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Supporting online material for “Lynx1, a cholinergic brake limits plasticity in adult visual 
cortex” 
 
1. Materials and Methods 
Animals Wild-type (C57 Bl/6; SLC Japan, and Charles River USA) and lynx1 knockout (KO) 
mice (1) were used. Light-reared (LR) animals were raised from birth on a 12-hour light/dark 

(L/D) cycle to various postnatal ages. N=3 to 7 mice were used per experimental condition for 

quantitative Western Blotting or immunohistochemistry. 

 

Quantitative RT-PCR Lynx1,2 mRNA and β-actin mRNA were quantified by real-time PCR 

using commercially available gene-specific primers and TaqMan gene expression assay 

(Applied Biosystems).  

 

In situ hybridization Mouse cDNA fragments of lynx1, lynx2, nAchR β2, PV, or GAD65 were 

amplified by PCR. Probes were synthesized using T3/T7 RNA polymerase (Roche) labeled with 

digoxigenin or fluorescein and hybridized to frozen sections. To amplify the signal, probes were 

detected using anti-digoxigenin or fluorescein antibody conjugated to Alkaline Phosphatase 

(Roche), or the TSA-Plus DNP System (PerkinElmer Life Sciences) in combination with fast red 

staining for double FISH.  

 

Western Blotting Visual cortex from isoflurane-anesthetized mice was dissected and white 

matter stripped by aspiration before homogenizing by sonication in 50mM tris-HCl, pH7.4 

containing 10mM EDTA and 1mM PMSF. Total protein concentration was determined by 

colorimetric (Bradford) assay system (BIO RAD) and used to normalize loading. Equal amounts 

of protein sample (20 or 40μg per lane) were separated by SDS/PAGE and transferred to PVDF 

membranes (ATTO Corporation) with semi-dry blotter. Membranes were blocked with 5% skim 

milk in TBS, pH7.6 containing 0.1% Tween20 for 2h, then treated with rabbit polyclonal 

anti-lynx1 (1:1000) (2) overnight at 4° C, washed and incubated with AP-conjugated secondary 

antibody. Blots were visualized by adding NBT/BCIP solution. 

 

Immunohistochemistry. Mice were perfused transcardially with 0.9% saline then 4% para- 

formaldehyde, and brains removed into 30% sucrose/paraformaldehyde for cryoprotection. 

Brains were cut in coronal section (30μm) on a freezing microtome. Sections were rinsed in 



PBS, then incubated overnight at 4°C in monoclonal antibody against Myelin Basic Protein 

(MBP: Chemicon, 1:200) or biotin-WFA (1:400), followed by secondary antibodies (anti-mouse 

IgG-Alexa-488, 594, streptavidin-488, 1:400). 

 

Monocular deprivation (MD) procedure Eyelid margins were trimmed by iris scissor and eyes 

sutured shut under isoflurane anesthesia. Eyes were closed 4-5 days for short term MD (STMD), 

from P19 to >P60 for long term MD (CP-LTMD), and from P19 to P33 for recovery studies.  

 

Extracellular recording in vivo Electrophysiological recording was performed under nembutal 

/ chlorprothixene anesthesia using standard techniques for mice (3, 4). Ocular dominance in the 

binocular zone of each mouse was calculated as a contralateral bias index (CBI): 

[(n1-n7)+2/3(n2-n6)+1/3(n3-n5)+N]/2N, where N=total number of cells and nx=number of cells 

corresponding to ocular dominance score of x (4). For statistical comparison of OD distributions, 

normalized OD scores of single neurons were plotted as cumulative distribution for each 

experimental group. OD score was computed by PSTH analysis of peak to baseline spiking 

activity in response to each eye: {[Peak(ipsi)-baseline(ipsi)]–[Peak(contra)-baseline(contra)]} / 

{[Peak(ipsi)-baseline(ipsi)] +[Peak(contra)-baseline(contra)]} (5). 

 
Visual Evoked Potentials VEPs were recorded under nembutal / chlorprothixene anesthesia 

using standard techniques in mice (6). A tungsten electrode was inserted into V1 where the 

maximal VEP response is located within the visual field 20° from the vertical meridian (usually 

3mm from lambda). To record VEPs, the electrode was advanced to a depth of 100 - 400 μm 

within cortex where VEPs exhibit their maximal amplitude. Signals were band-pass-filtered 

(0.1–100 Hz), amplified, and fed to a computer for analysis. In brief, at least 20 events were 

averaged in synchrony with the stimulus contrast reversal. Transient VEPs in response to 

abrupt contrast reversal (1Hz) were evaluated in the time domain by measuring the 

peak-to-baseline amplitude of the major negative component. Visual stimuli were horizontal 

sinusoidal gratings of different spatial frequencies at 90% contrast. Visual acuity was obtained 

by extrapolation to zero amplitude of the linear regression through the last four to five data 

points along a curve of VEP amplitude plotted against log spatial frequency. 

 

Drug administration. Nicotine (1mg/kg, s.c.) was injected during VEP recording from V1. 

Mecamylamine (2.5 mg/kg) or a mixture of α4- + α7-selective DHβE (2 mg/kg) + MLA (5 mg/kg) 



were administered systemically (daily, i.p.) (7). Focal mecamylamine (50mM) or Diazepam (2 

mg/ml in 50% propylene glycol) were administered via low-flow osmotic mini-pump infusion 

directly into V1 (1.0 µl/hr, 200 ml over 5-7 days; Alzet Model 2001, Alza) (3) before recording. 

Acetylcholinesterase Inhibitor (AchEI: physostigmine, 0.1mg/kg, i.p.) was injected daily from 

P45 until one day before recording. 

 



2. Supporting Figures 
 
Supporting Figure 1. Lynx2 expression in visual system (A) Lynx2 mRNA expression 

decreases across CP. P < 0.0001, One-way ANOVA. Mean ± sem. (B) In situ hybridization of 

lynx2 in adult V1 (upper panel) and LGN (lower panel). Scale, 100 μm (C) Double in situ 

hybridization of lynx2 (green) & PV (red) in adult V1. Note lynx2 does not co-localize with PV, 

while lynx1 does (Fig.4B). 
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Supporting Figure 2. Normal perineuronal nets and myelination in Lynx1 KO mice.  

(A) WFA staining of adult V1 in WT (left) and lynx1 KO (middle) mice. P > 0.3, t-test.  

(B) MBP staining of adult V1 in WT (left) and lynx1 KO (middle) mice. P > 0.4, t-test. 
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Supporting Figure 3. Co-localization of nAchR β2 subunit with lynx1 and PV in visual system. 

(A) Double in situ hybridization of lynx1 (red) and nAChR β2 (green) in adult V1 and LGN. Scale, 

100 μm  

(B) Double in situ hybridization of PV (red) and nAChR β2 (green) in adult V1. Scale, 100 μm  
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