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ABSTRACT
We have found the peculiar galaxy NGC 922 to be a new drop-through ring galaxy using

multiwavelength (ultraviolet–radio) imaging and spectroscopic observations. Its ‘C’-shaped

morphology and tidal plume indicate a recent strong interaction with its companion which

was identified with these observations. Using numerical simulations we demonstrate that the

main properties of the system can be generated by a high-speed off-axis drop-through collision

of a small galaxy with a larger disc system, thus making NGC 922 one of the nearest known

collisional ring galaxies. While these systems are rare in the local Universe, recent deep Hubble
Space Telescope images suggest they were more common in the early Universe.

Key words: galaxies: individual: NGC 922 – Galaxy: structure.

1 I N T RO D U C T I O N

Interests in ring galaxies as examples of galaxy collisions date

back to early simulations of the famous Cartwheel galaxy (Lynds

& Toomre 1976), which was modelled by a small galaxy pass-

ing through a larger one. This interaction is thought to spread out

stellar populations, induce star formation and thicken the disc of

�Based on observations with the NASA Galaxy Evolution Explorer
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Technology under NASA contract NAS5-98034.
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the larger galaxy. Here, we present observations of the peculiar

galaxy NGC 922 which Block et al. (2001) describe as a dust-

obscured grand design spiral. Here, we argue that it is in fact a

particularly nearby example of this phenomenon and we identify its

perturber.

We find striking resemblances between this galaxy and several

high-redshift galaxies categorized as clump cluster galaxies by

Elmegreen et al. (2005). Since both galaxy density and the disper-

sion about the Hubble flow increase with redshift, the probability

of interactions between galaxies should also increase. Hence, ring

galaxies should be more common in the early Universe.

Our intent in this discovery paper, is to present the available ob-

servational properties of the system, identify the companion and
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demonstrate that the system can be accounted for by an off-axis

collision model. We describe our multiwavelength observations in

Section 2. Section 3 presents our numerical simulations, which

reproduces ring morphology of NGC 922 from simple dynamical

modelling.

2 O B S E RVAT I O N S

The Survey for Ionization in Neutral Gas Galaxies (SINGG Meurer

et al. 2006) and its sister survey, the Survey of Ultraviolet emis-

sion of Neutral Gas Galaxies (SUNGG) are surveys in the Hα and

ultraviolet (UV) of an HI-selected sample of galaxies from the H I

Parkes All-Sky Survey (HIPASS; Meyer et al. (2004), Koribalski

et al. (2004)). SINGG consists of optical R-band and Hα images

obtained primarily from the 1.5-m telescope at Cerro Tololo Inter-

American Observatory (CTIO), Chile. The Galaxy Evolution Ex-

plorer (GALEX) satellite telescope is used to obtain the far-UV

(FUV) 1515-Å images and near-UV (NUV) 2273-Å images for

SUNGG.

In addition, observations from the six-degree Field Galaxy Survey

(6dFGS; Jones et al. 2004) and the two-Micron All-Sky Survey

(2MASS; Jarrett et al. 2000) were also used.

2.1 Multiwavelength morphology and luminosity

Two Hα sources, HIPASSJ0224−24:S1 (NGC 922) and

HIPASSJ0224−24:S2 (2MASXJ02243002−2444441) were

identified with the SINGG data (Meurer et al. 2006). For conve-

nience, we refer to the first source as NGC 922 and its companion

as S2 in this paper. A deep grey-scale optical image of the NGC 922

field created from UK Schmidt plates, courtesy David Malin1 is as

shown in Fig. 1 where NGC 922 is located in the south-east corner

and its companion is projected 8.2 arcmin (102 kpc) towards the

north-west. The enlarged images of NGC 922 and S2 are colour

composite images where red represents Hα, green represents

R band and blue represents FUV. The distance of 43 Mpc to the

NGC 922/S2 system was derived from the HI radial velocity, using

the Mould et al. (2000) distance model and adopting a Hubble

constant H0 = 70 km s−1 Mpc−1 (Meurer et al. 2006). Young star

forming regions in the ring of NGC 922 are revealed with the

Hα and FUV observations. As shown clearly in the deep optical

image from Fig. 1, a spray of stars (only visible in R band in the

bottom colour image) from NGC 922 can be seen to be extending

towards S2.

The Hα equivalent width (EW) profile and the radial colour pro-

files of NGC 922 are shown in Fig. 2. All the profiles were generated

with the same isophotal parameters using the task ELLIPSE in IRAF.2

Concentric ellipses were fitted in each image centred on the location

of the NUV brightness peak. The surface brightness radial profile

was then measured as a function of semimajor distance from that

location. The position angle of NGC 922 is 51◦. It can be seen from

the Hα EW profile that the brightness peak in Hα (at 5 arcsec) is

slightly displaced from the NUV brightness peak. The central colour

dip corresponds to the central peaks in FUV and NUV. The two main

peaks in the Hα EW profile correspond to the core of the galaxy

(R ∼ 5 arcsec) and the ring (R ∼ 50 arcsec). Likewise, the FUV–

1 http://www.aao.gov.au/images/deep html/n0922 d.html
2

IRAF is distributed by the National Optical Astronomy Observatories, which

are operated by the Association of Universities for Research in Astronomy,

Inc., under cooperative agreement with the National Science Foundation.

Figure 1. The grey-scale optical image (top) is a deep image from digitally

stacked plates of NGC 922 (bottom left-hand side) and S2 (top right-hand

side). The height of the grey-scale image is ∼4 arcmin. The enlarged im-

ages are SINGG–SUNGG composite images of NGC 922 and S2 where red

represents Hα, green represents R band and blue represents FUV. A diffuse

plume of stars on the north-western side of NGC 922 can be seen in the

R band to be extending towards the companion.

Figure 2. The Hα EW (radial) profile of NGC 922 is shown on the left-hand

panel and radial colour profiles of NGC 922 are shown on the right-hand

panel where the FUV–NUV and FUV − R colour profiles are represented

by the dotted and solid lines, respectively.

NUV colour profile shows minima at these radii. Hence, star forma-

tion is enhanced in the core and especially the ring. This indicates

that star formation is propagating in NGC 922. We also find the inner

regions of NGC 922 to be slightly redder, presumably older, than

the outer regions as shown by the FUV − R profile in Fig. 2, and

in agreement with ring galaxy model predictions (e.g. Hernquist &

Weil 1993)

The optical spectra and near-infrared (NIR) images (JHK bands)

of NGC 922 and S2 were obtained from the 6dF Galaxy Redshift

Survey (Jones et al. 2004) and the 2MASS Extended Source Cata-

logue (Jarrett et al. 2000), respectively. Radial velocities of NGC 922

and S2 were measured from the spectra and are as listed in Table 1.

The fibre diameter of the 6dF instrument is 6.7 arcsec which trans-

lates to an aperture size of 1.4 kpc for NGC 922.

Both the NUV and FUV magnitudes were corrected for fore-

ground Galactic reddening using the relationships of Seibert et al.

(2005) based on the dust reddening maps of Schlegel, Finkbeiner

& Davis (1998). The FUV attenuation (AFUV) due to internal
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Table 1. Observed properties of NGC 922 and S2.

Properties NGC 922 S2

Right ascension (J2000) 02:25:04.4 02:24:30.0

Declination (J2000) −24:47:17 −24:44:44

vh (km s−1) 3077 3162

E(B − V )G (mag) 0.019 0.018

E(B − V )i (mag) 0.21 0.23

(M R)0 (AB mag) −21.59 −18.45

(FUV–NUV)0 (AB mag) −0.09 −0.08

(NUV − R)0 (AB mag) 1.52 1.32

(R − J )0 (AB mag) 0.90 0.75

(J − H )0 (AB mag) 0.54 0.44

(H − K )0 (AB mag) 0.16 0.58

f 0(Hα) (10−12 erg cm−2 s−1) 4.65 ± 0.18 0.145 ± 0.017

EW Hα (Å) 77 ± 3 43 ± 5

extinction was also calculated using the FUV–NUV relations by

Seibert et al. (2005). A more direct method of estimating AFUV, us-

ing the ratio of the IRAS far-IR (FIR) flux with the FUV flux (Meurer,

Heckman & Calzetti 1999), was also calculated for NGC 922. Both

AFUV values are comparable and equal 1.09 and 0.95 using the

Seibert et al. (2005) and the Meurer et al. (1999) methods, respec-

tively. This derived AFUV is lower than most of the attenuations

found in the local UV bright starburst galaxies (Meurer et al. 1999).

IRAS data is not available for S2 and so the Seibert et al. (2005)

method is used for both NGC 922 and S2.

The intrinsic fluxes [ f 0(λ)], free from internal dust extinction, of

NGC 922 and S2 were calculated from the observed fluxes [f (λ)]

for the NUV, R, J, H and K measurements via

f0(λ) = f (λ)100.4E(B−V )ik
e(λ), (1)

where E(B − V )i is the reddening excess intrinsic to the galaxy

which can be estimated using the relationships found in Calzetti,

Kinney & Storchi-Bergmann (1994). The extinction relations for

the stellar continuum [ke(λ)] were calculated from the correlations

determined by Calzetti et al. (2000). The intrinsic Hα fluxes were de-

rived from the intrinsic R-band attenuation (A R,i) from the adopted

relation AHα,i ≈ 2A R,i (Calzetti et al. 1994). A summary of fore-

ground and internal extinction values in addition to the observed

properties of NGC 922 and S2 from SINGG, SUNGG and 2MASS

can be found in Table 1.

2.2 SFR, metallicity and mass

The star formation rate (SFR) was calculated by (i) using the Hα

luminosity, L Hα (erg s−1) (Kennicutt, Tamblyn & Congdon 1994):

SFRHα = LHα

1.26 × 1041
(2)

and (ii) using the FUV luminosity, L FUV (erg s−1 Hz−1) (Kennicutt

1998):

SFRFUV = 1.4 × 10−28 LFUV. (3)

The SFR calculated from method (i) for NGC 922 and S2 are 8.2 and

0.26 M� yr−1, respectively. Similarly, the SFR calculated using the

FUV luminosities for NGC 922 and S2 are 7.0 and 0.47 M� yr−1,

respectively.

The oxygen abundance [log(O/H) + 12] and metallicity (Z) can

be approximated using the integrated flux ratios of various emission

lines from the 6dF optical spectra. Within the wavelength range of

the 6dF spectra, it is possible to use the integrated flux ratios of the

[N II] and [S II] emission lines as well as the flux ratios of [N II] and

Hα (Kewley & Dopita 2002). The [N II]/[S II] = 1.12, 0.538 was

measured for NGC 922 and S2, respectively. Assuming the average

ionization parameter, q = 2 × 107 cm s−1, log (O/H) + 12 equals 9.0

and 8.6, respectively for NGC 922 and S2. These values indicate that

the metallicity of NGC 922 is ∼1.0 Z� and the metallicity of S2 is

∼0.5 Z�. Using the flux ratios of [N II]/Hα, log (O/H) + 12 equals

8.6 (∼0.5 Z�) and 8.3 (∼0.3 Z�) for NGC 922 and S2, respectively.

Using the luminosity–metallicity relation found by Lamareille et al.

(2004) for R-band luminosities in the local Universe, log (O/H) +
12 equals 9.1 and 8.3 for NGC 922 and S2, respectively. Both galax-

ies agree with the luminosity–metallicity relation.

The stellar mass (M �) of NGC 922 can be estimated using the

K-band fluxes and the calibrations of Bell et al. (2003). Using this

method, M � is approximately 5.47 × 109 M� for NGC 922, while

S2 has an order of magnitude less stars: M � = 2.82 × 108 M�,

assuming it is a typical S0-Sa galaxy (as judged by its morphology)

with B − V colour of 0.8 (Sparke & Gallagher 2000). Assuming

that the H I line profile is dominated by NGC 922 and its width

gives the rotational velocity at the optical radius, one can estimate

the enclosed dynamical mass using

Mdyn(R) = V 2
R R

G
, (4)

where VR ≈ 146 km s−1 is the inclination corrected rotational ve-

locity, the maximum radius of the R-band surface brightness profile

R = 13.4 kpc and G is the gravitational constant. This yields a

dynamical mass of 6.65 × 1010 M� within 13.4 kpc. The H I mass

(M H I) of NGC 922 was measured to be 1.2 × 1010 M� by HIPASS.

We see that 8 per cent and 20 per cent of the dynamical mass of

NGC 922 are due to the stellar and H I mass, respectively. It is prob-

able from these calculations that most of the mass can be attributed

to dark matter. The system is not in virial equilibrium and is ex-

panding. This will mean that the total mass is probably an over-

estimation. As yet, the only H I observation of NGC 922 does not

have enough spatial resolution to trace the neutral gas morphology

of the system, hence, higher-resolution H I mapping of this system

is needed to check if gaseous tails exist, such as the ones found in

the Cartwheel galaxy (Higdon 1996). This would further verify our

interacting companion. Table 2 summarizes the derived properties

of both NGC 922 and S2.

3 A NA LY S I S

Block et al. (2001) argue that the peculiar properties of NGC 922

mark it as a dust-obscured grand design spiral galaxy in the process

of assembly, and hence it largely results from secular (interaction-

free) evolution. Secular processes are indeed important in the present

epoch (Kormendy & Kennicutt 2004) and can even produce ring like

structures. However, in those cases the ring typically accompanies

Table 2. Derived properties of NGC 922 and S2.

Properties NGC 922 S2

log (O/H) + 12 8.6–9.0 8.3–8.6

Z (Z�) 0.5–1.0 0.3–0.5

SFRHα (M� yr−1) 8.20 ± 0.32 0.26 ± 0.03

SFRFUV (M� yr−1) 7.04 ± 0.02 0.47 ± 0.02

M � (M�) 5.47 × 109 2.82 × 108

M dyn (M�) 6.65 × 1010 –

M H I (M�) 1.2 × 1010 –
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a strong bar producing a θ morphology, quite different from what

is observed in NGC 922. While some aspects of the morphology of

NGC 922 may have a secular origin, the observed evidence for a

strong interaction is very compelling.

We propose that the outstanding properties of NGC 922 are likely

to be the result of a high-speed, off-centre collision between a gas-

rich disc galaxy and a dwarf companion for the following reasons.

(1) The stellar plume observed in NGC 922 extending towards S2 is

most likely to be caused by an external mechanism such as the tidal

interaction between NGC 922 and its companion galaxy. (2) Numer-

ous simulations (e.g. Hernquist & Weil 1993) have shown that ring

structures can be formed from outwardly propagating waves. (3)

From our observations of the flocculent region in between the cen-

tre and the ring of NGC 922, the ‘arms’ of the inner spiral observed

by Block et al. (2001) can be described as ‘spoke’-like structures

analogous to those observed in the Cartwheel galaxy. (4) The high

SFR and EW of NGC 922 and S2, coupled with the low gas cycling

time of the system indicates a recent starburst. We are aware that

this reason alone does not necessarily rule out a secular origin for

the global properties of NGC 922 since starbursts have been ob-

served in systems with no obvious companions (e.g. Meurer et al.

1996). Similarly, simulations show that if a bar or disc can be dis-

placed from the centre of mass in a galaxy, lopsided arms or a

single arm can result in a morphology similar to the partial ring

of NGC 922, although an external perturbation still may be needed

to excite the offset (Colin & Athanassoula 1989; Bournaud et al.

2005).

Although secular evolution may account for some of the observed

properties of NGC 922, we find that all the observed features of

NGC 922 can be explained by a high-speed, off-centre collision

between a gas-rich spiral and a dwarf, which we model below. Since

our main focus is on the observed properties of NGC 922, rather than

the details of the simulation results for a range of model parameters,

we present only the results for which the observed morphology

can be reproduced reasonably well. Detailed descriptions of the

numerical methods and techniques used to model the dynamical

evolution of interacting galaxies can be found in Bekki et al. (2002).

3.1 Model and simulations

NGC 922 and S2 are represented by a self-consistent disc galaxy

model and a point mass, respectively. The progenitor disc galaxy of

NGC 922 consists of a dark halo and a thin exponential disc. The

masses and distances are measured in units of total disc mass (M d)

and total disc size (Rd). Velocity and time are measured in units of

v = (GMd/Rd)1/2 and t dyn = (R3
d/GMd)1/2, respectively. The units

are scaled so that G = 1.0. The radial (R) and vertical (Z) density

profiles of the disc are assumed to be proportional to exp (−R/R0)

with scalelength R0 = 0.2 and to sech2(Z/Z 0) with scalelength

Z 0 = 0.04 in our units, respectively. The initial radial and azimuthal

velocity dispersions are added to the disc component in accordance

with epicyclic theory, and a Toomre parameter value of Q = 1.5

(Binney & Tremaine 1987).

The vertical velocity dispersion at a given radius is proportionally

half the radial velocity dispersion such as observed in the Milky Way

(e.g. Wielen 1977). Assuming that M d = 2.0 × 1010 M� and Rd =
13.4 kpc for the disc galaxy; v = 80.1 km s−1, t dyn = 164 Myr, radial

scalelength of the disc equals 2.68 kpc and the maximum rotational

velocity equals 145 km s−1. The total mass of NGC 922 enclosed

within Rd is 7.5 × 1010 M�. The gas mass fraction of the spiral

is assumed to be 0.2 and the Schmidt law (Schmidt 1959) with an

index of 1.5 (Kennicutt 1989) is adopted for star formation in the

disc galaxy.

The assumed mass ratio between the dwarf companion and the

spiral is 0.2. Xg and V g represents the initial locations and velocities

of the companion with respect to the centre of the disc galaxy. For

the model presented here, Xg = (x , y, z) = (−4Rd, 0.5 Rd, 0)

and V g = (v x , v y , v z) = (6v, 0, 0). The inclination of the spiral

with respect to the xy plane is assumed to be 80◦, hence the xy
plane roughly corresponds to the tangential plane of our images. The

adopted values of v x = 6v (corresponding to the relative velocity of

∼481 km s−1) and y = 0.5Rd (∼ 6.7 kpc) represents an off-centre

very high-speed collision. Note that stars that are initially within

the disc of the spiral are referred to as ‘stars’ (or ‘old stars’), while

the stars that are formed after the collision from the gas are referred

to as ‘new stars’.

3.2 Results

Fig. 3 describes how a ring galaxy is formed during an off-centre

collision between a spiral and its dwarf companion. The rapid pas-

sage of the companion through the disc initially causes the disc to

contract as it feels the mass of the companion and then to expand as

the mass disappears, resulting in an expanding density wave (Lynds

& Toomre (1976); Hernquist & Weil (1993)). Within 0.2 Gyr of the

spiral–dwarf collision, a non-axisymmetric ring-like structure and

a tidal plume composed mainly of gas and old stars are formed.

Owing to the strong compression of the disc gas, new stars have

formed along the C-shaped ring.

In comparison to our observations, the observed morphology of

NGC 922 is best matched by the simulated model at 0.33 Gyr after

the collision. At T = 0.33 Gyr, the radius of the ring is ∼14–15 kpc

and the distance between the simulated disc galaxy and its compan-

ion is ∼104 kpc. These values are comparable to both the observed

radius of NGC 922 and the projected distance between NGC 922

and S2.

In Fig. 3, the companion is no longer visible at T = 0.33 Gyr

due to its high relative velocity, while v z(T = 0.33) ∼203 km s−1

of the intruder is in reasonable agreement with the radial velocity

Figure 3. Morphological evolution of a gas-rich, bulgeless spiral colliding

with a dwarf companion (represented by a big pink dot). Time (T) in Gyr

since the start of the simulation is shown in the upper left-hand corner of each

panel. Stars, gas and new stars are shown in green, red and blue, respectively.

For clarity, dark matter particles are not shown. The companion comes from

the left-hand side and passes through the central region of the spiral. Note that

the simulated ‘C-shaped’ morphology is strikingly similar to the observed

morphological properties of NGC 922.

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 370, 1607–1611
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difference between NGC 922 and S2. In conclusion, the observed

ring morphology of NGC 922 can be reproduced simply by passing

a point mass through a disc galaxy as shown above.

4 C O N C L U S I O N S

Block et al. (2001) showed that the structure of NGC 922 deter-

mined from Fourier decomposition of IR images is similar to that

of grand-design spirals, which are presumably evolving in a secu-

lar fashion. Hence the dominant galaxy may originally have been a

spiral. However, concentrating on the IR properties minimizes the

significance of the star formation event which is well traced by our

Hα and UV observations. These show a very disturbed morphology.

The most compelling argument for a drop through encounter in the

NGC 922 system is the ease in which this scenario can account for

all the major features of the system: the off-centre star forming bar,

a nearly complete star forming ring, the low-mass companion and

the plume of stars apparently directed at the companion. We are not

aware of any self-consistent secular models which also produce all

these features.

Although ring or ring-like galaxies only account for 0.02–

0.2 per cent of all spiral galaxies (Athanassoula & Bosma 1985)

in the local Universe, they should be more common at higher red-

shifts, since both galaxy density and the dispersion about the Hub-

ble flow increase with redshift. C-shaped rings like that in NGC 922

should be more common at all redshifts than complete rings like the

Cartwheel galaxy, since off-axis collisions are more likely than on-

axis ones. Indeed, five out of the eight example high redshift clump
cluster galaxies shown by Elmegreen et al. (2005) have a ring or

partial ring morphology.

Our observations and simulations demonstrate that the ring galaxy

NGC 922 can be formed by the slightly off-axis passage of a dwarf

companion through the disc of a spiral galaxy. A series of expand-

ing density waves consisting of both stellar and gaseous material

result from the collision and enhanced star formation in the ring

and the core of NGC 922 (due to the compression of the displaced

gas) is observed. We are not able to discuss the star formation in-

duced in the companion from these simulations since we simply

modelled the companion as a point mass. In the future, more so-

phisticated simulations could probe the star formation scenario and

stellar populations of the companion, while H I synthesis observa-

tions of the system could check for the existence of a gaseous tail

between NGC 922 and S2.
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