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The large-scale clustering of galaxies can serve as a probe of primordial non-Gaussianity in the

Universe competitive with the anisotropies of the cosmic microwave background. Here, we present

improved theoretical predictions which include an important, previously overlooked correction to the bias.

We demonstrate that the new predictions are able to reproduce the results of N-body simulations,

explaining the significant departures seen from previous theoretical results. These refined predictions

open the way to accurate constraints on primordial physics with large-scale structure surveys.
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Measurements of the temperature and polarization an-
isotropies of the cosmic microwave background (CMB)
radiation strongly support inflation as the mechanism gen-
erating the initial curvature perturbations [1], here parame-
trized by the Bardeen potential perturbations � ¼ �H [2].
While the simplest, single-field slow-roll models predict
nearly Gaussian fluctuations, many other inflationary
scenarios yield a potentially detectable level of primordial
non-Gaussianity, which can generally be described in
terms of the higher-order (N � 3) correlation functions

of � in Fourier space, �ðNÞ
� . Because different seeding

mechanisms of the initial curvature perturbations leave
distinct signatures in the shape and amplitude of these
higher-order correlation functions, a precise measurement
of non-Gaussianity would strongly constrain the physics of
inflation.

As the primordial curvature perturbations eventually
grow into the large-scale structure observed today, their
higher-order correlation functions can be determined
through a measurement of the clustering of dark matter
halos [3] which host the galaxies. For example, primordial
non-Gaussianity of the local fNL�

2-type induces a
strongly scale-dependent bias �bIðk; zÞ in the clustering
of halos [4]. The power spectrum Ph of halos of massM at
redshift z is related to the matter power spectrum Pm

through

Phðk;M; zÞ ¼ ½bEI ðk;M; zÞ�2Pmðk; zÞ
¼ ½bE1 ðM; zÞ þ�bIðk;M; zÞ�2Pmðk; zÞ (1)

�bIðk;M; zÞ ¼ ðbE1 ðM; zÞ � 1Þ 2fNL�c

Mðk; zÞ : (2)

Here, bE1 ðM; zÞ is the linear, Gaussian (Eulerian) bias of
halos (b1 � bE1 � 1 is the corresponding Lagrangian bias),
�c ’ 1:69 is the critical density for spherical collapse, and
the function Mðk; zÞ � 2k2TðkÞDðzÞ=ð3�mH

2
0Þ depends

on the linear growth factor DðzÞ, the matter transfer func-
tion TðkÞ, the present-day matter density parameter�m and

the Hubble constant H0. In what follows, we shall omit the
mass and redshift dependence for conciseness.
The scale-dependent non-Gaussian (NG) bias expres-

sion [Eq. (2)] may be extended (for N ¼ 3) using a peak-
background split (PBS) argument [5]. Alternatively, Eq. (2)
may be generalized to any model of primordial NG by
computing the correlation function of high threshold re-
gions [6]. Even though the result is strictly valid in the
high-peak limit only, i.e. � � �c=�0s � 1 where �0s is
the variance of the density field smoothed on scale

RsðMÞ ¼ ð3M=4� ��Þ1=3, it is usually extended to arbitrary
peak heights upon identifying �=�0s with b1. For a given
arbitrary N, this gives

�b
ðhpÞ
I ðkÞ ¼ 4b1�c

ðN � 1Þ!
�
�

�0s

�
N�3 F ðNÞ

s ðkÞ
MsðkÞ : (3)

We have defined MsðkÞ ¼ MðkÞWRs
ðkÞ, where WRs

ðkÞ is
the Fourier transform of the spherical tophat filter with
radius Rs. Furthermore, we have introduced the shape
factor

F ðNÞ
s ðkÞ ¼ 1

4�2
0sP�ðkÞ

�YN�2

i¼1

Z d3ki
ð2�Þ3MsðkiÞ

�

�MsðqÞ�ðNÞ
� ðk1; � � � ;kN�2;q;kÞ; (4)

with q � �k1 � � � � � kN�2 � k, and P�ðkÞ being the

power spectrum of the Bardeen potential �. For the con-

stant fNL�
2 model, F ð3Þ

s ðkÞ=fNL is equivalent to the func-

tion F RðkÞ defined in [6]. As F ð3Þ
s ðkÞ ! fNL on large

scales, Eq. (3) reproduces Eq. (2) in the limit k ! 0.
Since, in the limit � � 1, both thresholding and PBS
approaches yield Eq. (3), we call it the high-peak result.
Measurements of the clustering of dark matter halos in

non-Gaussian N-body simulations have confirmed the va-
lidity of Eq. (1). The k-dependent NG bias currently yields
constraints on the nonlinear parameter fNL competitive
with CMB bispectrum measurements [4]. For other models
of primordial non-Gaussianity however, comparisons
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between the high-peak expectation [Eq. (3)] and the
simulated NG bias have revealed large discrepancies in
the magnitude of �bI [7–9].

In [10], we calculate the scale-dependent NG bias using
two different formulations of the peak-background split.
The first generalizes the approach adopted in [4,5]; the
second utilizes conditional mass functions. Both methods
arrive at the same expression on large scales and thus
validate the robustness of the result. Let us briefly review
the second approach, which is inspired by a derivation of
the Gaussian peak bias factors [11]. The conditional mass
function �nðM;Rsj�l; RlÞ gives the mean number density of
halos of mass M and radius Rs inside a large region of
size Rl � Rs and overdensity �l. The conditional mass
function encodes information on the halo bias parameters
[12,13]. On taking the limit Rl ! 1 and expanding the
conditional overabundance of halos,

h�hj�li ¼ �nðM;Rsj�l; RlÞ
�nðM;RsÞ � 1; (5)

in powers of the large-scale perturbation �l, we are able to
read off the NG bias factors. In particular, the scale-
dependent NG contribution to bEI is at leading order

�b
ðpbsÞ
I ðkÞ¼ 4

ðN�1Þ!
F ðNÞ

s ðkÞ
MsðkÞ �sðkÞ

�sðkÞ�bN�2�cþbN�3

�
3�Nþd lnF ðNÞ

s ðkÞ
dln�0s

�
;

(6)

where bN is theN-th order, Gaussian Lagrangian bias (with
b0 � 1). The first term (bN�2�c) reduces to Eq. (3) for high
mass halos since bN ’ ð�=�0sÞN when � � 1. Therefore, it
exactly reproduces the previous results of [4,5,7,8]. The
second term, which is derived for the first time in [10], only
vanishes in the local, quadratic fNL model and on large
scales. Although it becomes subdominant in the high-peak
limit (bN�2=bN�3 � 1), it is significant for most relevant
peak heights.

To decipher the origin of this new term, it is useful to
recall the basic mechanism by which primordial non-
Gaussianity affects halo clustering. In the presence of a
primordial bispectrum, the small-scale density field is
modulated by a long-wavelength (k & 0:01h=Mpc) pertur-
bation of the potential � via [4,5]

�̂ 2
0sðkÞ ¼ �2

0sð1þ 4F ð3Þ
s ðkÞ�lðkÞÞ: (7)

Thus, instead of being a constant throughout space, �̂2
0s and

hence � vary from point to point. Since the local abundance
of halos depends on the amplitude of small-scale density
fluctuations (it is commonly considered to be proportional
to some multiplicity function fð�Þ), the change in �̂0s

[Eq. (7)] contributes to the variation in the overdensity
�h of halos. Most importantly, this modulation of �̂0s

induces a dependence of �h on �, rather than �m. This
explains why the scale-dependent NG bias generally

increases towards larger scales (but note the additional k

dependence brought by F ð3Þ
s ðkÞ). As shown in [10], similar

arguments can be made for a generic primordial N-point
function. In this case, long-wavelength potential perturba-
tions locally induce a reduced moment of order (N � 1) in
the small-scale density field �s, which is given by

Ŝ ðN�1Þ
s ðkÞ � h�N�1

s i
�N�1

0s

¼ 4�3�N
0s F ðNÞ

s ðkÞ�lðkÞ: (8)

For example, a primordial trispectrum generates a local
skewness. Therefore, we can think of the effect of a pri-
mordial N-point function as locally rescaling the local
significance according to [10]

� ! �̂ � �

�
1� 4

ðN � 1Þ! bN�3F
ðNÞ
s ðkÞ�lðkÞ

�
: (9)

Clearly, the modulation of the variance, skewness etc. of
the small-scale density field not only changes the signifi-
cance � that corresponds to a mass M, but also affects the
significance interval d� which a fixed mass bin dM is
mapped to. Hence, long-wavelength perturbations of the
Jacobian d ln�̂=d lnM generate a dependence of the non-
Gaussian halo bias on the derivative of the shape factor

F ð3Þ
s w.r.t. Rs. This term must be present because halos in

N-body simulations and, to a lesser extent, in galaxy
surveys are identified by mass. In contrast, in the thresh-
olding approach the two-point correlation function of halos
above a mass threshold M is associated with that of
Lagrangian regions above a threshold �c in the linear
density field smoothed on a fixed scale RsðMÞ. This is the
reason why this approach cannot recover the second term
in the expression of �sðkÞ [Eq. (6)].
In the remainder of this Letter, we shall compare the

prediction Eq. (6) to simulation results in the large-scale
limit k ! 0. In this regard, it is convenient to express both
the predicted and simulated scale-dependent NG bias in
units of the high-peak expectation Eq. (3), i.e. we plot

�bI=�b
hp
I . Our prediction for this ratio is

�bðpbsÞI ðkÞ
�bðhpÞI ðkÞ

¼
�
�

�0s

�
3�N �sðkÞ

b1�c

(10)

for a given primordial N-point correlation function. Note
that, in the models we consider below, �s depends very
weakly on k for wave numbers k & 0:01h=Mpc. Hence,
Eq. (10) predicts a mass-dependent correction to the am-
plitude of the scale-dependent NG bias on large scales.
We consider the following three models beyond the

scale-independent local fNL for which simulations have
been performed:
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(i) scale-dependent fNL [8]

�ð3Þ
� ðk1;k2;k3Þ ¼ fNLðkpÞ

�
k1
kp

�
nf
P2P3 þ ð5 perm:Þ

(11)

(ii) orthogonal bispectrum [9]

�ð3Þ
� ðk1;k2;k3Þ¼6fNL½P1P2þð2 perm:Þ

þ3ðP1P2P3Þ2=3
�ðP1=3

1 P2=3
2 P3þð5 perm:ÞÞ� (12)

(iii) local gNL model [7]

�ð4Þ
� ðk1;k2;k3;k4Þ ¼ 6gNL½P1P2P3 þ ð3 perm:Þ�;

(13)

where Pi � P�ðkiÞ. The shape factor for each of these

models on large scales, respectively, asymptotes to

F ð3Þ
s ðkÞ ¼ fNLðkpÞk�nf

p

�
�	s

�0s

�
2
; 	 ¼ nf=2 (14)

F ð3Þ
s ðkÞ¼�3fNL

�
�	s

�0s

�
2
k�2	; 	¼ðns�4Þ=6 (15)

F ð4Þ
s ðkÞ ¼ 3

4
gNL�

2
0sS

ð3Þ
s;loc; (16)

where the spectral moments are defined as

�2
ns �

Z d3k

ð2�Þ3 k
2nP�ðkÞM2

sðkÞ: (17)

In Eq. (16), Sð3Þs;loc is the skewness of the density field

smoothed on scale Rs in a local quadratic model with
fNL ¼ 1. Using these expressions, it is straightforward to
evaluate the ratio Eq. (10).

Figure 1 shows the simulations results of [8] for the
local, scale-dependent fNL-type model [Eq. (11)] relative
to the high-peak prediction, as a function of the Gaussian
halo bias bE1 . The values of kp ¼ 0:04 Mpc�1 and

fNLðkpÞ ¼ 630 are fixed, while the spectral index is

nf ¼ �0:6. Clearly, the data points are inconsistent with

the high-peak prediction in the range bE1 & 4. The im-
proved theoretical prediction presented in this paper ex-
plains the observed deviation of the high-peak prediction
for the z ¼ 0 case (filled symbols, solid lines) and for the
z ¼ 1 case and negative nf (open symbols, dashed lines).

The only exception is for nf ¼ 0:6 at z ¼ 1, where the

N-body data appears consistent with the high-peak predic-
tion. This case deserves further investigation. Note how-
ever that the simulation measurements are correlated, since

they were estimated from a common simulation volume.
Hence, the significance of this departure is not straightfor-
ward to estimate.
The results from simulations of the orthogonal bispec-

trum [Eq. (12)] are shown in Fig. 2 [9]. Symbols represent

FIG. 1 (color online). Ratio of the large-scale NG halo bias
measured in simulations with non-Gaussianity of the scale-
dependent local type (nf ¼ �0:6) [8], to that predicted by the

high-peak approximation. Filled and open symbols show the
simulation results, whereas the solid and dashed curves indicate
the new theoretical expectation [Eq. (10)] at z ¼ 0 and 1,
respectively.

FIG. 2 (color online). Same as Fig. 1 but for the orthogonal
bispectrum shape [9]. Different symbols correspond to various
halo mass bins as indicated in the figure; colors indicate the
redshifts z ¼ 0 (magenta), 0.67 (blue), 1 (green) and 1.5 (red).
The solid curve shows the new theoretical prediction assuming a
halo mass M ¼ 5� 1013M	=h.
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the measured NG halo bias from simulations relative to
the high-peak prediction from three realizations with
fNL ¼ �250 and two with fNL ¼ �1000. The results
were averaged over wave numbers with k < 0:1h Mpc�1.
We show our prediction (Eq. (10) with N ¼ 3 together
with Eq. (15)) as the solid curve, for a median halo mass
M ¼ 5� 1013M	=h. Again, the improved theory is con-
sistent with the N-body data, which convincingly shows a
strong suppression for bE1 & 2. While the error bars are
significant, the strong mass- and redshift-dependence pre-
dicted by Eq. (6) appears to be supported by the data.

Finally, Fig. 3 shows the ratio of the simulated large-
scale bias of the local gNL model [Eq. (13)] to the high-
peak prediction. The simulations used values of gNL ¼
�106 [7]. Error bars indicate the scatter among 5 realiza-
tions. Clearly, the measured values of �bI lie far below the
high-peak prediction. While they increase monotonically

with bE1 , �bI=�b
ðhpÞ
I never reaches unity even for the most

biased samples. The solid curve represents the improved
theoretical prediction, Eq. (10) with the shape factor

Eq. (16). For this Figure, we have computed the
Gaussian peak-background split biases b1 and b2 from a
Sheth-Tormen mass function [13]. The prediction matches
the measurements well, though it somewhat underesti-
mates �bI for bE1 & 2; an improved match might be
achieved by measuring the b2 of halos directly from simu-
lations, rather than using the fitting function of [13].
Note also that the measurements are noticeably larger for
gNL ¼ �106, suggesting that second order contributions
in gNL are important. This is presumably due to the fact
that the Gaussian bias factors b1 and b2 receive scale-
independent NG corrections which depend on the non-
linear parameter gNL.
In summary, we have presented a new formula for the

NG bias based on an improved PBS argument [10]. We
have obtained an additional term which can be interpreted
as the effect of non-Gaussianity on the mapping between
the significance � and the mass of halos M. This new term
vanishes only for the local quadratic model with constant
fNL, and is significant for all other models considered here.
We compare our theoretical predictions to the scale-
dependent bias measured from NG N-body simulations,
and show that it is in good overall agreement with the
measurements, in contrast to the existing formulae based
on the statistics of high peaks. The improved theoretical
predictions presented here will enable accurate upper lim-
its on, or measurements of, general shapes of non-
Gaussianity. In particular, our results are of relevance to
the recent measurements of [14], who employed the high-
peak prediction, and are expected to increase their upper
limits by factors of order unity. We expect similar mass-
dependent corrections to the quadratic and higher-order
bias factors which should significantly affect the halo
bispectrum [10]. Accounting for all these corrections will
be essential to obtain accurate constraints on primordial
non-Gaussianity from large-scale structure.

We would like to thank S. Shandera and C. Wagner for
providing the data shown in Fig. 1 and Fig. 2, respectively.
D. J. and F. S. are supported by the Gordon and Betty
Moore Foundation at Caltech. V. D. is supported by the
Swiss National Foundation under Contract Nos. 200021-
116696/1 and FK UZH 57184001.

[1] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18
(2011).

[2] J.M. Bardeen, Phys. Rev. D 22, 1882 (1980).
[3] V. Desjacques and U. Seljak, Classical Quantum Gravity

27, 124011 (2010).
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