SUPPORTING INFORMATION

Surfactant-Free Synthesis of Bi₂Te₃-Te Micro-Nano Heterostructure with

Enhanced Thermoelectric Figure of Merit

Yichi Zhang,[†] Heng Wang,[‡] Stephan Kräemer,[§] Yifeng Shi,^{†,a} Fan Zhang,[†] Matt Snedaker,[†] Kunlun Ding,[†] Martin Moskovits,[†] G. Jeffrey Snyder[‡] and Galen D. Stucky^{†, §,*}

 [†]Department of Chemistry and Biochemistry, University of California, Santa Barbara CA 93106-9510
 [‡]Materials Science, California Institute of Technology, 1200 E. California Bl., Pasadena CA 91106
 [§]Materials Department, University of California, Santa Barbara CA 93106-5050

¹Email: <u>stucky@chem.ucsb.edu</u>

The calculation of lattice contribution in thermal conductivity:

According to Wiedemann-Franz law (Equation S1), the thermal conductivity can be split into two parts: the lattice part (κ_L) and electron part (κ_e). κ_e is the product of the Lorentz number (L) with electrical conductivity and temperature. For heavily degenerated semiconductors (including our materials), $2.0 \times 10^{-8} \text{ V}^2 \text{ K}^{-2}$ is accepted as the appropriate value of the Lorentz number L.

$$K = K_L + K_e = K_L + L\sigma T$$
(S1)

Due to the anisotropic properties of bismuth telluride, in this work we tested the in-plane charge transport properties and cross-plane thermal transport properties. Z. Ren and co-workers have done a very detailed study on the anisotropic TE properties of $Bi_2Te_{2.7}Se_{0.3}$.¹ In-plane conductivity (perpendicular to press direction) is reported to be higher for both electrical and thermal test than cross-plane (parallel to press direction) by about 10%-20%. Therefore, in this work, we applied a modified factor ~0.8 to estimate the cross-plane electrical conductivity from the experimental in-plane electrical conductivity, resulting in the modification of Equation S1 to Equation S2.

$$K_{L\perp} = K_{\perp} - K_{e\perp} \approx K_{\perp} - 0.8 \times L\sigma_{\parallel} T$$
(S2)

Here, $K_{\perp}, K_{L^{\perp}}$ and $K_{e^{\perp}}$ are thermal conductivities of the total, lattice part and electron part in the

cross-plane orientation respectively; and σ_{\parallel} is the electrical conductivity in the in-plane

^a present address: College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P.R. China 310036

orientation. The estimated lattice contributions of the three samples (BiTe_bare, BiTe_101, and BiTe_51) in cross-plane direction are shown in the inset of Fig. 3 (D).

Figure S1. HR-TEM images of the solid bismuth telluride nanospheres; the inset is the overview image.

Figure S2. TEM images of some porous bismuth telluride nanospheres.

Figure S3. (A) XRD patterns of starting materials (0 h) and the products after reacting for 3 to 6 hours. Indexing according to space group $\text{Fm} \overline{3}\text{m} (0 \text{ h/nickel})$ and $\text{R} \overline{3}\text{m} (3-6 \text{ h/bismuth telluride})$ are shown. (B) ICP results of Te/Bi stoichiometry and Ni contents of as-prepared powders. (C) Rietveld refinement results of the product after reacting for 4 hour. (R value is 0.126)

Figure S4. TEM images of prepared lamellas A and B. A shows polycrystalline structure and B is a single crystal.

Figure S5. Enlarged XRD pattern of BiTe_51, the marked peaks are from crystal phase of NiTe₂ (PCPDF#89-2021)

Figure S6. The selected area of EDX mapping.

Figure S7. Temperature dependence of Seebeck coefficient (A) and conductivity (B) of BiTe_21

Figure S8. Temperature dependence of (A) mobility and (B) carrier concentrations of BiTe_bare, BiTe_101, and BiTe_51.

Figure S9. Temperature dependence of estimated figures of merit (zT) of BiTe_bare, BiTe_101 and BiTe_51.

Reference

 Yan, X.; Poudel, B.; Ma, Y.; Liu, W. S.; Joshi, G.; Wang, H.; Lan, Y.; Wang, D.; Chen, G.; Ren, Z. F., Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi₂Te_{2.7}Se_{0.3}. *Nano Lett.***2010**, *10*, 3373-3378.