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Abstract— Consensus protocols are distributed algorithms in
networked multi-agent systems. Based on the local information,
agents automatically converge to a common consensus state
and the convergence speed is determined by the algebraic
connectivity of the communication network. In order to achieve
a fast consensus seeking, we propose the multi-hop relay
protocols, where each agent can expand its knowledge by
employing multi-hop paths in the network. We demonstrate that
multi-hop relay protocols can enlarge the algebraic connectivity
without physically changing the network topology. Moreover,
communication delays are discussed and a tradeoff is identified
between the convergence speed and the time delay sensitivity.

Index Terms— Networked multi-agent systems, consensus
protocol, multi-hop relay protocol, distributed algorithms, con-
vergence speed, time delay.

I. INTRODUCTION

Consensus seeking of networked multi-agent systems has
attracted researchers from different disciplines. Vicsek et al.
[1] proposed a simple and popular model for self-driven
particles alignment problem in which each agent updates its
heading based on the average of its own heading and the
neighbors’. Using simulation, they showed that all agents
moved in the same direction eventually. A theoretical expla-
nation for Vicsek’s model is given by Jadbabaie et al. in [2].
Olfati-Saber and Murray [3] proposed a simple consensus
protocol and showed that, for balanced directed graphs, this
protocol solved the average consensus problem. Moreover,
consensus seeking under general connected directed graphs
was discussed in [4], [5].

When the agent dynamics is nontrivial, the consensus
behavior can be treated as the synchronization problem
of interconnected dynamical systems. Different approaches
were employed, such as Lyapunov’s direct method in [6] and
Laplacian matrix decomposition method in [7], [8]. Also,
sufficient conditions for interconnected dynamical systems
synchronization over general interaction topology were dis-
cussed in [9].

Consensus seeking has many applications in peer-to-peer
networks [10], sensor fusion [11], and distributed Kalman
filtering [12]. The convergence speed is important. Xiao
and Boyd treated a consensus process as an optimal linear
iteration problem and showed that the convergence speed
can be increased by finding the optimal weight associated
with each communication link [13]. In their result, the global
structure of the network must be known beforehand. Olfati-
Saber proposed a “random rewiring” procedure to boost the
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consensus process for large scale networks [14]. However,
physically changing the topology may be difficult. So the
question we want to ask is: can we get a better convergence
performance without changing the network topology?

Fortunately, the answer is yes. In this paper, we pro-
pose multi-hop relay protocols based on multi-hop paths
in networks. The idea is simple: each agent can get more
information by passing its neighbors states to others. The
improvement with the two-hop relay protocol is given ex-
plicitly. Since relay protocols do not change the topology,
it is easy to be implemented. Furthermore, the effect of
communication delays is considered and a tradeoff between
convergence speed and delay sensitivity is discussed.

The remainder of this paper is organized as follows: In
Section II, a brief review of concepts in algebraic graph the-
ory and some preliminary results about consensus protocol
are presented. We then propose multi-hop relay protocols for
fast consensus seeking in Section III and emphasize on the
two-hop relay protocol. Section IV is devoted to investigating
consensus protocols with communication delays. Explicit
results of delay margins are given. Examples and simulation
results are provided in Section V, and conclusions are
summarized in Section VI.

II. CONSENSUS PROTOCOLS AND CONSENSUS STATE

A directed graph G = (V, E) is used to represent the
communication topology in a networked multi-agent system
where V is a set of vertices and E ⊆ V2 is a set of edges.
Each edge in the graph is denoted by (vi, vj), which means
that agent vi can receive information from agent vj . For
edge (vi, vj), we call vi the head and vj the tail. A directed
graph G is called symmetric if, whenever (vi, vj) ∈ E ,
(vj , vi) ∈ E as well. In a directed graph, the number of
edges whose head is vi is called the out-degree of node vi;
the number of edges whose tail is vi is called the in-degree
of node vi. The set of neighbors of vertex vi is denoted by
N(vi) = {vj ∈ V : (vi, vj) ∈ E}.

A path in a directed graph is a sequence [u0, · · · , ur] of
distinct vertices such that (ui−1, ui) ∈ E for i from 1 to r. A
path is also called an m-hop path if it has m + 1 vertices. A
weak path is a sequence [u0, · · · , ur] of distinct vertices such
that either (ui−1, ui) or (ui, ui−1) belongs to E . A directed
graph is weakly connected if any two vertices in the graph
can be joined by a weak path, and it is strongly connected if
any two vertices can be joined by a path. If a directed graph
is not weakly connected, it is disconnected.

If a graph is symmetric, there is no difference between
weakly connected and strongly connected. In some literature,
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a connected and symmetric graph is simply called connected.
Fig. 1 reveals the relationship between these concepts.

Strongly connected

Weakly connected

Disconnected

Disconnected & symmetric Connected & symmetric

Fig. 1. Classification of directed graphs.

An adjacency matrix A = {αij} of G with n vertices is
defined as

αij =
{

1, (vi, vj) ∈ E
0, otherwise.

More generally, a weighted adjacency matrix A = {aij} is
defined as

aij = αij · wij

where wij > 0 is the weight associated with edge (vi, vj).
Then, the out-degree of node vi is

∑
j aij and the in-degree

of node vi is
∑

j aji. Let D be the diagonal matrix with the
out-degree of each vertex along the diagonal, the Laplacian
matrix L is defined by L = D −A.

Let xi denote the state of agent vi. A networked multi-
agent system reaches a consensus if xi = xj for all vi and
vj ∈ V . This common value is called the consensus state,
which is depicted by η. A continuous consensus protocol
based on the “nearest neighbor rule” is represented by

ẋi = −
∑

j∈N(vi)

wij(xi − xj), (1)

and the consensus process is presented by

Ẋ = −LX (2)

where X = [x1, · · · , xn]′. It is known that for a connected
and symmetric graph, protocol (1) solves the average con-
sensus problem, i.e., η =

∑
i xi(0)/n.

III. MULTI-HOP REPLAY PROTOCOLS

For a connected and symmetric graph, L is symmetric
and the eigenvalues can be denoted as 0 = λ1 < λ2 ≤
· · · ≤ λn. The consensus convergence speed is bounded by
the second smallest eigenvalue λ2 that is called “algebraic
connectivity”. Clearly, λ2 is determined by the topology and
the edge weights. In this section, we introduce the multi-hop
relay protocols, which employ multi-hop paths in the graph
instead of changing the connectivity and the weights.

A. Two-Hop Relay Protocol

The distributed two-hop relay protocol is described as

ẋi = −
∑

j∈N(vi)

wij

(
(xi−xj)+

∑
k∈N(vj)

wjk(xi−xk)
)
. (3)

In this protocol, what vertex vj sends to vi is not only
its own state, but also a collection of its instantaneous
neighbors’ states. It is equivalent to adding virtual “two-hop”
paths as additional edges to the original graph. We define the
two-hop directed graph Ĝ = (V, Ê) as the graph that has the
same vertex set, and all the edges are “two-hop” paths of G.
Fig. 2 shows an example of the two-hop directed graph.

Original graph Two−hop graph

Fig. 2. A directed graph and its two-hop directed graph.

There may exist self-loops in two-hop graph Ĝ, i.e., the
head and the tail of an edge are the same. This is common
when G is symmetric. However, according to Equ. (3),
these self-loops have no contributions to the dynamics and
are omitted. Moreover, multiple two-hop paths may exist
between a pair of vertices. In Ĝ, we consider them as one
edge in Ĝ and the weight equals the sum of these two-hop
paths’ weights. Thus, the adjacency matrix Â = {âik} of Ĝ
is:

âik =
{ ∑

j wijwjk, (vi, vk) ∈ Ê
0, otherwise.

The corresponding out-degree diagonal and Laplacian ma-
trices for Ĝ are denoted by D̂ and L̂, respectively. For a
directed graph G with two-hop relay protocol, consider the
joint graph G̃ = G ⋃ Ĝ = (V, E ⋃ Ê), it is obvious that the
dynamics of the consensus process is

Ẋ = −L̃X. (4)

Also, the two-hop relay protocol needs extra communica-
tion bandwidth. Assuming that the graph is static. We rewrite
the protocol (1) as:

ẋi = −xi

∑
j∈N(vi)

wij +
∑

j∈N(vi)

wijxj (5)

and the two-hop relay protocol (3) as

ẋi = −xi

∑
j∈N(vi)

wij(1 +
∑

k∈N(vj)
wjk)

+
∑

j∈N(vi)
wij

(
xj +

∑
k∈N(vj)

wjkxk

)
.

(6)

For protocol (1), what link (vi, vj) transmits is the value
of xj . For protocol (3), what link (vi, vj) transmits is the
value of xj ,

∑
wjkxk, and

∑
wjk. However, for a static

graph,
∑

wjk is a constant and only needs to be transmitted
once. Thus, the two-hop relay protocol needs twice the
communication bandwidth except at the very beginning.

B. Convergence speed of two-hop relay protocol

In order to simplify the analysis, from now on we assume
G is symmetric and connected. Then, the two-hop graph Ĝ
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is symmetric, and the joint graph G̃ is also symmetric and
connected.

Theorem 3.1: If graph G is connected and symmetric, then

λ2(L) ≤ λ2(L̃). (7)
Proof: For any vector x, it is true that

xT L̃x = xT Lx + xT L̂x
=

∑
(vi,vj)∈E w2

ij(xi − xj)2

+
∑

(vi,vj)∈Ê w2
ij(xi − xj)2.

We pick a unit vector x and let it be orthogonal to 1, then

xT Lx

xT x
=

∑
(vi,vj)∈E(xi − xj)2∑

vi∈V x2
i

≥ λ2(L)

and the equation holds only when x is an eigenvector
associated with λ2(L).

Combining these two results, if we take x to be a unit
eigenvector of L̃, orthogonal to 1, associated with eigenvalue
λ2(L̃), then we have

λ2(L̃) =
xT L̃x

xT x
=

xT (L + L̂)x
xT x

≥ λ2(L) +
xT L̂x

xT x
. (8)

Theorem 3.1 shows that two-hop relay protocol increases
the convergence speed. The improvement depends on the
topology of Ĝ. It can be shown that the edge set of Ĝ is not
empty if the original graph has more than two vertices.

Proposition 3.2: If Ĝ is connected,

λ2(L̃) ≥ λ2(L) + λ2(L̂). (9)
Proof: When Ĝ is connected, xT L̂x/xT x ≥ λ2(L̂) >

0. Thus, two-hop relay protocol improves the algebraic
connectivity by at least λ2(L̂).

However, it is not true that Ĝ is always connected. Fig.
3 shows a simple example. The original graph on the left
is symmetric and connected, but the two-hop graph on the
right is composed of two disconnected subgraphs.

Fig. 3. An example of disconnected two-hop directed graph.

C. Multi-hop relay protocol

It is possible to extend the two-hop relay protocol to
the multi-hop relay protocol. The protocol for m-hop relay
protocol can be written as

ẋi = −
∑

j

wij

(
(xi − xj) +

∑
k

wjk((xi − xk) + · · · ))
︸ ︷︷ ︸

m layers

.

(10)
Clearly it adds more virtual edges to the original graph and
enforces the convergence speed. However, there are three
drawbacks. First, the worst case computation complexity of

the m-hop relay protocol on each agent is O(nm−1). For
large scale networks, it quickly becomes infeasible. Sec-
ond, at least m-times communication bandwidth are needed.
Third, communication delays can accumulate along m-hop
paths and we will discuss that how sensitive those protocols
are to communication latency.

IV. TWO-HOP RELAY PROTOCOLS WITH TIME DELAYS

For communication delays, we consider the transfer func-
tion associated with edge (vi, vj) with latency τij is hij(s) =
e−τijs. Delays will be accumulated in two-hop relay pro-
tocol. We focus on the simplest case where all delays are
identical, i.e., τij = τ for any (vi, vj) ∈ E , and the weights
are uniform. The protocol (1) can be written as

ẋi = −
∑

j∈N(vi)

wij(xi(t − τ) − xj(t − τ)) (11)

and the two-hop relay protocol is

ẋi = −∑
j∈N(vi)

wij

(
(xi(t − τ) − xj(t − τ))

+
∑

k∈N(vj)
wjk(xi(t − 2τ) − xk(t − 2τ))

)
.

(12)
Equations (2) and (4) change to

Ẋ = −LX(t − τ) (13)

and
Ẋ = −LX(t − τ) − L̂X(t − 2τ), (14)

respectively.
Let Z = V −1X where

V −1 =
[

1 1
1 −I

]
. (15)

For the two-hop relay protocol, we have to

Ż = −V −1LV Z(t − τ) − V −1L̂V Z(t − 2τ). (16)

Note that

V −1LV =
[

0 0
0 L22

]
and V −1L̂V =

[
0 0
0 L̂22

]

where L22 is full rank.
Assume that X(t) = 0 for any t < 0. All states except

z1 of the autonomous system (16) asymptotically converge
to 0, i.e., xi converges to η =

∑
xi(0)/n, if and only if the

following characteristic polynomial

p22(s, e−τs) = det
(
sI + L22e

−τs + L̂22e
−2τs

)
(17)

has no zero in the closed right half plane (RHP). This
condition is equivalent to the case that the characteristic
polynomial

p(s, e−τs) = det
(
sI + Le−τs + L̂e−2τs

)
(18)

has no zero in the closed RHP except the simple zero at the
origin. In [15], p(s, e−τs) is called a real quasipolynomial
of s. In the rest of this paper, we will consistently use this
name.

One of the essential properties of quasipolynomials is the
continuity of the zeros with respect to delay. In other words,
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when τ increases, zeros in left half plane (LHP) move to
RHP. Time delay does not affect the zero s = 0. Thus, we
need to find minimum value of τ such that the first stable zero
crosses the imaginary axis. Besides, the conjugate symmetry
property of quasipolynomials makes it possible to calculate
the critical value of the time delay and the corresponding
crossing frequency.

Definition 4.1: Given initial value X(0) and assumption
X(t) = 0 for any t < 0, the smallest value of τ such that
the system cannot converge to a consensus is determined as

τ∗ = min{τ > 0 | p(jω, e−jτω) = 0 and ω �= 0}. (19)

We call τ∗ the delay margin of the consensus protocol.
It is true that, for any τ ∈ [0, τ∗), the system of (13) or (14)
converges to the average consensus state η =

∑
xi(0)/n.

Lemma 4.2: Let τ∗ and τ̃∗ indicate the delay margin of
(13) and (14) respectively, then τ∗ ≥ τ̃∗.

Proof: First, let us find τ∗. According to the Schur
theorem, there exists a unitary matrix T such that U =
T−1LT is upper triangular with the eigenvalues along the
diagonal. So we have

det(sI + Le−τs) = det(sI + TUT−1e−τs)
= det(T (sI + Ue−τs)T−1)
= s · Πn

i=2(s + λi(L)e−τs).

We need to find the smallest τ > 0 such that the first
stable zero reaches the imaginary axis. Let s = jω and we
have

jω = −eτjωλi(L). (20)

Solving this equation gives us{
ω = λi(L) �= 0
τ = π/2λi(L). (21)

So the delay margin

τ∗ = min π/2λi(L) = π/2λn(L). (22)

Next, we consider τ̃∗. The above approach fails for
det(sI + Le−τs + L̂e−2τs). However, it is obvious that τ̃∗

should be no bigger than the delay margin for det(sI +(L+
L̂)e−τs), which is π/2λn(L̃). Moreover, λn(L̃) ≥ λn(L)
according to [16]. So we have

τ∗ = π/(2λn(L)) ≥ π/(2λn(L̃)) ≥ τ̃∗.

Lemma 4.2 just shows us that the delay sensitivity of the
two-hop relay protocol is no better than protocol (1). The
following theorem gives us explicit results on τ̃∗ by using
the frequency-sweeping method.

Theorem 4.3: For system (14), define

τ̄i = min
1≤k≤n−1

θi
k/ωi

k

when the generalized eigenvalues λi(G(s),H) satisfy the
following equation:

λi(G(jωi
k),H) = e−jθi

k

for some ωi
k ∈ (0,∞) and θi

k ∈ [0, 2π), where

G(s) =
[

0 I
−sI −L22

]
and H =

[
I 0
0 L̂22

]
.

Then the consensus delay margin of (14) is

τ̃∗ = min
1≤i≤2(n−1)

τ̄i.

Proof: Finding a generalized eigenvalue for matrix pair
(A,B) is the problem of finding a scalar λi and a nonzero
vector y such that Ay = λiBy.

According to the aforementioned similarity transform, the
system (14) converges to a consensus if the following system⎡

⎢⎣
ż2

...
żn

⎤
⎥⎦ = −L22

⎡
⎢⎣

ż2(t − τ)
...

żn(t − τ)

⎤
⎥⎦ − L̂22

⎡
⎢⎣

ż2(t − 2τ)
...

żn(t − 2τ)

⎤
⎥⎦

is stable.
According to the Schur determinant complement, we have

det
(
sI + L22e

−τs + L̂22e
−2τs

)
= det(e−τsI) det(L̂22e

−τs + L22 + sI · eτs)

= det
( [

I · e−τs −I

sI L̂22e
−τs + L22

])

= det
(
e−τs

[
I

L̂22

]
−

[
0 I

−sI −L22

] )
.

(23)

Now the quasipolynomial with two delay terms transfers to
a new quasipolynomial with a single delay term as

det
(
sI+L22e

−τs+L̂22e
−2τs

)
= det(G(s)−e−τsH) (24)

where

G(s) =
[

0 I
−sI −L22

]
and H =

[
I 0
0 L̂22

]
. (25)

Since τ ∈ R, whenever a zero is located on the imaginary
axis, there exists s = jω so that e−jωτ is a generalized
eigenvalue of (G(s),H) with magnitude 1. Thus, we can
transfer the problem of finding a τ so that the quasipolyno-
mial has zeros with pure imaginary parts to the problem of
finding a ω so that (G(s),H) has a generalized eigenvalue
with magnitude 1. Because rank(H) = 2(n−1), there are at
most 2(n − 1) generalized eigenvalues of (G(s),H). When
s moves along the imaginary axis from 0 to j∞, there exists
at most n − 1 frequency ωi

k so that ‖λi(G(jωi
k),H)‖2 =

‖e−jθi
k‖2 = 1. So the delay margin τ̃∗ is the minimum value

of all possible τ̄ i
k = θi

k/ωi
k.

V. EXAMPLES AND SIMULATION RESULTS

In order to verify the efficiency of the two-hop relay
consensus protocol, we test it on three graphs. Fig. 4 shows
the topologies of G1, G2, and G3 from left to right. Topology
G1 is a two-regular graph, G2 is a net in which each vertex
connects to neighbors located inside a certain range, and G3

is a complete graph. All of them have ten vertices. They are
symmetric and connected. Each pair of edges (vi, vj) and
(vj , vi) belong to those graphs is denoted by a single link.
For simplicity, we assume that wij = 1 for any edge.
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Fig. 4. Three examples with different topologies: G1, G2, and G3.

TABLE I

PERFORMANCE VS. ROBUSTNESS FOR RELAY PROTOCOLS

Algebraic connectivity λ2 Delay margin τ∗

Without relay With relay Without relay With relay

G1 0.382 1.7639 0.3927 0.1796

G2 0.9118 7.3846 0.2167 0.0396

G3 10 90 0.1571 0.0095

Fig. 5 to Fig. 7 show the simulation results of G2 with the
same initial conditions and different delays. Note that, even
though the system can become unstable, the sum of the states
keeps constant. Table I shows the algebraic connectivities
and delay margins for all three graphs with or without
two-hop relay protocols. Delay margins without relays are
calculated according to Lemma 4.2. Delay margins with relay
are computed using frequency sweep method mentioned
in Theorem 4.3. Note that the magnitudes of generalized
eigenvalues inevitably exceed 1 after a certain ω, and the
computation needs to be done only over a finite frequency
interval. We actually run the computation twice. The first
time we find an appropriate frequency interval. The second
time we use much smaller frequency steps over the interval
in order to find an accurate value of the delay margin.

For each graph, the relay protocol improves the conver-
gence speed. However, time-delay robustness is impaired
due to the delay accumulation along the two-hop paths.
Moreover, along the columns of the table, we can tell that
algebraic connectivity increases and delay margin decreases
when the graph includes more links. We put these data in
Fig. 8. For each bar, the right lower point corresponds to
protocol (1) and the left upper point corresponds to the two-
hop relay protocol. It is true that relay protocols actually
boost convergence speed while sacrificing the delay margin.

Our results can be extended to non-symmetric graphs.
Fig. 9 shows simulation results for the non-symmetric graph
in Fig. 2. It is clear that the two-hop relay protocol still
converges faster, but the final value of the consensus state is
changed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose multi-hop relay protocols for
fast consensus seeking and emphasize on the two-hop relay
protocol with symmetric and connected graphs. Using relay

protocols can efficiently improve the convergence speed
without physically changing the topology. But, we need
extra communication bandwidth. A tradeoff between the
performance of convergence speed and robustness of com-
munication delay are identified by investigating three typical
topologies with relay protocols. The more edges a graph
includes, the faster the convergence speed is, while the
more sensitive the protocol is to the time delay. We use
the frequency sweep method to find the delay margin with
multiple commensurate delays efficiently.

Future work includes extending our results to non-
symmetric graphs. Also, it will be interesting that study-
ing large group of graphs and putting their perfor-
mance/robustness data into Fig. 8. Relationships between
patterns and topology characters should be carefully exam-
ined. Comprehensively describing and deeply understanding
this tradeoff can benefit us for topology and protocol design
for multi-agent networks.
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Fig. 5. States of graph G2 with no delay.
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