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Abstract

Combinatorial alanine substitution of active site residues in a thermostable cytochrome P450BM3 

(BM3) variant was used to generate BM3 variants with activity on large substrates. Selective 

hydroxylation of methoxymethylated monosaccharides, alkaloids, and steroids was thus made 

possible. This approach could be generally useful for improving the activity of enzymes that show 

only limited activity on larger substrates.
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Selective hydroxylation of C-H bonds in organic compounds provides an efficient means to 

access valuable drug metabolites, natural product derivatives, and other fine chemicals.[1] 

While chemical methods to accomplish this transformation have improved, these generally 

require the presence of directing groups or electronic properties inherent to certain substrate 

classes for the desired transformations to occur at all or with useful regioselectivity.[2] 

Enzymes are capable of avoiding this limitation by employing potent H-abstraction 

mechanisms with selectivity imposed by specific substrate binding.[3] Furthermore, 

systematic optimization of these catalysts via directed evolution has been demonstrated 

extensively and constitutes a powerful advantage of these systems over small molecule 

catalysts.[4]

Members of the cytochrome P450 monooxygenase superfamily are remarkable examples of 

such catalysts.[5] These enzymes utilize a cysteine-bound heme cofactor to catalyze a wide 
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range of oxidative transformations including hydroxylation and epoxidation. Cytochrome 

P450BM3 (BM3) from Bacillus megaterium possesses a number of features that make it 

particularly attractive for applications in chemical synthesis.[6] For example, the heme 

domain in which hydroxylation occurs and the diflavin reductase domains (FMN and FAD) 

that contribute electrons for oxygen activation in the heme domain are fused in a single 

polypeptide chain, which improves the rate and operational simplicity of BM3-catalyzed 

reactions. Indeed, BM3 catalyzes the sub-terminal hydroxylation of C12-C18 fatty acids, its 

natural substrates, at rates of thousands of turnovers per minute, making it one of the most 

active hydroxylases known. BM3 is soluble, readily over-expressed in a variety of 

heterologous hosts, and requires only atmospheric oxygen and a supply of nicotinamide 

adenine dinucleotide phosphate (NADPH) for hydroxylation activity. These properties have 

led our groups and others to expand the substrate scope of this enzyme with the goal of 

creating efficient enzyme and whole-cell catalysts for a variety of oxidative 

transformations.[7]

The development of BM3 variants that catalyze regioselective demethylation or 

demethoxymethylation of methylated or methoxymethylated monosaccharides was recently 

reported by our groups.[8] While a chemoenzymatic method employing these enzymes 

provided a convenient means to access otherwise difficult-to-synthesize monosaccharide 

derivatives, it also highlighted some limitations of existing BM3 variants. For example, 

while MOM-protected pentoses were compatible with these enzymes, MOM-protected 

hexoses were deprotected to only a minor extent [Fig. 1]. This same limitation was 

encountered on a number of additional bulky compounds including various opiate alkaloids 

and steroid derivatives. Attempts to identify enzymes compatible with these substrates from 

random mutant libraries generated via error prone PCR were complicated by the low activity 

of all BM3 variants examined. We hypothesized that the shape and volume of these 

substrates exceeded the capacity of the enzyme active site and that sufficient expansion of 

the active site to obtain significant improvements in activity might require more extensive 

mutation than can be readily accomplished using error prone PCR.[9]

An alternative approach involving extensive replacement of bulky active site residues with 

alanine was therefore explored as a means to obtain enzymes with activity on the 

aforementioned compounds. This involved first selecting a thermostable parent capable of 

tolerating extensive mutagenesis[10] and identifying active site residues likely to clash with 

large substrates based on computational models of those substrates docked in the enzyme 

active site. Because it is difficult to predict which of the chosen residues might actually 

impact catalysis,[11] a combinatorial library design that includes all permutations of alanine 

substitutions was utilized. Library members were then screened for activity on a panel of 

bulky substrates that possess methylated heteroatoms by detecting formaldehyde released 

during P450-catalyzed removal of Me or MOM groups.[8] These substrates thus serve as 

efficient probes for enzyme activity and for compatibility of valuable natural product 

scaffolds with BM3 variants.

BM3 variant 9-10A F87V TS, a thermostable variant of an enzyme (9-10A F87V) 

previously found to have activity on α-1,2,3,4-tetramethoxymethyl xylose (1),[8] was 

selected as a parent for library creation. Structures for the most stable conformers of 1 and 
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previously unreactive monosaccharide substrates, including 1,2,3,4,6-pentamethoxymethyl 

glucose (2), galactose (3), and mannose (4), were generated using the program Omega.[12] 

The resulting conformers were then placed into the active site of a model of 9-10A F87V TS 

such that their terminal methyl C-H bonds were oriented according to the transition state 

geometry for cytochrome P450-catalyzed H-abstraction proposed by Rydberg et al. [13] The 

transition state ensemble was expanded by varying rotational degrees of freedom and 

reduced by eliminating substrate poses that clashed with the enzyme (within 2.5 Å of a 

backbone or β carbon). Inspection of the final ensemble of prospective transition state 

conformations led to the identification of eight residues for replacement with alanine: K69, 

L75, M177, L181, T260, I263, T268, and L437. Combinatorial substitution was 

accomplished by cloning fragments of the parent gene containing these residues using 

degenerate primers or primer mixtures encoding either the parental residue or alanine at each 

site (see supporting information). These fragments were assembled to generate a 28 (256) 

member library containing the desired alanine substitutions. E. coli was transformed with 

the library mixture and 767 single colonies (ca. 3× theoretical library size) were picked and 

used to inoculate media in 96-well deep well plates. Following protein expression and cell 

lysis, CO binding analysis revealed that 65% of the enzymes were properly folded.[14] 

Sequencing 1% of the library indicated unbiased incorporation of alanine at all of the 

desired sites, and an average alanine substitution per sequence of 3.9.

Several compounds, including MOM-protected thioglycosides 5, 6, and 7, thebaine (8), 

dextromethorphan (9)[15], and trimethyl estriol (10) (Fig. 1), were selected to probe the 

substrate scope of the library. Each of these is relatively large, possesses several methylated 

heteroatoms, and belongs to a privileged class of compounds (i.e. monosaccharides, 

alkaloids, and steroids) for which novel hydroxylation catalysts could be highly valuable 

(vide infra). High throughput screening was carried out in 96-well microtiter plate format[8] 

by addition of NADPH to solutions of the appropriate substrate and cell lysate. Following 

incubation at room temperature, the reactions were quenched with a basic solution of 

Purpald, which reacts with the formaldehyde produced from P450-catalyzed heteroatom 

demethylation to generate a purple dye. The parent enzyme, 9-10A F87V TS, displayed only 

weak activity on these substrates, providing a signal of 20% over background in the best 

cases (data not shown). However, many variants with high activity on several substrates 

were immediately evident based on visual inspection, and the formaldehyde concentration 

(and thus extent of demethylation) was quantified using a plate reader (Abs550 nm).

Variants with 4.1–7.9 fold improvement in demethoxymethylation activity toward each of 

the MOM-protected hexose derivatives were identified (Table 1). Futhermore, GC or HPLC 

analysis of the crude reaction mixtures indicated that these reactions proceeded in moderate 

to high conversion while still maintaining high regioselectivity (vide infra). On the other 

hand, few variants with improved activity on the smaller pentose substrate, 1, were obtained 

from this library, consistent with the expanded active site providing an advantage only for 

the reaction of larger substrates (see supporting information). This library also contained 

variants with marked improvements in activity on alkaloid and steroid substrates 8, 9, and 

10 despite the fact that such structures were not used in the library design. For most 

substrates, the best variants possessed at least two alanine substitutions, and in general, 
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alanine substitution at positions 75, 177, 181, 260, 263, and 437 proved advantageous, while 

alanine substitution at 69, 263, and 268 did not.

Given that these variants possessed sufficient activity on substrates 2–10 to enable their 

detection with the aforementioned high throughput screen, further enzyme optimization was 

possible using directed evolution.[4] Steroid hydroxylation is a particularly valuable reaction 

due to the biological activity of these compounds and their common occurrence as 

metabolites.[16] Indeed, native P450s have been used for many years in the preparation of 

metabolites for both analytical studies and pharmaceutical manufacture.[17] Because only a 

single variant, 8F11, exhibited activity on the steroid derivative trimethyl estriol, a library of 

variants of this enzyme was generated using error prone PCR and screened for improved 

demethylation of trimethyl estriol (see supporting information). This led to the identification 

of a variant with four mutations, none of which were located in the enzyme active site, with 

1.6 fold improvement in activity over the 8F11. This enzyme, F1, was found to have 

moderate activity on additional steroids, including 11-α-hydroxyprogesterone (vide infra) 

and testosterone acetate (data not shown). This result indicated that heteroatom-methylated 

substrates could be used as convenient probes for BM3 activity on related compounds 

lacking these handles for high throughput analysis.

To demonstrate the synthetic utility of the enzymes obtained from combinatorial alanine 

substitution and error prone PCR, preparative scale bioconversions were conducted (Table 

2). Reaction conditions previously developed in our laboratory were utilized[8]; yields and 

selectivities of the reactions translated well to the preparative scale. For example, site-

selective deprotection of MOM-protected hexoses 6 and 7 proceeded in 75% and 70% yield, 

respectively (entries 1 and 2). BM3-catalyzed deprotection of such substrates significantly 

expands the utility of our previously reported chemoenzymatic monosaccharide elaboration 

procedure[8] due to the mild conditions required for chemical deprotection of MOM groups 

and the potential use of the thiophenyl substituent as a leaving group in subsequent 

glycosylation reactions. Demethylation and N-substitution of opiate alkaloids is commonly 

used to vary the properties of these compounds,[18] and BM3 catalysis provides a mild and 

operationally simple method to accomplish the required demethylation step (entries 3 and 4). 

Finally, selective hydroxylation of multifunctional molecules represents a great challenge in 

synthetic chemistry.[1] While P450-catalyzed hydroxylation of steroids has been 

demonstrated, most of these reactions require the use of whole-cell biocatalysts[16] or multi-

component enzyme systems[19]. On the other hand, BM3 variant F1 enables regio- and 

diastereoselective steroid hydroxylation using a single enzyme and thus provides a 

convenient platform from which additional catalysts for this valuable transformation can be 

developed (entry 5).

Together, these results demonstrate the utility of combinatorial alanine substitution for 

generation of BM3 variants with activity on bulky, synthetically useful substrates. We have 

demonstrated that the resulting enzymes have novel activities that can be further optimized 

via directed evolution. Monosaccharides, alkaloids, and steroids were all viable substrates 

despite their large size. This approach could be useful for improving activity of other 

enzymes for which substrate size appears to limit the scope of their reactivity.
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Experimental Section

For details see supporting information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of compounds utilized in enzyme library design and screening: 1–7) 

methoxymethyl (MOM)-protected xylose, hexoses, and thioglycosides; 8 and 9) alkaloids 

thebaine and dextromethorphan; 10) trimethyl estriol
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