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The detection of gravitational waves from compact binaries relies on a computationally burdensome

processing of gravitational-wave detector data. The parameter space of compact-binary-coalescence

gravitational waves is large and optimal detection strategies often require nearly redundant calculations.

Previously, it has been shown that singular value decomposition of search filters removes redundancy.

Here we will demonstrate the use of singular value decomposition for a composite detection statistic. This

can greatly improve the prospects for a computationally feasible rapid detection scheme across a large

compact binary parameter space.
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I. INTRODUCTION

Ground-based laser-interferometric gravitational-wave
detectors have demonstrated sensitivity to gravitational-

wave strain at the level of 10�22=
ffiffiffiffiffiffi
Hz

p
or better for fre-

quencies between 80–1000 Hz [1–3]. Later this decade
advanced detectors will surpass the present sensitivity by
a factor of�10 [4,5]. One of the most promising sources of
gravitational waves is the merger of two compact objects
[6]. Advanced detectors are expected to detect on the order
of 40 neutron star–neutron star merger events per year [7,8]
and a similar number of mergers involving black holes.
The exact parameters of the signals, such as mass and spin
of the component objects, will not be known ahead of time.
Therefore, the optimal detection strategy must include the
possibility of detecting signals with unknown parameters.
Matched filtering has been employed to search this pa-
rameter space [9,10]. The parameter space is explored by
choosing a discrete set of filters that guarantees that all
signals within the parameter space are found with a signal-
to-noise ratio (SNR) greater than �97% [11] of the maxi-
mum possible. Recently it has been shown that the use of
singular value decomposition can reduce the number of
filters necessary to search the parameter space [12]. This
paper extends that work to explore use of the singular value
decomposition (SVD) filter outputs for detection without
reconstructing the physical template waveforms.

If one is interested only in knowing whether any of the
signals is present, and not which one is present, then
the problem of detection decouples from that of parameter
estimation. Wainstein and Zubakov [13] describe the

problem of detecting any of several signals without con-
cern for parameter estimation as ‘‘composite detection.’’
This paper will explore the composite detection of compact
binary signals using the techniques proposed in [12]. We
find that the composite detection statistics explored pro-
duce a lower detection efficiency at a fixed false alarm
rate than traditional approaches. However, when combined
hierarchically with traditional approaches, the combined
approach can perform as well at low false alarm rate, but
with reduced computational cost.

II. COMPOSITE DETECTION OF COMPACT
BINARY SIGNALS

We will consider an unknown gravitational-wave
signal arising from a compact binary coalescence in the
digitized gravitational-wave detector output as a vector of
data points parametrized by an unknown amplitude A and a
collection of unknown parameters �� (e.g., the masses of the
component bodies) that determine the shape of the signal.
Wewill denote this signal as Asð ��Þ. Both the amplitude and
the shape parameters are not known a priori. The relative
frequency of parameters in the population is described by
the probability density function pðA; ��Þ. We will assume
the joint distribution pðA; ��Þ is separable, that is, pðA; ��Þ ¼
pðAÞpð ��Þ. This is not generally true globally across the
parameter space, but it should be roughly true locally. We
will denote the vector of discretely time-sampled strain
data as h. In addition to containing normally distributed
noise, n, h will possibly contain the gravitational-wave
signal with amplitude A and parameters ��,

h ðA; ��Þ ¼ nþ Asð ��Þ: (1)

Assuming the noise has unit variance and sð ��Þ is normal-
ized such that the inner product of it with itself is unity, A is
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the expected value for the SNR of a signal after optimally
filtering with a template matching sð ��Þ.

The optimal detection statistic is the marginalized like-
lihood

� ¼ pðhjsÞ
pðhj0Þ ; (2)

where pðhjsÞ is the probability of obtaining h given the
presence of any signal, with the signal parameters A, ��
integrated out,

pðhjsÞ ¼
Z
V

Z þ1

�1
pðhðA; ��ÞjA; ��Þpð ��ÞpðAÞdAd ��; (3)

and pðhj0Þ is the probability of obtaining h in the absence
of any signal. The marginalized likelihood increases as the
probability of the data containing a signal increases. For
white noise,

pðhj0Þ / exp

�
� 1

2
hTh

�
: (4)

This white noise form is also valid for colored noise cases
if one applies the linear whitening transformation to the
data h. In the frequency domain, this transformation di-
vides the data by the amplitude spectral density of the
noise. Our goal is to find a computationally inexpensive
approximation to this optimal detection statistic using the
SVD-reduced filter set described in [12].

A. Expansion of the marginalized likelihood

In this section we will consider an expansion of the
marginalized likelihood and show that it motivates a de-
tection statistic that exploits the SVD filter basis in the
weak signal limit.

For simplicity we will assume that the signal parameters
�� take on discrete values [14] so that we may index differ-
ent signals as si. We will also assume that the amplitude, A,
does not depend on the signal index i. The detector output
now has the form

h i ¼ nþ Asi: (5)

We do not know a priori which signal si is present in the
data. The marginalized likelihood [9] is

�i /
X
j

exp½Ahi � sj�; (6)

where the integral in (3) is replaced by a sum over all
possible templates sj.

We desire to use the SVD basis proposed in [12] to
replace the sum over sj with a sum having fewer terms

(i.e., to reduce the number of filters required for the statis-
tic). Furthermore, we are not interested in a statistic that is
optimal for A � 1: detecting large amplitude signals in the
data often does not require optimal methods; instead,
we focus on statistics that perform well for weak signals.

For very small A, the terms in the sum over j in (6) can be
approximated well by a truncated Taylor series,

exp½Ahi � sj� � 1þ Ahi � sj þ 1

2
A2ðhi � sjÞ2: (7)

However, we are interested in the intermediate case where
A�OðfewÞ. In this regime, a truncated Taylor series is a
poor approximation of the exponential, but it proves to be
an approximation that can be productively simplified using
the SVD basis. The first term in (7) is a constant offset and
carries no information; the second term is oscillatory and
contributes little to the sum over j in (6). Focusing on the
second-order term and supposing A� 1, we introduce the
approximate likelihood, �0, as

�0
i
:¼ X

j

ðhi � sjÞ2: (8)

Using the change of basis described in [12], where

s j ¼
X
k

vjk�kuk; (9)

the approximate likelihood expression (8) simplifies to

�0
i ¼

X
k

ð�khi � ukÞ2 (10)

due to the properties of the orthonormal matrix vjk.

Eq. (10) has no dependence on the original parameter
index j, and the i dependence comes in only through the
data hi (i.e., when given a data vector h, one computes (10)
the same way regardless of which signal si is in the data). It
thus makes sense to drop the explicit i dependence and
write the approximate likelihood as

�0 ¼ X
k

ð�kh � ukÞ2: (11)

As was shown in [12], fewer filters are required using the
uk basis. Therefore the sum over k has fewer terms than the
original sum over j, i.e., (11) is substantially less costly to
compute than (6).
The SVD basis does not permit the higher-order terms

dropped from the Taylor series in (7) to be transformed into
simple sums over the k basis vectors as was done for the
second-order term; therefore we do not consider them
further. Unfortunately, for the range of amplitudes we are
interested in, the terms that have been dropped are not
insignificant. Since (11) is not equivalent to (6), it is a
suboptimal detection statistic; nevertheless we have suc-
ceeded in using the SVD basis to construct a quantity
closely related to the marginalized likelihood and that is
significantly less costly to compute. In the next section, we
derive a detection statistic that also exploits the SVD basis
but performs better than (11) at higher signal amplitudes
and agrees exactly with (2) in the low amplitude limit.
This is accomplished by starting with a different assump-
tion for approximating the signal probability distribution
given in (2).
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B. Assuming the signal probability distribution
is a multivariate normal distribution

In this section, we explore approximating the signal
probability pðhjsÞ in (3) as a multivariate normal distribu-
tion. This will result in a different detection statistic that
still exploits the SVD filter basis. For simplicity, when
applicable, we drop the explicit A, �� dependence and write
hðA; ��Þ as h and CðA; ��Þ as C.

We begin by assuming the signal probability (3) has the
form

pðhjsÞ / exp

�
� 1

2
hTC�1h

�
; (12)

whose covariance matrix C of second-order moments
completely defines it. The covariance matrix is

Cij ¼ covðhi; hjÞ ¼ hðni þ Asið ��ÞÞðnj þ Asjð ��ÞÞi
¼ hninji þ hA2ihsið ��Þsjð ��Þi
¼ �ij þ hA2i

Z
V
sið ��Þsjð�Þpð ��Þd ��; (13)

where hA2i ¼ Rþ1
�1 A2pðAÞdA and we have assumed the

independence of the variables A, �� and ni.
Using (4) and (12), we compute the logarithm of the

marginalized likelihood, �. This is monotonic in � and
therefore is sufficient to use as a ranking statistic �:

ln� / � :¼ hTðI�C�1Þh: (14)

The performance of (14) depends on the waveform popu-
lation; we will assess it for simple but realistic cases in
Sec. III.

We compute C by drawing N samples of �� distributed
according to pð ��Þ. We assume a signal population that is
distributed according to our ability to distinguish signals,
which is approximated by the filter banks described in [11].
This definition of the signal population is approximately
uniform in the �� distribution for sufficiently small regions
of parameter space. The integral in (13) is then approxi-
mated by a summation over these samples,

Cij ¼ �ij þ hA2i
N

XN
k¼1

sið�kÞsjð�kÞ;

C ¼ Iþ hA2i
N

XN
k¼1

sTð�kÞsð�kÞ;
(15)

where �k are discrete values of �� and sð�kÞ is a row vector
of the time samples sið�kÞ. By defining the matrix Sik ¼
sið�kÞ, we can simplify the notation to

C ¼ Iþ hA2i
N

STS: (16)

This is precisely the arrangement of the signal matrix
proposed in [12]. As in (9), we use the SVD to decompose
the signal matrix S [here written in matrix notation but
equivalent to (9)],

S ¼ V�UT; (17)

where V and U are unitary matrices and � is a diagonal
matrix of the singular values of S, referred to by compo-
nents �k in Sec. II A. U is the matrix of the orthonormal
basis vectors uk described in the previous section. Then we
note that

I �C�1 ¼ I�
�
Iþ hA2i

N
STS

��1

¼ I�
�
Iþ hA2i

N
U�2UT

��1

¼ U

�
I�

�
Iþ hA2i

N
�2

��1
�
UT; (18)

where we have used UUT ¼ UTU ¼ I. Let us define a
diagonal matrix J:

Jkk :¼ 1�
�
1þ hA2i

N
�2

k

��1 ¼ �2
k=N

�2
k=N þ hA2i�1

¼ �2
k

�2
k þ N=hA2i : (19)

We show the intermediate step in simplifying (19) to
emphasize that when holding the parameter space constant
while increasing the number of waveforms N (i.e., increas-
ing the density of waveforms), �2

k / N. Therefore, the

coefficients are insensitive to the number of waveforms
that went into the decomposition as long as there is a
sufficient number to span the parameter space. An example
for a typical value of N in a given parameter space is
described in Sec. III A. With the above definition, the
approximate detection statistic (14) can be written as

� ¼ hTUJUTh; (20)

which, in the notation of the previous section, is

� ¼ X
k

�2
k

�2
k þ N=hA2i ðh � ukÞ2: (21)

It is worth noting the limits of this expression for low
and high amplitude signals (small and large values of A),

lim
A!0

� ¼ X
k

�2
kðh � ukÞ2; (22a)

lim
A!1

� ¼ X
k

ðh � ukÞ2: (22b)

The A ! 0 limit is exactly the same result as the second
order approximation derived in the previous section. In this
limit the most important filters (i.e., those with larger
singular values) contribute more to the composite detection
statistic. The A ! 1 limit in (22b) reduces the composite
detection statistic to the sum of squares of the orthogonal
filter outputs, ðh � ujÞ. This detection statistic is equivalent
to the excess power statistic obtained in Anderson et al.
for the detection of waveforms of known bandwidth and
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duration [Ref. [15], Eq. (2.10)]. Here, instead of projecting
the data onto a basis that spans a time-frequency tile, we
project the data onto a basis that spans the space of CBC
waveforms. The essential difference between (21) and the
excess power statistic of Anderson et al. is that (21) folds in
knowledge of the relative probability that the waveforms
we seek match any of the basis vectors individually,
whereas the target waveforms in [15] are assumed to match
the basis vectors of the time-frequency tile with equal
probability.

Figure 1 presents an example of the components of (19)
for the small and large amplitude limits, and for an ampli-
tude of 20. These were produced using the signal matrix
described in Sec. III A.

III. OPERATING CHARACTERISTICS
OF THE PROPOSED COMPOSITE

DETECTION STATISTICS

In this section we explore the performance of the pro-
posed detection statistic (21). We begin by establishing the
framework with which we conduct simulations to produce
receiver operator characteristic curves. These indicate the
probability of detection versus the probability of false
alarm. We then present some practical scenarios in which
to understand these results.

We begin by assuming the detector data hi has the form
of (5) modified to allow an ambiguous phase,

h i ¼ nþ Asið0Þ þ Bsið�=2Þ: (23)

Under ideal situations the signal si could be recovered by a

matched filter with an SNR of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
. According to

[12], the signal si can be decomposed into orthogonal basis
functions using the singular value decomposition such that

s ið0Þ ¼
X
j

vij
ð0Þ�juj; (24)

s ið�=2Þ ¼
X
j

vij
ð�=2Þ�juj: (25)

This leads to the following expression of the composite
detection statistic for (23):

�i ¼
X
k

wkðhi � ukÞ2

¼ X
k

wk½Avik
ð0Þ�k þ Bvik

ð�=2Þ�k þ nkÞ�2;

wk ¼ �2
k

�2
k þ N=A2

; (26)

where nk is a random number drawn from a unit variance
Gaussian distribution. We have made use of the fact that
ðui � ujÞ ¼ �ij.

In order to assess the operating characteristics of (21),
we simulate several instances of signals and several in-
stances of noise. We then compare the number of noise
trials that produce a value of (21) greater than some thresh-
old �� with the number of signal-plus-noise trials that
produce values above the same threshold. This allows us
to parametrize the detection probability versus false alarm
probability using the value of ��.

A. Simulations

In this section we simulate the procedure described
above. Our goals are the following. First we explore how
the detection probability of (21) varies as a function of A
at a fixed false alarm probability. We verify that it peaks
when the simulated signal amplitude is equal to A. We then
compare the performance of (21) with standard matched
filtering results. We find, to no surprise, that (21) alone
performs worse. However, we also find that, by using (21)
to hierarchically reconstruct the physical template SNR,
the same detection probability can be reached for suffi-
ciently low false alarm probability.
In order to conduct these tests, we apply the singular

value decomposition to binary neutron star waveforms
with chirp masses 1:125M� 	 Mc < 1:240M� and com-
ponent masses 1M� 	 m1,m2 < 3M� [12]. The number of
templates required to hexagonally cover this range in
parameters using a lower frequency cutoff of 40 Hz and
a minimal match of 96.8% is M ¼ 456, which implies a
total number of single-phase filters N ¼ 912. These non-
spinning waveforms were produced to 3.5 post-Newtonian
order [16], sampled at 2048 Hz, up to the Nyquist fre-
quency of 1024 Hz. The last 10 seconds of each waveform,

FIG. 1. The coefficients wk used to construct the composite
detection statistic as a function of basis vector number, ordered
by their singular value. The solid-line trace shows the coeffi-
cients we obtain from (19), assuming a signal amplitude A ¼ 20.
The dashed-line trace shows the singular values squared, the
choice of coefficients given in (11). The dotted-line trace shows
‘‘the excess power’’ choice of coefficients, which is unity for all
basis vectors.
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whitened with the initial LIGO amplitude spectral density,
were used to construct the matrix of signals S.

Using this framework, we first test how the detection
probability varies with the choice of A in (21). We simulate
�1:8
 107 signals with SNR 7 and evaluate (21) as a
function of A. Likewise we evaluate (21) for just noise. The
results of the detection probability at a false alarm proba-
bility of 10�3 are shown in Fig. 2. We find that the peak of
the detection probability occurs when A equals the ampli-
tude of the signal, 7. We note that, for SNR 7 signals, the
low amplitude limit expression (22a) performs nearly as
well (within a few percent). However, the high amplitude
limit is considerably worse (by almost a factor of 2). SNR 7
was chosen to accentuate the dependency of (21) on A.
SNR 7 is actually higher than the typical SNR threshold
one would place in a gravitational-wave search.

In order to test the efficiency of the composite detection
statistic versus the traditional matched filter approach, we
again generated �1:8
 107 instances of (26) for signal
and signal plus noise. This time we chose a lower, more
realistic, signal amplitude of 5. The signals had uniform
distributions in the template bank and in phase angle. We
compare this with the standard result arising from max-
imizing the SNR across the bank and over phase angle

�max :¼ max
i
½ðh � sið0ÞÞ2 þ ðh � sið�=2ÞÞ2�: (27)

The result of the two procedures is shown in Fig. 3. As
expected, the composite detection statistic performs worse
than explicit reconstruction of the template parameters.
However, when the two methods are combined, it is pos-
sible to reach the same detection probability with asymp-
totically low false alarm probability.

Figure 3 contains three curves, showing the detection
probability PD versus false alarm probability PFA when
there is a signal with amplitude A ¼ 5 in the data. The
solid-line trace is found by choosing the maximum SNR
across the filter bank as defined in (27). Maximization over
the filter output is commonly done in gravitational-wave
searches. The dashed-line trace is the result of the
composite detection statistic (21) with the choice of
A ¼ 5. The dotted-line trace is the result of first
thresholding on the composite detection statistic and
then conditionally maximizing the SNR over the bank.
This procedure produces roughly the same detection
probability for a false alarm probability of 10�5, but it
allows one to do the full maximization for only 3% of the
filtered data.

B. Use example

Our simulations indicate that only �3% of the data
needs to have the physical template parameters recon-
structed in order to have a similar detection probability
as the maximum likelihood method at a false alarm proba-
bility of 10�5. This section provides an example of what
this means for a realistic gravitational-wave search.
Advanced gravitational-wave detectors should be able to

analyze and locate compact binary sources at the moment
they merge. Prompt electromagnetic follow-up could
confirm a gravitational-wave detection, and low-latency
searches will be critical to maximize the number of
simultaneously observed signals. However, low-latency
gravitational-wave searches will be computationally
costly. The reduced filter set proposed by [12] could lower
the computational cost substantially, helping to enable near
real-time searches. Additionally, in this work, we have
shown that it is possible to reduce the number of physical

FIG. 2. Detection probability at a false alarm probability of
10�3 as a function of A. We simulated �1:8
 107 signals at
SNR 7 for 300 values of A in the composite detection statistic
defined by (21). As we expect, the detection probability peaks
when A ¼ 7, the amplitude of the signal. It is worth noting that
in this case the low amplitude limit given by (22a) provides a
similar detection probability. However, the large signal limit
given by (22b) is considerably worse.

FIG. 3. Receiver operator characteristic curves associated with
different detection statistics. The solid-line trace shows the
performance of choosing the maximum likelihood filter across
the bank. The dashed-line trace shows the performance of the
composite detection statistic. The dotted-line trace shows the
performance of choosing the maximum SNR across the bank
after conditionally thresholding on the composite detection
statistic.

COMPOSITE GRAVITATIONAL-WAVE DETECTION OF . . . PHYSICAL REVIEW D 83, 084053 (2011)

084053-5



parameter reconstructions by 97% and maintain similar
detection efficiencies. If these methods were to be used,
it would be necessary to understand what the result in
Fig. 3 implies.

We now consider how the results of Fig. 3 may apply
to a low-latency gravitational-wave search and answer
whether or not a false-alarm probability of 10�5 is a
useful operating point. Consider the joint false alarm
probability for N independent gravitational-wave detectors
in coincidence:

PFA ¼ CN�1 
YN
i

PFA;i; (28)

where PFA;i is the false alarm probability for the ith detec-

tor and C is the coincidence trials factor. In order to under-
stand the double coincidence, limiting false alarm rate
from the single detector false alarm probability, a few
pieces of information are needed. The first is the number
of independent trials per second obtained by filtering the
data. We will take this to be the frequency of the minimum
point of the noise curve�150 Hz. If one allows�30 ms to
define coincidence, this corresponds to an additional five
samples for coincidence trials at 150 Hz. Therefore the
false alarm rate of double coincidence corresponding
to a 10�5 false alarm probability in a single detector is
150 Hz
 5
 10�10 ¼ 7:5
 10�8 Hz ¼ 2:4 yr�1. This
is well above the false rate that would be required for a
detection candidate. Therefore we conclude that this
procedure should not impact the detectability of near-
threshold signals.

IV. CONCLUSIONS

We have presented a study of compact-binary
gravitational-wave detection that precedes parameter esti-
mation. This could allow more computationally efficient
algorithms to be run in near real time that determine
whether a signal is present before attempting to measure
its parameters. Our study shows that it should be possible
to reconstruct the physical parameters for only O½1%� of
the data while not impacting the sensitivity of a compact
binary search.
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