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Abstract

A recent flooding algorithm [1] guaranteed correctness
for networks with dynamic edges and fixed nodes. The al-
gorithm provided a partial answer to the highly dynamic
network (HDN) problem, defined as the problem of devising
a reliable message-passing algorithm over a HDN, which is
a network – or a network mobility model – where edges and
nodes can enter and leave the network almost arbitrarily.

In this paper, we relax the flooding algorithms’ assump-
tions by removing the requirement that the network stays
connected at all time, and extend the algorithm to solve
the HDN problem where dynamic nodes are also involved.
The extended algorithm is reliable: it guarantees message-
passing to all the destination nodes and terminates within
a time bounded by a polynomial function of the maximum
message transit time between adjacent nodes, and the max-
imum number of nodes in the network.

1 Introduction

Message-passing algorithms are among the most impor-
tant algorithms in network communication. There are many
different network message-passing algorithms for specific
types of communication networks. This paper focuses on
message-passing algorithms on mobile networks.

Mobile networks belong to a class of communication
networks where nodes are “moving” with respect to the
other nodes in a generalized parameter space that may in-
clude their physical location, antenna direction, transceiver
power, and so on. In this general view, the notions of “mo-
bility” and “motion” are not restricted to physical location.

These nodal motions affect the nodal edges, resulting in a
dynamic network, broadly defined as a network with evolv-
ing topology and parameters. In practice, dynamic / mobile
networks are most commonly implemented as wireless net-
works. Thus, in this paper, we interchange the terms dy-
namic network, wireless network, and mobile network.

When one talks about the space of all dynamic networks,
one really talks about a vast and diverse spectrum of net-
works with different node and edge mobility models. On
one extreme of the spectrum, we have the static network
mobility model. In such a mobility model, communication
nodes and edges move very slowly that they are assumed to
be constant. On the other extreme of the spectrum, we have
the stochastic network mobility models, where communi-
cation nodes and edges move almost unpredictably, and the
only reasonable description of network motion is in terms
of its stochastic parameters.

In this paper, we describe the highly dynamic network
(HDN) mobility model that lies somewhere between these
extremes. This mobility model is patterned after the model
presented in [1]. In a dynamic network, nodes move in such
a way that nodes and edges enter and leave the network as
time evolves. We refer to these motions as the node and
edge mobility, respectively. The HDN model is defined by
a set of assumptions that distinguishes it from other types of
dynamic networks. We describe them in detail in section 2.

The biggest question addressed in this paper is the HDN
problem: is there a reliable message-passing algorithm for
a HDN with node and edge mobility? A reliable algorithm
guarantees that a message from the source reaches the des-
tination nodes in a polynomially-bounded time period, i.e.,
it satisfies the correctness and termination criteria.

Previous message-passing algorithms in [2, 3, 5, 6, 8, 9]
did not consider the HDNs and imposed stringent condi-
tions on the network model. In [1], O’Dell and Wattenhofer
designed flooding algorithms for dynamic networks with
dynamic edges and fixed nodes. Among the assumptions
used: the network stays connected at all time, and evolves
slower than the message transit time. We found that the al-
gorithm COUNTERFLOODING (CF) in [1] can be adapted
to solve the HDN problem with dynamic nodes and edges.

The main contribution of this paper is in extending CF to
a HDN model that supports node and edge mobility. First,
we provide an alternative proof to CF. Our proof relaxes
the various assumptions used in CF, most importantly the
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stringent requirement that the network stays connected at
all time. Next, we prove correctness and termination of the
extended algorithm under the HDN assumptions.

The theoretical results presented in this paper describe
the explicit set of assumptions required for guaranteed cor-
rectness and termination of flooding algorithms in a HDN.
These results complement the results in [7, 10], which re-
ported empirical success of the flooding algorithms called
probabilistic routing and epidemic routing in the intermit-
tently connected networks similar to the model in [1].

2 Formulation

Consider a set V containing all the network nodes un-
der consideration. In practice, the number of nodes |V |
might only be known up to an upper bound V̄ . For wireless
networks, these nodes represent wireless devices character-
ized by a generalized coordinate that specifies the devices’
identity, physical location, antenna directivity, transceiver
power, protocol, etc. Dynamic nodes “move” in their gen-
eralized coordinate and alter the network itself.

Denote by V (t) or Vt the subset of V containing all non-
isolated nodes in V with degree greater than zero at a given
time t. The nodes v1 and v2 ∈ V (t) are connected at time
t if a hypothetical message with infinite speed launched
from either node can reach the other. Disconnection may
be due to incompatible protocol, path obstruction, insuffi-
cient power, internal filtering, or masking. Denote by v0 the
source node, and by Vd the set of all destination nodes d.

Connectivity between v1 and v2 at time t is represented
by an edge e(1, 2, t), also denoted by e12(t), e(t), or simply
e. Denote by E, Et, or E(t) the set of all edges e at time t,
and by N(v, t) the set of all neighboring nodes to v at time
t. At any given time t, the network is represented by V (t)
and E(t), forming a graph G, also denoted by Gt, G(t), and
G(Vt, Et). Fig. 1 shows the sets V , G(t), V (t), and E(t).

V

V (t)

d

v0

Figure 1: The sets V , G(t), V (t), and E(t)

The graph G(t) is a dynamic system with discrete events
that originates from the network’s moving parts. From its
two types of moving parts, G(t) has two types of events.

(a) The connectivity-driven events c = c(v, t) are gen-
erated (and received) by the nodes v – the network’s main
moving parts – whenever they gain or lose edges. For now,
assume instantaneous detection of connectivity change. The
case with delay is discussed later.

Denote by Cv = { t | N(v, t−ε) �= N(v, t+ε) } the set
of all events c(v, t) at a given v. Thus, Cv contains v’s local
vertex events. Denote by C =

⋃
v Cv the network global

events. The events c(v, 0) mark the “creation” of G(t).
(b) The message-driven events m(v, t) are triggered at

v when a new message m from v′ �= v is received. Be-
side nodes, messages are also network moving parts as they
move between the nodes in G. Denote by Mv the set of
m(v, t), and M the global counterpart.

We discussed how G(t) consists of its dynamic compo-
nents V (t) and E(t). The set V consists of two comple-
mentary sets of all nodes visited by (and thus stored) the
message, and those yet to be visited, and still waiting for
the message denoted by V•(t) and V◦(t), as shown in Fig.
2. At t = 0, V•(0) = {v0}, and V◦(0) = V \{v0}.

V

V (t)

d

v0

V•(t)

V◦(t)

Figure 2: The sets V•(t) and V◦(t)

Depending on whether a node v is in V•(t) or V◦(t), it
processes the incoming events using the following schemes.
If triggered by c(v, t), a node v ∈ V•(t) retransmits the mes-
sage m in its storage to its neighbors N(v, t). If triggered by
m(v, t), v retransmits and stores m. When v ∈ V•(t) leaves
V (t′ > t), it remains in V•(t′) and retains all its data.

With this scheme, a message m from the source node v0

floods other nodes, including the destination nodes d ∈ Vd.
Arrival of m at Vd depends on: (a) how far the nodes d ∈ Vd

are from v0, (b) how rapidly E(t) and V (t) change, and (c)
how fast m travels from v′ ∈ V (t) to N(v′, t).

Assumptions need to be made on G(t) to ensure arrival
of m at Vd within a finite amount of time. This requirement
is effectively the correctness and termination criteria for a
reliable message-passing algorithm on a dynamic network.
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We begin by reviewing the assumptions used by O’Dell
and Wattenhoffer in the definition of the CF algorithm [1]
before discussing the assumptions used here:

1. Edge mobility, but not node mobility, i.e., V (t) = V ,
2. E(t) is such that G(t) stays connected at all time,
3. Any change ΔE(t) in E(t) instantaneously triggers

connectivity-driven events at all the nodes affected,
4. Adjacent nodes can pass messages in less than τ ,
5. Consecutive events in Cv are separated by at least τ ,
6. Nodes store the messages they receive, and
7. Nodes know the value of V̄

In the HDN assumptions used in this paper, assumptions 4,
5, and 7 are the same as the ones made in [1], but the other
assumptions are relaxed, and assumption 6 is made explicit:

1. Node and edge mobility,
2. E(t) is such that each node d in Vd stays connected to

at least one node v in V•(t) at all time,
3. Events in Cv may be delayed from ΔE(t),
4. Adjacent nodes can pass messages in less than τ ,
5. Consecutive events in Cv are separated by at least τ ,
6. Nodes store the messages they receive for τm, and
7. Nodes know the value of V̄

In this paper, assumption 3 is generalized by introducing a
delay between the actual connectivity change ΔE(t) and
its corresponding event c(v, t). Without this delay, a node
needs to continuously broadcast its presence, resulting in
poor energy efficiency. We assume that the nodes beacon
their presence periodically every τc. This signal can be used
to detect disconnections. In section 3, we derive the mini-
mum τm required for reliable message-passing.

The receiving node masks the incoming beacon signal if
it comes from a neighboring node that already sent the same
message. Due to delay, assumption 5 should really say: ad-
jacent events in Cv are separated by at least max(τ, τc).

3 Algorithm

In this section, we prove that CF is a reliable algorithm
that solves the HDN problem. To prove this, we first prove
the following claim that the number of nodes visited by the
message at time t + 2τ is always strictly larger (by at least
one node) than the number of nodes with message at t, as
long as there is at least one destination node without the
message. First, let us review the CF algorithm listed below.

1: if message m(v, t) is received for the first time then
2: Broadcast message m
3: k ← 0
4: end if
5: if event c(v, t) is received then
6: if k < 2V̄ then
7: Broadcast message m
8: k ← k + 1
9: end if

10: end if

Lemma 1 |V•(t + 2τ)| > |V•(t)| when Vd ∩ V◦(t) �= ∅.

Consider one of the destination nodes d ∈ Vd. Denote by
V•(d, t) all nodes in V•(t) connected to d. By assumption
2, V•(d, t) �= ∅ at all time t. Refer to Fig. 3. Assumption 2
also implies that as long as d ∈ V◦(t), there is at least one
node u ∈ V•(d, t) that is adjacent to some nodes v ∈ V◦(t)
(to see why this is true, consider the case where v = d ).
Denote by V◦(d, t) all such adjacent nodes in V◦(t).

V

V (t)

d

v0

↑

↑

↓

↓

↓
d

Vd

V•(t)

V◦(t)

Figure 3: V•(d, t)(↑), V◦(d, t)(↓), E(d, t), and Vd.

Denote by E(d, t) the set of all edges connecting the
nodes u ∈ V•(d, t) to the nodes v ∈ V◦(d, t). Consider
an edge e ∈ E(d, t) connecting u and v.

Two types of events trigger a message transmission from
u to v: (a) when u detects the presence of v at time tc,
the event c(u, tc) ∈ Cu is generated, and (b) when a new
message m reaches u at time tm and converts u into the set
V•(d, tm), the event m(u, tm) is generated. If a message
has been previously received, no event is generated.

Now, we define the relationship between t, tm, and tc.
We know that u and v are already connected at time t, so
tc < t. Further, since u ∈ V•(d, t) at time t, then tm < t.
However, either tm < tc or tc < tm, as shown in Fig. 4.

tmtc t

ttm tc

V (t)

d

v0

↑

↑

↓

↓

↓
d

Vd

Figure 4: Two possible orders between t, tc, and tm
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In the first case of tm < tc, the connection is established
after u already receives and stores the message, while in
the second case of tc < tm, the message arrives after con-
nection between u and v is established. In both cases, the
message m is transmitted from u to v at time max(tm, tc).
Let us consider these two mutually exclusive cases:

(a) If the message is transmitted at tc, then by assumption
4 of HDN, it reaches v within τ . By assumption 5, up to
time tc+τ : (i) the connection e established at time tc cannot
be broken, and (ii) the node v cannot leave the network.
Otherwise, either one of these will produce an event in Cu

less than τ apart from the previous event.
Therefore, at tc + τ , the node v joins V•. How about

at t + 2τ ? If we set τm in assumption 6 to a very large
number for now, then at t + 2τ , the node v remains in V•.
If the above is true for an edge e, then at t + 2τ , the set V•
grows by one, and V◦ shrinks by one from their size at t.

(b) If the message is transmitted at tm, then the situation
is more difficult. Within the transit time τ for m to reach v
from u, e might disconnect, or v might leave the network.
In fact, these events might take place even before tm!

We invoke assumption 2 to prove that such a failure can-
not happen on all the edges in E(d, t). If failure does not
occur on the edge e, then assuming a large τm, a successful
message transmission on e increases the size of V• by one,
and decreases the size of V◦ by one at tm + 2τ .

To prove this claim, consider separate timelines for each
edge in E(d, t), aligned with marks placed at time t. A
message traveling along an edge e is represented by an in-
terval [tm, tm + τ ], placed on the timeline such that tm ≤
t ≤ tm + τ . Since several edges may originate from the
same node and thus have the same tm, some intervals oc-
cupy identical locations on their timelines. Refer to Fig. 5.

t

tm

t + τ

Figure 5: The timelines for E(t) showing transit and dead regions

For a particular edge e ∈ E(d, t), let td denote the time
when either e disconnects, or v leaves the network. Since e
exists at t, then td > t. If t ≤ td < tm+τ , then the message

fails to reach v. For ∀e ∈ E(d, t), call the region [td, td +τ ]
the dead region d(e, td). Again, since several edges may
head toward the same node and have the same td, some of
these dead regions occupy identical time regions.

Select two of the timelines with the maximum and min-
imum values of tm – denoted by tm

∗ and tm∗ – with their
associated intervals. They must overlap because they both
contain t. If these two extreme intervals overlap, then so
must the other intervals with tm∗ < tm < tm

∗.
Suppose dead regions exist in all the intervals. Using

the above argument, the dead regions of the maximum and
minimum intervals must overlap because they contain t+τ .

If all the intervals contain dead region, then they all over-
lap at t+τ , i.e, the nodes in V•(d, t) are completely discon-
nected from those in V◦(d, t), and consequently from the
destination node d, violating assumption 2.

Therefore, to preserve connectivity, there must be at least
one interval without a dead region. A message successfully
transmitted along the edge corresponding to this interval
converts one node v from V◦ to V• sometime between the
edge’s tm and tm+τ . Assuming a large τm, then at t+2τ , v
stays in V•, implying that the set V• grows by one node, and
V◦ shrinks by one node from their sizes at t. So we proved
cases (a) and (b) and continue with the rest of the proof.

So far, we assume that d ∈ Vd is part of V◦(t), separated
from the nodes u ∈ V•(d, t) by zero or more nodes v ∈
V◦(d, t). For now, assume that d �∈ V◦(d, t). At least one
of the nodes in V◦(d, t) must remain connected to V•(d, t)
to satisfy assumption 2. Consequently, one of the nodes in
V◦(d, t) then joins V•(d, t + 2τ) at a later time. This proves
that |V•(d, t + 2τ)| > |V•(d, t)| when d ∈ V◦(d, t).

V

V (t)

d

v0

↑

↑

↓

↓

↓
d

Vd

V•(t)

V◦(t)

Figure 6: The arrows indicate allowable transitions of the network
nodes in the sets V◦(t), V•(t), V (t), and V \V (t) for HDN.

This process is repeated until d ∈ V◦(d, t) (or equiva-
lently, until N(d, t) ∩ V•(d, t) �= ∅). When d ∈ V◦(d, t),
then it will have received a message from a node in V•(d, t)
at t + 2τ . Once d ∈ V•(t), then one of its neighbors
n ∈ N(d, t) are also in V•(t) and assumption 2 is automati-
cally met. Consequently, the remaining nodes in V◦(t) may
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or may not be in contact with the other nodes in V•(t). This
proves that |V•(d, t + 2τ)| ≥ |V•(d, t)| when d ∈ V•(t).

Imagine the same process happening in parallel to all the
destination nodes in Vd as shown in Fig. 6. Nodes in V•(t)
may leave V (t) and become isolated, but when they re-enter
the network at t′ > t, they will be in V•(t′). The nodes in
V◦(t) is converted to V•(t + 2τ) one by one.

The arrows in Fig. 6 indicate these transitions. Since |V |
is finite, the entire Vd is guaranteed to ultimately join V• at
some time t∗, at which point V•(t > t∗) may or may not
grow further. Thus we have finally proved lemma 1. �

Having proven the preceding lemma 1, we now prove
that the CF algorithm is a solution to the HDN problem.

The algorithm requires one input V̄ and intercepts two
types of events: the connectivity-driven events c(v, t) and
the message-driven events m(v, t). When the message is
first received at v, the counter k is reset to 0, and the mes-
sage is retransmitted to N(v, t). If v is notified of a neigh-
borhood change with the arrival of c(v, t), it increments the
counter k by one until it reaches the maximum 2V̄ .

Theorem 1 The algorithm CF solves the HDN problem
and terminates in less than 2 τ V̄ .

To prove that CF is a solution to the HDN problem, we have
to prove two things. First, we have to prove that a message
sent from the source using CF under the HDN assumption
is guaranteed to reach the destination nodes. However, this
was already proved in lemma 1. The counter k is used to
ensure that CF does not broadcast after termination.

Second, we have to prove that CF ends in finite time.
Consider one destination node d. In the worst case scenario,
|V•(t)| is equal to 1 at t = 0 (where V•(0) contains only the
source v0 ), is equal to 2 at t = 1, is equal to 3 at t = 2 and
so on, up to t = 2τ (V̄ − 1) where |V•(t)| = |V | ≤ V̄ .

Therefore, we can say that by t = 2τ V̄ , the message has
reached the destination nodes. In other words, CF termi-
nates in less than 2 τ V̄ . This completes our proof. �

Algorithm CF can also be extended to support multiple
messages simultaneously. From the listing, we can see that
if the simple counter k is converted into an array km indexed
by the message, then CF terminates after all km = V̄ .

So far, we assume a large value of message retention time
τm to ensure that when a node in V•(t) leaves V (t), it re-
turns into V•(t′) some time t′ > t later. However, while
these nodes need to pass many messages over its lifetime,
realistically, most HDN nodes only have a limited amount
of storage which also stores N(v, t) used to detect c(v, t).

Therefore, the nodes cannot keep their messages indefi-
nitely — a large value of τm. From theorem 1, if the nodes
have access to a synchronized network clock, then they need
to keep only messages 2 τ V̄ and younger (relative to the
origination timestamps). Otherwise, messages 4 τ V̄ and
younger (relative to the local receipt time) are needed.

There are other flooding and routing algorithms in [1]
that use slightly modified assumptions from those used in
CF. For example, the algorithm LISTFLOODING (LF) does
not assume that V̄ is available. Instead, it assumes that the
nodes have unique identifiers used to estimate V̄ .

Since these algorithms also use CF as their main ingredi-
ent, they too can be easily extended using lemma 1 to solve
the modified HDN problems. Thus, we omit this derivation.

Finally, we observe that the connectivity assumption of
a HDN can be relaxed even further without affecting the
reliability of CF! Assumption 2 can be restated as: E(t)
is such that at any time t, there is at least one connection
between one node in V◦(t) and another node in V•(t).

The proof of this assertion is quite simple and sketched
as follows. By requiring that at least one node in V◦(t) is
connected to a node in V•(t) at all time, we can use the
same argumment as in lemma 1 and state that |V•(d, t +
2τ)| ≥ |V•(d, t)|. Since the number of nodes in V is finite,
eventually d will be connected to a node in V•. In the worst
case scenario, the nodes in Vd are the last nodes to receive
the message, implying an identical upper bound.
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