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APPENDIX A: SUPPLEMENTAL MATERIAL

This appendix provides supporting calculations for the main text. In the first section, we derive the amplitude
equation using perturbation theory. In the second section, we calculate the noise from spontaneous emission.

1. Derivation of amplitude equation

Here we use perturbation theory to calculate how the weak nonlinearities and interactions in Eq. (3) of the main
text change the amplitude and phase of the harmonic oscillations on a long time scale. We use the method of averaging
with amplitude and phase variables because the noise from spontaneous emission depends on the amplitude.

First we rescale Eq. (3) of the main text with τ = ωot and yn = xn/ℓ,

0 =
d2

dτ2
yn + yn + αy3

n − ν(1 − y2
n)

d

dτ
yn +D[(yn − yn−1) + (yn − yn+1)] + ζn(τ) , (A1)

where α = αoℓ
2/ω2

o , ν = µ/ωo, D = 2kee
2/md3ω2

o , and ζn(τ) is the noise. Equation (A1) describes a chain of van der
Pol-Duffing oscillators.

Let yn = r′n(τ) cos[τ + θn(τ)], where r′n and θn change slowly (ṙ′ ≪ r′, r̈′ ≪ ṙ′, θ̇ ≪ 1, θ̈ ≪ θ̇). Substituting this
into Eq. (A1) and keeping the leading terms,

0 = −2ṙ′n sin(τ + θn) − 2r′nθ̇n cos(τ + θn) + αr′3n cos3(τ + θn) + ν[1 − r′2n cos2(τ + θn)]r′n sin(τ + θn)

+D[2r′n cos(τ + θn) − r′n−1 cos(τ + θn−1) − r′n+1 cos(τ + θn+1)] + ζn(τ) . (A2)

Then multiply each equation by sin(τ + θn) and integrate over the time interval [τ, τ + ∆τ ], where ∆τ is a multiple
of 2π,

dr′n
dτ

=
ν

2

(

1 − r′2n
4

)

r′n +
D

2
[r′n−1 sin(θn−1 − θn) + r′n+1 sin(θn+1 − θn)] + ξr

n(τ) . (A3)

Then multiply each equation by cos(τ + θn) and integrate similarly,

dθn

dτ
=

3

8
αr′2n +

D

2

[

2 − r′n−1

r′n
cos(θn − θn−1) −

r′n+1

r′n
cos(θn − θn+1)

]

+ ξθ
n(τ) . (A4)

These equations describe how r′n and θn evolve. The noise functions are,

ξr
n(τ) =

1

∆τ

∫ τ+∆τ

τ

dτ ′ζn(τ ′) sin(τ ′ + θn) (A5)

ξθ
n(τ) =

1

r′n∆τ

∫ τ+∆τ

τ

dτ ′ζn(τ ′) cos(τ ′ + θn) . (A6)

To put Eqs. (A3) and (A4) in simpler form, rescale time (t̄ = ντ/2) and amplitude (rn = r′n/2),

drn
dt̄

= (1 − r2n)rn + b[rn−1 sin(θn−1 − θn) + rn+1 sin(θn+1 − θn)] + ψr
n(t̄) (A7)

dθn

dt̄
= cr2n + b

[

2 − rn−1

rn
cos(θn − θn−1) −

rn+1

rn
cos(θn − θn+1)

]

+ ψθ
n(t̄) . (A8)

where b = D/ν, c = 3α/ν, and ψr
n and ψθ

n are the rescaled noise functions. Then write everything in terms of a
complex amplitude An = rne

−iθn , so that yn(τ) = 2Re[An(τ)e−iτ ]. (We use e−iθn instead of eiθn in order to match
up with the sign convention in Ref. [1].) Then An(t̄) evolves according to,

dAn

dt̄
= An + ib(−2An +An−1 +An+1) − (1 + ic)|An|2An + ψA

n (t̄, An) , (A9)

where ψA
n is the complex-valued noise function.
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2. Noise from spontaneous emission

Here we calculate the expected noise from spontaneous emission. When an ion absorbs a photon from a laser, it
gets a momentum kick in the direction of the laser, and when it spontaneously emits the photon, it gets a momentum
kick in a random direction. Spontaneous emission is the inherent source of noise in our scheme, so we explain how to
represent it with the noise term ψA in Eq. (A9).

There are two factors that must be taken into account. First, for the experimental conditions assumed in the text,
an ion scatters on the order of one photon per oscillation cycle. Thus, the noise is a sequence of occasional impulses
happening at random times. Second, the noise is position dependent due to the intensity gradient of the red beams.

We just consider a single ion, since the noise for each ion is independent and identically distributed. Each scattering
event happens at a random time, and the spontaneous emission of a photon causes a momentum kick ~k in a random
direction. Suppose the ion scatters photons at times tn. Then the noise in Eq. (3) of the main text is

χ(t) =
~k

m

∑

n

δ(t− tn)qn , (A10)

where qn is a random variable (with variance σq) for the projection of a momentum kick along the trap axis. Each
kick is independent (〈qjqk〉 = δjk). For simplicity, we assume that the emission is isotropic (σ2

q = 1/3), although there
is a slight anisotropy relative to the laser direction [2].

With the assumptions on experimental parameters given in the text, the scattering rate Γ may be calculated
rigorously from the Optical Bloch Equations [3, 4],

Γ(x) =
γ3

Is

[

IR(x)

γ2 + 4∆ω2
R

+
IB

γ2 + 4∆ω2
B

]

. (A11)

The first and second terms correspond to scattering by the red and blue beams, respectively. (Remember that we
assume counter-propagating beams for mathematical convenience, but one would use single beams in practice.) Note
that Γ depends on position and is independent of velocity to first order.

After rescaling (τ = ωot and y = x/ℓ) to get Eq. (A1), the noise is

ζ(τ) =
~k

mωoℓ

∑

n

δ(τ − τn)qn , (A12)

and the scattering rate becomes,

Γ̃(y) = Γ̃R(y) + Γ̃B (A13)

Γ̃R(y) =
1

ωo

(

y

cosφ

)2
IB
Is

γ3

γ2 + 4∆ω2
(A14)

Γ̃B =
1

ωo

IB
Is

γ3

γ2 + 4∆ω2
, (A15)

where we have used the intensity relation given in Eq. (2) of the main text.
To calculate the amplitude noise ξr, plug Eq. (A12) into Eq. (A5),

ξr(τ) =
~k

∆τmωoℓ

∑

τ<τn<τ+∆τ

qn sin(τn + θ) , (A16)

where τn is the time of a scattering event. Since the damping is weak, the ion scatters on the order of one photon in
an oscillation cycle (Γ ∼ ωo/2π), so there is significant time between scattering events. This means that the phase of
oscillation at which a scattering event occurs is approximately uncorrelated with the phase of the next event. Each
scattering event has a random projection and phase. Thus, the sum in Eq. (A16) is over independent samples of the
random variable wn = qnun, where un = sin τn (ignoring the unimportant phase offset θ for now).

Now we find wn’s distribution ρw. The intensity gradient of the red beams causes them to scatter more at certain
phases within a cycle, while the blue beams scatter uniformly. Thus, ρw is actually a weighted average of red and
blue components. First we find the distribution of scattering times τn (mod 2π) from the intensity profiles,

ρτ (τ) =







1

π
cos2 τ red

1

2π
blue

, (A17)
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since y = r′ cos τ . Thus the distribution of un = sin τn is

ρu(u) = ρτ

∣

∣

∣

∣

dτ

du

∣

∣

∣

∣

(A18)

=







2

π

√
1 − u2 red

1

π
1√

1−u2
blue

, (A19)

for |u| ≤ 1. Since we assume isotropic spontaneous emission, the distribution of the projection qn is ρq(q) = 1/2 for
|q| ≤ 1. Then the distribution of wn = qnun is

ρw(w) =

∫ 1

−1

du

∫ 1

−1

dq ρu(u)ρq(q)δ(w − uq) (A20)

=











2

π

[

−
√

1 − w2 + log 1+
√

1−w2

|w|

]

red

1

π
log 1+

√
1−w2

|w| blue

, (A21)

for |w| ≤ 1. The variance of wn is

σ2
w =







1

12
red

1

6
blue

. (A22)

To find the phase noise ξθ, plug Eq. (A12) into Eq. (A6),

ξθ(τ) =
~k

r′∆τmωoℓ

∑

τ<τn<τ+∆τ

qn cos(τn + θ) , (A23)

and go through the same process to find the variance of vn = qn cos τn,

σ2
v =







1

4
red

1

6
blue

. (A24)

Although wn and vn come from the same scattering event, they are statistically uncorrelated because 〈sin τn cos τn〉 =
0.

We let the time interval ∆τ be large enough to include many scattering events but smaller than the characteristic
time scales in Eqs. (A3) and (A4). We average the scattering rate Γ̃(y) in Eq. (A13) over ∆τ to find the time-averaged
scattering rates of the red beams (Γ̄R) and blue beams (Γ̄B),

Γ̄R(r′) =
1

2ωo

(

r′

cosφ

)2
IB
Is

γ3

γ2 + 4∆ω2
(A25)

Γ̄B =
1

ωo

IB
Is

γ3

γ2 + 4∆ω2
. (A26)

Γ̄R depends on r′ due to the intensity gradient of the red beam. Then the amplitude and phase noises are Gaussian
and described by,

〈ξr(τ)ξr(τ ′)〉 =

(

~k

mωoℓ

)2 (

1

12
Γ̄R +

1

6
Γ̄B

)

δ(τ − τ ′) (A27)

〈ξθ(τ)ξθ(τ ′)〉 =
1

r′2

(

~k

mωoℓ

)2 (

1

4
Γ̄R +

1

6
Γ̄B

)

δ(τ − τ ′) . (A28)

They are uncorrelated with each other: 〈ξr(τ)ξθ(τ ′)〉 = 0.
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After rescaling (t̄ = ντ/2, r = r′/2) to get Eqs. (A7) and (A8), the noises become,

〈ψr(t̄)ψr(t̄′)〉 =
1

2ν

(

~k

mωoℓ

)2 (

1

12
Γ̄R +

1

6
Γ̄B

)

δ(t̄− t̄′) (A29)

〈ψθ(t̄)ψθ(t̄′)〉 =
1

2νr2

(

~k

mωoℓ

)2 (

1

4
Γ̄R +

1

6
Γ̄B

)

δ(t̄− t̄′) . (A30)

Again, 〈ψr(t̄)ψθ(t̄′)〉 = 0. Finally, the complex-valued noise in Eq. (A9) is,

ψA(t̄, A) = [ηR(t̄) + iσR(t̄)]A+ [ηB(t̄) + iσB(t̄)] (A31)

〈ηR(t̄)ηR(t̄′)〉 =
H

cos2 φ
δ(t̄− t̄′) (A32)

〈σR(t̄)σR(t̄′)〉 =
3H

cos2 φ
δ(t̄− t̄′) (A33)

〈ηB(t̄)ηB(t̄′)〉 = 〈σB(t̄)σB(t̄′)〉 = Hδ(t̄− t̄′) (A34)

H =
~(γ2 + 4∆ω2)

96mω2
oℓ

2∆ω
, (A35)

where H is a measure of the noise, and we have simplified using Eq. (4) of the main text. The noise functions for
the red beams (ηR,σR) and blue beams (ηB ,σB) are all uncorrelated with each other. The noise from the red beams
increases with amplitude and causes more phase noise than amplitude noise.
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