
A Coverage Algorithm for

Multi-robot Boundary Inspection∗

Kjerstin Easton (kjerstin@caltech.edu) and Joel Burdick (jwb@robotics.caltech.edu)

Division of Engineering and Applied Science

California Institute of Technology, Pasadena, CA 91125

Abstract—This paper introduces the multi-robot boundary
coverage problem, wherein a group of k robots must inspect

every point on the boundary of a 2-dimensional test environ-

ment. Using a simplified sensor model, this inspection problem

is converted to an equivalent graph representation. In this

representation, the coverage problem can be posed as the k-

Rural Postman Problem (kRPP). We present a constructive

heuristic which finds a solution to the kRPP, then use that

solution to plan the robots’ inspection routes. These routes

provide complete coverage of the boundary and also balance

the inspection load across the k robots. Simulations illustrate

the algorithm’s performance and characteristics.

Index Terms—Robot coverage, multiple robots, planning
algorithms.

I. INTRODUCTION

This paper introduces the multi-robot boundary coverage

problem and describes a graph-based methodology for

planning the paths of robots that cooperate in the coverage

task. In this problem (which is more fully described in

Section II), a group of k robots is required to completely

inspect the boundary of all 2-dimensional objects in a test

environment. There are a number of practical mechani-

cal inspection, surveillance, and security applications for

such a procedure. For example, consider the problem of

inspecting in-situ the surfaces of turbine blades inside a jet

engine or combustor. Fig. 1 shows an idealized view of the

interior of a turbine, where the cylindrical geometry of the

turbine has been “flattened.” Using nondestructive sensing

technologies, a group of robots (which may be small mobile

robots, or the distal tips of manipulators carrying the

inspecting sensors) must systematically inspect the surface

of each turbine blade for defects. Inspecting the freespace

between the blades, as would be done in the classical

coverage problem, is not of concern here. In this paper

we consider a 2-dimensional version of this problem, i.e.,

a horizontal cross-sectional slice through this world. The

extension of our method to the geometry of Fig. 1 (where

the robot must inspect the entire height of the turbine blade

extrusion) is relatively straightforward. Robotic security,

surveillance, and “watchman’s route” problems are another

class of applications. Imagine, for example, that a group

of robots is tasked with monitoring the walls of an art

gallery, or the surfaces of a set of oil tanks. A multiple-

robot approach to such problems should allow the task to

be completed or repeated more quickly than with a single

∗This work has been supported by a National Science Foundation
fellowship, a grant from NASA Glenn, and by NSF grants NSF-0428075
and NSF-0325017.

Fig. 1. Nondestructive inspection of blade surfaces inside a turbine is
a motivating application of the multi-robot boundary coverage problem.
The green dots represent robots engaged in sensing tasks.

vehicle, while offering flexibility through redundancy in

case a unit should fail1.

In the classical coverage problem, one or more robots

must “cover” the freespace of a bounded 2-dimensional

workspace. Reference [1] offers a survey of single- and

multiple-robot approaches to this freespace coverage prob-

lem. The boundary coverage problem described in this

paper complements the freespace coverage problem; anal-

ogous to that problem, we seek a complete algorithm that

guarantees coverage of all boundary points. Other nonde-

terministic approaches to a similar problem are presented

in references [2] and [3]. Likewise, we are concerned

with the efficiency of the robots’ efforts and seek to

balance the workload as evenly as possible between the

cooperating robots, but our primary concern is guaranteeing

completeness of coverage. We present in this paper an off-

line planning procedure that meets all of these objectives.

Section II describes the boundary coverage problem

and our modeling assumptions. Section III transforms the

coverage problem into an equivalent graph representation,

which consists of an undirected, connected graph G, which

has a subset of edges ER, in which each e ∈ ER represents

an inspection path for a specific boundary segment. The

task of routing the robots to complete the inspection task

can be posed as an NP-hard graph analysis problem we call

the k-Rural Postman Problem (kRPP). Section IV provides

a constructive heuristic to solve the kRPP, then, based

on this procedure, develops a boundary coverage planning

1We do not treat the case of robot failure in this paper.

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 727

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:02:38 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216147187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

algorithm and demonstrates that the boundary coverage

is complete. To illustrate the methodology, Section V

applies the algorithm to several simulated environments.

Open questions and possible extensions are summarized in

Section VI.

II. THE BOUNDARY COVERAGE PROBLEM

We consider a bounded 2-dimensional environment

which is populated by N objects, O1,O2, . . . ,ON , an

example of which is illustrated in Fig. 2. We collectively

refer to the union of the boundaries of all objects as

the “boundary” of the environment. The boundary of the

ith object is termed the “ith boundary,” and is denoted

by ∂Oi. We assume that the boundary of each object is

a piecewise smooth, convex closed curve. A boundary

segment, [pi,1, pi,2] is the portion of ∂Oi between two

points pi,1, pi,2 ∈ ∂Oi. The boundary segment [pi,1, pi,2]
includes the points between pi,1 and pi,2 inclusive on the

boundary as it is traversed with freespace on the left (i.e.,

clockwise). We assume that the location and boundary

geometry of each object is known a priori.

We assume that the boundary will be inspected by a

group of k identical holonomic point robots, each equipped

with an accurate scheme for localization as well as an

omnidirectional or steerable “inspection sensor.” Each in-

spection sensor has a maximum range of r. That is,

each sensor is assumed to be capable of measuring the

phenomena of interest when the robot is up to a distance r

from the boundary. For the purposes of off-line planning,

a point on the boundary is considered inspected when

a robot has passed within distance r orthogonal to the

boundary. For simplicity, our method assumes a preferred

sensing distance of r, though the robot may inspect a

boundary segment from a lesser distance. This constraint is

imposed to make the construction of G easier by limiting

the geometry of paths we initially consider to well-defined

offset curves. We note that for robots with a steerable

inspection sensor, an additional step is needed to determine

the preferred or necessary sensor orientation at each instant

during the robot’s traversal of the inspection paths that

are constructed below. This additional planning step to

determine the sensor sweeping motions associated with

a visibility path is relatively trivial, and therefore not

discussed in detail in this paper.

All robots involved in the inspection task start from a

common “depot” location at the beginning of the inspection

period. At least one robot must inspect each point of the

boundary at least once during the group’s inspection tour.

The robots’ inspection routes are determined offline; they

navigate through a series of waypoints determined by our

method’s solution. A secondary goal is to realize efficiency

in the inspection task by balancing the work across the

robots. In this paper, we seek to ensure that the path length

of each robot’s inspection tour is roughly equal.

To develop these paths, we take the sensor’s visibility

constraints into account. A boundary segment’s visibility

space consists of the set of individual robot poses whose

distance to the nearest point on the boundary segment is

Fig. 2. Illustration of terminology introduced in Section II.

less than r. A continuous sequence of poses within the

visibility space is a visibility path if and only if every point

in the boundary segment will have been viewed when a

robot has assumed every pose in the visibility path.

We refer to the region where the visibility spaces of

disjoint boundary segments intersect as a viewing chan-

nel. From poses within a viewing channel, a robot can

simultaneously inspect multiple boundary segments that

are typically associated with different objects. Our routing

strategy takes advantage of such channels, when they arise,

as they may reduce the travel required for inspection by

avoiding multiple passes through the same region.

III. A GRAPH REPRESENTATION FOR THE BOUNDARY

COVERAGE PROBLEM

Our planning procedure starts by first constructing a

graph representation of the inspection task. The edges of

the graph come in two varieties: required inspection edges,

ER, and connectivity edges, Eenv . Each required edge

represents an equivalence class of visibility paths along

which the robot must travel in order to inspect a boundary

segment. A number of connecting edges are needed to

connect the starting depot location with the inspection

area and to provide paths between disconnected inspection

regions. The bulk of the graph vertices represent a point

of physical intersection of adjacent edges’ path sets, where

a robot may transition locally from a path represented in

one edge to a path represented in another. The starting

depot is an additional vertex. Additional vertices are added

to provide efficient points of transit. The final result of

the construction is an undirected, connected graph G =
(V,E, c : E → R

+), where V is the set of the graph’s

vertices, E is the set of its edges, and c is a cost function

that assigns weights to the edges, in which ER ⊆ E is the

set of edges whose traversal is required for inspection to be

complete. The remaining edges Eenv = E\ER represent

a collection of paths that connect required edges to one

another and the depot location.

728

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:02:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The example illustrates the initial construction of G, in which
edges disjoint from (e1), adjacent to (e2, e3, and e4), and inside (e5, e6,

and e7) viewing channels are constructed.

A. Determining ER: Edges Required for Inspection

Each edge that must be traversed for inspection repre-

sents an equivalence class of paths which results in the

same progress in the task, no matter which path in the

set is taken. This representation allows flexibility in the

navigation, as the individual can avoid one another by

taking different paths while “traversing” the same graph

edge. The end-points of each edge are graph vertices, which

physically correspond to terminal points for the equivalence

class of visibility paths.

The edges in ER are constructed as follows:

1) Edges disjoint from a viewing channel: For each

object boundary ∂Oi, i ∈ {1, . . . , N} in the environment,
we consider the visibility space of the entire boundary.

Lemma 3.1: If the visibility space of ∂Oi contains no

viewing channels, traversal of the preferred visibility path,

comprised of the perimeter of the visibility space, will

result in the inspection of every point p ∈ ∂Oi.

Proof: The preferred visibility path for ∂Oi is com-

prised of the perimeter of the object boundary’s visibility

space. If a robot traverses this path, defined by the offset

curve a distance r from ∂Oi, it will pass within distance

r of every p ∈ ∂Oi, resulting in the inspection of every

point p ∈ ∂Oi.

A vertex is placed on the preferred visibility path, a

distance r from pi, an arbitrarily chosen point on ∂Oi.

A single self-looping graph edge of weight equal to the

length of the preferred visibility path, originating from and

returning to v, is added to G. In Fig. 3, edge e1 and vertex

v1 illustrate this type of edge addition.

2) Edges adjacent to a viewing channel: If the visibility

space associated with ∂Oi incorporates one or more view-

ing channels, we divide ∂Oi into boundary segments, one

associated with each viewing channel and one with each

“non-channel” interval of ∂Oi that is not viewable from

a point on the edge of ∂Oi’s visibility space within the

channel. By this construction, divisions of the boundary

into segments occur at those points on the boundary that

are a distance r from the intersection of the edge of Oi’s

visibility space with that of disjoint object boundary and a

distance greater than r from all other object boundaries.

The vertices of the edges associated with the viewing

channel are determined as follows. The viewing channel

boundaries are defined by the offset curves a distance r

from the object boundaries. The point where the offset

curves intersect is chosen as the terminal point of the view-

ing channel visibility paths. At these points, the robot is an

equal distance r from both boundary segments contributing

to the viewing channel. These points also define a terminal

point of the adjacent non-channel edge. Examples of such

vertices are v2, v3, and v4 in Fig. 3.

Lemma 3.2: For each non-channel boundary segment,

traversal of the preferred visibility path, comprised of the

interval of the perimeter of the visibility space within

distance r of the boundary segment, will result in the

inspection of every point in that boundary segment.

Proof: By construction, the visibility path will pass

within distance r of every point in the boundary segment,

resulting in the inspection of every point in the boundary

segment.

Each non-channel boundary segment in ∂Oi is assigned

an edge connecting the vertices associated with its terminal

points (see edges e2, e3, and e4 in Fig. 3) of weight equal

to the length of the edge of the visibility space between

the those points, the preferred path for that edge.

3) Edges inside a viewing channel:

Lemma 3.3: All remaining points in the environment

boundary ∂O1∪ ...∪∂ON lie in boundary segments which

are visible from within a viewing channel.

Proof: By construction, the extreme points of each of

these boundary segments, each of which is adjacent to the

extreme point of a non-channel boundary segment, are a

distance r from the intersection of the edge of the visibility

space associated with the ∂Oi (of which that point is an

element) with the visibility space of another ∂Oj , j �= i and

a distance > r from all other object boundaries. Also by

construction, every point not considered under Lemma 3.1

and Lemma 3.2 lies a distance less than2r from a point on

another object boundary, making it by definition viewable

from within a viewing channel.

The robots are routed through viewing channels with a

preference for paths whose constituent poses are equidis-

tant from the boundaries currently being inspected. The

preferred paths through the viewing channels are simply

the local components of the Generalized Voronoi Graph

(GVG) [4] of the nearby boundaries. The graph vertices

at the end of the edges associated with viewing channels,

by definition, lie on the GVG. Edges within viewing

channels are established by adding to G all edges and

vertices of the GVG contained within the union of all

viewing channels in the environment. We note that GVG

vertices within the union of all viewing channels occur

where channels overlap. Edges only partially contained

in a viewing channel are truncated where they meet a

terminal vertex, which connects the viewing channel edge

729

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:02:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. A possible final graph representation of the example environment
from Figs. 2 and 3.

to adjacent “non-channel“ edges. For every point on the

GVG within a viewing channel, points on at least two

boundary segments can be sensed from a single robot pose

in the omni-directional sensor case (in the steerable sensor

case, a sensor rotation will be necessary, but can be carried

out without changing the robot’s location).

Lemma 3.4: Traversal of all edges of the GVG which

lie within the viewing channels results in the inspection of

all viewing channel boundary segments.

Proof: Every point on every edge of the GVG

within a viewing channel is equidistant and ≤ r from the

two nearest boundaries. Because no point on any viewing

channel boundary segment is more than a distance 2r away

from another object boundary, a point on a local GVG edge

and contained within a viewing channel will fall within

distance r of every point on the viewing channel boundary

segment. It follows that traversal of that local GVG edge

will result in that boundary segment’s inspection. Thus, if

all edges of the GVG which lie within viewing channels are

traversed, every viewing channel boundary segment will be

inspected.

Each edge e added to G from the GVG is assigned a

weight equal to the length of the GVG path between the

points represented by e’s end vertices, the preferred path

within a viewing channel. Edges e5, e6, and e7 in Fig. 3

illustrate this type of edge.

B. Determining Eenv: Edges Providing Connectivity

Lone obstacles not associated with any viewing channels

and clusters of obstacles connected by viewing channels

will each comprise a connected componenet of G. After

generating the edges in G that are necessary for boundary

inspection, the possibly disjoint components of this con-

struction must be connected.

1) Addition of vertices: To generate these connecting

edges, the existing required edges are subdivided into a

sequence of edges according to a user-selected subdivision

step size parameter, while not changing the underlying

graph geometry. These added access vertices offer oppor-

tunities to divide the inspection of the associated boundary

segment among multiple robots, and some will also allow

for more efficient transit to other parts of the graph. A

vertex, vdepot, is added at the depot location at this time.

2) Addition of connecting edges: We then induce a com-

plete graph on the vertices of G, adding edges connecting

each vertex in G to every other vertex in G if such an edge

is not already in place. We refer to these new edges as

induced edges. Each represents a direct path through the

environment from one vertex to another, and is assigned

a weight equal to the distance between those vertices. If

an induced edge’s end vertices define a line segment that

intersects a boundary, that edge is excluded from G, as it

represents a path that does not lie entirely in freespace. All

other induced edges are added to G and comprise the set

of edges Eenv .

If object boundaries ∂Oi and ∂Oj , i �= j, are within line

of sight of one another, the subdivision step size must be

small enough that ∂Oi has at least one vertex associated

with its inspection lying in line of sight of at least one

vertex associated with the inspection of ∂Oj , meaning a

direct path between them will lie in freespace. This will

guarantee that Eenv will include at least one edge joining

each disjoint component of G to every other component

within line of sight, thus guaranteeing the final graph will

be connected.

3) Reducing graph size: the weeding parameter: As the

number of edges in G becomes cumbersomely large, the

constructive heuristic will require a long time to run to

completion. To reduce the graph size while still achieving

connectivity, the user may introduce a weeding procedure

prior to the edge induction step. This step, which incor-

porates a user-selected weeding parameter, results in the

inclusion of only a subset of vertices Vinduce ⊆ V in

the edge induction process. The first vertex added to the

initially empty set of vertices, Vinduce is the depot vertex,

vdepot. For every other vertex v ∈ V , if the shortest

paths from v to every vertex in Vinduce is greater than the

distance specified by the weeding parameter, v is added to

Vinduce. Because the shortest path from a vertex within

a disconnected graph component to any vertex outside

the component is infinite, the construction of Vinduce will

result in the inclusion of at least one vertex from each

disconnected component of G. The weeding parameter is

subject to the same upper bound as the subdivision step

size and must be sufficiently small to guarantee the graph

will be connected by edges associated with paths lying in

freespace.

A sample graph representation of our example environ-

ment from Figs. 2 and 3 is illustrated in Fig. 4.

IV. A GRAPH ALGORITHM FOR SOLVING THE

BOUNDARY COVERAGE PROBLEM

Based on the graph representation outlined in the last

section, the k-robot boundary coverage problem reduces

to a graph problem which we term the k-Rural Postman

Problem (kRPP). This problem is concerned with finding

a set of k ≥ 1 tours T = {T1, ..., Tk} within an undirected,
connected weighted graph G = (V,E, c : E → R

+) such

730

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:02:38 UTC from IEEE Xplore. Restrictions apply.

that each edge in a required subset of edges ER ⊆ E is

traversed in at least one tour. Our nomenclature is adapted

from a set of Chinese Postman Problems (CPPs) in the

graph literature. Many variations of the CPP have been

explored, of which the two most closely related to the graph

problem at hand are:

1) the Rural Postman Problem (RPP), an NP−hard
problem in which the task is to find a minimum

weight tour that traverses every edge in a required

subset of edges in a connected, undirected graph G

[5], and

2) the Min-Max k-Chinese Postman Problem

(MMkCPP), an NP−hard problem in which

the task is to find a set of k tours of a connected,

undirected graph G such that the weight of the

longest tour is minimized, each tour starts and

finishes at the same “depot” vertex, and every edge

in G is traversed in at least one tour [6], [7].

We note that if ER = E the kRPP reduces to the kCPP;

with the additional aim of minimizing the longest of the k

tours, the MMkCPP represents such a case. In reference [6]

this minimization is addressed both within the constructive

heuristics they present and with post-construction tour im-

provement algorithms. While our formulation of the kRPP

does not specifically require minimization of the longest

tour, our heuristic does attempt to balance the inspection

load spatially across the k tours by grouping neighboring

edges into the same tours and seeks to avoid unnecessary

redundant coverage. Like the RPP and MMkCPP, the prob-

lem we address is NP−hard. We present a constructive
heuristic which finds a solution to the kRPP.

A. Constructive Heuristic for the kRPP

1) Definitions: Given an undirected, connected graph

G = (V,E, c : E → R
+) we denote the set of edges

on the shortest path between vertices u and v, {u, v} ∈ V ,

SP (u, v). The length of this path is denoted C(SP (u, v)).
The distance between a vertex v and an edge e = {x, y}

is defined as

d(v, e) = max{C(SP (v, x)), C(SP (v, y)))}. (1)

We define the distance between two edges e = {x, y}
and g = {u, v} as

d(e, g) = max{C(SP (u, x)), C(SP (u, y)),

C(SP (v, x)), C(SP (v, y))}. (2)

2) Cluster required edges: We begin by grouping the

required edges ER into k “clusters”, F1 ∪ ... ∪ Fk = ER,

using a farthest-point clustering method similar to that

used in the “Cluster Algorithm” heuristic for the MMkCPP

presented by Ahr and Reinelt [6], which is based on an

algorithm which aims to minimize the maximum intra-

cluster distance [8].

First, k representative edges f1, ..., fk are found, where

fi is the first edge assigned to cluster Fi. The first represen-

tative edge f1 is the edge e ∈ ER farthest from vdepot (as

calculated with (1)) and is the first edge assigned to cluster

F1. The required edge with the maximum minimum dis-

tance (as calculated with (2)) to the existing representative

edges f1, ..., fi−1 is called fi and is assigned to Fi. The

|ER| − k remaining edges e ∈ ER are assigned to the

cluster Fi that minimizes the distance between e and fi.

3) Include edges for connectivity: The task remains

to ensure each cluster of edges is connected and, thus,

traversable. Given the subgraph GRi
= G[Fi + vdepot],

we construct a graph G′

Ri
with a vertex representing each

connected component of GRi
. An edge is added between

every vertex u and v. The weight c(e) of edge e = {u, v}
is equal to the length of the shortest path on G from

any vertex in component u to component v. A minimum

spanning tree is computed on G′

Ri
; the edges in the shortest

path in G associated with each edge in the spanning tree

are added to Fi.

4) Compute a tour of each cluster: Next, a single-

postman tour Ti is computed on the subgraph G[Fi], i =
{1, ..., k} using Edmonds’ and Johnson’s CPP algorithm
[9]. Each tour Ti ∈ {T1, ..., Tk} originates and terminates
at vdepot, and has length C(Ti) =

∑
e∈Ti

c(e).

5) Improve the tours: Finally, for each cluster Fi, we

consider the subset of required edges, FiR
. While traversing

Ti, after each edge e ∈ FiR
has been visited at least once,

the remaining edges in Ti are replaced with the shortest

path on G back to vdepot.

B. Path Planning Using the Graph Solution

The k robots’ inspection paths are planned based on the

graph solution to the kRPP. Because edges in G specify

preferred paths, the tours found by the graph algorithm

each define a series of waypoints. Each robot is assigned

a tour and visits that tour’s waypoints in sequence. When

robots must pass within close proximity of one another in

simulation, priority is established through a simple leader

election process, in which priority is given to the robot

with the largest distance left to travel. Other robots wait

until the leader proceeds out of their proximity. A more

sophisticated approach to this final path planning step will

be addressed in future work.

C. Completeness of Boundary Coverage

Lemma 4.1: The set of k tours generated by the con-

structive heuristic guarantees each edge in the required

subset of edges ER is traversed in at least one tour.

Proof: By construction, every edge e ∈ ER is

assigned to a cluster. Edges are added to each cluster to

ensure each is a connected subgraph of G. A of tour each

cluster is then calculated with the Edmonds and Johnson

CPP algorithm, an algorithm which guarantees every edge

in the cluster will be traversed. As every edge in ER is

contained in a cluster, and every edge in every cluster will

be traversed by a tour, it follows that every edge in ER

will be traversed in at least one tour.

Proposition 4.2: The paths planned based on the kRPP

graph solution provide complete coverage of the test envi-

ronment’s boundary.

731

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:02:38 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Fig. 5. The environments in (a) and (b) contain four identical circular
boundaries, but placement has a large effect on the “fairness” of the
planned routes. The routes planned for k = 4 robots are illustrated with
waypoints marked by a route-specific colors of black, green, red, and blue.

Proof: In Section III-A, we consider the visibility

space of each object boundary ∂Oi in turn. By Lemmas 3.1,

3.2, and 3.3, when every ∂Oi has been considered, every

point in the boundary has been considered as a constituent

point in either a disjoint closed boundary segment, a

viewing channel segment, or a “non-channel” segment.

Graph edges representing preferred visibility paths for each

of these segments have been constructed. If each of these

preferred visibility paths is traversed, every point on the

boundary will have been inspected; boundary coverage will

be complete. By Lemma 4.1, the kRPP heuristic gives

a graph solution that guarantees the traversal of every

edge in ER. The traversal of a graph edge corresponds

to the traversal of the associated preferred visibility path,

guaranteeing complete boundary coverage.

V. RESULTS AND DISCUSSION

In this section we provide three examples that illustrate

some of the key characteristics of our algorithm and some

of the main issues related to its practical use. We note that

the distance units used in simulation are arbitrary and are

used to show relative distance.

A. Division of Labor by Clustering Edges

This first examples illustrates the division of labor im-

posed by the kRPP approach to routing the robots. In this

example, four robots are tasked to inspect an environment

containing four identical circular boundaries, and robot’s

sensing range r is small enough that no viewing channels

arise. Applying our algorithm to the configuration of the

disks shown in Fig. 5a, results in a counterintuitive division

of the task where one robot is not assigned to individu-

ally inspect each disk boundary. This somewhat unusual

division arises from the nature of the farthest-point edge

clustering method used to divide the edges among the k

tours. While there are four distinct boundaries, the cluster-

ing algorithm may group the edges in seeming unnatural

ways. When the boundaries are arranged in an equidistant

pattern from the depot and are sufficiently separated so

that their inspection edges cluster in a natural way, then an

“intuitive” division of labor arises, as illustrated in 5b.

While the routes are of equal length in this case, the

scenario in Fig. 5a, in comparison, yielded a longest route

38% longer than the shortest route and 24% longer than the

average length of the four routes. Though the paths are not

intuitive in that scenario, the load is still roughly balanced

among the robots. Because the clustering algorithm seeks

to minimize the intra-cluster distance of each cluster, it

does not “fairly” distribute the weight of the edges in

each group; how evenly the inspection load is balanced

across the robots will be dependent on the weight and

concentration of required edges in proximity to the k

representative edges. For an inspection with a relatively

homogeneous distribution of required edges, the routing

will, however, certainly be “fair” enough to offer a tour

length advantage with k > 1 robots.
Further tour weight optimization with alternative clus-

tering methods and post-construction tour improvement

heuristics is possible in many instances and will be con-

sidered in future work.

B. Viewing Channels and More Complex Environments

We have chosen two illustrative examples of routing

through more complex environments. The first “scattered”

environment contains several objects of various sizes and

shapes, while the second “packed” environment contains

a closely spaced set of identical objects. For each envi-

ronment, we consider two values of r, one small enough

that no viewing channels arise, the other large enough that

every boundary has an associated viewing channel. The

scattered environment is shown in Fig. 6, while the packed

environment is illustrated in Fig. 7.

The major difference between the two environment ex-

amples is the portion of the edges in ER that lie inside

viewing channels. If a large portion of the edges ER are

inside viewing channels, their weight will not change as

significantly as external edges’ weights will as we increase

r. In the scattered environment, the increase in length of

the preferred paths as r increases outweighs the benefit

in path reduction of traversing a viewing channel. The

tours in the large-r scattered environment example tend

to be longer than in the small-r case because the total

weight of edges in ER was greater than in the small-r

case, inflation resulting from the relatively small portion

of ER associated with viewing channels. We note that a

large part of this disadvantage due to inflation is artificially

imposed by the constraint of the preferred path’s distance r

732

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:02:38 UTC from IEEE Xplore. Restrictions apply.

(a)

(b) (c)

(d)

Fig. 6. In an environment with several objects of various sizes and shapes,
we illustrate routes planned for k = 3 robots with (a) r = 5, small enough
that no viewing channels arise, and ((b), (c), and (d)) r = 40, large enough
every boundary is associated with a viewing channel. Routes are marked
by a route-specific color of blue, black, or red. Two “snapshots” of the
r = 40 inspection in progress are shown at time steps (b) 50 and (c) 100.
A total of 605 time steps are required for the inspection to be completed
and for all robots to return to the depot. The green dots in (b) and (c)
represent the robots’ positions at that given time step.

from the boundary. The constraint will be relaxed in future

work as we explore options for pre- and post-routing local

path planning and length optimization.

The packed environment is reminiscent of the turbine-

blade environment (Fig. 1) that motivated this inspection

task. In this example we observe the path-length advantage

of exploiting viewing channels in our routing task. For large

enough r in a crowded enough environment, a large portion

(a)

(b)

Fig. 7. In an environment with identical, closely packed objects, we
illustrate routes planned for k = 3 robots with (a) r = 5, small enough
that no viewing channels arise, and (b) r = 20, large enough most edges
in ER are part of a viewing channel. Routes are marked by a route-specific
color of black, blue, or red.

of the edges in ER will be within viewing channels, allow-

ing the routing algorithm to avoid multiple passes through

the same region. The weight of edges within viewing

channels will not change as significantly as external edges’

weights will as r increases. The packed environment in Fig.

7 illustrates the advantage of exploiting viewing channels

in a packed environment, as the large-r tour lengths are

significantly shorter than the small-r tours, as shown in

Fig. 9.

In both examples, despite the difference in graph struc-

ture between the two r-value cases, the resulting routes

are remarkably similar in their division of the task. This is

evident in Figs. 6 and 7; each route in the small-r scenario

has a corresponding route in the large-r scenario that

inspects approximately the same set of boundary segments.

The effects of team size k on tour lengths are shown

in Figs. 8 and 9. Despite the pronounced difference in

graph structure introduced by the different r values, the

733

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:02:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Comparison of the longest tour lengths vs. number of robots k

for r = 5 and r = 40 in the “scattered” environment in Fig. 6.

Fig. 9. Comparison of the longest tour lengths vs. number of robots k

for r = 5 and r = 20 in the “packed” environment in Fig. 7. We note
that for r = 20, the tour lengths are significantly shorter than for the
r = 5 case, illustrating the advantage of exploiting viewing channels in
a packed environment.

performance is qualitatively similar for both example en-

vironments. With the addition of a few robots, the longest

tour length drops dramatically, but the tour length benefit

decreases exponentially with k. As k increases, the average

tour length levels off. This is because the constructive

heuristic requires that every tour contains at least one

required edge (due to the clustering method), and as k

increases, the heuristic begins developing nearly identical

tours for multiple robots.

For a cost function based on an time to completion, a

choice in which the path length of the longest tour will

dominate, dividing the task among two or more robots

offers a marked benefit, but if the cost function is primarily

based on total robot energy output, e.g., distance traveled,

using a single robot will likely offer a better strategy.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced the multi-robot boundary coverage

problem, formulated a graph representation of the problem,

and posed the associated planning problem as the k-

Rural Postman Problem. Because the exact solution to this

problem is NP-hard, we developed a constructive heuristic

which finds a solution to the kRPP, and then used that

solution to plan the robots’ inspection routes. The solution

provides complete coverage of the environment boundary

and seeks to divide the inspection load amongst the k

robots.

The diminishing returns in performance relative to tour

length are largely due to our restriction that the cooperating

robots must disperse from and return to the depot along

paths that have already been traveled. A logical next step

in applying the graph representation presented here will be

to pose a task better suited to the features of a graph-based

solution, such as a surveillance task requiring periodic re-

inspection, minimizing returns to the depot and maximizing

the benefit of revisiting edges.

We hope to further develop the application of graph

methods to boundary coverage problems, exploring graph

representations in terms of cost functions based on to-

tal distance, consumption of power, memory limits, and

reliability of data in addition to the longest tour perfor-

mance measures used in this paper. Future work should

also include waypoint following, handling of robot-robot

interference, local path optimization, and variable team

size. To implement a similar method on physical robots,

we will need to begin relaxing our constraints, allowing for

imperfect sensing, localization, imperfect prior knowledge

of the environment, and finite robot size.

ACKNOWLEDGMENTS

The authors would like thank Elon Rimon and Eric

Klavins for valuable discussions regarding graph-based ap-

proaches to multi-robot coverage and Howie Choset for the

use of his planar GVG construction software, which was

the basis for the graph construction step in our simulations.

REFERENCES

[1] H. Choset, “Coverage for robotics - a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[2] Y. Zhang, E. K. Antonsson, and A. Martinoli, “Evolving neural
controllers for collective robotic inspection,” Proc. of the 9th Online
World Conf. on Soft Computing in Industrial Applications, 2004.

[3] N. Correll and A. Martinoli, “Collective inspection of regular struc-
tures using a swarm of miniature robots,” Proc. of the Ninth Int.

Symp. on Experimental Robotics ISER-04, 2004.
[4] H. Choset and J. Burdick, “Sensor-based exploration: The hierarchical

generalized voronoi graph,” The International Journal of Robotics

Research, vol. 19, no. 2, pp. 96–125, 2000.
[5] C. S. Orloff, “A fundamental problem in vehicle routing,” Networks,

vol. 4, pp. 35–64, 1974.
[6] D. Ahr and G. Reinelt, “New heuristics and lower bounds for

the min-max k-chinese postman problem,” in Algorithms-Esa 2002,
Proceedings, ser. Lecture Notes in Computer Science, 2002, vol.
2461, pp. 64–74.

[7] G. N. Frederickson, M. S. Hecht, and C. E. Kim, “Approximation
algorithms for some routing problems,” SIAM Journal on Computing,
vol. 7, no. 2, pp. 178–193, 1978.

[8] T. F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,” Theoretical Computer Science, vol. 38, no. 2-3, pp. 293–
306, 1985.

[9] J. Edmonds and E. L. Johnson, “Matching, euler tours, and the
chinese postman,” Mathematical Programming, vol. 5, pp. 88–124,
1973.

734

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 14,2010 at 21:02:38 UTC from IEEE Xplore. Restrictions apply.

