factor was added for 2 hours to log phase cultures at 5 

µg/ml (all strains were Δbar1. 
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2.3.2 Transformation 

Cells were transformed according to Gietz et al. (Gietz et al., 1992). 

 

2.3.3 Mating, sporulation and tetrad dissection 

Mating was achieved by mixing together a MATa and a MATalpha strain in a 1 cm 

patch on a YPD agar plate. The plate was incubated overnight at 25°C. 

Heterozygotes were selected by streaking the mated strains on plates that selected 

for the diploid strain. Single colonies were then patched onto rich sporulation media. 

The plate was incubated at 25°C for 2-3 days and sporulation was checked 

microscopically for the presence of tetrads.  

 

Asci were digested in a solution of zymolyase (0.25 mg/ml in 1 M sorbitol) at 37°C 

for 5 mins. Digested asci were spread in a line on a YPD agar plate and tetrads 

were dissected using a tetrad dissection microscope (Singer).  

 

2.3.4 Genomic DNA extraction 

To extract yeast genomic DNA, cells were grown overnight in 5 ml of YP (see 

2.3.1) supplemented with 2% glucose. Cells were collected by centrifugation at 

3000 rpm for 2 minutes. Cells were washed with 1 ml ddH2O and resuspended in 

400 µl extract solution (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-HCl 

pH 8.0, 1 mM EDTA). 2- mercaptoethanol (0.14 M) and lyticase (100 U/ml) were 

added to this suspension and the mixture was incubated for 5 minutes at 37°C. An 

equal volume of phenol/chloroform was added and the cells were broken open by 

vortexing for 10 seconds. The mixture was centrifuged for 2 minutes at 13,000 rpm 

in a benchtop centrifuge and the aqueous phase was recovered. The DNA was 

precipitated by adding an equal volume of iso-propanol and centrifuging as before. 

The DNA pellet was washed twice with 70% ethanol by centrifugation as before. 

The DNA pellet was then resuspended in 50 µl TE supplemented with 50 µg/ml 

RNaseA. RNA was degraded by incubation at 37°C for 1 hour and DNA was stored 

at -20°C.  
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2.3.5 Protein extraction 

Whole cell protein extractions were carried out by subjecting yeast cells to mild 

alkali treatment and boiling in SDS sample buffer (Kushnirov, 2000).  

 

2.4 Protein analysis 

2.4.1 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS PAGE was carried out using either pre-cast or home-made gels. For home-

made gels, 10% or 7.5% polyacrylamide gels were prepared according to 

(Sambrook and Russell, 2001) using a Mini-Protean II gel system (BioRad).  

 

For pre-cast SDS-PAGE the following were used:  

 

Criterion XT 3-8% Tris-acetate with XT Tricine running buffer (Bio-Rad) 

NuPage 4-12% Bis-Tris with MOPS running buffer (Invitrogen) 

NuPage 10% Bis-Tris with MOPS running buffer (Invitrogen). 

 

2x SDS PAGE loading buffer was prepared according to (Sambrook and Russell, 

2001). 

 

2.4.2 Immunoblotting 

Following SDS-PAGE, gels were equilibrated in western transfer buffer and 

transferred to Hybond ECL nitrocellulose membranes (GE Healthcare) by wet 

transfer at 400 mA for 2 hours at 4°C. Membranes were blocked in milk TBST for 

30 mins and then incubated with primary antibodies for 2 hours in milk TBST. 

Membranes were washed 2 x 10 mins in TBST and incubated with secondary 

antibody (HRP-conjugated) for 1 hour in milk TBST if required. Membranes were 

then washed 3 x 10 mins in TBST and blots were visualised by Enhanced 

Chemiluminesence (ECL) reagents (Amersham) or ECL Dura (Pierce). 
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2.4.3 Protein Staining 

Coomassie staining: Instant Blue (Expedeon), according to manufacturer’s 

guidelines 

 

Silver staining: Silver Quest (Invitrogen), according to manufacturer’s guidelines 

 

2.4.4 32P visualisation 

Radiolabel incorporation into dried gels was visualised using a phosphorimager. 

Dried gels were exposed to a phosphorscreen (Molecular Dynamics) for 1 hour – 

overnight before analysis using a Typhoon phosphorimager (GE Healthcare).  

 

2.5 Cloning 

All restriction digested plasmids and PCR products were purified from agarose gels 

using Roche PCR purification kit (according to manufacturer’s guidelines). All 

generated plasmids were sequenced using Big Dye Terminator Kit version 3.1 

(Invitrogen, and LRI sequencing facility). 

 

2.5.1 Cloning Cdc6 and E224G Cdc6 in pGEX-6p-1 

S.cerevisaie CDC6 was amplified from pET15b-CDC6 using the primers AM1 and 

AM2. The PCR product was cloned between BamHI and XhoI restriction sites in 

pGEX-6p-1 (GE Healthcare), generating pAM3.  

 

E224G CDC6 was amplified from pET15b-E224G-CDC6 using the primers AM1 

and AM2 and cloned in pGEX-6p-1 as above, generating pAM4. 
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2.5.2 Cloning the 3x FLAG and 9x Myc epitope tags in pAM3 

The 9x Myc epitope tag was amplified from pYM21 by PCR using AM71 and AM72. 

The PCR product was cloned into the BamHI site of pAM3. This resulted in Cdc6 

tagged at its 5' end with 9x Myc (pAM36). 

 

The 3 x FLAG epitope tag was generated by annealing the AM81 and AM86 oligos. 

The product was cloned into the BamHI site of pAM3. This gave rise to Cdc6 

tagged at its 5' end with 3x FLAG (pAM37). 

 

2.5.3 Cloning the 3x FLAG epitope tag in ORC overexpression vectors 

The 3 x FLAG epitope tag was generated by annealing the AM140 and AM141 

oligos. The product was cloned into the SgrA1 site of pJF17 and pJF18. This gave 

rise to pAM15 and pAM17, where Orc4 and Orc6 were tagged at their 5' ends with 

3x FLAG respectively. 

 

A 3 x FLAG epitope tag was also generated by annealing the AM142 and AM143 

oligos. The product was cloned into the AscI site of pJF19, pJF17, and pJF18. This 

gave rise to pAM18, pAM14 and pAM16, where Orc1, Orc3 and Orc5 were tagged 

at their 5' ends respectively. 

 

2.5.4 Cloning the 9x Myc epitope tags in ORC overexpression vectors 

The 9x Myc epitope tag was amplified from pYM21 by PCR using AM117 and 

AM119. The PCR product was cloned into the SgrA1 site of pJF17 and pJF18. This 

gave rise to pAM9 and pAM11, where Orc4 and Orc6 were tagged at their 5' ends 

with 9 x Myc respectively. 

 

The 9x Myc epitope tag was also amplified from pYM21 by PCR using AM120 and 

AM122. The PCR product was cloned into the AscI site of pJF17 and pJF18. This 

gave rise to pAM8 and pAM10, where Orc3 and Orc5 were tagged at their 5' ends 

respectively. 
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2.5.5 Cloning CBP-TEV at the 5’ end of Mcm3 in a MCM overexpression 

vector 

CBP-TEV was amplified from pJF19 by PCR using the primers GC090 and AM75. 

The PCR product was cloned into the SgrA1 site of pJF5. This resulted in CBP-

TEV at the 5' end of Mcm3 (pAM38).  

 

2.5.6 Cloning 9x Myc at the 5’ end of Mcm3 in pAM38 

9x Myc was amplified from pYM21 using the primers AM117 and AM119. The PCR 

product was cloned into the SgrA1 site of pAM38. This resulted in tagged Mcm3 as 

follows: CBP-TEV-9x Myc-Mcm3 (5'-3'), pAM27. 

 

2.5.7 Cloning 3x FLAG and 9x Myc at the 5' end of Cdt1 

The 3 x FLAG epitope tag was generated by annealing the AM140 and AM141 

oligos. The product was cloned into the SgrA1 site of pJF2. This gave rise to Cdt1 

tagged at its 5' end with 3x FLAG (pAM28) 

 

The 9x Myc epitope tag was amplified from pYM21 using the primers AM117 and 

AM119. The PCR product was cloned into the SgrA1 site of pJF2. This gave rise to 

Cdt1 tagged at its 5' end with 9x Myc (pAM22) 

 

2.5.8 Cloning Mcm3 and deletion fragments into an MBP expression vector 

Mcm3 and deletion fragments were cloned into the MBP expression plasmid pMAL-

C2P. pMAL-C2P was a gift from Satoru Mochida and was derived from pMAL-C2 

(NEB) by introducing a PreScission protease site before the EcoRI site in the 

polylinker region. MCM3 was amplified from S.cerevisiae genomic DNA using 

AM51 and AM52 and cloned into pMAL-C2P using XbaI and SalI sites (pAM5). 

 

A C-terminal fragment of MCM3 consisting of 588 bp was amplified from 

S.cerevisiae genomic DNA using AM54 and AM52. This PCR product was cloned 
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in pMAL-C2P using XbaI and SalI sites (pAM6). 

 

An N-terminal fragment of MCM3 consisting of 2331 bp was amplified from 

S.cerevisiae genomic DNA using AM51 and AM53. This PCR product was cloned 

in pMAL-C2P using XbaI and SalI sites (pAM7). 

 

2.6 Construction of yeast strains 

2.6.1 Background strains for ORC 3x FLAG and 9x Myc fusions 

Background strains for tagging the ORC subunits were generated by linearizing 

ORC overexpression vectors and transforming these one by one into yJF1. yAM4 

was generated by transforming pJF17 and pJF18 in yJF1. yAM5 was generated by 

transforming pJF17 and pJF19 in yJF1. yAM6 was generated by transforming 

pJF18 and pJF19 in yJF1. 

 

2.6.2 ORC Strains containing 3x FLAG or 9x Myc fusions 

ORC strains containing 5' fusions to 3x FLAG or 9x Myc were generated by 

transforming linearized tagged ORC overexpression vectors into the background 

strains described above (Refer to Table 5 for more information). This generated the 

strains yAM8 (3x FLAG-ORC1), yAM12 (3x FLAG-ORC3), yAM14 (3x FLAG-

ORC4), yAM16 (3x FLAG-ORC5), yAM18 (3x FLAG-ORC6), yAM11 (9x MYC-

ORC3), yAM13 (9x MYC-ORC4), yAM15 (9x MYC-ORC5), yAM17 (9x MYC-

ORC6).  

 

ORC strains containing 3' fusions of 3x FLAG or 9x Myc to Orc2 were generated by 

amplification of the 3x FLAG or 9x Myc tags from pBP83 or pYM21 respectively. 

 

3x FLAG was amplified from pBP83 using the primers AM88 and AM89, the PCR 

product was then transformed into ySD-ORC. This gave rise to the strain yAM44 

(ORC2-3x FLAG).  
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9x Myc was amplified from pYM21 using the primers AM88 and AM89, the PCR 

product was then transformed into ySD-ORC. This gave rise to the strain yAM43 

(ORC2-9x Myc).  

 

2.6.3 Background strains for Mcm2-7/Cdt1 3x FLAG and 9x Myc fusions 

Background strains were generated by mating yJF21 and yAM37, heterozygote 

selection, sporulation and tetrad dissection. Background strains were identified by 

selecting for markers. This generated yAM22. 

 

2.6.4 Mcm2-7/Cdt1 strains containing 3x FLAG or 9x Myc fusions 

Mcm2-7/Cdt1 strains containing 5' fusions to CBP or 3x FLAG or 9x Myc were 

generated by transforming linearized tagged Mcm2-7/Cdt1 overexpression vectors 

into the background strain described above and into yJF21 (Refer to Table 5 for 

more information). This generated the strains yAM33 (CBP-TEV-MCM3), yAM34 

(9x MYC-CDT1), yAM35 (3x FLAG-CDT1), yAM25 (CBP-TEV-9x MYC-MCM3).  

 

2.7 Protein Purification 

2.7.1 Purification of ORC from yDR11 

In this strain ORC1 has a C-terminal TAP-TCP tag consisting of: TEV protease site, 

calmodulin binding protein (CBP) and protein A (from N-term to C-term). Each of 

the ORC subunits is overexpressed in yDR11 from the Gal1-10 promoter. ORC 

was purified from this strain as described in Remus et al., 2009 with minor 

alterations, in salt type and concentration. The purification is described below.  

 

Starter cultures of yDR11 in YP + 2% raffinose were incubated overnight with 

shaking at 30°C. These were then inoculated in a 50 L fermentor culture in YP + 

2% raffinose at 30°C and grown to a cell density of 2 x 107 cells/ml. The cells were 

then arrested for 3 hours with 100 ng/ml of the yeast mating pheromone alpha 

factor. ORC expression was induced overnight by addition of 2 % galactose. Cells 
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were harvested by centrifugation, washed twice in wash buffer (25 mM Hepes-KOH 

pH 7.6, 1 M Sorbitol) and once in lysis buffer (25 mM Hepes-KOH pH 7.6, 0.05% 

NP-40, 10% Glycerol) + 0.1 M KCl by 10 min centrifugations at 4500 rpm. The 

pellet was then resuspended in 0.5 volumes of lysis buffer + 0.1 M KCl + 2 mM β-

mercaptoethanol + Complete EDTA-free protease inhibitors (Roche: 1 tablet/25 ml 

buffer). The cell suspension was frozen drop-wise into liquid nitrogen creating balls 

of cells known as popcorn. The popcorn was crushed under liquid nitrogen in a 

freezer mill using 6 cycles of 2 minutes (crushing at rate setting 15) creating frozen 

powder. Whole cell extracts were prepared on ice by adding an equal volume of 

lysis buffer + 0.1 M KCl + 2 mM β-mercaptoethanol + Complete EDTA-free 

protease inhibitors (Roche: 1 tablet/25 ml buffer) and mixing vigorously with a glass 

rod. The salt concentration was increased to 0.5 M KCl and the suspension 

centrifuged at 42000 rpm for 1 hour using a Ti45 ultracentrifuge rotor (Beckman). 

The soluble clear phase, which contains ORC, was then collected and at this stage 

could be frozen in liquid nitrogen and stored at -80°C.  

 

2 mM CaCl2 was added to thawed extracts and the suspension subjected to 

ultracentrifugation as above for 30 mins. The supernatants were transferred to 50 

ml falcon tubes and 200 µl packed bed resin Calmodulin affinity resin (Stratagene; 

pre-equilibrated in lysis buffer + 0.3 M KCl) added per 50 ml of extract. These tubes 

were rotated for 3 hours at 4°C. Using a disposable gravity flow column, 

Calmodulin beads and bound proteins were recovered and washed with 10 bed 

resin volumes of lysis buffer + 0.3 M KCl + 2 mM CaCl2 + 2 mM β-mercaptoethanol. 

ORC was then eluted with 10 bed resin volumes of lysis buffer + 0.3 M KCl + 1 mM 

EDTA + 1 mM EGTA + 2 mM β-mercaptoethanol. ORC eluted in the 2nd, 3rd and 4th 

fractions.   

 

ORC containing fractions were pooled and concentrated to 2 ml using a Centricon 

Plus-20 Centrifugal Filter (Millipore) and incubated with an approximately equal 

amount of TEV protease (w/w), overnight at 4°C. The mixture was then passed 

over a superdex 200 (Hiload 16/60, GE Healthcare) resin using lysis buffer + 0.3 M 

KCl + 1 mM EDTA + 1 mM EGTA + 2 mM β-mercaptoethanol. ORC-containing 

peak fractions were pooled and passed over 400 µl washed IgG sepharose beads 

(Amersham) to remove uncleaved protein. The resulting untagged ORC was 
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dialysed for 2 hours against lysis buffer + 0.15 M KCl + 1 mM EDTA + 1 mM EGTA 

+ 2 mM β-mercaptoethanol and fractionated over a 1 ml MonoQ column using a 

gradient of 0.15-0.5 M KCl over 20 column volumes. The MonoQ column removed 

a truncation of Orc1. Peak-containing fractions (containing full length Orc1) were 

pooled and dialysed for 2 hours against lysis buffer + 0.1 M KOAc + 1 mM EDTA + 

1 mM EGTA + 2 mM β-mercaptoethanol.  

 

2.7.2 ORC purification from ySDORC 

The ySDORC strain is codon optimised to increase protein expression of the ORC 

subunits. This allows purification of high protein yields from smaller volumes of 

cells compared to yDR11 (see above). In this strain ORC1 has an N-terminal tag 

consisting of a calmodulin binding protein (CBP) and a TEV protease site. Also in 

this strain the codon optimised ORC subunits are expressed from the Gal1-10 

promoter. The ySDORC strain was used to construct all the tagged ORC 

complexes described in Chapter 4. 

 

Starter cultures of ySDORC in YP + 2% raffinose were incubated overnight with 

shaking at 30°C. These were then inoculated in a 2 L culture in YP + 2% raffinose 

at 30°C and grown to a cell density of 2 x 107 cells/ml. The cells were then arrested 

for 3 hours with 100 ng/ml of the yeast mating pheromone alpha factor. ORC 

expression was induced for 3 hours by addition of 2 % galactose. Cells were 

harvested by centrifugation, washed twice in wash buffer (25 mM Hepes-KOH pH 

7.6, 1 M Sorbitol) and once in lysis buffer (25 mM Hepes-KOH pH 7.6, 0.05% NP-

40, 10% Glycerol) + 0.1 M KCl by 10 min centrifugations at 4500 rpm. The pellet 

was then resuspended in 0.5 volumes of lysis buffer + 0.1 M KCl + 2 mM β-

mercaptoethanol + Complete EDTA-free protease inhibitors (Roche: 1 tablet/25 ml 

buffer). Preparation of “popcorn”, freezer milling and whole cell extracts was 

performed as for purification of ORC from yDR11, except a Ti70.1 rotor was used 

for ultracentrifugation. 

 

2 mM CaCl2 was added to thawed extracts and the suspension subjected to 

ultracentrifugation at 50,000 rpm for 30 mins using a Ti70.1 ultracentrifuge rotor 



Chapter 2 Materials and Methods 

 

 55 

(Beckman). The supernatant was transferred to 600 µl packed bed volume of 

Calmodulin affinity resin (Stratagene; pre-equilibrated in lysis buffer + 0.3 M KCl) in 

a disposable gravity flow column. The column was rotated for 3 hours at 4°C. 

Calmodulin beads and bound proteins were washed with 10 bed resin volumes of 

lysis buffer + 0.3 M KCl + 2 mM CaCl2 + 2 mM β-mercaptoethanol. ORC was then 

eluted with 10 bed resin volumes of lysis buffer + 0.3 M KCl + 1 mM EDTA + 1 mM 

EGTA + 2 mM β-mercaptoethanol. ORC eluted in the 2nd, 3rd and 4th fractions as for 

purification from yDR11.   

ORC containing fractions were pooled and concentrated to 0.4 ml using a 

Centricon Plus-20 Centrifugal Filter (Millipore) and incubated with an approximately 

equal amount of TEV protease (w/w), overnight at 4°C. Note that ORC is still 

functional when the CBP tag is not cleaved off, this step was therefore sometimes 

left out from the purification protocol. The mixture was then passed over a 

superdex 200 (10/300, GE Healthcare) resin using lysis buffer + 0.3 M KCl + 1 mM 

EDTA + 1 mM EGTA + 2 mM β-mercaptoethanol. ORC was dialysed for 2 hours 

against lysis buffer + 0.1 M KOAc + 1 mM EDTA + 1 mM EGTA + 2 mM β-

mercaptoethanol.  

 

All 3x FLAG and 9x Myc-tagged ORC complexes were purified in this manner. 

 

2.7.3 Mcm2-7/Cdt1 Purification from yDR17 

In this strain Mcm4 is tagged at its C-terminus with 3 x FLAG and Cdt1 co-purifies 

with the MCM complex. Mcm2-7/Cdt1 was purified from yDR17 as in Remus et al., 

2009 with minor differences.  

 

Starter cultures of yDR17 in YP + 2% glucose were incubated overnight with 

shaking at 30°C. These were then inoculated in a 100 L fermentor culture in YP + 

2% glucose at 30°C and grown to a cell density of 8 x 107 cells/ml. The fermentor 

culture was supplemented with an extra 1% glucose and arrested for 3 hours with 

100 ng/ml alpha factor. Cells were harvested by centrifugation, washed twice in 

wash buffer (25 mM Hepes-KOH pH 7.6, 1 M Sorbital) and once in lysis buffer (45 

mM Hepes-KOH pH 7.6, 0.02% NP-40, 10% Glycerol) + 0.1 M KOAc + 5 mM 
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Mg(OAc)2 by 10 min centrifugations at 4500 rpm. The pellet was then resuspended 

in 0.5 volumes of lysis buffer + 0.1 M KOAc + 2mM β-mercaptoethanol + Complete 

EDTA-free protease inhibitors (Roche: 1 tablet/25 ml buffer). Popcorn preparation 

and freezer milling was carried out as for ORC purifications. 

 

To make whole cell extracts, the yeast powder was thawed in a room temperature 

water bath. Then, on ice, an equal volume of lysis buffer + 0.1 M KOAc + 2 mM β-

mercaptoethanol + Complete EDTA-free protease inhibitors (Roche: 1 tablet/25 ml 

buffer) was added and mixed vigorously with a glass rod. The salt concentration 

was increased to 0.5 M KOAc and the suspension centrifuged at 42000 rpm for 1 

hour using a Ti45 ultracentrifuge rotor (Beckman). The soluble clear phase which 

contains Mcm2-7/Cdt1 was then collected and at this stage could be frozen in liquid 

nitrogen and stored at -80°C.  

 

The soluble clear phase was dialysed against lysis buffer + 0.1 M KOAc + 2 mM β-

mercaptoethanol + Complete EDTA-free protease inhibitors (Roche: 1 tablet/25 ml 

buffer) for 2 x 1.5 hours and centrifuged at 42000 rpm for 30 min using a Ti45 

ultracentrifuge rotor. The supernatants were transferred to 50 ml falcon tubes and 

supplemented with 3 mM ATP. 200 µl packed bed resin Anti-FLAG M2 Agarose 

(Sigma; pre-equilibrated in lysis buffer + 0.1 M KOAc) was then added to each 50 

ml of extract. These tubes were rotated for 3 hours at 4°C. Using a disposable 

gravity flow column, Anti-FLAG beads and bound proteins were recovered and 

washed with 10 bed resin volumes of lysis buffer + 0.1 M KOAc + 1 mM ATP + 2 

mM β-mercaptoethanol. Washed beads were resuspended in 1 bed-resin volume 

of lysis buffer + 0.1 M KOAc + 1 mM ATP + 2 mM β-mercaptoethanol 

supplemented with 1 mg/ml 3 x FLAG peptide (Sigma) and rotated at 4°C for 30 

mins. The flow-through fraction was concentrated using Microcon YM-10, 10000 

MWCO (Millipore) and fractionated over a 24 ml Superdex 200 10/300 column (GE 

Healthcare) equilibrated in lysis buffer + 0.1 M KOAc + 1 mM ATP + 2 mM β-

mercaptoethanol. Mcm2-7/Cdt1 eluted in the 670 kDa fraction (Thyroglobulin 

fraction). Peak fractions were pooled and concentrated as above, then frozen in 

aliquots of 10 µl.  
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2.7.4 Mcm2-7/Cdt1 purification from yJF38 

In this strain Mcm3 is tagged at its N-terminus with 3 x FLAG and Cdt1 co-purifies 

with the MCM complex. In contrast to the yDR17 strain, in yJF38 Mcm2-7 and Cdt1 

are overexpressed from the Gal1-10 promoter. Mcm2-7/Cdt1 was purified from 

yJF38 as in Frigola et al., 2013, the only exception being that KOAc was used 

instead of K-glutamate in all buffers.  

 

2.7.5 Mcm2-7/Cdt1 purification from yAM33  

In this strain, Mcm3 is fused to a CBP (Calmodulin Binding Peptide) at its N-

terminus and Cdt1 co-purifies with the MCM complex. Starter cultures of yAM33 in 

YP + 2% rafinose were incubated overnight with shaking at 30°C. These were then 

inoculated in a 2 L culture in YP + 2% raffinose at 30°C and grown to a cell density 

of 2 x 107 cells/ml. The cells were then arrested for 3 hours with 100 ng/ml of the 

yeast mating pheromone alpha factor. Mcm2-7/Cdt1 expression was induced for 3 

hours by addition of 2 % galactose. Cells were harvested by centrifugation, washed 

twice in wash buffer (25 mM Hepes-KOH pH 7.6, 1 M Sorbitol) and once in lysis 

buffer (45 mM Hepes-KOH pH 7.6, 0.05% NP-40, 10% Glycerol) + 100 mM KOAc 

by 10 min centrifugations at 4500 rpm. The pellet was then resuspended in 0.5 

volumes of lysis buffer + 0.1 M KOAc + 2 mM β-mercaptoethanol + Complete 

EDTA-free protease inhibitors (Roche: 1 tablet/25 ml buffer). Preparation of 

“popcorn”, freezer milling and whole cell extracts was performed as for purification 

of Mcm2-7/Cdt1 from yDR17, except a Ti70.1 rotor was used for ultracentrifugation. 

 

The soluble clear phase was dialysed against lysis buffer + 0.1 M KOAc + 2 mM β-

mercaptoethanol + Complete EDTA-free protease inhibitors (Roche: 1 tablet/25 ml 

buffer) for 2 x 1.5 hours. 2 mM CaCl2 was added to extracts and the suspension 

subjected to ultracentrifugation at 50,000 rpm for 30 mins using a Ti70.1 

ultracentrifuge rotor (Beckman). The supernatant was transferred to 600 µl packed 

bed volume of Calmodulin affinity resin (Stratagene; pre-equilibrated in lysis buffer 

+ 0.1 M KOAc) in a disposable gravity flow column. The column was rotated for 3 

hours at 4°C. Calmodulin beads and bound proteins were washed with 10 bed 

resin volumes of lysis buffer + 0.1 M KOAc + 2 mM CaCl2 + 2 mM β-
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mercaptoethanol. ORC was then eluted with 10 bed resin volumes of lysis buffer + 

0.1 M KOAc + 1 mM EDTA + 1 mM EGTA + 2 mM β-mercaptoethanol. Mcm2-

7/Cdt1 eluted in the 2nd, 3rd and 4th fractions. The elution fractions were 

concentrated using Microcon YM-10, 10000 MWCO (Millipore) and fractionated 

over a 24 ml Superdex 200 10/300 column (GE Healthcare) equilibrated in lysis 

buffer + 0.1 M KOAc + 2 mM β-mercaptoethanol. Mcm2-7/Cdt1 eluted in the 670 

kDa fraction (Thyroglobulin fraction). Peak fractions were pooled and concentrated 

as above, then frozen in aliquots of 10 µl. 

 

Mcm2-7/Cdt1 complexes containing 9x Myc-Mcm3, 3x FLAG-Cdt1 or 9x Myc-Cdt1 

were all purified in this manner. 

 

2.7.6 Cdc6 purification from Baculovirus 

Cdc6 purification from a baculovirus expression vector was performed exactly as 

described in Remus et al., 2009.  

 

2.7.7 Cdc6 purification from E.coli 

Cdc6 purification from E.coli was modified from Speck et al. 2005. The plasmid 

pGEX-6p-1/Cdc6 (pAM3) was transformed into BL21 CodonPlus RIL cells 

(Stratagene) following manufacturer’s guidelines. A 10 ml starter culture of 

LB/ampicillin (100 µg/ml)/ chloramphenicol (34 µg/ml) was grown overnight at 37°C 

with shaking then diluted 1:100 in 1 L of LB/amplicillin (100 µg/ml)/ chloramphenicol 

(34 µg/ml). The 1 L culture at OD600 0.6 was placed on ice for 10 minutes and 

induced with 0.5 mM IPTG for 5 hours at 18°C with shaking. Cells were then 

harvested at 6000 rpm for 10 mins. To lyse cells, the pellet was resuspended in 50 

ml buffer A (50 mM KXPO4 pH7.6, 150 mM KOAc, 5 mM MgCl2, 2 mM ATP, 1% 

Triton X-100, 1 mM DTT, Complete EDTA-free protease inhibitors (Roche; 1/25 

ml)) and 100 µg/ml lysozyme was added. The mixture was incubated on ice for 30 

minutes and then sonicated for 2 mins (5 sec off 5 sec on) at maximum intensity. 

The suspension was then centrifuged at 15000 rpm for 15 mins in a SS34 rotor 

(Sorvall) and the supernatant transferred to 2 ml bed-resin pre-washed glutathione 

sepharose (GE Healthcare) in a disposable gravity flow column. This was rotated at 
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4°C for 3 hours. Glutathione beads and bound proteins were recovered in the 

column and washed with 20 column volumes of buffer A. A 50% slurry was then 

prepared with buffer A and 50 µl preScission protease (GE Healthcare) added. The 

mixture was incubated for 2 hrs at 4°C with rotation. The flow-through was then 

recovered and the concentration of KOAc diluted to 75 mM. This was incubated 

with 2 ml hydroxyapatite pre-equilibrated in buffer B (50 mM KXPO4 pH7.5, 75 mM 

KOAc, 5 mM MgCl2, 2 mM ATP, 0.1% Triton x-100, 1 mM DTT) for 15 mins at 4°C 

with rotation. The protein-hydroxyapatite was washed with 5 column volumes of 

buffer B and then washed with 5 column volumes of buffer C (50 mM KXPO4 pH7.5, 

150 mM KOAc, 5 mM MgCl2, 15% glycerol, 0.1% Triton x-100, 1 mM DTT). Cdc6 

was finally eluted with 10 column volumes buffer D (50 mM KXPO4 pH7.5, 400 mM 

KOAc, 5 mM MgCl2, 15% glycerol, 0.1% Triton x-100, 1 mM DTT). Peak fractions 

were pooled and concentrated using a Centricon Plus-20 Centrifugal Filter 

(Millipore), then aliquoted in 10 µl volumes and snap-frozen in liquid nitrogen.  

 

3x FLAG-Cdc6 and 9x Myc-Cdc6 were also purified in this manner. 

 

2.7.8 Purification of MBP-Mcm3 

Plasmids expressing MBP-Mcm3 (pAM5, pAM6 or pAM7) were transformed into 

BL21 DE3 Codon+ RIL cells (Stratagene). 0.5 L of cells were grown at 37°C to a 

density of OD600=0.5-0.8. Cells were chilled on ice, and then 1 mM IPTG was 

added. Induction of protein expression was carried out overnight at 18ºC with 

shaking. 

 

Cells were harvested, washed once with ice-cold 25 mM Hepes-KOH pH7.6/1M 

sorbitol, once with buffer B (50 mM Tris-HCl pH 7.5, 0.05% NP-40, 10% glycerol)/1 

M NaCl and then the pellet was resuspended in 20 ml of buffer B/1 M NaCl/2 mM 

ß-mercapethanol/protease inhibitors (Roche). 50 µl of lysozyme (50 mg/ml) was 

added and the suspension incubated for 20 minutes at 4ºC. Cells were kept on ice 

and sonicated 3 x 30 sec at 15 microns using a sonicator (Soniprep 150 (Sanyo)). 

The lysate was centrifuged for 1 hour at 45000 rpm using a Ti45 rotor. The soluble 

phase was collected and incubated with 2 ml packed amylose bead volume (NEB) 
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at 4ºC for 1 hour. Beads were washed with ten bed resin volumes of buffer B/0.3 M 

NaCl/2 mM ß-mercaptoethanol. Elution was performed with buffer B/0.3 M NaCl/2 

mM ß-mercaptoethanol/10 mM Maltose. Peak fractions were pooled and 

concentrated using a Centricon Plus-20 Centrifugal Filter (Millipore), then aliquoted 

in 10 µl volumes and snap-frozen in liquid nitrogen.  

2.8 Preparation of DNA-Beads 

The in vitro reconstitution assay involves assembly of purified pre-RC proteins on 

linear yeast origin DNA conjugated to magnetic beads. I used two types of DNA-

beads, one where the DNA was conjugated to beads via a biotin-streptavidin 

linkage, and one where the DNA was conjugated to beads via a photocleavable 

biotin-streptavidin linkage.  

 

2.8.1 Amplification of origin DNA 

A 1048 bp fragment containing the yeast origin ARS305 was generated by PCR 

with the primers ARS305-F-Eco-Bio (biotinylated primer) or ARS305-F-PC-Bio 

(primer containing a photocleavable biotin) and ARS305-R (Remus et al., 2009) 

and using p305bp as a template (Huang and Kowalski, 1996). The resulting linear 

PCR product was biotinylated either with or without a photocleavable site at one 

end. Eight 50 µl PCR reactions were setup and subsequently purified using the 

High Pure PCR Product Purification Kit (Roche).  

 

2.8.2 Conjugation of Origin DNA to Magnetic Beads 

200 µl streptavidin-coated M-280 Dynabeads (Invitrogen) were washed twice using 

a magnetic rack in 500 µl buffer 1 (10 mM Tris-HCL pH 7.5, 1 mM EDTA, 2 M 

NaCl) and resuspended in 200 µl buffer 1 (N.B should be carried out in non-stick 

eppendorf tubes). The purified PCR reactions from 2.9.1 were pooled, added to the 

washed bead suspension and rotated overnight at 4°C. The beads were then 

washed twice in 500 µl buffer 2 (10 mM Hepes-KOH pH 7.6, 1 mM EDTA, 1 M 

KOAc) and twice in 500 µl buffer 3 (10 mM Hepes-KOH pH 7.6, 1 mM EDTA). The 

DNA-beads were then resuspended in 200 µl buffer 3 and stored at 4°C.  
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2.9  In Vitro Reconstitution of Mcm2-7 Loading 

2.9.1 Setting up the reactions 

This method is described based on the setup of four standard reactions as follows; 

reaction 1 (ATP, low salt wash), reaction 2 (ATP, high salt wash), reaction 3 

(ATPγS, low salt wash) and reaction 4 (ATPγS, high salt wash). To set up the 

reactions, 5 µl DNA-beads (2.2) per reaction were placed in non-stick eppendorf 

tubes and 2.5 µl supernatant buffer removed on a magnetic rack. On ice, the 

reactions were setup as in Table 1, making sure to add the purified proteins to the 

reactions last and in the order ORC, Cdc6 then Mcm2-7/Cdt1.  

 

 

Table 1 Reaction composition for in vitro pre-RC assembly 

Component Per reaction 
5 x Binding buffer (Table 2) 8 µl
ATP/ ATPγS (100 mM) 2 µl
DTT (0.1 M) 0.4 µl

ORC 50 nM final 
concentration

Cdc6 50 nM final 
concentration

Mcm2-7/Cdt1 100 nM final 
concentration

Distilled Water Up to 40 µl
DNA-Beads 2.5 µl  
 

 

 

The reactions were mixed on ice by pipetting and then placed at 30°C for 30 mins, 

shaking at 1000 rpm.  

 

2.9.2 Washing the Reactions 

Following incubation, unbound proteins were removed by placing the tubes on a 

magnetic rack and aspirating the supernatants. All reactions were washed once 

with low salt wash buffer (Table 2) by resuspending the beads in the buffer and 



Chapter 2 Materials and Methods 

 

 62 

pipetting up and down an equal amount in each tube. A further wash was then 

carried out as above either in low salt wash buffer or high salt wash buffer as 

required (Table 2). The DNA-beads and bound proteins were then resuspended in 

40 µl Laemmli buffer and boiled for 5 min (if DNA-beads with a streptavidin-biotin 

linkage were used). 

 

If DNA-beads with a photocleavable biotin were used, then DNA-beads and bound 

proteins were re-suspended in 20 µl of low salt wash buffer. DNA was then 

removed from the beads by irradiating with UVA for 10 min at 330 nM. 

 

 

Table 2 Buffer compositions for pre-RC assembly in vitro 

5 x binding buffer
Hepes-KOH pH 7.6 125 mM
MgOAc 50 mM 
NP-40 0.10%

KOAc

Final concentration of 
100 mM in the 
reactions; including salt 
contributed by purified 
proteins

Glycerol 25%

Low salt wash buffer
Hepes-KOH pH 7.6 45 mM
MgOAc 5 mM
NP-40 0.02%
EDTA 1 mM
EGTA 1 mM
KOAc 0.3 M
Glycerol 10%

High salt wash buffer
Hepes-KOH pH 7.6 45 mM
MgOAc 5 mM
NP-40 0.02%
EDTA 1 mM
EGTA 1 mM
NaCl 0.5 M
Glycerol 10%  
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2.9.3 Analysis of Loading Reactions 

The reactions were analysed by SDS PAGE and immunoblotting with specific 

antibodies or silver staining (Invitrogen, Silver Quest). Loading of ¼ of a sample on 

an SDS PAGE gel was sufficient for western blotting and similarly ½ a sample for 

silver staining. Silver staining provides the advantage of being able to visualize all 

the proteins at once to which there may not be antibodies available. Quantification 

may also be performed on silver-stained gels in a more linear manner compared to 

film.  

 

2.10  Electromobility shift assays 

Origin DNA probes were generated by PCR amplification. The 1 kb orign probe 

was amplified from p305bp using ARS305F and ARS305R. The 247 bp probe was 

amplified from pUC19-ARS305 using M13F and M13R. The PCR products were 

labelled using 32P γ ATP and polynucleotide kinase (PNK). The following reaction 

was set up: 10 µl 32P γ ATP (6000 Ci/mmol), 2 µl 10x PNK buffer, 1.32 µl PNK (10 

U/µl), 581.16 fmol PCR product, distilled water to make up 20 µl. The reaction was 

placed on ice for 1 hour. Then 80 µl of Hepes-EDTA (10 mM Hepes-KOH pH 7.6, 1 

mM EDTA) was added. The reaction was purified through a Sephadex G-25 

column and DNA concentration was checked. A final concentration of 12 fmol/µl in 

Hepes-EDTA was then prepared. 

 

EMSA reactions were set up as follows: 4 µl 5x binding buffer (See table 2), 1 µl 

ATP (100 mM), 2 µl DTT (10 mM), 160 fmol ORC, 80 fmol Cdc6, 320 fmol Mcm2-

7/Cdt1 (or as otherwise indicated), 1 µl probe DNA (12 fmol/µl) and distilled water 

up to 20 µl. Reactions were incubated for 30 mins at 30°C with shaking at 800 rpm. 

To crosslink reactions, glutaraldehyde was added to a final concentration of 0.1%. 

Reactions were incubated for a further 5 mins at 24°C with shaking at 800 rpm. 

Crosslinking was arrested with 50 mM TRIS-HCl Ph 7.5, 15 mins at 24°C with 

shaking at 800 rpm. Native loading dye was added to samples (6x recipe: 30% v/v 

glycerol, 0.1% Xylene cyanol, 0.1% Bromophenol blue, in distilled water). Whole 

reactions were then loaded either onto a 0.8% agarose gel (pre-run at 4°C for 1 

hour). Electrophoresis was either performed for 16 hours at 25 V or for 4.5 hours at 
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100 V. Gels were dried onto DE81 paper (Whatman) in a vacuum gel dryer. Dried 

gels were exposed for 16 hours in phosphorimager cassettes. Results were 

visualised using a Typhoon scanner.  

 

2.11 Stoichiometry assays 

To examine protein stoichiometry reactions were set up as for “Reconstitution of 

Mcm2-7 loading” reactions (section 2.9), using equimolar amounts of tagged 

proteins (refer to Tables 1 and 2). Reactions were incubated, washed, and DNA 

and bound proteins cleaved from the magnetic beads by UVA irradiation as 

described in section 2.9.  

 

Reactions were treated with 1 µl of 2.5 U/µl Benzonase (Sigma) for 10 mins, 30°C, 

shaking at 1000 rpm. Samples were then incubated with 5 µl (slurry) M2 anti-FLAG 

magnetic beads (Sigma) pre-washed in low-salt wash buffer (Table 2). Reactions 

were incubated with the anti-FLAG beads for 2 hours at 4°C, shaking at 1000 rpm. 

Supernatants were removed and kept (S: see Figure 5.2). Anti-FLAG beads and 

bound proteins were washed 2x in low salt wash (LSW) buffer (Table 2) and 

resuspended in 20 µl LSW buffer. FLAG peptide (LRI, peptide synthesis facility) 

was then added to a final concentration of 0.5 mg/ml and beads and bound 

proteins were incubated for 30 mins at 4°C with shaking at 1000 rpm. Eluate (IP: 

see Figure 5.2) was removed and kept. 2x SDS PAGE loading buffer was added to 

both IP and S samples to a final concentration of 1x. 50% of samples were loaded 

onto 3-8% TRIS-Acetate polyacrylamide gels. Electrophoresis was carried out at 

150V for 1.5 hours. Gels were transferred to nitrocellulose membranes and 

immunoblotting performed as described in section 2.4.2.  

 

2.12  Crosslinking Assays 

To analyse protein-protein interactions during pre-RC formation, reactions were set 

up as for “Reconstitution of Mcm2-7 loading” reactions (section 2.9), using 

equimolar amounts of pairwise combinations of tagged proteins (refer to Tables 1 

and 2). Reactions were incubated, washed, and DNA and bound proteins cleaved 
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from the magnetic beads as described in section 2.9. The only difference was that 

for photocleavage DNA-beads were suspended in 15 µl LSW buffer and not 20 µl. 

This did not affect the efficiency of photocleavage. 

 

Reactions were then treated with 1 µl of 2.5 U/µl Benzonase (Sigma) for 10 mins, 

30°C, shaking at 1000 rpm. The crosslinking reagent BS3 (Pierce) was added to 

final concentrations of 0, µM 25 µM and 50 µM. Reactions were then incubated at 

24°C, 30 mins with shaking 1000 rpm. TRIS-HCl pH 7.5 was added to a final 

concentration of 50 mM to quench the crosslinking and reactions were incubated 

for 15 mins at 24°C with shaking at 1000 rpm. Samples were then denatured by 

incubating for 5 mins at 95°C in denaturing buffer (1% SDS, 0.05 M TRIS-HCl pH 

8.0, 1 mM DTT). Reactions were then diluted 10x in RIPA buffer containing no SDS 

(300 mM NaCl, 1% NP-40, 0.5% deoxycholate, 50 mM TRIS-HCl pH 8.0, 1 mM 

DTT). Samples were then incubated with with 5 µl (slurry) M2 anti-FLAG magnetic 

beads (Sigma) pre-washed in RIPA buffer containing 0.1% SDS. Reactions were 

incubated with the anti-FLAG beads for 2 hours at 4°C, shaking at 1000 rpm. 

Supernatants were removed. Beads and bound proteins were washed twice in 

LSW buffer (Table 2) then and resuspended in 20 µl LSW buffer. FLAG peptide 

(LRI, peptide synthesis facility) was then added to a final concentration of 0.5 

mg/ml and beads and bound proteins were incubated for 30 mins at 4°C with 

shaking at 1000 rpm. Eluate (IP: see Figure 5.2) was removed and kept. 2x SDS 

PAGE loading buffer was added to both IP and S samples to a final concentration 

of 1x. 50% of samples were loaded onto 3-8% TRIS-Acetate polyacrylamide gels. 

Electrophoresis was carried out at 150 V for 1.5 hours. Gels were transferred to 

nitrocellulose membranes and immunoblotting performed as described in section 

2.4.2. 
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2.13 Primers 

Table 3 Primers 

Primer Sequence Target
AM1 CTGGGATCCATGTCAGCTATACCA CDC6
AM2 CTGCTCGAGCTAGTGAAGGAAAGGTTTC CDC6

AM51 TATAATTCTAGAATGGAAGGCTCAACGGGA MCM3

AM52 TATAATGTCGACTGATCAGACTCTCCAAACTTTATCG MCM3

AM53 TATAATGTCGACTGAGCTTGCTGGTTGTCTGAC MCM3
AM54 TATAATTCTAGAATGAACTCTGGATCCCCAATC MCM3

AM71
GTACTGAGATCTATGTCCGGTTCTGCTGCTAGTGG

9X MYC

AM72 GTACTGAGATCTGTTCAAGTCTTCTTCTG 9X MYC

AM75 CAGTACCACCGGTGCTTCACCTTGGAAGTACAAG CBP-TEV

AM81
GATCCATGGACGATTATAAAGATGACGATGACAAGG
ATTATAAAGATGACGATGACAAGGATTATAAAGATGA

CGATGACAAGG
3X FLAG

AM86
GATCCCTTGTCATCGTCATCTTTATAATCCTTGTCAT
CGTCATCTTTATAATCCTTGTCATCGTCATCTTTATAA

TCGTCCATG 
3X FLAG

AM88 GGGAAAGAGAAAAGAAAAAAATTGATCTATCGATTT
CAATTCAATTCAAT ATCGATGAATTCGAGCTCG

NA

AM89 ACACTTACGCTGAATTGGAAAAGTTGTTGAAGACTG
TTTTGAACACTTTG CGTACGCTGCAGGTCGAC 

NA

AM117 GTACTGCACCGGTGATGTCCGGTTCTGCTGCTAGT
GG

9x MYC

AM119 CAGTACCACCGGTGCGCTAGTGGA 9x MYC

AM120 GTACTGGGCGCGCCATGTCCGGTTCTGCTGCTAGT
GG

9x MYC
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AM122 CAGTACGGCGCGCCCGCTAGTGGA 9x MYC

AM140
CCGGTGATGGACGATTATAAAGATGACGATGACAAG
GATTATAAAGATGACGATGACAAGGATTATAAAGATG

ACGATGACAAG G CA 
3x FLAG

AM141
CCGGTGCCTTGTCATCGTCATCTTTATAATCCTTGT

CATCGTCATCTTTATAATCCTTGTCATCGTCATCTTTA
TAATCGTCCATCA 

3x FLAG

AM142
CGCGCCATGGACGATTATAAAGATGACGATGACAAG
GATTATAAAGATGACGATGACAAGGATTATAAAGATG

ACGATGACAAGGG
3x FLAG

AM143
CGCGCCCCTTGTCATCGTCATCTTTATAATCCTTGT
CATCGTCATCTTTATAATCCTTGTCATCGTCATCTTTA

TAATCGTCCATGG 
3x FLAG

GC090 GTACTGCCCGGGATGAAGAGAAGATGGAAGAAG CBP-TEV

ARS305-F-
PC-bio-Eco

GGTGTATGCATGCTACTGTTTGAATTCCCATTATCGA
AGGCAC ARS305

ARS305-F-
bio-Eco

GGTGTATGCATGCTACTGTTTGAATTCCCATTATCGA
AGGCAC

ARS305

ARS305-F CCATTATCGAAGGCAC ARS305
ARS305-R CTCTAGCAAAAAGTCTAC ARS305

M13 F GTAAAACGACGGCCAGT NA
M13-F-bio GTAAAACGACGGCCAGT NA

M13 R CAGGAAACAGCTATGAC NA  
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2.14  Plasmids 

Table 4 Plasmids 

Cloning
Vector

pAM3 pGEX-6p-1 CDC6 This study & Frigola et 
al., 2013

pAM4 pGEX-6p-1 E224G CDC6 This study

pAM5 pMal-C2P MCM3 This study & Frigola et 
al., 2013

pAM6 pMal-C2P C-terminal MCM3 This study & Frigola et 
al., 2013

pAM7 pMal-C2P N-terminal MCM3 This study & Frigola et 
al., 2013

pAM8 pJF17 9Myc (5' ORC3) This study
pAM9 pJF17 9Myc (5' ORC4) This study
pAM10 pJF18 9Myc (5' ORC5) This study
pAM11 pJF18 9Myc (5' ORC6) This study

Plasmid Insert Reference

pAM14 pJF17 3FLAG (5' ORC3) This study
pAM15 pJF17 3FLAG (5' ORC4) This study
pAM16 pJF18 3FLAG (5' ORC5) This study
pAM17 pJF18 3FLAG (5' ORC6) This study
pAM18 pJF19 3FLAG (5' ORC1) This study
pAM21 pJF5 CBP-TEV (5' Mcm3) This study
pAM22 pJF2 9Myc (5' Cdt1) This study
pAM27 pAM21 9Myc (5' Mcm3) This study
pAM28 pJF2 3FLAG (5' Cdt1) This study
pAM36 pAM3 9Myc (5' Cdc6) This study  
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pAM37 pAM3 3FLAG (5' Cdc6) This study  & Frigola et 
al., 2013

pAM38 pJF5 CBP-TEV- single SgrA1 
site (5' Mcm3)

This study

pJF17 pRS303 ORC3-GAL1-10-ORC4 Frigola et al., 2013
pJF18 pRS304 ORC5-GAL1-10-ORC6 Frigola et al., 2014

pJF19 pRS306 CBP-TEV-ORC1-GAL1-
10-ORC2

Frigola et al., 2015

pET15b-
CDC6

pET15b CDC6 G. Perkins 
(unpublished)

pET15b-
E224G-
CDC6

pET15b CDC6
G. Perkins 

(unpublished)

p305BP pBR322 ARS305 Huang & Kowalski, 
1996

pJF5 pRS306 MCM2-GAL1-10-MCM3 Frigola et al., 2013

pJF2 pRS303 GAL4-GAL1-10-CDT1 Frigola et al., 2013
pYM21 pYM6 9x MYC Janke et al., 2004

pBP83 pYM21 3x FLAG Boris Pfander and 
Frigola et al., 2013

pAM36 pAM3 9x MYC This study
pAM37 pAM3 3x FLAG This study  
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2.15  Yeast strains 

Table 5 Yeast strains 

Strain Genotype Reference

ySD-ORC W303-1a pep4::KanMx4 bar1:: Hph-NT1 his3-
11::HIS3pJF17 trp1-1::TRP1pJF18 ura3-1::URA3pJF19

Frigola et 
al., 2013

W3031a MATa ade2-1 ura3-1 his3-11 trp1-1 leu2-3 can1-100 Rothstein, 
1983

yJF38
W303-1a pep4::KanMx4 bar1::Hph-NT1 his3-

11::HIS3pJF2 trp1-1::TRP1pJF3 leu2-3::LEU2pJF4 
ura3-1::URA3pJF6

Frigola et 
al., 2013

yDR11 YSC15 GAL1-10-ORC1::GAL1-10-ORC1-
TAPTCP(URA3)

Remus et 
al., 2009

yDR17 W303-1a pep4::LEU2 bar1::TRP1 mcm4::MCM4-
3xFLAG(kanMX)

Remus et 
al., 2010

yJF1 W303-1a pep4::KanMx4 bar1::Hph-NT1 Jordi 
Frigola

yJF21 W303-1a pep4::KanMx4 bar1::Hph-NT1 his3-
11::HIS3pJF2 trp1-1::TRP1pJF3 leu2-3::LEU2pJF4 

Jordi 
Frigola

yAM1 W303-1a bar1::Hyg pep4::KanMX ura::URApJF19 This study
yAM2 W303-1a bar1::Hyg pep4::KanMX trp1::TRP1pJF18 This study

yAM3 W303-1a bar1::Hph-NT1 pep4::KanMX4 
his3::HIS3pJF17

This study

yAM4
W303-1a bar1::Hph-NT1 pep4::KanMX4 

trp1::TRP1pJF18
his3::HIS3pJF17

This study

yAM5
W303-1a bar1::Hph-NT1

pep4::KanMX4 ura3::URA3pJF19
his3::HIS3pJF17

This study

yAM6
W303-1a bar1::Hph-NT1 pep4::KanMX4 

ura3::URA3pJF19
trp1::TRP1pJF18

This study

yAM8
W303-1a bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pJF18
ura3::URA3pAM18 his3::HIS3pJF17

This study

yAM11
W303-1a bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pJF18
ura3::URA3pJF19 his3::HIS3pAM8

This study

yAM12
W303-1a bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pJF18
ura3::URA3pJF19 his3::HIS3pAM14

This study

yAM13
W303-1a bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pJF18
ura3::URA3pJF19 his3::HIS3pAM9

This study
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yAM14
W303-1a bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pJF18
ura3::URA3pJF19 his3::HIS3pAM15

This study

yAM15
W303-1a bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pAM10
ura3::URA3pJF19 his3::HIS3pJF17

This study

yAM16
W303-1a bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pAM16
ura3::URA3pJF19 his3::HIS3pJF17

This study

yAM17
W303-1a bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pAM11
ura3::URA3pJF19 his3::HIS3pJF17

This study

yAM18
W303-1a  bar1::Hph-NT1

pep4::KanMX4 trp1::TRP1pAM17
ura3::URA3pJF19 his3::HIS3pJF17

This study

yAM22 W303-1a pep4::KanMx4 bar1::Hph-NT1  trp1-
1::TRP1pJF3 leu2-3::LEU2pJF4 ura3-1::URA3pAM21

This study

yAM25
W303-1a pep4::KanMx4 bar1::Hph-NT1 his3-

11::HIS3pJF2 trp1-1::TRP1pJF3 leu2-3::LEU2pJF4 
ura3-1::URA3pAM27

This study

yAM33
W303-1a pep4::KanMx4 bar1::Hph-NT1 his3-

11::HIS3pJF2 trp1-1::TRP1pJF3 leu2-3::LEU2pJF4 
ura3-1::URA3pAM21

This study

yAM34
W303-1a pep4::KanMx4 bar1::Hph-NT1  trp1-

1::TRP1pJF3 leu2-3::LEU2pJF4 ura3-1::URA3pAM21 
his3-11::HIS3pAM22

This study

yAM35
W303-1a pep4::KanMx4 bar1::Hph-NT1  trp1-

1::TRP1pJF3 leu2-3::LEU2pJF4 ura3-1::URA3pAM21 
his3-11::HIS3pAM28

This study

yAM37 W303-1alpha pep4::KanMx4 bar1::Hph-NT1   ura3-
1::URA3pAM21 

This study

yAM43
W303-1a pep4::KanMx4 bar1:: Hph-NT1 his3-

11::HIS3pJF17 trp1-1::TRP1pJF18 ura3-
1::URA3pJF19::ORC2-9xMYC

This study

yAM44
W303-1a pep4::KanMx4 bar1:: Hph-NT1 his3-

11::HIS3pJF17 trp1-1::TRP1pJF18 ura3-
1::URA3pJF19::ORC2-3xFLAG

This study
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2.16  Antibodies 

Table 6 Antibodies 

Primary Antibody Dilution Secondary 
antibody

Dilution

Anti-Mcm2 (Santa 
Cruz Biotechnology 

yN-19, sc-6680)
1:2000

Anti-goat-HRP 
(Stratech Scientific) 1:2000

Anti-Mcm5 (Santa 
Cruz Biotechnology 

yC-19, sc-6687)
1:2000

Anti-goat-HRP 
(Stratech Scientific) 1:2000

Anti-Mcm7 (Santa 
Cruz Biotechnology 

yN-19, sc-6688)
1:2000

Anti-goat-HRP 
(Stratech Scientific) 1:2000

Anti-Orc6 (CRUK, 
SB49)

1:2000 Anti-mouse-HRP 
(Dako)

1:5000

Anti-Cdc6 (CRUK, 
98H/5)

1:2000 Anti-mouse-HRP 
(Dako)

1:5000

Anti-FLAG M2-HRP 
(Sigma)

1:20000 N/A N/A

Anti-MBP (maltose 
binding protein)–HRP 

(NEB)
1:2000 N/A N/A

Anti-Myc (CRUK, 
9E10)

1:2000 Anti-mouse-HRP 
(Dako)

1:5000
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Chapter 3. Using electrophoretic mobility shift 

assays to characterise intermediates in pre-RC 

formation 

3.1 Introduction 

The replicative helicase Mcm2-7 is loaded at origins into inactive pre-replicative 

complexes (pre-RCs) by the combined actions of three proteins: ORC, Cdc6 and 

Cdt1. In vitro reconstitution of pre-RC assembly has shown that Mcm2-7 is loaded 

as a symmetrical head-to-head double hexamer around double stranded DNA 

(Remus et al., 2009, Evrin et al., 2009).   

 

ATP binding and hydrolysis are essential for pre-RC formation (see Chapter 1, 

section 1.2.2.3 for details). At least 12 of the 14 proteins that participate in pre-RC 

assembly are members of the AAA+ (ATPases Associated with diverse cellular 

Activities) family of proteins (Iyer et al., 2004). Analysis of mutations in conserved 

ATP binding motifs of ORC, Cdc6 and Mcm2-7 has demonstrated that these 

elements are essential in vivo (Weinreich et al., 1999, Klemm and Bell, 2001, 

Schwacha and Bell, 2001, Perkins and Diffley, 1998). In budding yeast, ATP 

binding by ORC is essential for its binding to origin DNA (Bell and Stillman, 1992) 

and Mcm2-7 loading requires ATP hydrolysis by ORC and Cdc6 (Bowers et al., 

2004, Klemm and Bell, 2001, Randell et al., 2006, Perkins and Diffley, 1998, Seki 

and Diffley, 2000). 

 

ATP binding and hydrolysis thus play a major role in eukaryotic helicase (Mcm2-7) 

loading. Although there have been many advances in our knowledge of pre-RC 

formation, the specific functions of each of the pre-RC AAA+ proteins in Mcm2-7 

loading are still not very well understood. One question that arises from this is: 

what are the precise roles of ATP binding and hydrolysis in Mcm2-7 loading? 

 

In a further layer of complexity, budding yeast ORC binds to a consensus site at 

origins of replication (ACS: see Chapter 1, section 1.2.1.1) and reconstitution 

studies indicate that ORC and Cdc6 load the Mcm2-7 double hexamer in a 
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concerted manner from two single Mcm2-7/Cdt1 heptamers (Evrin et al., 2009, 

Remus et al., 2009). This leads to several intriguing questions: is a symmetrical 

double hexamer of Mcm2-7 loaded by one ORC molecule located asymmetrically 

on one side of the origin? If so, how? How do ORC and Cdc6 catalyse this 

reaction? What role does ATP play in this process? To address these questions, 

we aimed to characterise possible intermediate stages in pre-RC formation, since 

this could provide a step-by-step view of Mcm2-7 loading.  

 

Mcm2-7 loading, both in vivo and in vitro, has been defined as the generation of 

Mcm2-7 complexes that remain bound to DNA even after treatment with high salt 

(Donovan et al., 1997, Bowers et al., 2004, Remus et al., 2009, Evrin et al., 2009). 

In vitro reconstitution of Mcm2-7 loading using purified proteins and linear, origin-

containing DNA coupled to paramagnetic beads (DNA-beads) has previously been 

described (Remus et al., 2009, Evrin et al., 2009). In the presence of ATP, ORC 

and Cdc6 load Mcm2-7/Cdt1 into a high-salt wash resistant double hexamer with 

concurrent release of Cdc6 and Cdt1 (Remus et al., 2009, Evrin et al., 2009). 

However, when ATP hydrolysis is prevented by incubation with ATPγS (a slowly 

hydrolysed ATP analogue), all the pre-RC components are recruited to DNA-beads 

after a low salt wash but are removed by high-salt extraction (Remus et al., 2009, 

Evrin et al., 2009). Thus, in the presence of ATPγS, ORC, Cdc6, Cdt1 and Mcm2-7 

are all present on DNA-beads under low-salt wash conditions. Figure 3.1 

summarizes the complexes that can be determined using this system.  
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Figure 3.1 Pre-RC assembly and intermediates in vitro 

(i) In the presence of ATP, ORC and Mcm2-7 are stably bound to DNA. (ii) A high 
salt wash (HSW) of DNA beads (grey ellipse) removes ORC, but the Mcm2-7 
complex remains bound. (iii) In the presence of ATPγS, all pre-RC components are 
recruited to the DNA. A possible arrangement (?) of the proteins in shown. (iv) High 
salt extraction removes all proteins from the DNA-beads in ATPγS. 
 
 
 
I hypothesised that characterising the “ATPγS complex” (Figure 3.1 (iii)) would 

provide insight into the role of ATP binding in the Mcm2-7 loading reaction. Such a 

complex may represent an intermediate stage, when ATP is bound but not yet 

hydrolysed. We reasoned that it would be informative to examine this ATPγS 

intermediate. Towards this aim, proteins of the pre-RC were purified for use in 

biochemical assays. Where possible proteins were expressed and purified from 

budding yeast cells arrested in G1 phase. During G1 phase, the levels of Cdk 

activity are low which is important as high Cdk levels prevent assembly of pre-RCs 

from S phase until the end of mitosis (Dahmann et al., 1995, Detweiler and Li, 1998, 

Piatti et al., 1996). G1 phase is therefore a period of competence for pre-RC 

formation and this has also been demonstrated in vitro (Seki and Diffley, 2000). 
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I employed these purified proteins in electrophoretic mobility shift assays (EMSAs) 

to examine pre-RC reactions assembled in ATP and in ATPγS. An electrophoretic 

mobility shift assay (EMSA) or band shift assay is a common in vitro 

electrophoresis technique used to examine protein-DNA interactions. This assay 

can determine whether a protein or mixture of proteins binds the nucleic acid 

sequence in question and can often reveal whether a single protein or complex is 

involved in the binding. The EMSA technique is based on the observation that 

protein:DNA complexes migrate slower than free linear DNA when subjected to 

native (non-denaturing) polyacrylamide or agarose gel electrophoresis (Garner and 

Revzin, 1981). The speed at which different molecules move through a porous gel 

matrix subjected to an electric field is determined by their size and charge. Binding 

of a protein to DNA creates a larger structure that is less mobile and therefore 

migrates more slowly compared to unbound DNA. For visualisation purposes, the 

DNA can be radiolabelled with P32 by 5' end labelling.  

 

The gel matrix and low ionic strength of the electrophoresis running buffer help to 

stabilise interaction complexes and sometimes even labile complexes can be 

resolved (Fried and Crothers, 1981). This is important since intermediates formed 

during pre-RC assembly could be unstable. EMSA was previously used 

successfully to show that Cdc6 binds to ORC in an ATP dependent manner and 

alters the pattern of origin binding (Speck et al., 2005). However, a full pre-RC 

containing the Mcm2-7 complex had never been examined by EMSA. For these 

reasons I considered the EMSA to be an appropriate technique for examining pre-

RC reactions and possible intermediates.    

 

In this chapter I will describe how purified proteins for EMSA were prepared and 

tested and I will present results obtained from EMSA analysis of pre-RC reactions 

assembled in the presence of ATP and ATPγS. 
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3.2 Preparation of proteins and DNA for electrophoretic 
mobility shift assays 

In order to analyse pre-RC formation by EMSA, the following steps were required: 

1. Purification of pre-RC proteins 

2. Preparation of radiolabelled target DNA 

3. Assembly of proteins on target DNA in the presence of ATP or ATPγS 

4. Electrophoresis of reactions on agarose or native polyacrylamide gels 

5. Visualisation of band migration patterns by exposure to film or a 

phosphorimager screen. 

Here I will describe how proteins and target DNA were prepared. 

 

3.2.1 Protein purification for EMSA analysis 

I purified proteins of the pre-RC for use in electrophoretic mobility shift assays 

(EMSAs). ORC and Mcm2-7/Cdt1 were purified from yeast cells arrested in G1 

phase with the mating pheromone α-factor. Proteins were purified as described in 

Remus et al., 2009, with minor modifications in salt type and concentration. The 

purification is described below (also see Chapter 2). 

 

ORC was purified from a yeast strain overexpressing all six subunits (Orc1-6) as 

additional copies from the inducible GAL1-10 promoter. A tandem affinity 

purification (TAP) of ORC was carried out using a TAP-TCP tag fused to the  

C-terminus of Orc1 (see materials and methods). The TAP-TCP tag differs in its 

arrangement compared to a TAP tag (Puig et al., 2001). In the TAP-TCP tag a TEV 

protease site is located proximal to the protein followed sequentially by calmodulin 

binding peptide (CBP) and protein A (Remus et al., 2009). Using this tag, 

calmodulin affinity chromatography was carried out, followed by a TEV protease 

digest to remove the entire TAP-TCP tag and finally residual tagged protein was 

removed by passage over IgG sepharose. This was followed by Superdex 200 gel-

filtration and MonoQ ion exchange chromatography to remove a complex 

containing a truncated version of Orc1. This resulted in a stoichiometric ORC 

complex of six subunits (Figure 3.2A).  
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Endogenous Mcm2-7/Cdt1, in which the C-terminus of the Mcm4 subunit was 

fused to a 3x FLAG epitope, was purified from G1 phase yeast extracts by anti-

FLAG immunoaffinity chromatography followed by Superdex 200 gel-filtration 

chromatography (Figure 3.2B). This resulted in a stoichiometric complex of Mcm2-7 

that co-purified with Cdt1 and eluted from the Superdex 200 column in the same 

fraction as thyroglobulin (670 kDa) (Figure 3.2A), consistent with the predicted 

molecular weight of Mcm2-7/Cdt1 (676 kDa).  

 

Since Cdc6 is rapidly degraded during G1 phase in budding yeast (Drury et al., 

2000), it was expressed in insect cells from a baculovirus vector. Cdc6, containing 

a 6x His tag at its N-terminus, was purified by Ni-NTA chromatography followed by 

Superdex 200 gel-filtration chromatography (Figure 3.2 C). Purified Cdc6 migrates 

in SDS PAGE as a doublet as it is phosphorylated in insect cells (Remus et al., 

2009). Importantly, both phosphorylated Cdc6 and Cdc6 lacking all eight CDK 

phosphorylation sites (non phosphorylated in insect cells) function equally well in 

loading the Mcm2-7 complex in vitro (Remus et al., 2009).  

 

Since these purified proteins were to be used to examine pre-RC formation by 

EMSA, it was important to ascertain that the proteins were functional. In order to 

test the activity of the purified proteins, I examined their ability to assemble pre-

RCs in vitro (Figure 3.2D) as described in Remus et al., 2009, as a readout of 

functionality. Purified ORC, Cdc6 and Mcm2-7/Cdt1 were added to ARS305-

containing DNA coupled to paramagnetic beads by a biotin-streptavidin linkage 

(DNA-beads). Proteins bound to the DNA-beads were detected by boiling the DNA-

beads in SDS sample buffer followed by SDS PAGE and immunoblotting (Figure 

3.2D; see Figure 1.5 for a schematic of in vitro pre-RC reconstitution). Antibodies 

against Orc6, Mcm2, Mcm5 and Mcm7 were used in this case and acted as 

readout for ORC and Mcm2-7 binding to DNA-beads. Mcm2 and Mcm5 are located 

on the opposite side of the MCM ring to Mcm7 (see Figure 1.3); this allowed us to 

monitor binding of both halves of Mcm2-7 to the DNA-beads.  

 

In reactions containing ATP, DNA-beads bound Orc6, Mcm2, 7 and Mcm5 (Figure 

3.2D, lane 1). A high salt wash (HSW; 0.5 M NaCl) of this reaction removed Orc6 

but a substantial fraction of the MCM subunits remained bound (Figure 3.2D, lane 
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2). In the presence of ATPγS, the DNA-beads bound Orc6, Mcm2, 7 and Mcm5 

after a low salt wash (Figure 3.2D, lane 3), however these proteins were removed 

by high salt extraction (Figure 3.2D, lane 4). Therefore, the Mcm2-7 complex was 

stably loaded in a high salt resistant manner in ATP and recruited in a salt labile 

manner in ATPγS. These data confirmed that the purified proteins were competent 

for pre-RC assembly in vitro. 
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Figure 3.2 Preparation of proteins for EMSA analysis of pre-RC formation 

(A) Purified ORC (MonoQ) analysed by SDS PAGE and Coomasie staining. ORC 
was purified G1 arrested yeast cells. Orc1 is TAP-tagged in this strain. * represents 
a contaminant. (B) Purified Mcm2-7/Cdt1 (gel filtration) analysed by SDS PAGE 
and silver staining. Mcm2-7/Cdt1 was purified from G1 arrested yeast cells where 
Mcm4 is FLAG-tagged at its C-terminus. (C) Purified His-Cdc6 from baculovirus in 
insect cells, analysed by SDS PAGE and Coomassie staining. (D) In vitro 
reconstitution of pre-RC assembly to test purified proteins; visualised by 
immunoblotting. Purified ORC and Cdc6 can load Mcm2-7 in a salt resistant 
manner in ATP only. 

* 
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3.2.2 Preparation of DNA for EMSA analysis 

To examine pre-RC formation by EMSA analysis, we required target DNA 

containing an origin of replication. In S.cerevisiae, origins of replication are known 

as ARSs (autonomously replicating sequences). The target DNA (probe) I 

generated consists of 247 bp of DNA derived from ARS305 and contains the A 

element (11 bp sequence known as the ACS) and B elements but not the 

surrounding sequences. The 247 bp probe was designed based on sequences that 

had been used successfully for EMSA and footprinting experiments with ORC and 

Cdc6 on origin DNA (Speck et al., 2005, Santocanale and Diffley, 1996).  

 

In order to visualise DNA migration patterns following electrophoresis (step 5 

above), I radiolabeled the 247 bp origin DNA probe at the 5' end using [γ-32P]ATP 

and T4 polynucleotide kinase (see materials and methods). 

 

3.3 EMSA analysis using ORC and Cdc6 

To begin to characterise pre-RC assembly by EMSA, I examined the binding of 

ORC to DNA and the effect of Cdc6 on this binding. Purified ORC either with or 

without Cdc6 was incubated with the 247 bp probe in the presence of ATP. 

Reactions were performed with varying amounts of poly dI-dC (non-specific DNA). 

The addition of non-specific DNA acts as a competitor, reducing non-specific 

interactions between labelled probe and the proteins in question. Binding reactions 

containing end-labelled probe DNA were subjected to electrophoresis on a 3.5% 

native polyacrylamide gel. Following electrophoresis, the gel was dried, exposed to 

a Phosphorimager screen and scanned to document the results.  

 

In Figure 3.3, lanes 1-8 show ORC binding to probe DNA, whilst lanes 9-16 show 

the effect of the addition of Cdc6 on this binding. Addition of ORC alone to the DNA 

probe, in the absence of competitor DNA, resulted in a slower migrating band 

compared to probe alone (Figure 3.3A, compare lanes 1 and 8). As competitor 

DNA was added, the ORC-DNA complex appeared to migrate faster through the 

gel (Figure 3.3A, lanes 2-7). Probably, ORC was titrated away from the origin DNA 

and bound unlabelled competitor DNA. The slower migrating DNA-ORC band 
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observed in the absence of competitor DNA, could represent multiple ORC 

molecules binding. Whilst, the faster migrating bands (lanes 2-7) could be fewer 

ORC molecules binding to the probe DNA. 

 

Incubation of Cdc6 alone with probe DNA did not result in the formation of a novel 

band. However, a band was observed in the well indicating a probable aggregation 

of Cdc6 on the DNA (Figure 3.3A, lane 16). Addition of Cdc6 to the ORC-DNA 

complex induced formation of a slower migrating band, under conditions of low 

competitor DNA (Figure 3.3A, compare lanes 6 and 14, bands indicated by red 

stars). As the amount of competitor DNA was increased, this slower migrating band 

was no longer observed. Instead a faster migrating band at the level of ORC alone 

was detected (Figure 3.3A, lanes 9-12). Noticeably, these bands in lanes 9-12 were 

more intense than the bands observed in the presence of ORC alone (lanes 2-5). It 

appears that in these reactions, ORC binding to DNA was slightly stabilised and 

Cdc6 binding to ORC-DNA was inhibited.  

 

I was unable to explain why the addition of Cdc6 to ORC-DNA did not give rise to a 

double band in all reactions as had been previously described in Speck et al., 2005. 

In addition, it was unclear why the addition of competitor DNA inhibited Cdc6 

binding to ORC-DNA. Interestingly, a study in Xenopus egg extracts demonstrated 

that there is a minimum length of DNA required for Mcm2-7 binding (Edwards et al., 

2002). Mcm2-7 binding was found to increase with the increase in DNA length 

whilst ORC binding was unaffected (Edwards et al., 2002). Cdc6 binding to 

different lengths of DNA was not, however examined by the authors (Edwards et al., 

2002).  

 

For these reasons, I asked whether 247 bp ARS 305 was capable of supporting 

Mcm2-7 loading in vitro. The reconstitution of Pre-RC assembly in vitro is usually 

performed using 1 kb origin-containing DNA.  

 

To determine whether 247 bp DNA could support Mcm2-7 loading, I coupled this 

sequence to streptavidin-coated paramagnetic beads via a biotin linkage. Purified 

proteins were incubated with 247 bp DNA-beads or 1 kb DNA-beads in the 

presence of ATP or ATPγS. The DNA-beads were then subjected to washes (see 



Chapter 3 Results 

 

 83 

Figure 1.5) and binding of pre-RC proteins to the DNA-beads was assessed by 

immunoblotting. Figure 3.3B shows that, after incubation with purified proteins, in 

reactions containing ATP or ATPγS, both 1 kb and 247 bp DNA-beads bind Orc6 

(Top panel; lanes 1, 3, 5 & 7). In this case, the detection of Orc6 acts as a 

surrogate for ORC binding and this result is consistent with data from Edwards et 

al., 2002 showing that ORC binding is unaffected by DNA length.  

 

In the presence of ATP; Mcm2, Mcm5 and Mcm7 bound DNA beads containing  

1 kb ARS305 but very little bound 247 bp ARS305 (Figure 3.3B, lanes 1 & 5). Any 

Mcm2, Mcm5 and Mcm7 that was bound to the 247 bp DNA-beads was removed 

by a high salt extraction whereas a substantial proportion remained bound to the 1 

kb DNA-beads (compare lanes 2 & 6). Here, the detection of Mcm2, Mcm5 and 

Mcm7 was used as a surrogate for the Mcm2-7 complex. 

 

In the presence of ATPγS; Mcm2, 5 and 7 all bound 1 kb DNA-beads and were 

removed by a high salt wash as expected (lanes 7 & 8). However, only Mcm2 and 

Mcm7 could be detected on 247 bp DNA-beads in in ATPγS, and this binding was 

less than that of 1 kb DNA-beads. Interestingly, Mcm2 and 7 appeared to bind 247 

bp DNA better in ATPγS compared to ATP (Figure 3.3B bottom panel, compare 

lanes 1 & 3). This indicates that perhaps ATP hydrolysis somehow causes release 

of the MCM subunits from 247 bp DNA. In conclusion, 247 bp DNA-beads were not 

capable of supporting Mcm2-7 loading in vitro. 

 

In light of this, I proceeded with EMSA analyses using a 1 kb probe.  
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Figure 3.3 EMSA analysis of ORC and Cdc6 binding - 247 bp DNA does not 
support Mcm2-7 loading in vitro 
(A) EMSA analysis of ORC and Cdc6 binding to 247 bp ARS 305. Radiolablled 247 
bp ARS305 (P32 end labelled) was incubated with ORC, Cdc6 and titrations of 
polyDIDC at 30°C for 30 mins. The whole reaction was then loaded onto a 3.5% 
native polyacrylamide gel. 100 V for 3 hours. Red stars show the same reaction 
without (lane 6) or with (lane 13) the addition of Cdc6 for comparison.  
(B) Reconstitution of Pre-RC assembly in vitro using 247 bp ARS305 vs 1 kb 
ARS305. ORC, Cdc6 and Mcm2-7 were incubated with either 247 bp or 1 kb 
ARS305 coupled to paramagnetic beads in the presence of ATP or ATPγS. The 
DNA-beads were then washed in low/high salt (HSW: high salt wash) and bound 
proteins analysed by SDS PAGE and immunoblotting against the proteins 
indicated. 
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3.4 EMSA analysis using 1 kb ARS305 

Since the 247 bp ARS305 fragment did not support Mcm2-7 loading, EMSAs were 

subsequently performed using a 1 kb fragment of ARS305 (contains the A element, 

B elements and surrounding sequences) radiolabelled at its 5' end with P32. To 

begin to characterise the pre-RC by EMSA on 1kb ARS305, I first examined 

binding of ORC to this 1 kb probe and the effect of Cdc6 on ORC-DNA complexes.  

 

ORC either with or without different amounts of Cdc6 was incubated with the 1 kb 

ARS 305 probe in the presence of ATP. In these reactions I used a low amount of 

competitor DNA (0.01 ng poly dIdC) that was found to be permissible for ORC-

Cdc6-DNA complex formation in Figure 3.3. A crosslinking reagent, glutaraldehyde 

was then added to a subset of reactions. Glutaraldehyde is a homobifunctional 

amine-reactive crosslinker, meaning that both of its ends react with primary amines. 

This forms a covalent bond between two proteins. Glutaraldehyde has previously 

been used successfully in EMSAs to study T-antigen binding to the SV40 origin of 

DNA replication (Dean et al., 1987). In our case, glutaraldehyde was used to 

stabilise nucleoprotein complexes in the reactions. Following crosslinking, reactions 

were subjected to electrophoresis on a 0.8% agarose gel (due to the larger size of 

the probe). Following electrophoresis, the gel was dried, exposed to a 

Phosphorimager screen and scanned to visualise the results. 

 

Figure 3.4 shows the effect of addition of different amounts of Cdc6 to ORC-DNA 

complexes either in the absence or presence of glutaraldehyde crosslinking (lanes 

2-6 and 9-13 respectively). Addition of ORC alone to the 1 kb origin DNA probe, 

resulted in a slower migrating band compared to the unbound linear DNA probe 

(Figure 3.4, lanes 7 & 14). In contrast, addition of Cdc6 alone to the DNA probe did 

not result in a novel band compared to unbound probe (Figure 3.4, lanes 8 & 15). 

Interestingly, addition of glutaraldehyde gave rise to a slower migrating band in 

ORC-DNA reactions (Figure 3.4, compare lanes 7 and 14). This indicates that in 

the absence of glutaraldehyde crosslinking, ORC was probably dissociating from 

the origin DNA during the gel electrophoresis.  
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As Cdc6 was added to ORC-DNA, a slower migrating smear was formed in lanes 

2-7, indicating the formation of a ternary complex of ORC-Cdc6-DNA. However the 

smearing suggests that this complex was dissociating during electrophoresis. In 

reactions where glutaraldehyde crosslinking had been performed, the addition of 

Cdc6 resulted in bands in the wells of the gel (lanes 9-14). Possibly, crosslinking 

produced a structure that was large and did not enter the gel.  

 

 
Figure 3.4 EMSA analysis of ORC and Cdc6 on 1 kb origin DNA 

ORC and Cdc6 form complexes on origin DNA.  
Purified ORC and Cdc6 were incubated with a 1 kb origin DNA probe in the 
presence of ATP for 30 mins at 30°C. Glutaraldehyde was then added to a final 
concentration of 0.1% for 5 mins. The reactions were quenched with TRIS-HCl pH 
7.5 and loaded on a 0.8% agarose gel and run for 16 hours at 25 V. 
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In order to visualise stable nucleoprotein complexes, I optimised the electrophoretic 

conditions of the EMSAs to minimise crosslinked species in the wells. 

Electrophoresis times were reduced to minimise complex dissociation.  

 

Upon establishing appropriate EMSA electrophoresis conditions, I proceeded to 

examine pre-RC formation in ATP and ATPγS. As discussed before, we reasoned 

that the “ATPγS reaction” could represent an intermediate in pre-RC formation 

where ATP is bound but not yet hydrolysed and could provide valuable information 

about Mcm2-7 loading. This EMSA was performed to visualise the DNA in ATPγS 

reactions and how its migration pattern was altered compared to reactions set up in 

ATP. In addition, a full pre-RC had never been examined in this manner.  

 

Reactions containing ORC, Cdc6 and Mcm2-7/Cdt1 were assembled on the 1 kb 

origin probe in the presence of ATP or ATPγS. Glutaraldehyde was added to a 

subset of reactions to crosslink any intermediates formed and a low amount of 

competitor DNA (0.01 ng poly dIdC, as previously) was present in all samples. 

Following crosslinking, reactions were subjected to electrophoresis on a 0.8% 

agarose gel. The gel was then dried, exposed to a Phosphorimager screen and 

scanned to visualise the results. 

 

Figure 3.5 shows the results of this EMSA analysis and is divided into four panels. 

The first two panels show results of reactions assembled in ATP in the absence or 

presence of glutaraldehyde crosslinking (lanes 2-8 and 9-15 respectively). The next 

two panels show results obtained from reactions assembled in ATPγS in the 

absence or presence of glutaraldehyde crosslinking (lanes 16-22 and 23-29 

respectively). Lane 1 shows unbound 1kb origin DNA-probe.  

 

ORC alone formed distinct complexes with 1 kb ARS 305, both in ATP and in 

ATPγS (Figure 3.5, lanes 2, 9, 16 & 23). Addition of glutaraldehyde to ORC-DNA 

produced a slower migrating smear in reactions containing ATP or ATPγS  (lanes 9 

& 23).  
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There were no detectable novel bands with Cdc6 and/or Mcm2-7/Cdt1 alone 

(Figure 3.5, lanes 3, 10, 17 & 24, and 4, 11, 18 & 25 respectively). This is 

consistent with studies showing that Cdc6 can only bind origins in the presence of 

ORC (Liang et al., 1995, Seki and Diffley, 2000) and that ORC and Cdc6 are 

required to load the Mcm2-7 complex onto chromatin (Donovan et al., 1997). 

 

Complexes were observed when Cdc6 was added to ORC-DNA (Figure 3.5, lanes 

5, 12, 19 & 26) that were distinct from ORC-DNA complexes. Again, the addition of 

glutaraldehyde to ORC-Cdc6 reactions, produced a slower migrating smear, 

indicating that crosslinking stabilised the ORC-Cdc6-DNA complex (compare lane 5 

to 12 and lane 19 to 26). 

 

Slower migrating complexes were observed in reactions containing ORC and 

Mcm2-7/Cdt1 (Figure 3.5, lanes 6, 13, 20 & 27) that were distinct from ORC-DNA 

and ORC-Cdc6-DNA complexes. When pre-RC assembly is reconstituted in vitro, 

we cannot detect Mcm2-7/Cdt1 binding to the origin in the absence of Cdc6. It is 

possible that the EMSA stabilises a weak interaction between ORC and Mcm2-

7/Cdt1, and that is why a slower migrating product can be seen here. There were 

no novel bands or smears observed in reactions containing Cdc6 and Mcm2-

7/Cdt1 (Figure 3.5, lanes 7, 14, 21 & 28) as Cdc6 requires ORC to bind DNA (Liang 

et al., 1995, Seki and Diffley, 2000).  

 

There were some interesting differences between reactions in ATP and reactions in 

ATPγS. The full pre-RC reaction containing ORC, Cdc6 and Mcm2-7/Cdt1 

produced a larger slower migrating smear in ATPγS containing reactions compared 

to ATP containing reactions (Figure 3.5, compare lanes 15 to 29). This indicates 

that in the presence of ATPγS, a larger or more complex structure is formed that 

migrates more slowly during electrophoresis. Indeed, in ATPγS, all loading 

components including Ccd6 and Cdt1 are bound at origins (Remus et al., 2009). 

This structure could thus be larger than the Mcm2-7 double hexamer formed in 

ATP. 
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Figure 3.5 EMSA of the pre-RC on 

 1 kb origin DNA 

Reactions were assembled  
using 160 fmol ORC,  
160 fmol Cdc6 and  
320 fmol Mcm2-7/Cdt1 in either  
ATP or ATPγS. Reactions were 
incubated for 30 mins at 30°C 
with 1 kb ARS305 probe DNA.  
Glutaraldehyde was then added  
to a final concentration of 0.1%  
for 5 mins in a subset of  
reactions. The reactions were  
quenched with TRIS-HCl pH 7.5  
and whole reactions were loaded 
onto a 0.8% agarose gel (100 V, 
5 hours). The gel was dried and 
exposed to a phosphorimager 
screen and scanned using a  
Typhoon scanner. The red triangle 
indicates a prominent band. The red 
bracket indicates a slower migrating   
smear. 
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We noticed a prominent band that formed in the presence of ORC in crosslinked 

reactions and most clearly in ATPγS crosslinked reactions (Figure 3.5, lane 23, red 

triangle). In addition, there was a slower migrating smear above this band (Figure 

3.5, lane 23, red bracket). This smear appeared to alter in migration upon the 

addition of Cdc6 and/or Mcm2-7, whilst the band remained constant (compare 

Figure 3.5, lanes 23, 26, 27 and 29). It is possible that the band observed with 

ORC could be one ORC molecule binding specifically to the ARS consensus 

sequence whilst the slower migrating smear, that appears to be a precursor for the 

full reaction, could represent more than one ORC bound to DNA. It has been 

suggested that association of multiple ORC molecules with origin DNA is required 

for efficient Mcm2-7 loading in fission yeast (Takahashi et al., 2003). Another 

possibility is that the slower migrating smear could represent looping of the DNA, 

onto which the Mcm2-7 complex could be loaded.  

 

In light of this, we next asked whether the band we observed in the ORC containing 

reactions represents ORC binding specifically to the ARS consensus sequence. To 

address this question, EMSAs were set up using either a WT ARS 305 probe or a 

mutant ARS305 probe. The mutant or A- ARS305 probe contains an 8 bp XhoI 

linker in place of the wild-type sequence in the ARS consensus sequence (ACS) 

(Huang and Kowalski, 1996). This mutation inactivates function of the origin 

(Huang and Kowalski, 1996). 

 

Reactions were assembled with either ORC or all pre-RC components (ORC, Cdc6 

and Mcm2-7/Cdt1) on WT or A- ARS305 in ATP or ATPγS. All samples were 

crosslinked with glutaraldehyde and reactions were subjected to electrophoresis on 

a 0.8% agarose gel. The gel was dried, exposed to a Phosphorimager screen and 

scanned. 

 

Figure 3.6 shows the results of pre-RC reactions assembled in ATP (first panel) or 

ATPγS (second panel) on WT or A- ARS305 DNA. Lanes 1 and 4 show the 

unbound linear WT ARS305 and A- probes respectively. Addition of ORC to probe 

DNA resulted in slower migrating products (lanes 2, 5, 7 and 9). Consistent with 

previous results, a prominent band formed in the ATPγS reaction containing ORC 



Chapter 3 Results 

 

 91 

(Figure 3.6, lane 7). However, this band appeared to be absent from the A- ARS305 

reaction (Figure 3.6, lane 9). This indicates that the ORC band is specific to WT 

ARS305 and represents ORC binding to the ACS. A slower migrating smear above 

the ORC band appeared in both WT and A- ARS305 reactions containing ORC 

alone, in ATP and in ATPγS (Figure 3.6, lanes 2, 5, 7 and 9). In addition, there 

seemed to be little or no difference between the full pre-RC reaction (ORC + Cdc6 

+ Mcm2-7/Cdt1) assembled on WT or A- ARS305 (Figure 3.6, compare lanes 3, 6, 

8 and 10).  

 

These data indicate that the ‘specific ORC band’ may not be required to form the 

pre-RC. This is consistent with data from Remus et al. 2009 showing that Mcm2-7 

loading occurs on A- ARS1 just as efficiently as on WT ARS1 (ARS1 is another well 

characterised origin of DNA replication in budding yeast). The loading capacity of 

A- ARS1 is only reduced when competitor DNA is added (Remus et al., 2009). 

Interestingly, S.cerevisiae is the only known species to contain a sequence specific 

binding site for ORC.  

 

Taken together these data suggest that ORC binds specifically at the ACS but this 

binding is not required for formation of the pre-RC. This specific band could 

represent one ORC molecule binding in a specific manner whereas the precursor 

for pre-RC formation could consist of multiple ORC molecules or DNA looping.  
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Figure 3.6 EMSA of the pre-RC on 1 kb WT ARS305 vs. 1 kb A- ARS305 

Reactions were assembled as in Figure 3.4 on either 1 kb WT ARS305 or 1 kb A- 
ARS305. All reactions were crosslinked with glutaraldehyde and whole reactions 
were loaded on a 0.8% agarose gel (100 V, 5 hours). 
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3.5 Conclusions 

To gain insight into the mechanism of Mcm2-7 loading, I set out to characterise 

intermediates in pre-RC formation. EMSA was used as a tool to characterise the 

“ATPγS complex”, which may represent an intermediate stage in which ATP is 

bound by components of the pre-RC but not yet hydrolysed.  

 

Proteins of the pre-RC were purified as described in Remus et al. 2009, and tested 

for their ability to load the Mcm2-7 complex in vitro. EMSA analysis of ORC and 

Cdc6 binding was carried out on 247 bp ARS305 DNA. Addition of Cdc6 to ORC-

DNA did not give rise to a distinct novel band in all reactions. A study in Xenopus 

egg extracts showed that a minimum of 82 bp is required for weak Mcm2-7 binding 

and that this Mcm2-7 binding increases with DNA length, whereas ORC binding 

remains constant (Edwards et al., 2002). I therefore examined whether 247 bp of 

ARS305 was capable of Mcm2-7 loading in vitro when compared to 1 kb ARS305. I 

found that 247 bp could not support Mcm2-7 loading in vitro as Mcm2, 5 and 7 

were only capable of binding DNA-beads in the presence of ATPγS and low salt. 

 

These data are consistent with Edwards et al., 2002, and suggest that there is a 

threshold length required in order for proper Mcm2-7 loading to occur. If a pre-RC 

intermediate involved looping of the DNA then 247 bp could be too short, even if 

the A element and B elements were present. This may also explain why the EMSA 

with ORC and Cdc6 on 247 bp DNA did not give a clear result upon addition of 

Cdc6 to ORC-DNA (Figure 3.3A). 

 

In addition, I observed some Mcm2-7 binding on 247 bp DNA in the absence of 

ATP hydrolysis (in ATPγS) that was then released upon ATP hydrolysis. A similar 

“ATP-dependent release” of Mcm2-7 has been observed in instances where 

reaction components are missing or when ORC has been inactivated by CDK 

phosphorylation (Frigola et al., 2013). 

 

EMSAs were subsequently performed on 1 kb ARS305. Full pre-RC reactions 

(containing ORC, Cdc6 and Mcm2-7) assembled in ATPγS produced a larger, 
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slower migrating smear than those set up in ATP. This suggests that the ATPγS 

complex is a larger/more complex structure than the ATP complex where Cdc6 and 

Cdt1 are known to dissociate. We observed a prominent band that formed in the 

presence of ORC in ATPγS crosslinked reactions. By using mutant (A-) ARS305, I 

established that this band represents ORC binding specifically to the ACS.  

 

In addition to the specific ORC binding band, I detected a slower migrating smear 

in ORC containing reactions that appears to be the precursor for pre-RC formation. 

It is interesting to postulate that the specific band is one ORC molecule binding at 

the ACS, whilst the precursor smear could be multiple ORC molecules that act 

together to load the Mcm2-7 complex.  

 

Whilst EMSA analysis provided some insight into intermediates in pre-RC formation 

(ATPγS complex), this information was limited and results were somewhat difficult 

to interpret. I therefore subsequently used different strategies to address whether 

multiple ORC molecules load the Mcm2-7 complex. I set out to examine the 

stoichiometry of loading factors during pre-RC formation using epitope tagged 

proteins. This will be discussed in the subsequent chapters. 
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Chapter 4. Fusion of the pre-RC proteins to 3x FLAG 

or 9x Myc peptide tags 

4.1 Introduction 

ORC, Cdc6 and Cdt1 act together to load a double hexamer of Mcm2-7 onto origin 

DNA (See Chapter 1, section 1.2.2.3) and the Mcm2-7 hexamers are thought to be 

loaded in a concerted manner (Remus et al., 2009). Budding yeast ORC binds at a 

specific site on DNA replication origins (ACS, see Chapter 1, section 1.2.2.3) and it 

is thought that one ORC molecule binds at this site. If this is true, how can one 

ORC molecule recruit and load two Mcm2-7 hexamers simultaneously? Would this 

require that different ORC subunits interact with each hexamer? On the other hand, 

it is possible that multiple ORCs and/or multiple Cdc6 molecules function in pre-RC 

formation. Perhaps two ORC-Cdc6 assemblies load one Mcm2-7/Cdt1 each, in 

opposite orientations. It is also possible that the Mcm2-7 hexamers are loaded 

sequentially by one ORC-Cdc6 complex. Several intriguing questions arise from 

this: what is the stoichiometry of loading factors during pre-RC formation? How 

many ORC, Cdc6 and Cdt1 molecules function in loading the Mcm2-7 complex? 

Are the Mcm2-7 hexamers indeed loaded in a concerted manner or sequentially? 

Information on protein stoichiometry would provide considerable insight into how 

Mcm2-7 can be loaded into a double hexamer.  

 

In addition to deciphering protein stoichiometry during pre-RC formation, we need a 

better understanding of how licensing factors are positioned relative to each other 

to load the Mcm2-7 double hexamer. This leads to the question: which proteins 

interact during pre-RC assembly? Very little is known about protein-protein 

interactions in pre-RC formation. A study in 2007 suggested that Orc6 interacts 

with Cdt1 to recruit the Mcm2-7 complex (Chen et al., 2007), however there are 

likely to be other interactions involved in forming the double hexamer. An 

informative first step would be to examine protein-protein interactions in the context 

of the “ATPγS complex” (Figure 3.1 iii). This is because in the “ATPγS complex”, all 

the pre-RC components (ORC, Cdc6 and Mcm2-7/Cdt1) are stabilised at the origin 

in an ATP-bound state (Figure 3.1 iii). Examining any protein-protein interactions in 
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this complex would provide a clearer picture of how licensing factors are positioned 

during pre-RC formation. 

 

To begin to construct a model of how a pre-RC is assembled, we sought to 

examine the stoichiometry and interactions of loading factors. To do this, we 

devised a peptide tagging strategy that would allow examination of both the 

stoichiometry and interactions of pre-RC proteins.  

 

Peptide tagging, first described by Munro and Pelham in 1984 (Munro and Pelham, 

1984), is a useful technique whereby a gene product is made immunoreactive to an 

already existing antibody. The process involves inserting a polynucleotide encoding 

a short continuous epitope into a gene of interest and then expressing the gene in 

an appropriate host. Peptide tagging enables simple detection of the protein 

product of the tagged gene.  

 

I chose to fuse the 3x FLAG and 9x Myc peptide tags to each of the pre-RC 

polypeptides. There were several reasons for this. Firstly, specific antibodies 

against both of these peptide tags are readily available. Indeed, there are very few 

available antibodies against each of the 14 pre-RC polypeptides (6 ORC subunits, 

6 Mcm2-7 subunits, Cdc6 and Cdt1). Secondly, the presence of tandem copies of 

the tags (3x FLAG and 9x Myc) significantly improves signal strength, which 

therefore makes detection of the protein fused to the peptide tag very sensitive. 

Finally, by using a single antibody against 3x FLAG or 9x Myc, I could quantitatively 

compare antibody signals across protein-tag fusions.     

 

I examined protein stoichiometry and protein-protein interactions during pre-RC 

formation by combining 3x FLAG and 9x Myc-tagged licensing proteins and using 

immunoaffinity purification and crosslinking techniques coupled with antibody 

detection and quantification. These experiments and their results will be discussed 

in Chapters 5 and 6.    

 

In this chapter I will present how proteins fused to 3x FLAG or 9x Myc peptide tags 

were generated for stoichiometry and interaction studies and how these proteins 
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were functionally assessed for their competency to load the Mcm2-7 complex in 

vitro.  

 

4.2 Fusion of 3x FLAG or 9x Myc peptides to the N-terminus of 

Cdc6 

To examine the stoichiometry and interactions of Cdc6 during pre-RC formation, I 

purified Cdc6 fused to a 3x FLAG or 9x Myc peptide tag. In this section, I will 

describe the approach taken to achieve this.  

 

Previous work in the laboratory had established protocols for purification of Cdc6 

from baculovirus expression in insect cells (Remus et al., 2009). Fusion of a 

peptide tag to a gene in baculovirus vectors involves several stages. Subsequent 

expression and purification of the tagged protein from insect cells is both laborious 

and time consuming. In contrast, the expression of proteins in E.coli is relatively 

easy and rapid. In addition, fusion of a peptide tag to a gene in this system is by 

simple cloning. For these reasons, I generated Cdc6 from an E.coli expression 

system to simplify peptide tagging and purification. 

 

Briefly, I cloned S.cerevisiae Cdc6 in an expression plasmid where Cdc6 was fused 

to a GST (Glutathione S-transferase) tag at its N-terminus (see materials and 

methods, section 2.5.1). This GST-Cdc6 fusion contained a PreScission Protease 

recognition sequence at the 5' end of Cdc6 to facilitate removal of the GST tag 

during protein purification. The GST tag is composed of 220 amino acid residues 

and dimerises when purified. The removal of the GST tag is sometimes desirable to 

eliminate the possibility that it interferes with protein function.   

 

This GST-Cdc6 expression plasmid was expressed in E.coli cells and Cdc6 was 

purified by glutathione chromatography and eluted with PreScission Protease 

(modified from Speck et al. 2005). The eluate was then subjected to hydroxyapatite 

chromatography using an elution gradient of salt (Figure 4.1B). The elution pattern 

from hydroxyapatite chromatography is shown in a Coomassie-stained 

polyacrylamide gel in Figure 4.1B. One advantage of this purification is that it is 
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less laborious than the baculovirus expression system. In addition, Cdc6 expressed 

from baculovirus in insect cells is phosphorylated (Figure 4.1A) (Remus et al., 

2009). In S.cerevisiae phosphorylation of Cdc6 promotes its ubiquitin-mediated 

proteolysis (Drury et al., 1997, Sanchez et al., 1999). It is therefore the un-

phosphorylated form of Cdc6 that is active in pre-RC formation. Cdc6 purified from 

E.coli is not phosphorylated (Figure 4.1B), making it ideal for further studies. Figure 

4.1C shows the final purified preparations of Cdc6 from both baculovirus and E.coli 

expression systems.  

 

It was important to establish that Cdc6 purified from this E.coli expression system 

was functional, as I intended to use the system for fusion of tags to Cdc6 and 

purification of tagged-Cdc6. These protein preparations were then to be used for 

stoichiometry and interaction studies. To ascertain that Cdc6 purified from E.coli 

was functional, I assessed its ability to load the Mcm2-7 complex in vitro (see 

Figure 1.5). This was compared to Cdc6 purified from baculovirus expression, 

which has previously been shown to be functional for pre-RC formation (Mcm2-7 

loading) in vitro (Remus et al., 2009). Mcm2-7 loading, both in vivo and in vitro, has 

been defined as the generation of Mcm2-7 complexes that remain bound to DNA 

even after treatment with high salt (Donovan et al., 1997, Bowers et al., 2004, 

Remus et al., 2009, Evrin et al., 2009). 

 

E.coli-purified or baculovirus-purified Cdc6 was incubated with purified ORC, 

Mcm2-7/Cdt1 (Figure 3.3) and origin DNA which was bound to magnetic beads by 

a biotin-streptavidin linkage (DNA-beads) (refer to Chapter 3, section 3.2.1). Mcm2-

7 loading was assessed by immunoblotting. We used an antibody against Mcm2 as 

a surrogate for the Mcm2-7 complex, and an antibody against Orc6 as a surrogate 

for the ORC complex.  

 

Figure 4.1D shows that Mcm2 bound to DNA-beads in ATP in a high salt wash 

resistant manner in reactions containing Cdc6 purified from E.coli and reactions 

containing Cdc6 purified from baculovirus expression (lanes 1, 2, 5 & 6). In ATPγS 

however, Mcm2 could only bind DNA-beads under low salt conditions and was 

removed upon high salt extraction (Figure 4.1D, lanes 3, 4, 7 & 8). Orc6 bound 
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DNA-beads only under low salt conditions in both ATP and ATPγS as expected 

(Figure 4.1D).  

 
Figure 4.1 Purification of Cdc6 from E.coli vs. baculovirus expression in insect 

cells 

(A) SDS PAGE followed by Coomassie staining of the gel filtration profile of 6x His-
Cdc6 purified from baculovirus expressed in insect cells. (B) SDS PAGE followed 
by Coomassie staining of the hydroxyapatite (HTP) elution profile of Cdc6 purified 
from E.coli. (C) Final purifications of Cdc6. SDS PAGE, Coomassie stained. (D) In 
vitro Mcm2-7 loading, comparing MCM loading by E.coli Cdc6 vs. baculovirus 
Cdc6. Reactions were assembled in ATP or ATPγS on ARS305 DNA beads. HSW: 
high salt wash. Equimolar amounts of Cdc6 were used along with purified ORC and 
Mcm2-7/Cdt1 (purifications shown in Figure 3.3). Bound proteins were analysed by 
immunoblotting. 
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Therefore, Cdc6 purified from E.coli was able to load the Mcm2-7 complex onto 

origin DNA-beads in a salt resistant manner in ATP and there appeared to be no 

difference in MCM loading efficiency between Cdc6 from E.coli and Cdc6 from 

baculovirus expression. These data confirmed that Cdc6 expressed and purified 

from E.coli was competent for pre-RC assembly in vitro. 

 

Upon establishing that Cdc6 purified from E.coli was functional for Mcm2-7 loading 

in vitro, I proceeded with fusion of 3x FLAG or 9x Myc to Cdc6 in the plasmid 

expressing GST-Cdc6. Briefly, polynucleotides encoding a 9x Myc or a 3x FLAG 

peptide were inserted at the 5' end of the Cdc6 gene. This gave rise to two 

constructs illustrated in Figure 4.2. This cloning strategy maintained the 

PreScission Protease cleavage site for removal of the GST tag following 

purification. It was important to remove this GST tag, since it dimerises and this 

property could affect the results of stoichiometry studies. 

 

 

 
Figure 4.2 Schematic of CDC6 fused to 3x FLAG or 9x Myc 

3x FLAG or 9x Myc tag cloned into single restriction site 5' of Cdc6 in GST 
expression plasmid. Resulting constructs are illustrated. PP: PreScission protease 
cleavage site. Cleavage at the PP site with the protease cleaves off the GST tag, 
resulting in 3 x FLAG or 9x Myc tagged-Cdc6. 
 

 

 

The plasmids containing 3x FLAG or 9x Myc-tagged Cdc6 were then expressed 

and purified from E.coli as described for untagged Cdc6. Cleavage with 

PreScission Protease removed the GST tag resulting in purified Cdc6, fused to 

either a 3x FLAG or 9x Myc peptide tag at its N-terminus. Purifications of 3x FLAG-

Cdc6 and 9x Myc-Cdc6 are shown alongside untagged Cdc6 in a Coomassie 

stained polyacrylamide gel in Figure 4.3A (top panel). Immunoblots against FLAG 
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and Myc were performed and demonstrated that the peptide tags were fused to the 

purified Cdc6 proteins (Figure 4.3A, bottom panel). 

 

I next examined the ability of the tagged versions of Cdc6 to load the Mcm2-7 

complex in vitro. This was to ensure that the 9x Myc or 3x FLAG tags did not 

interfere with the function of Cdc6. To do this I employed in vitro reconstitution of 

Mcm2-7 loading, with minor adaptations described below (also see: Frigola et al., 

2013).  

 

Firstly, the ARS305 replication origin was amplified using an oligonucleotide primer 

containing a photocleavable biotin as described in (Tsakraklides and Bell, 2010). 

Photocleavable biotin (PC-biotin) is a non-nucleosidic moiety that is used here to 

incorporate a UV-cleavable biotin molecule onto the 5' end of ARS305. The biotin is 

separated from the 5'-end nucleotide base of ARS305 by a photo-cleavable group 

and a long chain alkyl spacer arm. The PCR product was then conjugated to 

streptavidin coated paramagnetic beads (DNA-beads). The photocleavable group 

can be selectively cleaved from the paramagnetic beads by illumination with UVA 

light. The photocleavage has been optimised to minimise DNA damage by 

irradiating for 10 min at 330 nm (Frigola et al., 2013). The reason photocleavable 

ARS305 DNA-beads were used in this case was to allow selective examination of 

DNA-bound proteins, as opposed to proteins that may be bound to magnetic beads. 

Previously, ARS305 DNA was coupled to paramagnetic beads via a biotin-

streptavidin linkage that was not cleavable.  

 

To assess the functionality of tagged-Cdc6: purified ORC, Cdc6 and Mcm2-7/Cdt1 

(Figure 4.3B) were incubated with the photocleavable DNA-beads in the presence 

of ATP. Washes were performed to remove unbound proteins, as outlined in Figure 

1.5. The DNA and bound proteins were released from the beads by UVA irradiation, 

as described above (also see Materials and Methods, section 2.9.2). Finally, 

proteins bound to the DNA were analysed by SDS PAGE followed by silver staining. 

Previously, DNA-bead-bound proteins were analysed by immunoblotting. An 

advantage of silver staining is that we can observe all bound proteins without the 

need for specific antibodies. However, it must be noted that not all proteins are 
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stained equally by silver staining. In addition, DNA-bound proteins can be 

compared and quantified.  

 

Figure 4.3C shows that the Mcm2-7 complex was loaded in a high salt wash 

(HSW) resistant manner in reactions containing ORC, untagged Cdc6 and ATP 

(Figure 4.3C, lanes 1 & 2). ORC and Cdc6 were detected only under low salt 

conditions and were washed away with high salt (Figure 4.3C, lanes 1 & 2). The 

Mcm2-7 complex was also loaded in a high salt wash resistant manner in reactions 

containing ORC, ATP and 3x FLAG Cdc6 or 9 x Myc Cdc6 (Figure 4.3C, lanes 3, 4, 

5 & 6). In these reactions ORC and 3 x FLAG Cdc6 bound only under low salt 

conditions and were washed away with high salt (Figure 4.3C, lanes 3, 4, 5 & 6). 

However, 9x Myc Cdc6 was not removed by high salt extraction (Figure 4.3C, lanes 

6). This suggests that 9x Myc-Cdc6 might precipitate on the DNA, which will be 

discussed further in Chapter 5.  

 

These results showed that Cdc6 fused to a 3x FLAG or 9x Myc at its N-terminus 

was functional for loading the Mcm2-7 complex onto origin DNA-beads in vitro in a 

high salt resistant manner, just as efficiently as untagged Cdc6. 
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Figure 4.3 3x FLAG and 9x Myc-tagged Cdc6 

(A) Coomassie stained SDS PAGE of purified untagged, 3x FLAG tagged and 9x 
Myc tagged Cdc6. (B) Coomassie stained SDS PAGE of 100% Inputs for in vitro 
loading assays. (C) In vitro loading assay. Proteins were incubated with origin DNA 
coupled to magnetic streptavidin beads via a photocleavable biotin linkage. 
Unbound proteins were washed away, HSW: high salt wash. DNA was cleaved 
from the beads and bound proteins were examined by SDS PAGE & silver staining. 
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4.3 Fusion of 3x FLAG or 9x Myc peptides to the ORC subunits 

In order to examine the stoichiometry and interactions of ORC, I introduced 3x 

FLAG or 9x Myc peptide tags on each of the six ORC subunits. In this section I will 

describe the strategy I employed to achieve this.  

 

At the start of my PhD, methods had been developed in the lab to express and 

purify ORC from a yeast strain overexpressing all six ORC subunits as additional 

copies from the inducible GAL1-10 promoter (Remus et al., 2009). This required  

50 L of cells per purification due to low protein expression, which was both 

laborious and time consuming. 

 

In order to improve this process, each of the ORC genes was codon optimised to 

increase protein expression. The codon-optimised genes were synthesised 

(Geneart®) and cloned into bi-directional GAL1-10 overexpression vectors and the 

plasmids were subsequently integrated at targeted sites in the yeast genome (Lucy 

Drury and Anne Early). This gave rise to a yeast strain, similar to that above, where 

all six codon optimised ORC genes are expressed as additional copies from the 

inducible GAL1-10 promoter (see Frigola et al., 2013). In this strain Orc1 is fused to 

a Calmodulin Binding Peptide (CBP) tag at its 5' end. The CBP tag was chosen 

since purification of ORC using the CBP as part of the TAP-TCP tag (see Chapter 

3, section 3.2.1) was previously shown to give rise to a functional, stoichiometric 

complex of ORC in a simple two-step purification process (see Figure 3.2).   

 

Purification of codon optimised ORC was performed by calmodulin-affinity 

purification followed by gel filtration chromatography (described in Frigola et al., 

2013). Codon optimisation of the ORC subunits greatly improved protein 

expression levels and purification yielded approximately 1 mg of protein from 2 L of 

cells as opposed to 50 L (purified codon optimised ORC is shown in Figure 4.3B).  

 

Since the purification of codon optimised ORC was very efficient, I decided to 

utilise this system to tag each of the ORC subunits (Orc1-6) with a 3x FLAG or a 9x 

Myc tag and purify ORC complexes with a single tag. 
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4.3.1 Fusion of a 3x FLAG peptide to the N-termini of the ORC subunits 

A polynucleotide encoding the 3x FLAG peptide tag was introduced at the 5' end of 

each of the codon optimised genes in the Gal1-10 overexpression plasmids. The 

plasmids containing an ORC gene fused to the 3x FLAG DNA sequence were then 

separately integrated in a targeted manner into yeast background strains. This 

resulted in six yeast strains each overexpressing the codon-optimised ORC 

complex with a 3x FLAG tag fused to the N-terminus of one subunit.  

 

The tagged complexes were then expressed and purified from G1 phase arrested 

yeast extracts via the CBP tag at the N-terminus of Orc1. These purifications were 

performed exactly as for untagged ORC. I purified all the tagged complexes in an 

identical manner for consistency. The resulting tagged complexes are shown in 

Figure 4.4A. I obtained five complexes each with a single 3x FLAG tag, plus an 

additional untagged complex.  

 

Purification of ORCs containing 3xFLAG-Orc1, 3x FLAG-Orc3, 3xFLAG-Orc4, 

3xFLAG-Orc5 or 3xFLAG-Orc6 yielded five stoichiometric complexes containing 

Orc1-6 with a single tagged subunit (Figure 4.4A). The tagged subunit in each case 

shifts up in SDS PAGE by an amount equivalent to the molecular weight of 3x 

FLAG (Figure 4.4A). 

 

Purification of ORC containing 3x FLAG-Orc2 resulted in a sub-stoichiometric 

complex consisting mainly of Orc1. It has been shown that the N-terminal portion of 

Orc2 interacts with Orc6 in the ORC complex (Sun et al., 2012). Possibly the 

presence of a tag inhibited this interaction and caused the complex to disassemble. 

As an alternative, Orc2 was tagged with 3x FLAG at its C-terminus. This allowed 

formation of a stoichiometric ORC complex and shall be discussed later (section 

4.3.3). 

 

The next step was to test whether the tagged ORC complexes were capable of 

loading the Mcm2-7 complex onto DNA, in a manner similar to untagged ORC. This 

was to ensure that the 3x FLAG tags did not interfere with the function of ORC. To 

do this, I again examined Mcm2-7 loading in vitro as a read out of functionality. 
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Equimolar amounts of untagged or tagged ORC complexes (Figure 4.4A), Cdc6 

and Mcm2-7/Cdt1 were incubated with origin DNA-beads in the presence of ATP or 

ATPγS. Unbound proteins were removed (see Figure 1.5) and the DNA was 

cleaved from the beads by UVA irradiation as described previously. DNA-bound 

proteins were analysed by SDS PAGE and silver staining. In reactions containing 

an ORC complex with a 3x FLAG tag at the N-terminus of Orc1: Mcm2-7 was 

loaded in ATP in a high salt wash (HSW) resistant manner (Figure 4.4B, lanes 3 & 

4). This Mcm2-7 loading was undistinguishable from that in reactions containing 

untagged ORC (Figure 4.4B, compare lanes 2 & 4). In ATPγS, Mcm2-7 was 

detected in low salt only and was quantitatively removed by high salt extraction 

(Figure 4.4B, lanes 5, 6, 7 and 8). ORC bound DNA in ATP and ATPγS and was 

quantitatively removed by high salt (Figure 4.7B). An ORC complex containing 3x 

FLAG-Orc1 was therefore able to load the Mcm2-7 complex onto origin DNA in 

vitro in a manner similar to untagged ORC. 

 

Similarly, the other tagged ORC complexes were capable of loading Mcm2-7 in a 

salt resistant manner in ATP (Figure 4.4C) and of recruiting the Mcm2-7 complex in 

ATPγS in a salt labile manner (Figure 4.4D). In vitro Mcm2-7 loading by ORC 

complexes containing 3x FLAG-Orc3 or 3x FLAG-Orc4 appeared undistinguishable 

from that by untagged ORC (Figure 4.4C). Salt-resistant Mcm2-7 loading in ATP by 

ORC complexes containing 3x FLAG-Orc5 or 3x FLAG-Orc6 appeared to be 

slightly reduced compared to that by untagged ORC (Figure 4.4C). Recruitment of 

the Mcm2-7 complex in ATPγS (after a low salt wash) was similar for both 

untagged and tagged ORCs (Figure 4.4D). These data provided information about 

the functionality of ORC complexes containing 3x FLAG peptide tags that will be 

important for stoichiometry and interactions studies (presented in Chapters 5 & 6). 
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Figure 4.4  ORC complexes with single 3x FLAG tags can load the Mcm2-7 

complex onto origin DNA 

(A) Coomassie stained SDS PAGE of final purified ORC complexes with a 3x 
FLAG tag on each subunit. Tagged subunit is indicated above. (B) 3x FLAG Orc1 
in an ORC complex can load the Mcm2-7 complex. Reconstitution of pre-RC 
assembly using untagged and 3x FLAG tagged Orc1. Assay performed in ATP or in 
ATPγS on photocleavable DNA-beads. HSW: high salt wash. DNA cleaved off 
beads by UVA irradiation. Proteins bound to DNA are detected by silver staining. 
(C) ORC complexes with single 3x FLAG tags on Orc3, 4, 5 & 6, can load the 
Mcm2-7 complex. In vitro loading assay in ATP as described for B. (D) ORC 
complexes with single 3x FLAG tags on Orc3, 4, 5 & 6, can recruit the Mcm2-7 
complex. In vitro loading assay in ATPγS as described for B.  
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4.3.2 Fusion of a 9x Myc peptide to the N-termini of the ORC subunits 

In order to fuse each of the ORC subunits to a 9x Myc peptide, a strategy similar to 

that outlined for the 3x FLAG peptide-fusions was employed. Polynucleotides 

encoding 9x Myc peptides were inserted at the 5' ends of each of the codon 

optimised ORC genes in the Gal1-10 overexpression plasmids. I was unable to 

obtain clones for 9x MYC-ORC1. I did, however, obtain constructs for the other 

ORC genes. As described previously, the plasmids containing 9x MYC-ORC 

fusions were separately integrated into target sites in yeast background strains. 

This generated five yeast strains each overexpressing the ORC complex with a 9x 

Myc peptide tag fused to the N-terminus of one subunit.  

 

The 9x Myc-tagged ORC complexes were expressed and purified as for the 3x 

FLAG tagged complexes. Figure 4.5 shows a Coomassie-stained polyacrylamide 

gel of the purified 9x Myc-tagged ORC complexes. As in the case of 3x FLAG-Orc2, 

upon purification, the ORC complex containing 9x Myc-Orc2 disassembled (data 

not shown). Purification of ORC complexes containing 9x Myc-Orc3, 9x Myc-Orc4 

or 9x Myc-Orc5 resulted in three stoichiometric complexes (Figure 4.5). Purification 

of an ORC complex containing 9x Myc-Orc6 resulted in a stoichiometric complex of 

Orc1-5 that appeared to be lacking 9x Myc-tagged Orc6. Mass spectrometric 

analysis confirmed that the complex consisted of Orc1-5 with substoichiometric 

amounts of 9xMyc-Orc6 and several chaperones. Perhaps the 9x Myc tag 

disrupted Orc6 interaction with the other ORC subunits inducing its release from 

the complex. The presence of chaperones in the purified complex also indicates 

that the complex was perhaps not correctly folded. Further analysis by 

immunoblotting (Figure 4.5, bottom panel) showed that 9x Myc-Orc6 was present in 

substoichiometric amounts when compared to 9x Myc-tagged subunits from the 

other purified ORC complexes. Since I was unable to obtain 9x Myc-Orc1, 9x Myc-

Orc2 and 9x Myc-Orc6, these subunits were fused to 9x Myc at their C-termini. 

Results of this tagging approach are discussed in section 4.3.3.  
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Figure 4.5 ORC complexes with single 9x Myc tags 

Top panel, Coomassie stained polyacrylamide gel showing purified ORC 
complexes containing a 9x Myc tag on a single subunit. Tagged Orc3, Orc4, Orc5 
and Orc6 are shown alongside untagged ORC. Bottom panel, immunoblot against 
Myc showing the presence of the 9x Myc tag on the indicated subunits. 9x Myc 
Orc6 is present in substoichiometric amounts and can only be visualised upon 
increased exposure of the immunoblot.  
 

 

 

I next tested whether the 9x Myc-tagged complexes obtained were suitable for 

Mcm2-7 loading in vitro. ORC complexes containing 9x Myc-Orc3, 9x Myc-Orc4 or 

9x Myc-Orc5 were tested alongside untagged ORC. The tagged proteins were 

incubated with purified Cdc6 and Mcm2-7/Cdt1 on photocleavable origin DNA-

beads in the presence of ATP or ATPγS. Washes were performed as in Figure 1.5 
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to remove unbound proteins, DNA was cleaved off the paramagnetic beads (as 

previously), and DNA-bound proteins examined by SDS PAGE followed by silver 

staining. Figure 4.6A (lanes 1, 3, 5 & 7) shows that in the presence of ATP: ORC 

(tagged and untagged) and Mcm2-7 were detected. High salt extraction of DNA-

beads quantitatively removed ORC but not Mcm2-7 (lanes 2, 4, 6 & 8). Figure 4.6B 

shows that in the presence of ATPγS: ORC, Cdc6 (band overlaps with Orc5) and 

Mcm2-7/Cdt1 could be detected by silver staining, only in low salt-washed 

reactions (lanes 1, 3, 5 & 7). High salt extraction quantitatively removed all proteins 

from the DNA-beads (lanes 2, 4, 6 & 8). From these results I concluded that ORC 

complexes containing 9x Myc-Orc3, 9x Myc-Orc4 or 9x Myc-Orc5 could load the 

Mcm2-7 complex in vitro and were therefore competent for use in assays 

examining stoichiometry and interactions. 
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Figure 4.6 Testing 9x Myc-tagged Orc3, Orc4 and Orc5 for their ability to load 

Mcm2-7 in vitro. 

9x Myc Orc3, Orc4 or Orc5 in an ORC complex can load the Mcm2-7 complex in 
vitro. Pre-RC assembly reconstitution performed in ATP (top panel) and in ATPγS 
(bottom panel) on photocleavable DNA-beads. HSW: high salt wash. DNA cleaved 
off beads by UVA irradiation. Proteins bound to DNA are detected by silver 
staining. 

A	
  

B	
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4.3.3 Fusion of 3x FLAG or 9x Myc peptides to the C-termini of the ORC 

subunits 

Since I was unable to obtain ORC complexes containing 3x FLAG-Orc2, 9x Myc-

Orc1, 9x Myc-Orc2 or 9x Myc-Orc6, I set out to generate C-terminally tagged 

versions of these subunits. To achieve this, I used a PCR-based strategy to 

introduce polynucleotide sequences encoding the peptide tags to the 3' ends of 

those codon optimised ORC genes in a yeast strain. Since the DNA sequence of 

codon optimised ORC genes differs from that of endogenous ORC genes, I was 

able to target PCR cassettes containing 3x FLAG or 9x Myc sequences to the 3' 

ends of codon optimised Orc1, Orc2 and Orc6. In this manner, I obtained yeast 

strains expressing codon optimised ORC with either ORC2-3x FLAG or ORC2-9x 

MYC. I was however unable to obtain yeast strains expressing ORC1-9x MYC nor 

ORC6-9x MYC.  

 

ORC complexes containing Orc2-3x FLAG or Orc2-9x Myc were expressed and 

purified as described in 4.3.2. Figure 4.7A shows a Coomassie-stained 

polyacrylamide gel of the purified complexes. Both purifications resulted in 

stoichiometric complexes with a peptide tag fused to the C-terminus of Orc2 

(indicated in Figure 4.7A). Both tagged ORC complexes were then tested for their 

ability to support Mcm2-7 loading in vitro. This was to verify that the peptide tags on 

Orc2 did not interfere with ORC function. Purified ORC (tagged or untagged), Cdc6 

and Mcm2-7/Cdt1 were incubated with ARS305 DNA-beads in the presence of 

ATP or ATPγS. DNA-beads were washed as previously and DNA and bound 

proteins cleaved from the beads by UVA irradiation. Bound proteins were examined 

by SDS PAGE followed by silver staining.  

 

Figure 4.7B shows that in the presence of ATP: Mcm2-7 and ORC bound DNA-

beads, whether or not Orc2 was fused to a peptide tag (lanes 1, 3 & 5). Following 

high salt extraction, Mcm2-7 remained bound whilst ORC was quantitatively 

removed (lanes 2, 4 & 6). In the presence of ATPγS: ORC, Cdc6 (band overlaps 

with Orc5) and Mcm2-7/Cdt1 were detected after a low salt wash (Figure 4.7C, 

lanes 1, 3 & 5); however, these were all quantitatively removed by high salt 

extraction (Figure 4.7C, lanes 2, 4 & 6).  
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Figure 4.7 C-terminal fusions of 9x Myc or 3x FLAG to Orc2 in the ORC complex 

(A) Coomassie stained SDS PAGE of purified ORC complexes containing either a 
3x FLAG or a 9x Myc on the C-terminus of Orc2. (B) Pre-RC assembly 
reconstitution performed in ATP on photocleavable DNA-beads. HSW: high salt 
wash. DNA cleaved off beads by UVA irradiation. Proteins bound to DNA are 
detected by silver staining. Orc2-3x FLAG and Orc2-9x Myc are capable of loading 
the Mcm2-7 complex in vitro. (C) As in B, except reconstitution performed in the 
presence of ATPγS. 
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These data show that ORC complexes containing Orc2-3x FLAG or Orc2-9x Myc 

were capable of supporting Mcm2-7 loading in vitro and were therefore suitable for 

use in stoichiometry or interaction assays. 

 

4.4 Fusion of 3x FLAG or 9x Myc peptides to the Mcm2-7/Cdt1 
subunits 

In the presence of ATP, a double hexamer of Mcm2-7 is loaded around double 

stranded DNA. Since single Mcm2-7/Cdt1 heptamers have not been visualised (by 

EM) on DNA (Remus et al., 2009), it is thought that the Mcm2-7 double hexamer is 

loaded in a concerted manner. In order to resolve whether the Mcm2-7 hexamers 

are loaded sequentially or in a concerted manner, I wanted to examine the 

stoichiometry of Mcm2-7 prior to ATP hydrolysis (ATPγS). I also wanted to 

characterise MCM interactions during pre-RC formation. For these reasons, I fused 

one of the Mcm2-7 subunits to a 3x FLAG or 9x Myc peptide.   

 

In chapter 3, I described how endogenous Mcm2-7/Cdt1 was purified from G1 

arrested yeast extracts. This purification required 100 L of cells due to low 

expression levels and was therefore time consuming and laborious. In order to 

improve this procedure, a yeast strain was generated where all of the Mcm2-7 

subunits and Cdt1 are expressed from the inducible GAL1-10 promoter (Jordi 

Frigola) (Frigola et al., 2013). This increased expression levels of Mcm2-7/Cdt1 

whereby 1-1.5 mg of protein could be obtained from 2 L of cells. In this strain, 

Mcm3 is fused to a 3x FLAG peptide tag at its N-terminus. Purification was 

achieved by anti-FLAG immunoaffinity purification, followed by gel filtration 

chromatography. This results in a stoichiometric complex of Mcm2-7/Cdt1 that 

elutes from gel filtration in the same fraction as thyroglobulin (670 kDa). 

Figure 4.8A (lane 3) shows a Coomassie-stained polyacrylamide gel of this purified 

Mcm2-7/Cdt1 complex containing 3x FLAG-Mcm3. 

 

Since one of the Mcm2-7 subunits was to be fused to a 9x Myc or a 3x FLAG 

peptide and not both, anti-FLAG immunoaffinity purification could not be used as a 

means of purifying the complex. To circumvent this problem, I fused Mcm3 to a 
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CBP tag at its N-terminus. I chose the CBP tag as it had been previously used to 

purify ORC with successful results. Fusion of Mcm3 to CBP was achieved by 

introducing a polynucleotide encoding the CBP at the 5' end of Mcm3 in a GAL1-10 

overexpression plasmid. This plasmid was then integrated into a targeted site in a 

yeast background strain. Mcm2-7/Cdt1 containing CBP-Mcm3 was purified by 

calmodulin affinity and gel filtration chromatographies. Figure 4.8A (lane 4) shows a 

Coomassie-stained Mcm2-7/Cdt1 complex containing Mcm3 fused to CBP at its N-

terminus. The presence of the CBP tag on Mcm3 then allowed for fusion of the 

other MCM/Cdt1 subunits to 3x FLAG or 9x Myc peptides and purification of each 

Mcm2-7/Cdt1 complex in a consistent manner using the CBP tag.  

 

Before proceeding with generating 3x FLAG or 9x Myc-tagged Mcm2-7/Cdt1 

complexes, I asked whether Mcm2-7/Cdt1 with a CBP-Mcm3 could be loaded onto 

DNA-beads in vitro in a manner similar to Mcm2-7/Cdt1 containing 3x FLAG-Mcm3. 

Purified ORC, Cdc6, and the tagged versions of Mcm2-7/Cdt1 (Figure 4.8A) were 

incubated with origin DNA-beads in the presence of ATP. Washes were performed 

(Figure 1.5) and the DNA was cleaved from the beads by photocleavage as before. 

Bound proteins were analysed by SDS PAGE followed by silver staining. Figure 

4.8B shows that ORC and Cdc6 can load Mcm2-7/Cdt1 with CBP-Mcm3 or 3x 

FLAG-Mcm3 in a salt resistant manner with concomitant release of Cdc6 and Cdt1. 

A high salt wash (HSW) removed ORC but not Mcm2-7. This shows that Mcm2-

7/Cdt1 complexes with either a 3x FLAG-Mcm3 or a CBP-Mcm3 are functional for 

loading in vitro. In addition, the presence of a CBP tag on Mcm3 did not appear to 

alter the Mcm2-7 loading efficiency (Figure 4.8B, compare lanes 2 &4). 
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Figure 4.8 Comparison of Mcm2-7/Cdt1 containing 3x FLAG-Mcm3 or CBP-Mcm3 

(A) Coomassie stained SDS PAGE of purified proteins (100% inputs for B). (B) 
Mcm2-7/Cdt1 with 3x FLAG-Mcm3 or CBP-Mcm3 is functional for loading in vitro. 
Purified proteins shown in A, were incubated with origin DNA-beads in the 
presence of ATP. Unbound proteins were washed away (see Figure 1.5), DNA was 
cleaved from the beads by UVA irradiation and bound proteins were examined by 
SDS PAGE followed by silver staining. 
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In order to examine Mcm2-7/Cdt1 stoichiometry and interactions, I focussed on 

generating Mcm2-7/Cdt12 complexes containing tagged-Mcm3. The reasons why 

Mcm3 was chosen will be discussed in Chapter 6. Since a Mcm2-7/Cdt1 complex 

containing 3x FLAG-Mcm3 was already available, I generated another MCM 

complex with 9x Myc-Mcm3 

 

A polynucleotide sequence encoding the 9x Myc peptide was inserted at the 5' end 

of MCM3 in the GAL1-10 overexpression plasmid that expressed CBP-Mcm3. This 

gave rise to: CBP-9x MYC-MCM3, whereby I could still utilize the CBP tag for 

purification purposes. This plasmid was then integrated at a target site in a yeast 

strain. This generated a yeast strain overexpressing all Mcm2-7/Cdt1 subunits with 

a 9x Myc peptide tag fused to the N-terminus of Mcm3. I expressed and purified 

this Mcm2-7/Cdt1 complex by calmodulin affinity and gel filtration 

chromatographies. The final purified Mcm2-7/Cdt1 complex containing CBP-9myc-

Mcm3 is shown in Figure 4.9A (lane 4). 

 

I then assessed whether the Mcm2-7/Cdt1 complex with a 9x Myc tag on Mcm3  

(9x Myc-CBP-Mcm3) was functional for loading by ORC and Cdc6 in vitro. The 

purified proteins (Figure 4.9A) were incubated with origin DNA-beads in the 

presence of ATP and washes were performed as previously (Figure 1.5). DNA was 

removed from the beads by photocleavage and SDS PAGE followed by silver 

staining assessed bound proteins. Figure 4.9B shows that ORC and Cdc6 loaded 

Mcm2-7 in a high-salt wash resistant manner. This was true whether Mcm2-7 

contained 3x FLAG-Mcm3 or 9x Myc-Mcm3. ORC was removed by high salt 

extraction as expected (Figure 4.12B, lanes 2 & 4). These data show that ORC and 

Cdc6 could load Mcm2-7 complexes containing 3x FLAG-Mcm3 or 9x Myc-CBP-

Mcm3 in vitro and these complexes were therefore suitable for use in stoichiometry 

or interaction studies. 
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Figure 4.9 Purification and functional testing of 9x Myc-Mcm3 in the Mcm2-7/Cdt1 

complex 

(A) Coomassie stained SDS PAGE of purified proteins (100% inputs for B). Purified 
ORC, Cdc6, Mcm2-7/Cdt1 (3x FLAG-Mcm3) and Mcm2-7/Cdt1 (9x Myc-Mcm3) are 
shown. (B) Test of whether tagged complexes are functional for loading by ORC 
and Cdc6. Purified proteins shown in A were incubated with ARS305 DNA-Beads 
in the presence of ATP. Unbound proteins were washed away (see Figure 1.5), 
DNA was cleaved from the beads by UVA irradiation and bound proteins were 
examined by SDS PAGE followed by silver staining. 
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4.4.1 Fusion of 3x FLAG or 9x Myc peptides to the N-terminus of Cdt1 in the 

Mcm2-7/Cdt1 complex 

Since a double hexamer of Mcm2-7 is loaded onto origin DNA upon ATP hydrolysis, 

and this loading is thought to occur in a concerted manner, it seems possible that 

multiple Cdt1 molecules act in the recruitment (prior to ATP hydrolysis; ATPγS) of 

Mcm2-7 to ORC-Cdc6.  

 

In order to examine the stoichiometry of Cdt1 in the “ATPγS complex” I generated 

3x FLAG-tagged and 9x Myc-tagged versions of this protein. Polynucleotides 

encoding a 9x Myc peptide or a 3x FLAG peptide were inserted at the 5' end of 

CDT1 in a GAL1-10 overexpression plasmid. This plasmid was integrated into a 

yeast background strain expressing CBP-Mcm3 in a targeted manner. I expressed 

and purified Mcm2-7/Tagged-Cdt1 by calmodulin affinity and gel filtration 

chromatographies. The final purified Mcm2-7/Cdt1 complexes containing 3x FLAG-

Cdt1 or 9x Myc-Cdt1 are shown in Figure 4.10A. Since 9x Myc-Cdt1 could not be 

distinguished after SDS PAGE, as it overlaps with other bands, I performed an 

immunoblot against FLAG and Myc (Figure 4.10A, bottom panel). This confirmed 

the presence of the peptide tags on Cdt1.  

 

I next assessed whether 3x FLAG or 9x Myc-tagged Cdt1 was functional for Mcm2-

7 loading in vitro. ORC, Cdc6 and Mcm2-7/tagged-Cdt1 were incubated with origin 

DNA-beads in the presence of ATP. Washes were performed as described 

previously. DNA was isolated from the beads by photocleavage and bound proteins 

assessed by SDS PAGE and silver staining. Figure 4.10B shows that MCM 

complexes containing 3x FLAG-Cdt1 or 9x Myc-Cdt1 were recruited after a low salt 

wash and that a proportion of these complexes was resistant to high salt extraction 

(HSW). ORC bound under low salt conditions and was quantitatively removed by a 

high salt wash (Figure 4.10B). This showed that Cdt1 with a 3x FLAG or 9x Myc tag 

fused to its N-terminus is functional for Mcm2-7 loading in vitro and could therefore 

be used to examine Cdt1 stoichiometry during pre-RC formation. 
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Figure 4.10 Cdt1 with a 3x FLAG or 9x Myc tag fused to its N-terminus is 

functional for Mcm2-7 loading 

(A) Coomassie stained SDS PAGE of purified Mcm2-7/Cdt1 complexes containing 
3x FLAG-Cdt1, 9x Myc-Cdt1 or untagged Cdt1. Bottom panel shows an 
immunoblot against the epitope tags (antibodies indicated). (B) Test of whether 
tagged complexes are functional for loading by ORC and Cdc6. Tagged complexes 
were incubated with ORC, Cdc6 and ARS305 DNA-Beads in the presence of ATP. 
Unbound proteins were washed away (see Figure 1.5), DNA was cleaved from the 
beads by UVA irradiation and bound proteins were examined by SDS PAGE 
followed by silver staining. 
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4.5 Conclusions 

In order to examine protein stoichiometry and interactions during pre-RC formation, 

I set out to generate 3x FLAG or 9x Myc-tagged versions of each of the loading 

factors (ORC, Cdc6 and Mcm2-7/Cdt1). 

 

I generated purified 9x Myc Cdc6 and 3x FLAG Cdc6 both of which were found to 

be functional since they were capable of supporting in vitro loading of the Mcm2-7 

complex. I also generated purified ORC complexes containing 3x FLAG-Orc1, 3x 

FLAG-Orc3, 3x FLAG-Orc4, 3x FLAG-Orc5, 3x FLAG-Orc6, 9x Myc-Orc3, 9x Myc-

Orc4 or 9x Myc-Orc5. Orc2 could not be fused to a peptide tag at its N-terminus, I 

therefore prepared ORC complexes containing Orc2 fused to a 3x FLAG or a 9x 

Myc at its C-terminus. I also found that Orc6 could not support a 9x Myc peptide 

tag. The tagged ORC complexes were found to be functional for Mcm2-7 loading in 

vitro.  

 

To examine Mcm2-7 stoichiometry prior to double hexamer formation, I generated 

a Mcm2-7/Cdt1 complex containing 9x Myc-CBP-Mcm3. A complex containing 3x 

FLAG-Mcm3 was already available. I also generated complexes containing 9x Myc-

Cdt1 or 3x FLAG-Cdt1 to assess the stoichiometry of Cdt1. These tagged 

complexes were tested for their ability to be loaded by ORC and Cdc6 in vitro and 

were found to be functional. 

 

This peptide tagging approach created a basis with which I could address intriguing 

questions about protein stoichiometry and interactions during pre-RC formation. I 

hoped to use these tagged proteins in analyses to provide some clues into how the 

Mcm2-7/Cdt1 complex is loaded from a single hetero-heptamer into a double 

hexamer of Mcm2-7.  
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Chapter 5. Stoichiometry of pre-RC assembly 

factors.  

5.1 Introduction 

ORC and Cdc6 load Mcm2-7/Cdt1 from a single hetero-heptamer into a 

symmetrical head-to-head double hexamer of Mcm2-7. There are several 

possibilities of how Mcm2-7 double hexamer loading may occur. For example, one 

ORC-Cdc6 complex could load two Mcm2-7/Cdt1 hexamers sequentially through 

the action of ATP hydrolysis. Another possibility is that two ORC-Cdc6 assemblies 

load one Mcm2-7/Cdt1 each, in opposite orientations. There are several other 

possibilities that could include looping of the DNA and/or the involvement of 

multiple Cdc6 molecules. 

 

To try and distinguish between these possibilities and gain insight into how a 

double hexamer of Mcm2-7 is loaded, we asked: what is the stoichiometry of pre-

RC factors during Mcm2-7 loading? 

 

Before Mcm2-7 double hexamer formation, ORC, Cdc6, Cdt1 and Mcm2-7 are 

“recruited” to origin DNA. This complex is short lived, but can be distinguished in 

vitro when ATP hydrolysis is inhibited by the use of ATPγS (Figure 3.1 iii). In this 

“ATPγS complex”, all the pre-RC components (ORC, Cdc6, Mcm2-7 and Cdt1) are 

retained at the origin in an ATP-bound state (Figure 3.1 iii). In contrast, upon ATP 

hydrolysis, Cdc6 and Cdt1 are released (Figure 3.1 i). The “ATPγS complex” is 

therefore a useful intermediate to study the stoichiometry of each of the pre-RC 

factors.  

 

In light of this, we asked: how many molecules of ORC, Cdc6, Cdt1 and Mcm2-7 

are involved in the initial recruitment of Mcm2-7/Cdt1 to ORC-Cdc6. To address 

this question, I made use of the peptide tagged pre-RC proteins (Chapter 4) and 

studied their stoichiometry in the context of the ATPγS complex. I used an 

approach outlined in Figure 5.1. Briefly, I combined differently tagged proteins (for 

example 3x FLAG-Cdc6 and 9x Myc-Cdc6) in the presence of other pre-RC 
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proteins, ATPγS and origin DNA-beads (Figure 5.1, step 1). I then washed off 

unbound proteins (Figure 5.1, step 2) and performed an immunoaffinity purification 

using anti-FLAG magnetic beads (Figure 5.1, step 3). Bound proteins were then 

eluted with 3x FLAG peptide and I examined the eluate for the presence of both the 

3x FLAG and the 9x Myc-tagged protein (Figure 5.1, step 4). In this manner I was 

able to gain insight into the stoichiometry of pre-RC factors during recruitment of 

Mcm2-7 to ORC-Cdc6.  

 

In this chapter I will describe the results obtained from stoichiometry experiments 

using peptide tagged protein preparations (see Chapter 4 for details of peptide 

tagging with 3x FLAG and 9x Myc).  
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Figure 5.1 Strategy to examine protein stoichiometry during pre-RC assembly. 

In this example, we are asking whether there are one or more Cdc6 molecules prior 
to ATP hydrolysis (ATPγS) by combining equimolar amounts of 9x myc-tagged 
Cdc6 and 3x FLAG-tagged Cdc6. Steps involved in this approach are numbered. 
 
 
 



Chapter 5. Results 

 

 125 

5.2 Stoichiometry of ORC 

In Chapter 3, EMSA analysis revealed that a prominent band formed in the 

presence of ORC and DNA that represented ORC binding specifically to the ACS 

at the origin (Chapter 3, sections 3.3 & 3.4). In addition to this prominent band, we 

also observed a slower migrating smear that appeared to be a precursor for pre-RC 

formation. We hypothesised that the slower migrating smear could represent 

multiple ORC molecules binding the DNA in order to load the Mcm2-7 complex. In 

addition, we reasoned that it was probable that multiple ORC molecules were 

involved in pre-RC formation since the Mcm2-7 double hexamer was thought to be 

loaded in a concerted manner (Remus et al., 2009). To address this, I examined 

the stoichiometry of ORC during the initial recruitment of Mcm2-7/Cdt1 to origin 

DNA. 

 

In order to examine the stoichiometry of ORC, I made use of the peptide tagged 

protein preparations from Chapter 4. The approach I took is outlined in Figure 5.1.  

I chose an ORC complex containing 3x FLAG-Orc3 and another ORC complex 

containing 9x Myc-Orc3. Both of these tagged complexes appeared to load the 

Mcm2-7 complex in vitro as efficiently as untagged ORC (See Figures 4.4 & 4.6), 

indicating that the tags did not adversely affect functionality of the ORC complexes. 

I combined equimolar amounts of 3x FLAG-Orc3 and 9x Myc-Orc3 (Figure 5.3A), 

Cdc6 and Mcm2-7/Cdt1 (Figure 5.3B) in the presence of ATPγS and origin DNA-

beads. Unbound proteins were washed away using a low salt wash buffer (to 

preserve interactions) and the DNA with bound proteins was cleaved from the 

beads by UVA irradiation as previously (section 4.2). At this stage reactions were 

treated with an endonuclease, Benzonase®, to degrade the DNA. This was to 

eliminate the possibility that more than one pre-RC assembly reaction was taking 

place on the same piece of DNA, which would alter the results. Following this, an 

immunoaffinity purification using anti-FLAG M2 magnetic beads was performed. 3x 

FLAG-Orc2 and bound proteins were eluted by competitive elution with a 3x FLAG 

peptide. The eluate and unbound proteins were subjected to SDS PAGE and 

examined by immunoblotting. Figure 5.2 shows a flow chart of the steps involved in 

this experiment.  
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Figure 5.2 Strategy to examine stoichiometry of pre-RC factors 

 

 

 

Figure 5.3C shows the results of this experiment. “IP” refers to the fraction eluted 

from anti-FLAG beads whilst “S” refers to the fraction that was bound to the DNA-

beads but did not bind anti-FLAG beads (see Figure 5.2). Lanes 1 & 2 show that  

3x FLAG-Orc3 was eluted from anti-FLAG beads (IP). This shows that 3x FLAG-

Orc3 bound the origin DNA-beads and could be immunoaffinity purified and eluted. 

Lanes 3 & 4 show that no detectable 9x Myc-Orc3 was eluted from anti-FLAG 



Chapter 5. Results 

 

 127 

beads. Instead, 9x Myc-Orc3 was detected in the unbound fraction (lane 4, S). This 

shows that 9x Myc-Orc3 bound the origin DNA-beads but was not eluted from anti-

FLAG magnetic beads. 9x Myc-Orc3 was therefore capable of binding DNA-beads 

but did not elute non-specifically following anti-FLAG immunoaffinity purification. 

The above was also true when 3x FLAG-Orc3 and 9x Myc-Orc3 were combined in 

the presence of DNA-beads. Both 3x FLAG-Orc3 and 9x Myc-Orc3 bound DNA-

beads but only 3x FLAG-Orc3 was detected in the elution (IP) fraction (lanes 5 & 6).  

 

Lanes 7 & 8 show that in reactions containing 3x FLAG-Orc3 and 9x Myc-Orc3 with 

Cdc6 and DNA-beads: both 3x FLAG-Orc3 and 9x Myc-Orc3 bound DNA-beads 

but only 3x FLAG-Orc3 was detected in the elution (IP) fraction. An immunoblot 

against Cdc6 shows that very little of this protein co-immunoprecipitated with 3x 

FLAG-Orc3. This was unexpected as Cdc6 forms a complex with ORC on DNA 

(Coleman et al., 1996, Santocanale and Diffley, 1996). Cdc6 was instead detected 

in the “S” fraction (lane 8), indicating that Cdc6 had bound the DNA-beads in the 

presence of ORC. Perhaps in this case, most of the Cdc6 in the reaction was in 

complex with 9x Myc-Orc3 and therefore did not co-purify with 3x FLAG-Orc3.  

 

Lanes 9 & 10, show that in reactions containing 3x FLAG-Orc3, 9x Myc-Orc3, 

Mcm2-7/Cdt1 and DNA-beads: only 3x FLAG-Orc3 and not 9x Myc-Orc3 was 

detected in the elution fraction (IP) as above. Mcm2 was not detected either in the 

unbound (S) or the elution fractions (IP), this is because Mcm2-7 requires Cdc6 to 

associate with origins (Donovan et al., 1997).    

 

Lanes 11 & 12 show that in reactions containing 3x FLAG-Orc3, 9x Myc-Orc3, 

Cdc6 and Mcm2-7/Cdt1 and DNA-beads: both 3x FLAG-Orc3 and 9x Myc-Orc3 

bound DNA-beads but only 3x FLAG-Orc3 was detected in the elution (IP) fraction. 

This shows that 9x Myc-Orc3 could not be co-immunoprecipitated with 3x FLAG-

Orc3, even when all pre-RC components were present. Lanes 11 & 12 also show 

that a proportion of Cdc6 and Mcm2 could be co-immunoprecipitated with 3x 

FLAG-Orc3. This indicates that an ATPγS complex was formed, but that this 

complex did not contain 3x FLAG-Orc3 and 9x Myc-Orc3 together.  
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Figure 5.3 Stoichiometry of ORC 

(A) Coomassie stained SDS PAGE of ORC complexes containing 3x FLAG-Orc3 or 
9x Myc-Orc3 alongside untagged ORC. (B) Coomassie stained SDS PAGE of 
purified Cdc6 and Mcm2-7/Cdt1 used in the stoichiometry experiment. (C). 
Reactions were assembled in the presence of ATPγS and origin DNA-beads. 
Reactions were then treated as outlined in Figure 5.1. Both IP and S fractions were 
subjected to SDS PAGE followed by immunoblotting with the indicated antibodies. 
50% of IP and 50% of S fractions was loaded per immunoblot well. 
 

 

 

Taken together, these data suggest that contrary to our hypothesis, only one ORC 

molecule is involved in the initial recruitment of Mcm2-7/Cdt1 to ORC-Cdc6.  
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5.3 Stoichiometry of Cdc6 

Although I only detected one ORC molecule during the recruitment of Mcm2-7/Cdt1 

to ORC-Cdc6, it is still possible that multiple Cdc6 molecules function during this 

process. For example, a single ORC in combination with two Cdc6 molecules could 

recruit two Mcm2-7/Cdt1 complexes into a DNA loop. I therefore asked: what is the 

stoichiometry of Cdc6 during pre-RC formation?  

 

To determine whether one or more Cdc6 molecules is involved in the initial 

recruitment of Mcm2-7/Cdt1, I used the peptide-tagged proteins 3x FLAG-Cdc6 

and 9x Myc-Cdc6 (Chapter 4, section 4.2) and the strategy outlined in section 5.2 

(also see Figures 5.1 & 5.2). Both 3x FLAG and 9x Myc-tagged Cdc6 were 

functional for Mcm2-7 loading in vitro (Figure 4.3), indicating that the tags did not 

interfere with the function of Cdc6.  

 

To examine Cdc6 stoichiometry, 3x FLAG-Cdc6 and 9x Myc-Cdc6 were combined 

with ORC, Mcm2-7/Cdt1 (Figure 5.4A), DNA-beads and ATPγS. This experiment 

was carried out exactly as described for ORC in section 5.2.  

 

Figure 5.4B (lanes 1 & 2) shows that 3x FLAG-Cdc6 was not present either in the 

elution fraction (IP) or the unbound fraction (S) in the absence of ORC. This is 

expected, as Cdc6 is not recruited to origins in the absence of ORC (Coleman et al., 

1996, Santocanale and Diffley, 1996). Lane 3 shows that in reactions containing 9x 

Myc-Cdc6 and DNA, 9x Myc-Cdc6 was not immunoaffinity purified by anti-FLAG 

beads. However, lane 4 shows that 9x Myc-Cdc6 bound to the DNA-beads in the 

absence of ORC. This binding to the DNA likely represents 9x Myc-Cdc6 

precipitating on the DNA, as Cdc6 requires ORC for binding. In addition, in 

reactions containing 9x Myc-Cdc6, 3x FLAG-Cdc6 and DNA: both 9x Myc-Cdc6 

and 3x FLAG-Cdc6 were detected in eluates and unbound fractions (lanes 5 & 6). 

This indicates that 9x Myc-Cdc6 was causing precipitation of 3x FLAG-Cdc6 as 

well as itself precipitating on the DNA. In agreement with this, when 9x Myc-Cdc6 

was tested for functionality in Mcm2-7/Cdt1 loading in vitro, 9x Myc-Cdc6 appeared 

to stick to the DNA-beads, even following a high salt wash (Figure 4.3C). 
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Due to this apparent precipitation or aggregation property of 9x Myc-Cdc6, I was 

unable to interpret the results of this experiment and we decided to try a different 

approach.  

 

 
Figure 5.4 Stoichiometry of Cdc6 using 3x FLAG-Cdc6 and 9x Myc-Cdc6 

(A) Coomassie stained SDS PAGE of inputs (100%). (B) Reactions were 
assembled in the presence of ATPγS and origin DNA-beads. Reactions were then 
treated as outlined in Figure 5.1. Both IP and S fractions were subjected to SDS 
PAGE followed by immunoblotting with the indicated antibodies. 50% of IP and 
50% of S fractions was loaded per immunoblot well. 
 

 

 

Since 9x Myc-Cdc6 appeared to precipitate on DNA and affect the results of 

experiments, I decided to use untagged Cdc6 as a substitute. A monoclonal 

antibody against Cdc6 was available, making the use of Cdc6 feasible and we also 
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knew that untagged Cdc6 was functional (Chapter 4, section 4.2). In addition, the 

3x FLAG epitope tag, fused to the N-terminus of Cdc6, causes a change in 

molecular weight that allowed me to distinguish 3x FLAG-Cdc6 from untagged 

Cdc6 (Figure 5.5A). 

 

I therefore proceeded to examine Cdc6 stoichiometry in the initial recruitment of 

Mcm2-7/Cdt1 to ORC-Cdc6 using 3x FLAG-Cdc6 and untagged Cdc6. 

The exact same experiment as above was repeated with 3x FLAG-Cdc6 and 

untagged Cdc6. The steps involved are outlined in Figures 5.1 and 5.2.  

 

Figure 5.5 shows that 3x FLAG Cdc6 could not be immunoaffinity purified in the 

absence of ORC (lane 1). 3x FLAG Cdc6 was also unable to bind DNA-beads in 

the absence of ORC (lane 2). This was also true of untagged Cdc6 (lanes 3 & 4) 

and when 3x FLAG-Cdc6 and untagged Cdc6 were combined in the absence of 

ORC (lanes 5 & 6). This showed that untagged Cdc6 did not aggregate and 

precipitate on the DNA, as had been the case for 9x Myc-Cdc6. 

 

Both 3x FLAG-Cdc6 and untagged Cdc6 bound DNA-beads in the presence of 

ORC (Figure 5.5, lanes 7 & 8). However, only 3x FLAG could be immunoaffinity 

purified from this reaction (lane 7). This was also true when all pre-RC components 

were present (lanes 11 & 12). Untagged Cdc6 was only detected in the unbound 

(S) fraction, indicating that it bound DNA-beads but could not be co-purified with 3x 

FLAG-Cdc6. In this reaction, a fraction of Mcm2 co-purified with 3x FLAG-Cdc6 

(lane 11), indicating that a complex was formed in ATPγS, but this complex only 

contained either 3x FLAG-Cdc6 or untagged Cdc6 and not both. 

 

These results suggest that only one molecule of Cdc6 is involved in the recruitment 

of Mcm2-7/Cdt1 to ORC-Cdc6.  
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Figure 5.5 Stoichiometry of Cdc6, using 3x FLAG-Cdc6 and untagged Cdc6 

(A) Coomassie stained SDS PAGE of inputs (100%). (B) Reactions were 
assembled in the presence of ATPγS and origin DNA-beads. Reactions were then 
treated as outlined in Figure 5.1. Both IP and S fractions were subjected to SDS 
PAGE followed by immunoblotting with the indicated antibodies. 50% of IP and 
50% of S fractions was loaded per immunoblot well. 
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5.4 Stoichiometry of the Mcm2-7 Complex 

Based on electron microscopy studies, the Mcm2-7 double hexamer appeared to 

be loaded onto DNA in a cooperative fashion, (Remus et al., 2009). Mcm2-7/Cdt1 

double heptamers were never seen prior to loading and Mcm2-7 single hexamers 

were never observed on DNA after loading (Remus et al., 2009). This suggested 

that the Mcm2-7 hexamers are loaded in a concerted manner. However, our results 

indicated that one molecule of ORC and one molecule of Cdc6 act in the initial 

recruitment of Mcm2-7/Cdt1 to ORC-Cdc6. It was therefore perplexing how one 

ORC-Cdc6 complex could load two Mcm2-7 hexamers simultaneously. To address 

whether Mcm2-7 hexamers are loaded in a concerted or sequential manner, we 

asked: what is the stoichiometry of Mcm2-7? We know that upon ATP hydrolysis 

the Mcm2-7 complex is loaded as a double hexamer. But, how many Mcm2-7 

molecules are present when ATP hydrolysis is blocked? Insight into the 

stoichiometry of Mcm2-7 prior to loading (before ATP hydrolysis), would give some 

insight into whether the Mcm2-7 hexamers are loaded sequentially or 

simultaneously.  

 

To examine Mcm2-7 stoichiometry, I used Mcm2-7 complexes containing a 3x 

FLAG or a 9x Myc epitope tag at the N-terminus of Mcm3 (Chapter 4, section 4.4). 

Both of these complexes were found to be functional for pre-RC formation in vitro. 

These complexes were combined in equimolar amounts with ORC, Cdc6 (Figure 

5.6A) and origin DNA-beads. The reactions were performed in the presence of ATP 

or ATPγS. Here I could take advantage of the fact that in the presence of ATP, the 

Mcm2-7 complex is loaded as a double hexamer, and I should therefore detect 

both 3x FLAG-tagged and 9x Myc-tagged Mcm3. This acted as a useful positive 

control. ATPγS was used to block ATP hydrolysis and examine the stoichiometry of 

Mcm2-7 prior to loading. The experiment was then carried out as described 

previously and in Figures 5.1 and 5.2.  

 

Figure 5.6B shows immunoblots against the FLAG and Myc epitopes. The first 

panel (lanes 1-6) shows fractions eluted from anti-FLAG immunoaffinity purification 

(IP). The second panel (lanes 7-12) shows fractions that did not bind anti-FLAG 

beads, but were bound to DNA-beads (S). Lanes 1 & 4, show that 9x Myc-Mcm3 
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was not eluted from anti-FLAG immunoaffinity purification in the absence of 3x 

FLAG-Mcm3. This shows that there was no background binding of the 9x Myc tag 

to the anti-FLAG beads. 9x Myc-Mcm3 was still, however, able to bind DNA-beads 

in the presence of ORC and Cdc6 (lanes 7 & 10). Lane 2 shows that 9x Myc-Mcm3 

was co-immunoprecipitated with 3x FLAG-Mcm3 in the presence of ATP. This 

indicates that a double hexamer of Mcm2-7 was formed in the presence of ATP. 

Lane 3 shows that this co-immunoprecipitation was dependent on ORC. Lane 9 

shows that ORC was required for binding of both 3x FLAG and 9x Myc-tagged 

Mcm3 to DNA-beads.  

 

In contrast, lane 5 (Figure 5.6) shows that when ATP hydrolysis was blocked by 

incubation with ATPγS, only 3x FLAG Mcm3 could be immunoaffinity purified and 

9x Myc Mcm3 was only detected in the unbound fraction (lane 11). This was 

dependent on the presence of ORC (lanes 6 & 12).  

 

These results indicate that prior to ATP hydrolysis, one copy of Mcm2-7 is recruited 

to ORC-Cdc6. ATP hydrolysis then somehow causes double hexamer assembly. 

This suggests that the Mcm2-7 hexamers are loaded one at a time through the 

action of ATP hydrolysis. Indeed, a recent study by Evrin et al. showed that in the 

absence of ATPase activity, Mcm2-7 association with origin DNA is restricted to a 

single hexamer (Evrin et al., 2013).  
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Figure 5.6 Stoichiometry of Mcm2-7 

A single copy of Mcm3 is detected in the absence of ATP hydrolysis.  
(A) Coomassie stained SDS PAGE of inputs (100%). (B) Reactions were 
assembled in the presence of ATP or ATPγS and origin DNA-beads. Reactions 
were then treated as outlined in Figure 5.1. Both IP and S fractions were subjected 
to SDS PAGE followed by immunoblotting with the indicated antibodies. 50% of IP 
and 50% of S fractions was loaded per immunoblot well. 
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5.4.1 Stoichiometry of the Mcm2-7 complex in the absence of Cdc6 ATPase 

activity 

Whilst examining the stoichiometry of Mcm2-7, we found that prior to ATP 

hydrolysis, the Mcm2-7 complex is most likely recruited to ORC-Cdc6 as a single 

hexamer. Following ATP hydrolysis, Mcm2-7 is a double hexamer that encircles 

double stranded DNA (Remus et al., 2009, Evrin et al., 2009). This indicates that 

ATP hydrolysis induces double hexamer formation.  

 

Orc1-Orc5 and Cdc6 are members of the AAA+ family of proteins (Iyer et al., 2004) 

however, only Orc1 and Cdc6 have been shown to hydrolyse ATP (Randell et al., 

2006, Bowers et al., 2004, Klemm et al., 1997). The AAA+ proteins have several 

conserved elements that are important for ATP binding and hydrolysis, including 

the Walker A and Walker B domains (see Chapter 1, section 1.2.2.1). The Walker 

A motif of S.cerevisiae Cdc6 is thought to be important for ATP binding. A mutation 

in a conserved lysine of the Walker A motif of Cdc6 is lethal in vivo, inhibits Cdc6 

interaction with ORC and prevents Mcm2-7 loading onto chromatin (Perkins and 

Diffley, 1998, Weinreich et al., 1999). In contrast, the Walker B motif of Cdc6 is 

required for ATP hydrolysis (Randell et al., 2006). Mutation of a conserved glutamic 

acid to a glycine residue (E224G) in the Walker B motif of Cdc6 causes dominant 

lethality in vivo (Perkins and Diffley, 1998) and a block in Mcm2-7 loading in vitro 

(Randell et al., 2006). In light of this, we asked whether the ATPase activity of Cdc6 

regulates Mcm2-7 double hexamer formation.  

 

To address this question, I cloned Cdc6 harbouring a mutation in the Walker B 

motif (E224G) into a GST expression plasmid. E224G-Cdc6 was expressed and 

purified from E.coli as for Cdc6 (purification by Jordi Frigola; see Chapter 4, section 

4.2). I next tested whether Cdc6 harbouring a mutation in its Walker B motif 

(E224G) was defective in Mcm2-7 loading in vitro in our system. ORC, Cdc6 and 

Mcm2-7 were incubated with origin DNA-beads in the presence of ATP. Washes 

were performed as described previously (Figure 1.5). DNA was isolated from the 

beads by photocleavage and bound proteins assessed by SDS PAGE and silver 

staining. 
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Figure 5.7 shows the results of this experiment. Lanes 1-6 show Mcm2-7 loading in 

the presence of increasing amounts of Cdc6. Lanes 7-12 show Mcm2-7 loading in 

the presence of increasing amounts of E224G-Cdc6. Lanes 1 & 2 (Figure 5.6) 

show that Mcm2-7 was loaded onto DNA-beads in a high salt resistant manner, in 

the presence of Cdc6. This salt resistant loading of Mcm2-7 was not greatly 

affected by increasing amounts of Cdc6 (lanes 3-6). Lanes 7 & 8 show that Mcm2-

7 was also loaded onto DNA-beads in a high salt resistant manner, in the presence 

of E224G- Cdc6. As the amount of E224G Cdc6 was increased, the amount of salt 

resistant loaded Mcm2-7 decreased.  

 

This was somewhat surprising, as the E224G-Cdc6 mutant has previously been 

shown to be defective in Mcm2-7 loading (Randell et al., 2006). However, we did 

observe a decrease in Mcm2-7 loading as more E224G-Cdc6 was added to the 

reactions. These results imply that the E224G-Cdc6 protein may be unstable or 

may perhaps aggregate when high amounts are used, thus impairing its function in 

Mcm2-7 loading. This may help to explain the discrepancy between our result and 

that of others. These data also imply that the ATP hydrolysis of Cdc6 is not 

required for Mcm2-7 loading, or that it is not the only ATPase activity required.  

 



Chapter 5. Results 

 

 138 

 
Figure 5.7 Cdc6 ATP hydrolysis is not required for Mcm2-7 loading in vitro 

Top panel shows purified Cdc6 (WT Cdc6) and Walker B mutant Cdc6 (E224G 
Cdc6). Those are the inputs (100%) used for lanes 1, 2, 7 and 8. Bottom panel 
shows in vitro reconstitution of pre-RC formation in the presence of increasing 
amounts of Cdc6 (WT Cdc6) or Walker B mutant Cdc6 (E224G Cdc6). Purified 
ORC, Cdc6, or E224G-Cdc6, and Mcm2-7/Cdt1 were incubated with origin DNA-
beads in the presence of ATP. DNA-beads were washed as outlined in Figure 1.5. 
50% of the reactions were then subjected to SDS PAGE and silver staining. HSW: 
High salt wash. 
 

 

 

Once I established that Cdc6 harbouring a mutation in the Walker B motif was in 

fact functional for Mcm2-7 loading, we proceeded to ask whether the ATPase 

activity of Cdc6 regulates Mcm2-7 double hexamer formation. To address this 

question, I again utilised Mcm2-7/Cdt1 complexes containing 3x FLAG-Mcm3 or 9x 
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Myc-Mcm3. These complexes were combined with ORC and Cdc6 or E224G Cdc6 

in the presence of ATP or ATPγS and DNA-beads. Here I used low amounts of 

both Cdc6 and E224G Cdc6 that showed approximately equal loading of Mcm2-7 

in Figure 5.7 (lanes 2 & 8). The reactions were treated as previously (see Figures 

5.1 & 5.2) and the results were analysed by SDS PAGE followed by 

immunoblotting.  

 

Figure 5.8 shows the result of this experiment. In the top half of this figure 

(separated by a black line), the IP fractions are shown. These are the fractions that 

were eluted following anti-FLAG immunoaffinity purification. The bottom half of the 

figure shows the fractions that did not bind the anti-FLAG resin, but that did bind 

DNA-beads. The figure is further separated into reactions performed in the 

presence of ATP or ATPγS. 

 

Lanes 1 & 2 show that 9x Myc-Mcm3 did not elute from anti-FLAG immunoaffinity 

purification in the absence of 3x FLAG-Mcm3. 9x Myc did, however, bind the DNA-

beads (bottom panel, lanes 1 & 2). Lane 3 shows that 3x FLAG-Mcm3 and 9x Myc-

Mcm3 co-purified in the presence of ATP, ORC and Cdc6. A proportion of the 

“double Mcm3” complex was resistant to a high salt wash (lane 4). Lane 5 shows 

that 3x FLAG-Mcm3 and 9x Myc-Mcm3 also co-purified in the presence of ATP, 

ORC and E224G Cdc6. A proportion of this binding was also resistant to high salt 

extraction (lane 6). However, the binding of both 3x FLAG and 9x Myc-tagged 

Mcm3 in the presence of E224G Cdc6 appeared to be less than that of Cdc6 

(compare lanes 3 & 5).  

 

Lanes 7-10 (Figure 5.7) show that 3x FLAG-Mcm3, but not 9x Myc-Mcm3 was 

immunoaffinity purified in the presence of ATPγS in a salt labile manner. This is 

consistent with the results presented in section 5.4, indicating that one Mcm2-7 

hexamer is recruited prior to ATP hydrolysis. This recruitment of a single hexamer 

appears to occur whether Cdc6 or E224G-Cdc6 is present in the reaction. However, 

the recruitment of 3x FLAG-Mcm3 by E224G-Cdc6, appeared to be less than that 

recruited by Cdc6 (compare lanes 7 & 9). In the ATPγS reactions, I detected Cdc6 

but not E224G Cdc6 in the immunoaffinity purified fractions (lanes 7 & 9). Instead 
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E224G was detected in the unbound fraction. This indicates that whilst E224G was 

able to recruit Mcm2-7/Cdt1, it did not form a stable “ATPγS complex”.  

 

These data suggest that Cdc6 harbouring an E to G mutation in the Walker B motif 

is still capable of loading a double hexamer of Mcm2-7 onto DNA. This loading, 

however, appears to be less efficient than Mcm2-7 loading by Cdc6. This indicates 

that ATP hydrolysis by Cdc6 plays some role in Mcm2-7 loading, but that ATP 

hydrolysis by other reaction components is likely to contribute to double hexamer 

formation.   

 

 
Figure 5.8 of Cdc6 Mcm2-7 stoichiometry in the absence of the ATPase activity 

of Cdc6 

Reactions were assembled in the presence of ATP or ATPγS and origin DNA-
beads. Reactions were then treated as outlined in Figure 5.1. Both IP and S 
fractions were subjected to SDS PAGE followed by immunoblotting with the 
indicated antibodies. 50% of IP and 50% of S fractions was loaded per immunoblot 
well. 
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5.5 Stoichiometry of Cdt1 

A study in 2011 suggested that multiple Cdt1 molecules are involved in Mcm2-7 

loading onto origin DNA (Takara and Bell, 2011). Data from Takara et al. (2011) 

indicated that in the absence of ATP hydrolysis, at least two Cdt1 molecules are 

recruited to the origin.  

 

Since I detected that one Mcm2-7 complex is present at the recruitment stage 

(prior to ATP hydrolysis) and Cdt1 in S.cerevisiae is associated with Mcm2-7, it 

was difficult to reconcile how multiple Cdt1 molecules and a single Mcm2-7 

hexamer could be involved at the recruitment stage. I therefore decided to examine 

the stoichiometry of Cdt1 in the absence of ATP hydrolysis.  

 

To examine Cdt1 stoichiometry, I used Mcm2-7/Cdt1 complexes containing a 3x 

FLAG or a 9x Myc epitope tag at the N-terminus of Cdt1 (Chapter 4, section 4.4.1). 

Both of these complexes were found to be functional for pre-RC formation in vitro. 

These complexes were combined in equimolar amounts with ORC, Cdc6 (Figure 

5.8A) and origin DNA-beads. ATPγS was used to block ATP hydrolysis to facilitate 

study of the stoichiometry of Cdt1 during the recruitment stage of Mcm2-7. The 

experiment was then carried out as described previously (see Figures 5.1 & 5.2).  

 

Figure 5.9 (bottom panel) shows immunoblots against 3x FLAG-Cdt1 and 9x Myc-

Cdt1. Lanes 1-3 show fractions eluted from anti-FLAG immunoaffinity purification. 

Lanes 4-6 show fractions that did not bind the anti-FLAG beads, but that were 

bound to DNA-beads prior to purification. Lane 1 shows that 9x Myc-Cdt1 did not 

elute from anti-FLAG immunoaffinity purification in the absence of 3x FLAG-Cdt1, 

and therefore did not bind non-specifically to the anti-FLAG beads. 9x Myc-Cdt1 

was detected in the unbound (S) fraction, indicating that Mcm2-7/9x-Myc-Cdt1 was 

recruited to DNA-beads (lane 4). Lane 2 shows that 3x FLAG-Cdt1 was 

immunoaffinity purified by anti-FLAG beads. However, 9x Myc-Cdt1 did not co-

purify with 3x FLAG-Cdt1. Instead 9x Myc-Cdt1 was detected in the unbound 

fraction (lane 5), indicating that Mcm2-7/9x Myc-Cdt1 was capable of binding DNA-

beads, but did not form a complex with 3x FLAG-Cdt1. Even upon increased 

exposure of the immunoblot (bottom panel), no 9x Myc-Cdt1 was detected in lane 2. 
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Lanes 3 and 6 show that the recruitment of both 3x FLAG-Cdt1 and 9x Myc-Cdt1 to 

DNA-beads was ORC-dependent.   

 
 Figure 5.9 Stoichiometry of Cdt1 in the absence of ATP hydrolysis 

One molecule of Cdt1 appears to be present prior to ATP hydrolysis. (A) 
Coomassie stained SDS PAGE of inputs (100%). (B) Reactions were assembled in 
the presence of ATPγS and origin DNA-beads. Reactions were then treated as 
outlined in Figure 5.1. Both IP and S fractions were subjected to SDS PAGE 
followed by immunoblotting with the indicated antibodies. 50% of IP and 50% of S 
fractions was loaded per immunoblot well. 
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These data suggest that contrary to a previous study, only one molecule of Cdt1 is 

involved in the initial recruitment of Mcm2-7 to ORC-Cdc6.  

 

The above experiment was performed in the presence of the endonuclease, 

Benzonase® to digest the DNA (see Figure 5.2). This was to eliminate the 

possibility that more than one pre-RC assembly reaction occurred on a single piece 

of DNA. However, it is possible that the DNA helps to stabilise a Mcm2-7 helicase 

loading intermediate. Indeed, Takara et al. (2011) examined the stoichiometry of 

Cdt1 in the absence of any deoxyribonuclease (DNase) treatment. It is possible 

that a loosely associated second copy of Cdt1 could have been lost owing to 

Benzonase® treatment, I therefore decided to re-examine the stoichiometry of Cdt1 

in the absence of endonuclease treatment.  

 

To analyse Cdt1 stoichiometry in the absence of DNA digestion, the same 

experiment as above was carried out either in the presence or absence of 

Benzonase®. Figure 5.10 shows immunoblots against 3x FLAG-cdt1 and 9x Myc-

Cdt1. Lanes 1-6 show fractions eluted from anti-FLAG immunoaffinity purification in 

the presence or absence of Benzonase® treatment. Lanes 7-12 show fractions that 

did not bind the anti-FLAG beads in the presence or absence of Benzonase® 

treatment, but that were bound to DNA-beads prior to purification. 

 

Figure 5.10 shows that 9x Myc-Cdt1 did not elute non-specifically following anti-

FLAG immunoaffinity purification in the absence of 3x FLAG-Cdt1, and this was 

unaffected by the absence of Benzonase® treatment (lanes 1 & 4). 9x Myc-Cdt1 

was, however, able to bind DNA-beads, both in the presence and absence of 

Benzonase® treatment (lanes 7 & 10). 3x FLAG-Cdt1 was eluted following anti-

FLAG immunoaffinity purification, whether or not benzonase treatment was 

performed (lane 2 & 5). 9x Myc-Cdt1 did not co-purify with 3x FLAG-Cdt1 when 

these two complexes were combined in the presence of ORC and Cdc6 (lanes 2 & 

5). This was regardless of the absence of benzonase treatment. Indeed, 9x Myc 

was detected in the “S” fraction, indicating that it was bound to DNA-beads but did 

not co-purify with 3x FLAG-Cdt1. Both the elution of 3x FLAG-Cdt1 and the binding 

of 9x Myc-Cdt1 to DNA-beads were dependent on the presence of ORC (lanes 3, 6, 

9 & 12). 
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Taken together these data suggest that there is only one copy of Cdt1 involved in 

the initial recruitment of Mcm2-7 to ORC-Cdc6. This appears to be true regardless 

of the presence of DNA during the immunoaffinity purification step. 

 

 

 

Figure 5.10 Stoichiometry of Cdt1 in the presence or absence of Benzonase® 

endonuclease 

Reactions were assembled in the presence of ATPγS and origin DNA-beads. 
Reactions were then treated as outlined in Figure 5.1, except water instead of 
benzonase was added to a subset of reactions. Both IP and S fractions were 
subjected to SDS PAGE followed by immunoblotting with the indicated antibodies. 
50% of IP and 50% of S fractions was loaded per immunoblot well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

anti-­‐Myc	
  

anti-­‐FLAG	
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5.6 Conclusions 

Although it is clear that ORC, Cdc6 and Cdt1 function together to load a double 

hexamer of Mcm2-7 onto origin DNA, little is known about the stoichiometry of 

loading factors prior to double hexamer formation. Or at which stage the double 

hexamer is formed. In this chapter, I examined the stoichiometry of pre-RC 

assembly factors. Using peptide-tagged proteins from Chapter 4, I determined the 

stoichiometry of ORC, Cdc6, Mcm2-7 and Cdt1 during pre-RC formation. 

 

By using ORC complexes containing a 3x FLAG tag or a 9x Myc tag, I identified 

that a single copy of ORC is present at the origin prior to ATP hydrolysis. I then 

used 3x FLAG-Cdc6 and untagged Cdc6 and revealed that there is also likely to be 

only one molecule of Cdc6 present prior to ATP hydrolysis. 

 

I subsequently examined the stoichiometry of Mcm2-7 and found that one copy of 

Mcm3 is present before ATP hydrolysis, whilst two copies are present after ATP 

hydrolysis. This suggests that a single Mcm2-7 hexamer is recruited to ORC-Cdc6 

prior to ATP hydrolysis and that the Mcm2-7 hexamers are loaded in a sequential 

manner through the action of ATP hydrolysis.  

 

Since the presence of two Mcm2-7 hexamers was found to require ATP hydrolysis, 

I examined double hexamer formation in the absence of ATPase activity by Cdc6. 

Using a mutant version of Cdc6 that is defective in ATP hydrolysis (E224G-Cdc6), I 

revealed that in fact Mcm2-7 loading in vitro can still occur, but that this loading 

decreases as the amount of E224G-Cdc6 used is increased. This may be due to 

aggregation properties of this mutant, and perhaps the presence of higher amounts 

of the protein exacerbate precipitation or aggregation, making E224G-Cdc6 less 

available for Mcm2-7 loading. This may help to explain why my results differ from 

those published by Randell et al. (2006) and Evrin et al. (2013), who found that 

E224G-Cdc6 was defective in Mcm2-7 loading in vitro.  

 

I then went on to examine the stoichiometry of Mcm2-7 in the presence of E224G 

Cdc6. I found that two copies of Mcm3 could be detected in the presence of ATP, 

and these two copies were resistant to a high salt extraction. However, the amount 
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of Mcm3 that was bound appeared to be slightly less than that loaded by Cdc6 

(non-mutated).  

 

These data indicate that ATP hydrolysis by Cdc6 plays a role in double hexamer 

formation, however, it is not the defining factor. ATP hydrolysis by other pre-RC 

factors must therefore contribute to Mcm2-7 double hexamer formation. Orc1 of the 

ORC complex has been shown to hydrolyse ATP, and is thought to play a role in 

reiterative Mcm2-7 loading (Bowers et al., 2004). However, a recent study by Evrin 

et al. (2013) showed that Orc1 ATPase is not required for pre-RC formation in vitro. 

New data from our laboratory show that ATP hydrolysis by the MCM subunits play 

a role in pre-RC formation (Gideon Coster, unpublished data). It will be interesting 

to uncover the roles of individual ATPases and their contribution to Mcm2-7 double 

hexamer formation. 

 

I also examined the stoichiometry of Cdt1 prior to ATP hydrolysis. A study had 

previously indicated that multiple copies of Cdt1 were involved in recruiting Mcm2-7 

to ORC-Cdc6 (Takara and Bell, 2011). It was difficult to reconcile how multiple Cdt1 

molecules could be present at the recruitment stage (when ATP hydrolysis is 

blocked), when I only detected one Mcm2-7 complex. Particularly since in 

S.cerevisiae Cdt1 is associated with Mcm2-7. To examine the stoichiometry of 

Cdt1 I used Mcm2-7/Cdt1 complexes containing a 3x FLAG tag or a 9x Myc tag 

fused to the N-terminus of Cdt1. I was only able to detect one copy of Cdt1 when 

ATP hydrolysis was blocked and this was not due to loss of a second copy by 

DNase treatment. 

 

The above stoichiometry data have been confirmed by recent studies that show 

that in the presence of ATPγS an OCCM (ORC, Cdc6, Cdt1, Mcm2-7) complex is 

formed that contains a single copy of each of the licensing factors (Evrin et al., 

2013, Sun et al., 2013). 
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Chapter 6. Mcm3 is required for Mcm2-7/Cdt1 

recruitment to DNA-bound ORC-Cdc6 

6.1 Introduction 

Mcm2-7/Cdt1 is loaded onto origin DNA from a single heteroheptamer into a 

double hexamer of Mcm2-7 wrapped around double stranded DNA. Reconstitution 

of this reaction in vitro has previously been described (Refer to Chapter 1, section 

1.2.2.3). In the presence of ATP: ORC and Cdc6 load Mcm2-7/Cdt1 onto origin 

DNA coupled to magnetic beads (DNA-beads) in a salt resistant manner, with 

concomitant release of Cdc6 and Cdt1. When ATP hydrolysis is blocked by 

incubation with a slowly hydrolysed analogue, ATPγS: ORC, Cdc6, Cdt1 and 

Mcm2-7 are all recruited to the DNA-beads but are removed by a high salt wash. 

 

To investigate the individual roles of Cdt1 and the Mcm2-7 subunits, each of these 

proteins was purified separately (Jordi Frigola) (Frigola et al., 2013). The individual 

subunits were tested for recruitment to origin DNA-beads by ORC and Cdc6 

(ATPγS, low salt wash). Only Mcm3 (without the other Mcm2-7/Cdt1 subunits) was 

recruited in a Cdc6-dependent manner (Jordi Frigola) (Frigola et al., 2013). 

Furthermore, a Mcm2-7 complex lacking Mcm3 could not be recruited to ORC-

Cdc6 whereas a Mcm2-7 complex lacking Mcm4 could still be recruited (Frigola et 

al., 2013). These results indicated that Mcm3 plays a crucial rule in Mcm2-7 

recruitment to ORC-Cdc6. 

 

In this chapter I will describe how we further investigated the role of Mcm3 in the 

recruitment of Mcm2-7 to ORC-Cdc6 (in collaboration with Jordi Frigola). 

 

6.2 The C-terminus of Mcm3 is crucial for recruitment of 
Mcm2-7 to ORC-Cdc6 

Mcm3 comprises an amino-terminal (N-terminal) domain, a AAA+ domain and an 

extended C-terminal tail (Figure 6.1A, also see Figure 1.3). The N-terminal and 

AAA+ domains of Mcm3 are common amongst all the Mcm2-7 subunits, however, 
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the C-terminal extension is of unknown function. A Mcm2-7 complex containing a 

3x FLAG epitope at the C-terminus of Mcm3 (Mcm3-3x FLAG) was found to be non 

functional in pre-RC formation in vitro (Frigola et al., 2013). Mcm3-3xFLAG was 

defective both in Mcm2-7 recruitment to ORC-Cdc6 in the presence of ATPγS and 

in Mcm2-7 loading in ATP. In light of this, we hypothesised that the C-terminus of 

Mcm3 plays a role in pre-RC assembly. 

 

To further examine the C-terminus of Mcm3, we performed a multiple alignment of 

Mcm3 from a variety of eukaryotic species (Figure 6.1B). We identified a conserved 

domain at the extreme C-terminus of Mcm3 that is not found in the other Mcm2-7 

subunits (Figure 6.1B).  

 

 

 

Figure 6.1 The extreme C-terminus of Mcm3 is highly conserved 

(A) Domain architecture of Mcm3. NTD: Amino-terminal domain. (B) Alignment of 
Mcm3 from a variety of eukaryotic species. Residue numbers above correspond to 
S.cerevisiae Mcm3. Sc: Saccharomyces cerevisiae, Kl: Kluyveromyces lactis, Yl: 
Yarrowia lipolytica, Sp: Schizosaccharomyces pombe, Hs: Homo sapiens, Xl: 
Xenopus laevis, Dm: Drosophila melanogaster  
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To investigate the role of the S.cerevisiae C-terminal tail of Mcm3, I constructed N- 

and C-terminal deletions of Mcm3. The deletion constructs were based on 

secondary structure predictions (Phyre) and conservation. I generated three 

versions of Mcm3: full length (FL) Mcm3, N-terminal (N-term) Mcm3 lacking the C-

terminal 194 amino acid residues and C-terminal (C-term) Mcm3 composed of the 

conserved C-terminal 194 amino acid residues (Figure 6.2A).  

 

The full length and truncated versions of Mcm3 (Figure 6.2A) containing N-terminal 

fusions to maltose binding protein (MBP) were expressed and purified from E.coli 

(See Materials and Methods, sections 2.5.8 and 2.7.8). The proteins were purified 

by amylose affinity chromatography. Figure 6.2B shows a Coomassie-stained 

polyacrylamide gel of the purified Mcm3 preparations.  

 

I then asked whether the Mcm3 deletions had an effect on recruitment of Mcm3 to 

ORC-Cdc6. To address this, full length MBP-Mcm3, or MBP-tagged deletions were 

incubated with ORC, Cdc6 and origin DNA-beads in the presence of ATPγS. 

Unbound proteins were removed by a low salt wash and DNA with bound proteins 

was cleaved from the beads by UVA irradiation (see Chapter 4, section 4.2). 

Proteins recruited to the DNA were examined by SDS PAGE and immunoblotting. 

Here I took advantage of the MBP peptide tag and immunoblots were performed 

using an anti-MBP monoclonal antibody. Figure 6.2C shows the results of this 

experiment. Consistent with previous results, full length Mcm3 (FL Mcm3) was 

recruited to the origin DNA in an ORC- and Cdc6-dependent manner (Figure 6.2A, 

top panel). An N-terminal fragment of Mcm3 lacking the C-terminal 194 amino 

acids could not be detected, even when both ORC and Cdc6 were present (Figure 

6.2C, middle panel). This indicates that the extreme C-terminus of Mcm3 is 

necessary for Mcm3 recruitment to ORC-Cdc6. Finally, the small fragment (C-term 

Mcm3) containing the C-terminal 194 amino acids of Mcm3 could be recruited in an 

ORC and Cdc6-dependent manner. This indicates that the C-terminus of Mcm3 is 

both necessary and sufficient for Mcm3 recruitment to ORC-Cdc6.  

 

The N-terminal fragment of Mcm3 was assembled into a Mcm2-7/Cdt1 complex 

and its ability to recruit and load Mcm2-7 was tested (Jordi Frigola). This version of 
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Mcm3, lacking its C-terminal domain, was completely defective in recruiting Mcm2-

7 to ORC-Cdc6 (Frigola et al., 2013). 

 

 

 

 
Figure 6.2 The C-terminus of Mcm3 is required for Mcm2-7 recruitment 

(A) Schematic of full length Mcm3 and truncations. The N-terminal portion of Mcm3 
(N-term Mcm3) lacks the C-terminal 194 amino acid residues. The C-terminal 
portion of Mcm3 (C-term Mcm3) consists of only the C-terminal conserved 194 
residues. (B) Coomassie-stained SDS PAGE of inputs to test Mcm3 recruitment to 
ORC-Cdc6. All Mcm3 purifications are fused to a MBP tag at their N-termini. (C) 
Immunoblot to assess Mcm3 recruitment to ORC-Cdc6. ORC, Cdc6 and Mcm3 or 
Mcm3 truncations, were incubated with origin DNA-beads in the presence of 
ATPγS. Unbound proteins were removed by a low salt wash and DNA with bound 
proteins was cleaved from the beads by UVA irradiation. Proteins were assessed 
by SDS PAGE followed by immunoblotting with a monoclonal antibody against 
MBP.   
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Together these data pointed towards a role for the C-terminus of Mcm3 in Mcm2-7 

recruitment to DNA-bound ORC-Cdc6.   

 

To further examine the role of the C-terminus of Mcm3 in Mcm2-7/Cdt1 recruitment, 

a series of C-terminal amino acid substitution mutants were generated in full length 

untagged Mcm3 (Jordi Frigola, Figure 6.3A) based on the conservation of the C-

terminus of Mcm3. These mutant proteins were assembled into full Mcm2-7/Cdt1 

complexes and assessed for their ability to recruit and load Mcm2-7/Cdt1 onto 

origin DNA-beads. The Mcm3-11 and Mcm3-12 single mutants, as well as the 

Mcm3-13 double mutant (Figure 6.3A) were completely defective in recruiting 

Mcm2-7/Cdt1 to ORC-Cdc6 (Frigola et al., 2013). This showed that the C-terminus 

of Mcm3 is crucial for recruitment of all Mcm2-7 subunits to ORC-Cdc6.  

 

To determine the importance of the C-terminus of Mcm3 in vivo, I studied Mcm3 

complementation in a S.cerevisiae diploid background. The S.cerevisiae diploid 

strain, W303, was transformed with PCR cassettes containing a URA3 marker and 

either MCM3 wt, mcm3-11, mcm3-12, or mcm3-13 (Figure 6.3A). Heterozygotes 

were selected and subjected to sporulation and tetrad dissection.  

 

Figure 6.3B shows the growth of spores on rich media. Transformation of MCM3 wt 

in the diploid background gave rise to four spores that grew equally well (Figure 

6.3B, first panel). Transformation of mcm3-11 in the diploid background gave rise 

to four spores, of which two exhibited growth defects (Figure 6.3B, second panel & 

C). The spores exhibiting the growth defect expressed the URA3 marker indicating 

that mcm3-11 was present as a single copy. This shows that MCM3 with a single 

amino acid substitution in the very last amino acid could only support very slow 

growth when compared to MCM3 wt (Figure 6.3C). Panels 3 & 4 show that only two 

spores were viable when the diploid yeast strain was transformed with either 

mcm3-12 or mcm3-13. The viable spores tested negative for the presence of the 

URA3 marker. This shows that both mcm3-12 and mcm3-13 were unable to 

support growth when present as single copies. 
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Figure 6.3 Mutations in the C-terminus of Mcm3 affect viability 

(A) Aligment of the C-terminus of Mcm3, as in Figure 6.1B. The position of various 
mutants is shown by vertical lines, and the mutant amino acid residue is shown at 
the bottom of the line. Allele names are on the right (mcm3-11, mcm3-12, and 
mcm3-13). (B) The diploid strain W303 was transformed with PCR cassettes 
containing the URA3 marker and MCM3 wt, 3-11, 3-12 or 3-13 mutants. 
Heterozygotes were selected and subjected to sporulation and tetrad dissection. 
The numbers indicate different tetrads analysed, while the four spores of each 
tetrad are labeled from a to d. (C) Each spore from tetrad number 7 (mcm3-11) was 
streaked out on a YPD plate to examine growth. 
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Taken together these data indicate that a domain at the C-terminus of Mcm3 is 

required for recruiting Mcm2-7/Cdt1 to ORC-Cdc6 and that this function is 

necessary for viability.  

 

6.3 Interactions of Mcm3 with ORC-Cdc6 

The described data indicate that after ATP-dependent binding by ORC and Cdc6, 

Mcm2-7/Cdt1 is recruited by interaction between the extreme C-terminus of Mcm3 

and DNA-bound ORC-Cdc6. In light of this, we next asked: which subunits of ORC-

Cdc6 does Mcm3 interact with? Insight into Mcm3 interactions would provide a 

better understanding of how licensing factors are positioned relative to each other 

during recruitment of Mcm2-7/Cdt1 to ORC-Cdc6. Particularly since we know the 

subunit organisation of Mcm2-7 and ORC.  

 

In order to examine the interactions of Mcm3 with ORC-Cdc6, I utilised the tagged 

protein preparations generated in Chapter 4. I used a cross-linking strategy 

combined with the peptide-tagged proteins to characterise the interactions of Mcm3 

(outlined in Figure 6.4).  

 

I used the crosslinker BS3 that contains an amine-reactive N-

hydroxysulfosuccinimide (NHS) ester at each end of an 8-carbon spacer arm. The 

NHS esters react with primary amines (-NH2) to form stable amide bonds. Primary 

amines exist at the N-terminus of each polypeptide chain and in the side chain of 

lysine (K) residues. In this approach I introduced the BS3 crosslinker in limiting, 

sub-saturating amounts to generate pairs of covalently crosslinked proteins. The 

BS3 cross-linker has a short 11.4 Å spacer arm, meaning that I could cross-link 

proteins that were in close proximity to one another, and therefore were likely to 

interact. For all of these reasons, I chose BS3 as a suitable crosslinking reagent to 

characterize Mcm3 interactions.  

 

Pairwise combinations of tagged proteins (3x FLAG and 9x Myc-tagged) were 

combined in the presence of ATPγS and origin DNA-beads (Figure 6.4, step 1). I 

then introduced the BS3 crosslinker under limiting conditions to generate pairs of 

covalently crosslinked proteins (Figure 6.4, step 2). The mixture was denatured in 
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1% SDS and subjected to immunoaffinity purification with anti-FLAG beads (Figure 

6.4, steps 3 & 4). Bound proteins were eluted by competitive elution with a 3x 

FLAG peptide and the eluate was examined by immunoblotting to identify 

interactions (Figure 6.4, step 6). A flow chart of the steps involved in this 

experiment is shown in Figure 6.5.  

 

 
Figure 6.4 Strategy to examine pairwise interactions during pre-RC assembly 

In this example, we are asking whether there is an interaction between Cdc6 (9x 
myc-tagged) and Mcm3 (3x FLAG-tagged). The steps involved are numbered in the 
figure. 
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Figure 6.5 Flowchart of strategy to examine interactions of Mcm3 
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Using the described approach, I first asked whether Mcm3 interacts with Cdc6. For 

this, I used Mcm3 N-terminally fused to a 9x Myc peptide in the Mcm2-7/Cdt1 

complex (9x Myc-Mcm3) and Cdc6 fused to a 3x FLAG tag at its N-terminus (3x 

FLAG-Cdc6) (See Chapter 4). These tagged proteins were combined with ORC 

and DNA-beads in the presence of ATPγS and subjected to crosslinking as above. I 

then performed an immunoaffinity purification (IP) of 3x FLAG-Mcm3 under 

denaturing conditions and tested the IP for the presence of Myc and FLAG-tagged 

proteins.  

 

Figure 6.6A shows a Coomassie-stained polyacrylamide gel of the purified proteins 

used in this experiment. Figure 6.6B shows immunoblots against the FLAG and 

Myc peptide tags. Lanes 1, 2 and 4 (Figure 6.6B) show that 3x FLAG-Cdc6 was 

immunoaffinity purified in an ORC-dependent manner. Addition of the BS3 cross-

linker induced the formation of higher order cross-links (lanes 3 & 5). In this case, 

the anti-FLAG antibody gave rise to background bands that were Cdc6-dependent 

and BS3-independent (indicated in Figure 6.6B). These were background bands 

produced by interaction of the anti-FLAG antibody with FLAG-tagged protein 

preparations. 

 

Lanes 7-12 show that some un-crosslinked 9x Myc-Mcm3 bound non-specifically to 

anti-FLAG beads. However, upon the addition of BS3, crosslinked bands were 

observed that were dependent on the immunoaffinity purification of 3x FLAG-Cdc6 

(lanes 9 & 11). The crosslinked bands were not observed in the absence of BS3 

(lane 7), ORC (lanes 8 & 10) nor 3x FLAG-Cdc6 (lane 12).  

 

These data show that 9x Myc-Mcm3 specifically cross-linked to 3x FLAG-Cdc6. 

This indicates that Mcm3 interacts with Cdc6 during Mcm2-7/Cdt1 recruitment to 

DNA-bound ORC-Cdc6.  
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Figure 6.6 Mcm3 interacts with Cdc6 during Mcm2-7/Cdt1 recruitment to ORC-

Cdc6-DNA 

(A) Coomassie-stained SDS PAGE of 100% input proteins. (B) SDS PAGE and 
immunoblotting against FLAG and Myc after denaturing IP. Tagged proteins were 
incubated with ORC and origin DNA-beads in the presence of ATPγS and 
subjected to cross-linking with the indicated amounts of BS3 (described in Figure 
6.5). Cross-linking was quenched with TRIS-HCl pH 7.5.  The mixture was 
denatured in 1% SDS and the 3x FLAG-tagged Cdc6 was immunoprecipitated. 
Proteins covalently bound to Cdc6 were identified by SDS PAGE followed by 
immunoblotting 
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Upon identifying that Mcm3 most likely interacts with Cdc6, I went on to ask 

whether Mcm3 interacts with any of the ORC subunits, and if so which subunits. To 

address this question, I again used peptide-tagged protein preparations (described 

in Chapter 4). Since I obtained more 3x FLAG-tagged ORC subunits than 9x Myc-

tagged subunits, I decided to utilise 3x FLAG-tagged ORC complexes and 9x Myc-

tagged Mcm3. The only exception was the use of 9x Myc-Orc2 with 3x FLAG-

Mcm3. This was because upon examination of 3x FLAG-Orc2, I was unable to 

detect the FLAG tag by immunoblotting. This could be due to an error during the 

PCR-based tagging approach. The tagged and untagged protein preparations used 

to examine Mcm3 interactions with ORC are shown in Figure 6.7.  

 

 

 

Figure 6.7 Coomassie stained SDS PAGE of protein preparations for Mcm3 

interaction studies 

100% of inputs for Figure 6.8 are shown. 
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Pairwise combinations of the tagged proteins were combined with origin DNA-

beads in ATPγS and cross-linked as described above. 3x FLAG-tagged proteins 

were then immunoaffinity purified (IP) under denaturing conditions and the IP was 

tested for the presence of the 9x Myc-tagged proteins by immunoblotting. 

 

Figure 6.8 shows immunoblots against the FLAG and Myc epitope tags. Lane 1 & 

16 show that in the absence of a 3x FLAG-tagged protein, no bands were observed 

in the anti-FLAG blot. Under these conditions, un-crosslinked 9x Myc-Mcm3 and 

un-crosslinked 9x Myc-Orc2 (indicated by a red star) appeared to bind non-

specifically to anti-FLAG beads (lanes 1-16). Lanes 2-15 show that 3x FLAG-

tagged proteins were immunoaffinity purified by the anti-FLAG beads. Addition of 

BS3 resulted in the formation of crosslinked bands in the anti-FLAG immunoblot 

(lanes 3, 5, 7, 9, 11, 13 & 15). This indicates that higher order crosslinks were 

formed between immunoaffinity purified 3x FLAG-tagged proteins and binding 

partners. Again background bands were observed in the anti-FLAG immunoblot, 

but addition of the BS3 crosslinker gave rise to novel bands, compared to 

background (Figure 6.8, top panel) 

 

The IP was tested for the presence of 9x Myc-tagged proteins. The anti-Myc 

immunoblot shows that higher order cross-links were only formed when 9x Myc-

Orc2 and 3x FLAG-Mcm3 were combined (lane 5) or when 9x Myc-Mcm3 was 

combined with 3x FLAG-Cdc6 (lane 15). This indicates that Mcm3 specifically 

cross-linked to Orc2 and Cdc6. 

 

Together these data suggest that Mcm3 interacts with Orc2 and Cdc6 during 

Mcm2-7/Cdt1 recruitment to ORC-Cdc6.  
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Figure 6.8 Mcm3 cross-links to Orc2 and Cdc6 
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SDS PAGE and immunoblotting against FLAG and Myc after denaturing IP. 
Tagged and untagged proteins (as shown) were incubated with origin DNA-beads 
in the presence of ATPγS and subjected to cross-linking with 25µM of BS3 
(described in Figure 6.5). Cross-linking was quenched with TRIS-HCl pH 7.5.  The 
mixture was denatured in 1% SDS and the 3x FLAG-tagged proteins were 
immunoprecipitated. Proteins covalently bound to 3x FLAG-tagged proteins were 
identified by SDS PAGE followed by immunoblotting with indicated antibodies. 
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6.4 Conclusions 

In this Chapter I showed that Mcm3, in the absence of the other Mcm2-7/Cdt1 

subunits, can be recruited (ATPγS, low salt wash) in an ORC- and Cdc6- 

dependent manner (in collaboration with Jordi Frigola). I also showed that a 

conserved C-terminal domain of Mcm3 (194 amino acid residues) is required for 

Mcm3 recruitment to ORC-Cdc6. Mutations in this conserved C-terminal tail 

resulted in growth defects in vivo and were defective for Mcm2-7 recruitment and 

loading in vitro (Jordi Frigola). I characterised the interaction partners of Mcm3 

during Mcm2-7/Cdt1 recruitment to ORC-Cdc6 and found that Mcm3 formed cross-

links with Cdc6 and Orc2. 

 

Taken together, these data suggest that during pre-RC formation, Mcm2-7/Cdt1 is 

recruited to origins via an interaction between the C-terminus of Mcm3 and ORC-

Cdc6. This interaction appears to be mediated by Orc2 and Cdc6. Indeed in a 

recent paper, the authors detected an interaction between Mcm3 and Cdc6 during 

Mcm2-7/Cdt1 recruitment (Sun et al., 2013).  

 

Mcm2-7 is loaded onto DNA as a head-to-head double hexamer. Formation of the 

Mcm2-7 double hexamer is dependent on ATP hydrolysis. Further analysis has 

shown that both Mcm2-7 hexamers require the C-terminus of Mcm3 (Frigola et al., 

2013). In addition, Mcm3 binding was found to trigger ATP hydrolysis by ORC and 

Cdc6 which correlates with release of recruited Mcm2-7 (Frigola et al., 2013). This 

indicates that the initial recruitment of Mcm2-7 to ORC-Cdc6 is an ATP-

independent process that occurs by Mcm3 interaction with ORC-Cdc6 and that 

ATP hydrolysis breaks this contact.  

 

Based on data presented in Chapter 5, and published data (Fernandez-Cid et al., 

2013), it appears that the recruitment and loading of the Mcm2-7 hexamers occurs 

sequentially. This sequential recruitment and loading of Mcm2-7 is probably 

mediated by the C-terminal interaction of Mcm3 with ORC-Cdc6. Formation of the 

Mcm2-7 double hexamer also requires Cdt1 (Fernandez-Cid et al., 2013). It is still 

unclear how these mechanisms function together to load two Mcm2-7 hexamers 
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that lie head-to-head on one side of ORC-Cdc6. It will be interesting to further 

dissect these mechanisms.  
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Chapter 7. Discussion 

ORC, Cdc6 and Cdt1 function together to load a double hexamer of Mcm2-7 

around double stranded DNA in an ATP dependent manner (Evrin et al., 2009, 

Remus et al., 2009). How exactly do ORC, Cdc6 and Cdt1 coordinate loading of a 

double hexamer of Mcm2-7? Is one ORC molecule required for this loading? Or is 

Mcm2-7 loading achieved by binding of two ORC molecules on either side of the 

origin? A similar question may be asked of Cdc6. How are the ATPase activities of 

the loading proteins coordinated for double hexamer formation? Which proteins are 

required to interact during helicase loading?  

 

This thesis aimed to address some of these questions by characterising the 

biochemical architecture of pre-RC formation using the yeast S.cerevisiae as a 

model system. In particular, I focused on identifying the stoichiometry of loading 

factors and some of their interactions. The experiments discussed in previous 

chapters have produced the following conclusions: 

 

• 247 bp of DNA containing the ACS and B elements of ARS305 could not 

support Mcm2-7 loading in vitro when compared to 1 kb of DNA containing 

the ACS, B elements and surrounding sequences of ARS305. This suggests 

that there is a threshold length required for pre-RC formation, as previously 

demonstrated in Xenopus egg extracts (Edwards et al., 2002). 

 

• One molecule of ORC and one molecule of Cdc6 recruit Mcm2-7/Cdt1 prior 

to ATP hydrolysis. 

 

• One molecule of Mcm2-7 is recruited to ORC-Cdc6 when ATP hydrolysis is 

blocked. In the presence of ATP, two molecules of Mcm2-7 were detected. 

This suggests that the Mcm2-7 hexamers are loaded in a step-wise, 

sequential manner.  

 

• One molecule of Cdt1 appears to be involved in the recruitment of Mcm2-7 

to DNA-bound ORC-Cdc6. 



Chapter 7. Discussion 

 

 165 

• ATP hydrolysis by Cdc6 appears to be dispensable for Mcm2-7 

loading/double hexamer formation. Blocking Cdc6 ATPase activity caused 

only a minor reduction in Mcm2-7 loading.  

 

 

• Mcm3 is required for Mcm2-7/Cdt1 recruitment to ORC-Cdc6 (Jordi Frigola) 

and a conserved C-terminal domain of Mcm3 is necessary for this 

recruitment. 

 

• Mcm3 interacts with Orc2 and Cdc6 during Mcm2-7/Cdt1 recruitment to 

DNA-bound ORC-Cdc6.  

 

These data support a model for origin licensing whereby one molecule of ORC and 

Cdc6 recruit a Mcm2-7/Cdt1 heteroheptamer via interaction between Mcm3 and 

Orc2/Cdc6. The C-terminus of Mcm3 appears to be required for this recruitment. 

However, it is still unclear how a single heteroheptamer of Mcm2-7/Cdt1 transitions 

into a double hexamer of Mcm2-7. In this chapter I suggest a model for Mcm2-7 

recruitment and double hexamer formation based on results from this thesis and 

published data. 

 

7.1  Recruitment of Mcm2-7/Cdt1 to ORC-Cdc6 prior to ATP 
hydrolysis 

Before helicase loading, ORC, Cdc6, Cdt1 and Mcm2-7 are recruited to origin DNA. 

This is a short-lived complex that can only be detected in vitro when ATP hydrolysis 

is blocked, for example by the use of the slowly hydrolysable analogue, ATPγS. 

Since single hexamers of Mcm2-7 were never observed on DNA by EM (Remus et 

al., 2009) and multiple Cdt1 molecules were detected in ATPγS (Takara and Bell, 

2011), it was thought that both Mcm2-7 hexamers are loaded in a concerted 

manner to form the Mcm2-7 double hexamer. In addition, Cdt1 was found to 

interact with Orc6 and this ORC subunit appeared to have two Cdt1 interaction 

sites (Takara and Bell, 2011, Chen et al., 2007). In yeast, Cdt1 is associated with 
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the Mcm2-7 complex. This therefore provided a possible mechanism for loading of 

two Mcm2-7 hexamers at the same time via Cdt1 interaction with Orc6. 

 

7.1.1 A one-to-one stoichiometry during recruitment of Mcm2-7/Cdt1 to 

DNA-bound ORC-Cdc6 

There are several possibilities for how Mcm2-7 double hexamer loading may occur. 

For example, one ORC-Cdc6 complex could load two Mcm2-7/Cdt1 hexamers 

sequentially through the action of ATP hydrolysis. Another possibility is that two 

ORC-Cdc6 assemblies load one Mcm2-7/Cdt1 each, in opposite orientations. To 

further dissect how a double hexamer of Mcm2-7 is formed, I studied the 

stoichiometry of licensing factors during the recruitment stage of origin licensing. 

Using peptide-tagged proteins (Chapter 4), I found that one molecule of each of the 

licensing factors (ORC, Cdc6, Mcm2-7 and Cdt1) is involved in the recruitment of 

Mcm2-7/Cdt1 to DNA-bound ORC-Cdc6 (Chapter 5). Other studies have recently 

validated these results. Evrin et al. showed that in the absence of ATP hydrolysis, 

one hexamer of Mcm2-7 is recruited to the origin (Evrin et al., 2013).  

 

Furthermore, Sun et al. performed cryo-EM on the recruitment stage (ATPγS 

intermediate) and observed a one-to-one stoichiometry of each of the licensing 

factors in a complex they termed the OCCM (ORC, Cdc6, Cdt1, Mcm2-7) (Sun et 

al., 2013). The cryo-EM study of the OCCM revealed that the C-terminal AAA+ 

motor domains of the Mcm2-7 hexamer are extensively engaged with the ORC-

Cdc6 N-terminal AAA+ domains. Interestingly, the authors also observed that ORC-

Cdc6 in the OCCM undergoes a structural rearrangement into a right-handed spiral 

encircling the dsDNA (Sun et al., 2013). This is reminiscent of the replication factor 

C clamp loader (Sun et al., 2013, Kelch et al., 2011) and suggests a conserved 

mechanism of action. It is still unclear whether DNA passes through the OCCM 

structure, although a linear continuous density was observed passing from outside 

ORC-Cdc6 into the Mcm2-7 central channel (Sun et al., 2013). It is possible that 

the Mcm2-7 complex already encircles the DNA in this OCCM ATPγS intermediate, 

but the hexamer is probably partially loaded since the OCCM is removed from DNA 

by high salt extraction.   
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Taken together, these data suggest that the Mcm2-7 hexamers are loaded 

sequentially and not simultaneously to form the loaded Mcm2-7 double hexamer.  

 

7.1.2 The role of Mcm3 in the recruitment of Mcm2-7/Cdt1 to ORC-Cdc6-DNA 

Mcm3 was found to be required for the initial recruitment of Mcm2-7/Cdt1 to ORC-

Cdc6-DNA (Frigola et al., 2013). In Chapter 6 I showed that a 194-residue C-

terminal conserved region of Mcm3 was necessary and sufficient for this 

recruitment. This is in agreement with the cryo-EM structure of the OCCM, which 

suggests that the C-termini of the Mcm2-7 subunits interact with ORC-Cdc6 (Sun et 

al., 2013). In addition, the recruitment of both Mcm2-7 hexamers requires the C-

terminal domain of Mcm3 (Frigola et al., 2013). Using peptide-tagged proteins 

(Chapter 4) and crosslinking under limiting conditions, I found that Mcm3 interacts 

with Orc2 and Cdc6 during Mcm2-7 recruitment to ORC-Cdc6-DNA (Chapter 6). 

Sun et al. also observed an interaction between Mcm3 and Cdc6 (Sun et al., 2013), 

but did not examine interactions between Mcm3 and the ORC complex (Sun et al., 

2013). In the cryo-EM structure of the OCCM complex, Mcm3 appears to be distal 

to both Cdc6 and Orc2. It is possible that this structure is trapped at a later stage 

where the Mcm2-7 complex has undergone conformational changes. Indeed, the 

authors confirmed the interaction between Mcm3 and Cdc6 by co-immunoaffinity 

purification and not from the cryo-EM structure. Since the C-terminus of Mcm3 is 

required for Mcm2-7/Cdt1 recruitment to ORC-Cdc6, it is likely that this C-terminal 

domain interacts with Orc2 and Cdc6. This remains to be tested.  

 

These data suggest that Mcm2-7/Cdt1 is recruited to DNA-bound ORC Cdc6 via 

the C-terminus of Mcm3, which likely interacts with Orc2 and Cdc6.  

 

7.1.3 The role of Cdt1 in recruitment of Mcm2-7 to DNA-bound ORC-Cdc6 

Recent data has shown that in contrast to previous reports in crude extracts, Cdt1 

is not required for the initial recruitment of Mcm3, 5 and 7 to origins but does play 

some role in recruiting Mcm2, 4 and 6 (Frigola et al., 2013). It is likely that Cdt1 

plays a role in stabilising the Mcm2-7 ring during its initial recruitment to ORC-Cdc6. 
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Cdt1 interacts with the C-terminal tail of Mcm6 (Yanagi et al., 2002). The C-

terminus of Mcm6 was recently found to inhibit Mcm2-7 binding to ORC-Cdc6 in 

the absence of Cdt1 (Fernandez-Cid et al., 2013). Interaction between Cdt1 and 

Mcm6 appears to alleviate this autoinhibitory property, allowing the MCM complex 

to interact with ORC-Cdc6 (Fernandez-Cid et al., 2013). It is likely that binding of 

Cdt1 to Mcm6 facilitates recruitment of Mcm2, 4 and 6 to ORC-Cdc6-DNA. 

Previous reports had suggested that an interaction between Cdt1 and Orc6 was 

necessary for Mcm2-7 recruitment and loading (Chen and Bell, 2011, Chen et al., 

2007), however other data has subsequently shown that ORC lacking the Orc6 

subunit is still able to recruit the Mcm2-7/Cdt1 complex as efficiently as the full 

ORC complex (Frigola et al., 2013). In agreement with this, Fernandez-Cid et al. 

showed that Orc1-5 could recruit Cdc6 and Mcm2-7/Cdt1 to DNA in the presence 

of ATPγS (Fernandez-Cid et al., 2013). These results suggest that an interaction 

between Cdt1 and Orc6 is not required for recruitment of Mcm2-7 to ORC-Cdc6-

DNA.  

 

7.1.4 A model for recruitment of Mcm2-7/Cdt1 to DNA-bound ORC-Cdc6 

Taken together, these data support a new model for the initial recruitment of Mcm2-

7/Cdt1 to ORC-Cdc6-DNA. I thus propose the following model (Figure 7.1). ORC 

binds ATP and is recruited to origin DNA by a combination of DNA sequence and 

chromatin structure (See Chapter 1, section 1.2.1.1). Upon entry into G1 phase, 

ORC recruits one molecule of Cdc6, which is also ATP-bound. Together, DNA-

bound ORC and Cdc6 recruit a single heteroheptamer of Mcm2-7/Cdt1 via Mcm3 

interaction with Orc2 and Cdc6. It seems probable that the Mcm2-7 hexamers do 

not require the interaction of multiple Cdt1 molecules with Orc6. Instead, it is likely 

that the role of Cdt1 is to stabilise the Mcm2-7 hexamer during its recruitment to 

ORC-Cdc6-DNA and to relieve an autoinhibitory property of the C-terminus of 

Mcm6. Figure 7.1 shows a schematic of this new model for Mcm2-7/Cdt1 

recruitment to ORC-Cdc6.  

 

In order to fully understand pre-RC assembly, the initial recruitment of Mcm2-

7/Cdt1 to ORC-Cdc6-DNA will need to be further characterised. For example, 
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interactions between Cdc6 and the ORC subunits have yet to be examined. The 3x 

FLAG and 9x Myc-tagged protein preparations (Chapter 4) will likely be of use in 

investigating these interactions. In addition, although we now know that Mcm3 

interacts with Orc2 and Cdc6, there are likely to be other interactions between the 

MCM subunits and ORC-Cdc6. Insight into protein-protein interactions would 

provide a better understanding of how the individual licensing factors are positioned 

relative to each other during recruitment of Mcm2-7/Cdt1 to ORC-Cdc6-DNA. It is 

also unclear when the Mcm2-7 ring opens to encircle DNA. It is possible that the 

Mcm2-7 complex already encircles DNA in the OCCM complex, however, this will 

need to be further examined.  

 

 

 
Figure 7.1 A model for Mcm2-7/Cdt1 recruitment to ORC-Cdc6-DNA 

Model for recruitment of Mcm2-7/Cdt1 to ORC-Cdc6 prior to ATP hydrolysis. ORC 
binds to origins of DNA replication in an ATP dependent manner. In yeast, ORC 
binds origins throughout the cell cycle. Cdc6, bound to ATP, then binds ORC in late 
M/G1 phase of the cell cycle. Mcm2-7/Cdt1 is recruited to ORC-Cdc6-DNA via 
interaction of Mcm3 with Orc2 and Cdc6. The C-terminus of Mcm3 is required for 
the recruitment of Mcm2-7/Cdt1 to ORC-Cdc6-DNA. In this complex, there is a 
single copy of each of the licensing factors, indicating that the Mcm2-7 hexamers 
are loaded sequentially.  
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7.2 Loading the recruited Mcm2-7 hexamer into a double 
hexamer around double stranded DNA 

Upon ATP hydrolysis, Mcm2-7 hexamers are loaded around double-stranded DNA 

as head-to-head double hexamers with their N-termini pointing towards each other 

(Evrin et al., 2009, Gambus et al., 2011, Remus et al., 2009). The loading of the 

Mcm2-7 double hexamer also involves concomitant release of Cdc6 and Cdt1. 

There is therefore a complex transition between the OCCM prior to ATP hydrolysis 

and the Mcm2-7 double hexamer following ATP hydrolysis. The results of this 

thesis and recent studies have revealed that there is a single copy of each of the 

licensing factors prior to ATP hydrolysis. In addition, it appears that both Mcm2-7 

hexamers that form the loaded double hexamer require an interaction between the 

C-terminal tail of Mcm3 and ORC-Cdc6 as well as Cdt1 interaction with Mcm6 

(Fernandez-Cid et al., 2013, Frigola et al., 2013). How do two hexamers of Mcm2-7 

use the same interaction interfaces during loading and yet end up in opposite 

orientations on one side of the ORC complex (Figure 7.2)?  

 

 
Figure 7.2 How is a double hexamer of Mcm2-7 loaded around double stranded 

DNA? 

The OCCM is shown on top with an interaction between the C-terminus of Mcm3 
and ORC-Cdc6. This OCCM transitions to a Mcm2-7 double hexamer bound 
around double-stranded DNA upon ATP hydrolysis. This also involves release of 
Cdc6 and Cdt1. 
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7.2.1 An intermediate in Mcm2-7 double hexamer formation – the OCM 

complex 

Although we know that ATP hydrolysis is required for assembly of the Mcm2-7 

double hexamer, it is unclear what stage of assembly requires this ATP hydrolysis. 

A recent study examined time-resolved Mcm2-7 loading in vitro in ATP and found 

that Mcm2-7 double hexamer formation is a slow process (Fernandez-Cid et al., 

2013). The authors observed ATP hydrolysis-dependent release of Cdt1 prior to 

Cdc6 release. This resulted in a salt-sensitive intermediate complex consisting of 

ORC, Cdc6 and Mcm2-7 (OCM) (Fernandez-Cid et al., 2013). The OCM complex 

was found to consist of one copy each of ORC, Cdc6 and Mcm2-7. In this study the 

OCM formed in seconds, whilst formation of a salt-stable double hexamer of 

Mcm2-7 took several minutes. In addition, the OCM appears to be a salt-sensitive 

complex (Fernandez-Cid et al., 2013), indicating that this intermediate contains a 

partially loaded Mcm2-7 complex. This leads to the question: at what stage is the 

Mcm2-7 complex properly loaded? The mechanism for transition from an OCM to a 

Mcm2-7 double hexamer is still unknown. 

 

Interaction of the C-terminus of Mcm3 with DNA-bound ORC-Cdc6 was found to 

stimulate the ATPase activity of ORC-Cdc6 (Frigola et al., 2013). This ATP 

hydrolysis was shown to promote the release of Mcm2-7 from ORC-Cdc6-DNA in 

the absence of Cdt1 (Frigola et al., 2013). Indeed, Cdt1 appears to block ATP 

hydrolysis by ORC-Cdc6 (Fernandez-Cid et al., 2013). It is possible that stimulation 

of ORC-Cdc6 ATPase activity by Mcm3 occurs after OCM formation (i.e. Cdt1 

release) and acts to break the contact between Mcm2-7 and DNA-bound ORC-

Cdc6 This would release ORC-Cdc6 to recruit and load the next Mcm2-7/Cdt1 

heteroheptamer through another round of ATP hydrolysis. How the next Mcm2-7 

hexamer would be loaded in an opposite orientation to the first hexamer is still 

unclear. Would this require formation of a second OCM? Samson et al. recently 

suggested a model for pre-RC formation (Samson and Bell, 2013). The authors 

suggest that the release of Cdt1 destabilises the Mcm2-7 complex and induces 

rearrangement of the hexamer into an “open book conformation” consisting of two 

halves. They further speculate that recruitment of the second hexamer via Mcm3 
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and Cdt1 would bind to the two halves of the open book generating a double 

hexamer or “closed book”.  

 

In order to decipher how the Mcm2-7 double hexamer is loaded, further analysis is 

required. It will be interesting to examine the OCM complex further, for example by 

characterising protein-protein interactions and whether these differ compared to 

interactions in the OCCM. Another interesting aspect would be to map the inter-

Mcm2-7 interactions in the loaded double hexamer. This would give insight into 

how the two hexamers are oriented with respect to each other in the double 

hexamer and perhaps tell us something about how the double hexamer is formed. 

It would also be informative to examine the OCM complex by cryo-EM and 

compare it to the OCCM ATPγS complex. 

 

7.2.2 The role of ATP hydrolysis by ORC and Cdc6 in Mcm2-7 loading 

ATP hydrolysis is required for Mcm2-7 double hexamer formation. At least 12 of the 

14 proteins that participate in pre-RC assembly are members of the AAA+ family of 

proteins (Iyer et al., 2004). Orc1, Cdc6 and Mcm2-7 are all capable of hydrolysing 

ATP. This raises the question: what is the role of the individual ATPase activities 

during pre-RC formation? 

 

Studies in yeast extracts dissected distinct functions for the ATPase activities of 

ORC and Cdc6 in pre-RC formation (Bowers et al., 2004, Randell et al., 2006). A 

point mutation in the Walker B motif of Cdc6 (E224G-Cdc6), that inhibits ATP 

hydrolysis but not ATP binding, appeared to block Mcm2-7 loading (Randell et al., 

2006). In addition, blocking ATP hydrolysis by ORC, by mutating a catalytically 

essential arginine finger in Orc4, reduced the number of Mcm2-7 complexes bound 

at origins (multiple Mcm2-7 complexes are normally loaded at origins). This 

suggested an absence of reiterative Mcm2-7 loading (Bowers et al., 2004). 

Importantly, mutations that eliminate ORC ATP hydrolysis in S.cerevisiae do not 

support viability (Bowers et al., 2004). This led to a model that sequential ATP 

hydrolysis by Cdc6 then ORC is required for proper Mcm2-7 loading at origins. A 

study by Ying and Gautier found that Xenopus Mcm2-7 ATPase mutants were 
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competent for Mcm2-7 loading (Ying and Gautier, 2005). The role of Mcm2-7 

ATPase activity in pre-RC formation in yeast was therefore not tested. 

In Chapter 5 I showed that E224G-Cdc6, harbouring a point mutation in its Walker 

B domain that blocks ATP hydrolysis, was competent for Mcm2-7 loading in vitro. 

This is in contrast to previous data from Randell et al. (2006). I only observed a 

reduction in Mcm2-7 loading when the amount of mutant Cdc6 used was increased. 

This suggests that the E224G-Cdc6 protein preparation is unstable which may 

explain why others were unable to detect Mcm2-7 loading. Indeed Evrin et al. found 

that this Walker B mutant led to some Mcm2-7 loading (Evrin et al., 2013).  

 

In vivo, the E224G-Cdc6 mutant was found to be dominant negative when 

overexpressed from the GAL promoter (Perkins and Diffley, 1998). However, 

another study found that Cdc6 containing a double alanine mutation in the Walker 

B motif was functional in vivo and exhibited a normal S-phase (Weinreich et al., 

1999). In this study, the Cdc6 Walker B mutant was expressed at endogenous 

levels and WT Cdc6 was expressed from a MET3 promoter and repressed with 

methionine. An explanation for these data could be that mutations in the Walker B 

motif of Cdc6 somehow inhibit the release of Cdc6 from DNA after Mcm2-7 loading. 

Overexpression of such a mutant, as in the Perkins and Diffley study (1998) would 

cause replication origins in the cell to be occupied by Cdc6 that could not be 

released for Mcm2-7 loading in the next cell cycle, thus leading to a loss of viability.  

  

These data indicate that the role of the Walker B motif of Cdc6 in pre-RC formation 

is still unclear. Analysis of a sensor-1 mutant of Cdc6 that is defective in ATP 

hydrolysis showed that ATP hydrolysis by Cdc6 is important for Cdt1 release and 

OCM formation (Fernandez-Cid et al., 2013). There is therefore likely to be a role 

for ATP hydrolysis by Cdc6 in pre-RC formation, but this role remains to be fully 

characterised and understood.   

 

As mentioned previously, ATP hydrolysis by Orc1 is dependent on an arginine 

finger in Orc4. Blocking ATP hydrolysis by mutating this arginine finger (ORC4R) 

leads to a single round of Mcm2-7 loading in vitro and reiterative MCM loading is 

inhibited (Bowers et al., 2004). This mutation of ORC is also lethal in vivo (Bowers 

et al., 2004). However, Evrin et al. recently showed that the ORC4R mutant was 
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capable of producing a double hexamer of Mcm2-7 that was salt-resistant (Evrin et 

al., 2013). The authors concluded that Orc1 ATPase is not required for pre-RC 

assembly. Having said that, a Walker B mutant of Orc1, defective in ATP hydrolysis, 

was found to block Cdt1 release, thus preventing OCM formation (Fernandez-Cid 

et al., 2013).  

 

There are therefore conflicting data surrounding the roles of ATP hydrolysis by 

ORC and Cdc6. There appear to be different phenotypes for different ATPase 

mutants. This could perhaps be due to effects on ATP binding rather than ATP 

hydrolysis. It is also likely that several of these mutations affect protein stability or 

proper folding, thus making results difficult to interpret. It is clear that ATP 

hydrolysis is required for Mcm2-7 double hexamer formation, but the distinct roles 

of ORC and Cdc6 ATPases will need to be further analysed and clarified. 

Unpublished data (Gideon Coster) indicate that the Mcm2-7 ATPases also play a 

role in pre-RC formation. It will be interesting to dissect the individual roles of the 

ATPases in Mcm2-7 double hexamer formation. 

 

7.3 A model for Mcm2-7 double hexamer assembly   

Taking all these data together, I propose the following model for Mcm2-7 double 

hexamer assembly (Figure 7.3). In the OCCM complex, it is probable that the 

Mcm2-7 ring encircles DNA (Figure 7.3, step 1). Following OCCM formation, ATP 

hydrolysis promotes release of Cdt1 forming the OCM complex (Figure 7.3, step 2). 

This ATP hydrolysis is likely to be mediated by ORC and Cdc6. The ATPases of 

Mcm2-7 could also be involved in this step. I propose that release of Cdt1 triggers 

another round of ATP hydrolysis, which is possibly mediated by Mcm3 activating 

the ATPase activities of ORC-Cdc6. This ATP hydrolysis could induce release of 

the Mcm2-7 complex from ORC-Cdc6 (step 3). This would free up DNA-bound 

ORC-Cdc6 to recruit another Mcm2-7/Cdt1 heteroheptamer via interaction of Mcm3 

with Orc2 and Cdc6 (step 4). It is possible that the recruitment of each Mcm2-7 

hexamer occurs on a DNA loop. In Chapter 3, I showed that 247 bp of ARS305 

DNA could not support Mcm2-7 loading. It is likely that 247 bp of DNA is too short 

to form a DNA loop. If this is true, it may explain why Mcm2-7 loading could not 
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occur, but ORC binding was unaffected. Another study has also shown that there is 

a DNA length requirement for MCM loading in Xenopus. It is therefore a possibility 

that looping of the DNA is required for Mcm2-7 loading. In addition, a DNA loop 

would allow two hexamers loaded sequentially to interact at the same interfaces 

with ORC-Cdc6 (Figure 7.3). Following recruitment of the second Mcm2-7/Cdt1 

heteroheptamer, I suggest that a further two rounds of ATP hydrolysis occur. The 

first inducing release of Cdt1, forming another OCM complex (step 5) and the 

second triggering release of Mcm2-7 from ORC-Cdc6 (step 6).  

 

Finally, I propose that ATP hydrolysis by Cdc6 itself would induce its release and a 

Mcm2-7 double hexamer would form by sliding of the hexamers on the duplex DNA 

towards each other. Sliding of Mcm2-7 double hexamers on double stranded DNA 

has been previously observed (Evrin et al., 2013, Remus et al., 2009).  
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Figure 7.3 A model for Mcm2-7 double hexamer formation. 

1) Formation of the OCCM (refer to Figure 7.1). 2) ATP hydrolysis induces Cdt1 
release and formation of the OCM. 3) Another round of ATP hydrolysis releases 
Mcm2-7 from ORC-Cdc6. 4) A second Mcm2-7 hexamer is recruited to ORC-Cdc6-
DNA via Mcm3 interaction with Orc2 and Cdc6. 5) & 6) Two rounds of ATP 
hydrolysis induce formation of a second OCM and then release of Mcm2-7 from 
ORC-Cdc6. 7) Cdc6 is released, and the Mcm2-7 double hexamer is formed by 
sliding of the hexamers towards each other.  
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This model is highly speculative at this stage. In order to increase our 

understanding of pre-RC formation, it will be crucial to further analyse 

intermediates in Mcm2-7 double hexamer formation. For example, EM with rotary 

shadowing would provide insight into the structure of the DNA during Mcm2-7 

loading and whether the DNA does indeed form a loop. This could be performed on 

the OCM complex or indeed the OCCM complex.  

 

The distinct roles of the ATPases should also be addressed and clarified. It is still 

not clear what the individual roles of ATP hydrolysis by ORC and Cdc6 are. In 

addition, it appears that the ATPases of Mcm2-7 also play a role in pre-RC 

formation. Characterising these roles by analysis of ATPase site mutants will be 

invaluable in the study of licensing.  

 

Several of the Mcm2-7 subunits have N and C-terminal tails (Figure 1.3) that are 

unique to that particular subunit but conserved amongst species. It is possible that 

as for the C-terminal tail of Mcm3, these other tails play roles in pre-RC formation. 

It would therefore be interesting to examine the roles of the Mcm2-7 subunit tails.  

 

Finally, further characterisation of protein-protein interactions during Mcm2-7 

double hexamer formation would allow us to begin to construct a model for how the 

individual proteins are spatially oriented during pre-RC formation.    

 

Addressing these points would provide insight into how the Mcm2-7 complex 

transitions from a heteroheptamer of Mcm2-7/Cdt1 to a double hexamer of Mcm2-7 

loaded around double-stranded DNA. 
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