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Abstract

A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed,
decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is
utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield
and enantioselectivity. The product is converted in three steps to a late-stage intermediate
previously used in the synthesis of hamigeran B.

The hamigerans are a family of molecules isolated from the poecilosclerid sponge Hamigera
tarangaensis by Bergquist and Fremont (family Anchinoidae, syn. Phorbasidae) in 2000
from the Hen and Chicken Islands off the eastern coast of New Zealand.1 Hamigeran B (1),
which has been of particular interest due to its potent in vitro activity against P-388
leukemia cell line and against both herpes and polio viruses with little cytotoxicity against
the host cells,1 has a unique tricarbocyclic skeleton possessing a substituted aromatic system
fused to a [4.3.0] bicycle containing three contiguous stereocenters, and as such has received
continued attention from synthetic chemists.2,3

Previous syntheses of hamigeran B have utilized a photo- initiated intramolecular [4 + 2]
cyclo-addition of a hydroxy-o-quinodimethane by Nicolaou,4 Meyers' amino-alcohol
auxiliary by Clive and Wang,5 a Pd-catalyzed asymmetric allylic alkylation followed by an
intramolecular Heck reaction by Trost,6 and an intramolecular Rh-mediated C–H insertion
of a α-aryl–α-diazoketone followed by a Friedel–Crafts cyclization by Taber and Tian7 in
the construction of the carbocyclic core. Most recently, Miesch and co-workers performed a
racemic total synthesis in which an intramolecular, alkynylogous Mukiyama aldol reaction
was utilized to form the tricyclic core.8,9 Importantly, they also showed that the
stereochemistry at C(9) of 2 can been used to set the proper relative stereochemistry at C(5)
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and C(6). Herein, we report a catalytic, asymmetric formal synthesis of (+)-hamigeran B via
interception at Miesch and co-workers' enone 2.

Our retrosynthetic analysis of hamigeran B (Scheme 1) thus focused on efficiently
generating the absolute stereochemistry of the all-carbon quaternary stereocenter at C(9) of
enone 2. With the goal of setting this stereocenter via an enantioselective, decarboxylative
alkylation,10 we envisioned first disconnecting the cyclopentene ring of 2 via an aldol
condensation to α-allyl tetralone 3, which could be accessed via the asymmetric allylation
chemistry developed within our group,11 from tetralone 4 as the key racemic starting
material.

Studies for the enantioselective synthesis of tetralone 3 focused on the asymmetric,
decarboxylative allylic alkylation of allyl enol carbonate 5, available in 91% yield from
known tetralone 412,5a,c (Scheme 2). Preliminary investigation of the alkylation reaction of 5
used 4 mol % of the complex derived from Pd2(dba)3 and (S)-t-BuPHOX (6) as ligand in
THF at 35 °C to afford the desired tetralone 3 with moderate yield and good
enantioselectivity (Table 1, entry 1). Screening of various solvents with the use of 6 as
ligand13 revealed that benzene provides the highest levels of enantioselectivity and yield
(entry 3). It was also found that the trifluoromethylated derivative of (S)-t-BuPHOX, (i.e.,
7),14 resulted in higher enantiomeric excesses and shorter reaction times, even with the use
of only 1 or 2 mol % of catalyst (entries 4-6). Lowering the reaction temperature to 25 °C
resulted in formation of 3 in 94% ee, with the use of only 2 mol % of Pd2(dba)3 and 5 mol %
of ligand 7, albeit with a reduction in rate and yield (entry 7).

Having effectively set the absolute stereochemistry of the all-carbon quaternary center, C(9),
we turned our efforts toward achieving the formal total synthesis of (+)-hamigeran B
through the formation of the cyclopentene ring of 2 (Scheme 2). Ru-catalyzed cross
metathesis15 of olefin 3 with methyl vinyl ketone using catalyst 816 affords diketone 9 in
66% yield. Our initial attempts to form the cyclopentyl ring of the target structure (i.e.,
either enone 2 or alcohol 11) via traditional aldol condensation reactions resulted in complex
mixtures of products, presumably due to non-selective enolization of diketone 10.17 Hoping
to utilize the α,β-unsaturation of enone 9 to ensure regioselective enolate formation,18 we
attempted to directly form the cyclopentene ring from compound 9. CuH-mediated,19

domino conjugate reduction–cyclization of 9 using Stryker's reagent20 at 0 °C afforded
desired ketoalcohol 11 as a single diastereomer, albeit in low yields (10–20%) with the
remainder of the starting material converting to conjugate reduction product 10. It was
found, however, that decreasing the temperature of the reaction to –40 °C resulted in an
improved 52% yield of desired product 11 and only 26% yield of conjugate reduction
product 10. Alcohol 1 1 was then dehydrated with SOCl2 and catalytic DMAP in pyridine21

to afford enone 2, which has previously been converted to hamigeran B in six steps.6,8 Thus
our asymmetric, formal synthesis of (+)-hamigeran B was complete.

In summary, we have developed an expedient and concise formal synthesis of (+)-hamigeran
B. A key tricyclic intermediate, 2, en route to the synthesis of hamigeran B has been
prepared in only five steps from known tetralone 4. The route features a key asymmetric,
Pd-catalyzed decarboxylative allylic alkylation reaction that proceeds with excellent yield
and enantioselectivity, allowing us to produce α-quaternary tetralone 3 in 94% ee. Ru-
mediated cross-metathesis of tetralone 3 with methyl vinyl ketone, followed by a CuH-
mediated domino conjugate reduction-cyclization, established the core tricyclic skeleton of
intermediate 2. This general strategy (asymmetric alkylation, cross metathesis, reductive
cyclization) is being applied to other bioactive natural products and will be reported in due
course.
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Scheme 1.
Retrosynthetic Analysis of (+)-Hamigeran B.
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Scheme 2. Enantioselective Formal Synthesis of (+)-Hamigeran B
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