
Chapter 27

Functions of Number Theory
T. M. Apostol1

Notation 638
27.1 Special Notation . . . . . . . . . . . . . 638

Multiplicative Number Theory 638
27.2 Functions . . . . . . . . . . . . . . . . . 638
27.3 Multiplicative Properties . . . . . . . . . 640
27.4 Euler Products and Dirichlet Series . . . 640
27.5 Inversion Formulas . . . . . . . . . . . . 641
27.6 Divisor Sums . . . . . . . . . . . . . . . 641
27.7 Lambert Series as Generating Functions . 641
27.8 Dirichlet Characters . . . . . . . . . . . . 642
27.9 Quadratic Characters . . . . . . . . . . . 642
27.10 Periodic Number-Theoretic Functions . . 642
27.11 Asymptotic Formulas: Partial Sums . . . 643
27.12 Asymptotic Formulas: Primes . . . . . . 644

Additive Number Theory 644
27.13 Functions . . . . . . . . . . . . . . . . . 644
27.14 Unrestricted Partitions . . . . . . . . . . 645

Applications 647
27.15 Chinese Remainder Theorem . . . . . . . 647
27.16 Cryptography . . . . . . . . . . . . . . . 647
27.17 Other Applications . . . . . . . . . . . . 647

Computation 648
27.18 Methods of Computation: Primes . . . . 648
27.19 Methods of Computation: Factorization . 648
27.20 Methods of Computation: Other Number-

Theoretic Functions . . . . . . . . . . . . 649
27.21 Tables . . . . . . . . . . . . . . . . . . . 649
27.22 Software . . . . . . . . . . . . . . . . . . 649

References 649

1California Institute of Technology, Pasadena, California.
Acknowledgments: The author thanks Basil Gordon for comments on an earlier draft, and David Bressoud for providing §§27.12,

27.18, 27.19, and 27.22.
Copyright c© 2009 National Institute of Standards and Technology. All rights reserved.

637

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216141476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


638 Functions of Number Theory

Notation

27.1 Special Notation

(For other notation see pp. xiv and 873.)

d, k,m, n positive integers (unless otherwise
indicated).

d | n d divides n.
(m,n) greatest common divisor of m,n. If

(m,n) = 1, m and n are called relatively
prime, or coprime.

(d1, . . . , dn) greatest common divisor of d1, . . . , dn.∑
d|n,

∏
d|n sum, product taken over divisors of n.∑

(m,n)=1 sum taken over m, 1 ≤ m ≤ n and m
relatively prime to n.

p, p1, p2, . . . prime numbers (or primes): integers
(> 1) with only two positive integer
divisors, 1 and the number itself.∑

p,
∏
p sum, product extended over all primes.

x, y real numbers.∑
n≤x

∑bxc
n=1.

log x natural logarithm of x, written as lnx in
other chapters.

ζ(s) Riemann zeta function; see §25.2(i).
(n|P ) Jacobi symbol; see §27.9.
(n|p) Legendre symbol; see §27.9.

Multiplicative Number Theory

27.2 Functions

27.2(i) Definitions

Functions in this section derive their properties from the
fundamental theorem of arithmetic, which states that
every integer n > 1 can be represented uniquely as a
product of prime powers,

27.2.1 n =
ν(n)∏
r=1

parr ,

where p1, p2, . . . , pν(n) are the distinct prime factors of
n, each exponent ar is positive, and ν(n) is the number
of distinct primes dividing n. (ν(1) is defined to be 0.)
Euclid’s Elements (Euclid (1908, Book IX, Proposition
20)) gives an elegant proof that there are infinitely many
primes. Tables of primes (§27.21) reveal great irregular-
ity in their distribution. They tend to thin out among
the large integers, but this thinning out is not com-
pletely regular. There is great interest in the function

π(x) that counts the number of primes not exceeding x.
It can be expressed as a sum over all primes p ≤ x:

27.2.2 π(x) =
∑
p≤x

1.

Gauss and Legendre conjectured that π(x) is asymp-
totic to x/ log x as x→∞:

27.2.3 π(x) ∼ x

log x
.

(See Gauss (1863, Band II, pp. 437–477) and Legendre
(1808, p. 394).)

This result, first proved in Hadamard (1896) and
de la Vallée Poussin (1896a,b), is known as the prime
number theorem. An equivalent form states that the
nth prime pn (when the primes are listed in increasing
order) is asymptotic to n log n as n→∞:

27.2.4 pn ∼ n log n.
(See also §27.12.) Other examples of number-theoretic
functions treated in this chapter are as follows.

27.2.5

⌊
1
n

⌋
=

{
1, n = 1,
0, n > 1.

27.2.6
φk(n) =

∑
(m,n)=1

mk,

the sum of the kth powers of the positive integers m ≤ n
that are relatively prime to n.

27.2.7 φ(n) = φ0(n).
This is the number of positive integers ≤ n that are
relatively prime to n; φ(n) is Euler’s totient.

If (a, n) = 1, then the Euler–Fermat theorem states
that

27.2.8 aφ(n) ≡ 1 (mod n),
and if φ(n) is the smallest positive integer f such that
af ≡ 1 (mod n), then a is a primitive root mod n. The
φ(n) numbers a, a2, . . . , aφ(n) are relatively prime to n
and distinct (mod n). Such a set is a reduced residue
system modulo n.

27.2.9
d(n) =

∑
d|n

1

is the number of divisors of n and is the divisor func-
tion. It is the special case k = 2 of the function dk(n)
that counts the number of ways of expressing n as the
product of k factors, with the order of factors taken into
account.

27.2.10
σα(n) =

∑
d|n

dα,

is the sum of the αth powers of the divisors of n, where
the exponent α can be real or complex. Note that
σ0(n) = d(n).

27.2.11
Jk(n) =

∑
((d1,...,dk),n)=1

1,
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is the number of k-tuples of integers ≤ n whose greatest
common divisor is relatively prime to n. This is Jordan’s
function. Note that J1(n) = φ(n).

In the following examples, a1, . . . , aν(n) are the ex-
ponents in the factorization of n in (27.2.1).

27.2.12 µ(n) =


1, n = 1,
(−1)ν(n), a1 = a2 = · · · = aν(n) = 1,
0, otherwise.

This is the Möbius function.

27.2.13 λ(n) =

{
1, n = 1,
(−1)a1+···+aν(n) , n > 1.

This is Liouville’s function.

27.2.14 Λ(n) = log p, n = pa,

where pa is a prime power with a ≥ 1; otherwise
Λ(n) = 0. This is Mangoldt’s function.

27.2(ii) Tables

Table 27.2.1 lists the first 100 prime numbers pn. Ta-
ble 27.2.2 tabulates the Euler totient function φ(n), the
divisor function d(n) (= σ0(n)), and the sum of the
divisors σ(n) (= σ1(n)), for n = 1(1)52.

Table 27.2.1: Primes.

n pn pn+10 pn+20 pn+30 pn+40 pn+50 pn+60 pn+70 pn+80 pn+90

1 2 31 73 127 179 233 283 353 419 467
2 3 37 79 131 181 239 293 359 421 479
3 5 41 83 137 191 241 307 367 431 487
4 7 43 89 139 193 251 311 373 433 491
5 11 47 97 149 197 257 313 379 439 499
6 13 53 101 151 199 263 317 383 443 503
7 17 59 103 157 211 269 331 389 449 509
8 19 61 107 163 223 271 337 397 457 521
9 23 67 109 167 227 277 347 401 461 523

10 29 71 113 173 229 281 349 409 463 541

Table 27.2.2: Functions related to division.

n φ(n) d(n) σ(n) n φ(n) d(n) σ(n) n φ(n) d(n) σ(n) n φ(n) d(n) σ(n)
1 1 1 1 14 6 4 24 27 18 4 40 40 16 8 90
2 1 2 3 15 8 4 24 28 12 6 56 41 40 2 42
3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
4 2 3 7 17 16 2 18 30 8 8 72 43 42 2 44
5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
8 4 4 15 21 12 4 32 34 16 4 54 47 46 2 48
9 6 3 13 22 10 4 36 35 24 4 48 48 16 10 124

10 4 4 18 23 22 2 24 36 12 9 91 49 42 3 57
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72
13 12 2 14 26 12 4 42 39 24 4 56 52 24 6 98
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27.3 Multiplicative Properties

Except for ν(n), Λ(n), pn, and π(x), the functions in
§27.2 are multiplicative, which means f(1) = 1 and

27.3.1 f(mn) = f(m)f(n), (m,n) = 1.

If f is multiplicative, then the values f(n) for n > 1
are determined by the values at the prime powers.
Specifically, if n is factored as in (27.2.1), then

27.3.2 f(n) =
ν(n)∏
r=1

f(parr ).

In particular,

27.3.3
φ(n) = n

∏
p|n

(1− p−1),

27.3.4
Jk(n) = nk

∏
p|n

(1− p−k),

27.3.5 d(n) =
ν(n)∏
r=1

(1 + ar),

27.3.6 σα(n) =
ν(n)∏
r=1

p
α(1+ar)
r − 1
pαr − 1

, α 6= 0.

Related multiplicative properties are

27.3.7 σα(m)σα(n) =
∑

d|(m,n)

dα σα

(mn
d2

)
,

27.3.8 φ(m)φ(n) = φ(mn)φ((m,n))/ (m,n) .

A function f is completely multiplicative if f(1) = 1
and

27.3.9 f(mn) = f(m)f(n), m,n = 1, 2, . . . .

Examples are b1/nc and λ(n), and the Dirichlet char-
acters, defined in §27.8.

If f is completely multiplicative, then (27.3.2) be-
comes

27.3.10 f(n) =
ν(n)∏
r=1

(f(pr))
ar .

27.4 Euler Products and Dirichlet Series

The fundamental theorem of arithmetic is linked to
analysis through the concept of the Euler product. Ev-
ery multiplicative f satisfies the identity

27.4.1

∞∑
n=1

f(n) =
∏
p

(
1 +

∞∑
r=1

f(pr)

)
,

if the series on the left is absolutely convergent. In this
case the infinite product on the right (extended over all
primes p) is also absolutely convergent and is called the

Euler product of the series. If f(n) is completely multi-
plicative, then each factor in the product is a geometric
series and the Euler product becomes

27.4.2

∞∑
n=1

f(n) =
∏
p

(1− f(p))−1.

Euler products are used to find series that generate
many functions of multiplicative number theory. The
completely multiplicative function f(n) = n−s gives the
Euler product representation of the Riemann zeta func-
tion ζ(s) (§25.2(i)):

27.4.3 ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1, <s > 1.

The Riemann zeta function is the prototype of series
of the form

27.4.4 F (s) =
∞∑
n=1

f(n)n−s,

called Dirichlet series with coefficients f(n). The func-
tion F (s) is a generating function, or more precisely, a
Dirichlet generating function, for the coefficients. The
following examples have generating functions related to
the zeta function:

27.4.5

∞∑
n=1

µ(n)n−s =
1
ζ(s)

, <s > 1,

27.4.6

∞∑
n=1

φ(n)n−s =
ζ(s− 1)
ζ(s)

, <s > 2,

27.4.7

∞∑
n=1

λ(n)n−s =
ζ(2s)
ζ(s)

, <s > 1,

27.4.8

∞∑
n=1

|µ(n)|n−s =
ζ(s)
ζ(2s)

, <s > 1,

27.4.9

∞∑
n=1

2ν(n)n−s =
(ζ(s))2

ζ(2s)
, <s > 1,

27.4.10

∞∑
n=1

dk(n)n−s = (ζ(s))k, <s > 1,

27.4.11
∞∑
n=1

σα(n)n−s = ζ(s) ζ(s− α), <s > max(1, 1 + <α),

27.4.12

∞∑
n=1

Λ(n)n−s = −ζ
′(s)
ζ(s)

, <s > 1,

27.4.13

∞∑
n=2

(log n)n−s = − ζ ′(s), <s > 1.

In (27.4.12) and (27.4.13) ζ ′(s) is the derivative of ζ(s).
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27.5 Inversion Formulas

If a Dirichlet series F (s) generates f(n), and G(s) gen-
erates g(n), then the product F (s)G(s) generates

27.5.1 h(n) =
∑
d|n

f(d)g
(n
d

)
,

called the Dirichlet product (or convolution) of f and
g. The set of all number-theoretic functions f with
f(1) 6= 0 forms an abelian group under Dirichlet multi-
plication, with the function b1/nc in (27.2.5) as identity
element; see Apostol (1976, p. 129). The multiplicative
functions are a subgroup of this group. Generating func-
tions yield many relations connecting number-theoretic
functions. For example, the equation ζ(s) ·(1/ζ(s) ) = 1
is equivalent to the identity

27.5.2
∑
d|n

µ(d) =
⌊

1
n

⌋
,

which, in turn, is the basis for the Möbius inversion
formula relating sums over divisors:

27.5.3 g(n) =
∑
d|n

f(d)⇐⇒ f(n) =
∑
d|n

g(d)µ
(n
d

)
.

Special cases of Möbius inversion pairs are:

27.5.4 n =
∑
d|n

φ(d)⇐⇒ φ(n) =
∑
d|n

dµ
(n
d

)
,

27.5.5 log n =
∑
d|n

Λ(d)⇐⇒ Λ(n) =
∑
d|n

(log d)µ
(n
d

)
.

Other types of Möbius inversion formulas include:

27.5.6 G(x) =
∑
n≤x

F
(x
n

)
⇐⇒ F (x) =

∑
n≤x

µ(n)G
(x
n

)
,

27.5.7

G(x) =
∞∑
m=1

F (mx)
ms

⇐⇒ F (x) =
∞∑
m=1

µ(m)
G(mx)
ms

,

27.5.8 g(n) =
∏
d|n

f(d)⇐⇒ f(n) =
∏
d|n

(
g
(n
d

))µ(d)

.

For a general theory of Möbius inversion with appli-
cations to combinatorial theory see Rota (1964).

27.6 Divisor Sums

Sums of number-theoretic functions extended over divi-
sors are of special interest. For example,

27.6.1
∑
d|n

λ(d) =

{
1, n is a square,
0, otherwise.

If f is multiplicative, then

27.6.2

∑
d|n

µ(d)f(d) =
∏
p|n

(1− f(p)), n > 1.

Generating functions, Euler products, and Möbius
inversion are used to evaluate many sums extended over
divisors. Examples include:

27.6.3

∑
d|n

|µ(d)| = 2ν(n),

27.6.4

∑
d2|n

µ(d) = |µ(n)|,

27.6.5
∑
d|n

|µ(d)|
φ(d)

=
n

φ(n)
,

27.6.6
∑
d|n

φk(d)
(n
d

)k
= 1k + 2k + · · ·+ nk,

27.6.7
∑
d|n

µ(d)
(n
d

)k
= Jk(n),

27.6.8

∑
d|n

Jk(d) = nk.

27.7 Lambert Series as Generating
Functions

Lambert series have the form

27.7.1

∞∑
n=1

f(n)
xn

1− xn
.

If |x| < 1, then the quotient xn/(1−xn) is the sum of a
geometric series, and when the series (27.7.1) converges
absolutely it can be rearranged as a power series:

27.7.2

∞∑
n=1

f(n)
xn

1− xn
=
∞∑
n=1

∑
d|n

f(d)xn.

Again with |x| < 1, special cases of (27.7.2) include:

27.7.3

∞∑
n=1

µ(n)
xn

1− xn
= x,

27.7.4

∞∑
n=1

φ(n)
xn

1− xn
=

x

(1− x)2
,

27.7.5

∞∑
n=1

nα
xn

1− xn
=
∞∑
n=1

σα(n)xn,

27.7.6

∞∑
n=1

λ(n)
xn

1− xn
=
∞∑
n=1

xn
2
.
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27.8 Dirichlet Characters

If k (> 1) is a given integer, then a function χ(n) is
called a Dirichlet character (mod k) if it is completely
multiplicative, periodic with period k, and vanishes
when (n, k) > 1. In other words, Dirichlet characters
(mod k) satisfy the four conditions:

27.8.1 χ(1) = 1,

27.8.2 χ(mn) = χ(m)χ(n), m,n = 1, 2, . . . ,

27.8.3 χ(n+ k) = χ(n), n = 1, 2, . . . ,

27.8.4 χ(n) = 0, (n, k) > 1.

An example is the principal character (mod k):

27.8.5 χ1(n) =

{
1, (n, k) = 1,
0, (n, k) > 1.

For any character χ (mod k), χ(n) 6= 0 if and only
if (n, k) = 1, in which case the Euler–Fermat theorem
(27.2.8) implies (χ(n))φ(k) = 1. There are exactly φ(k)
different characters (mod k), which can be labeled as
χ1, . . . , χφ(k). If χ is a character (mod k), so is its com-
plex conjugate χ. If (n, k) = 1, then the characters
satisfy the orthogonality relation

27.8.6

φ(k)∑
r=1

χr(m)χr(n) =

{
φ(k), m ≡ n (mod k),
0, otherwise.

A Dirichlet character χ (mod k) is called primitive
(mod k) if for every proper divisor d of k (that is, a
divisor d < k), there exists an integer a ≡ 1 (mod d),
with (a, k) = 1 and χ(a) 6= 1. If k is prime, then ev-
ery nonprincipal character χ (mod k) is primitive. A
divisor d of k is called an induced modulus for χ if

27.8.7 χ(a) = 1 for all a ≡ 1 (mod d), (a, k) = 1.

Every Dirichlet character χ (mod k) is a product

27.8.8 χ(n) = χ0(n)χ1(n),

where χ0 is a character (mod d) for some induced mod-
ulus d for χ, and χ1 is the principal character (mod k).
A character is real if all its values are real. If k is odd,
then the real characters (mod k) are the principal char-
acter and the quadratic characters described in the next
section.

27.9 Quadratic Characters

For an odd prime p, the Legendre symbol (n|p) is de-
fined as follows. If p divides n, then the value of (n|p)
is 0. If p does not divide n, then (n|p) has the value
1 when the quadratic congruence x2 ≡ n (mod p) has
a solution, and the value −1 when this congruence has
no solution. The Legendre symbol (n|p), as a function

of n, is a Dirichlet character (mod p). It is sometimes
written as (np ). Special values include:

27.9.1 (−1|p) = (−1)(p−1)/2,

27.9.2 (2|p) = (−1)(p2−1)/8.

If p, q are distinct odd primes, then the quadratic
reciprocity law states that

27.9.3 (p|q) (q|p) = (−1)(p−1)(q−1)/4.

If an odd integer P has prime factorization P =∏ν(n)
r=1 p

ar
r , then the Jacobi symbol (n|P ) is defined by

(n|P ) =
∏ν(n)
r=1 (n|pr)ar , with (n|1) = 1. The Jacobi

symbol (n|P ) is a Dirichlet character (mod P ). Both
(27.9.1) and (27.9.2) are valid with p replaced by P ; the
reciprocity law (27.9.3) holds if p, q are replaced by any
two relatively prime odd integers P,Q.

27.10 Periodic Number-Theoretic
Functions

If k is a fixed positive integer, then a number-theoretic
function f is periodic (mod k) if

27.10.1 f(n+ k) = f(n), n = 1, 2, . . . .

Examples are the Dirichlet characters (mod k) and the
greatest common divisor (n, k) regarded as a function
of n.

Every function periodic (mod k) can be expressed as
a finite Fourier series of the form

27.10.2 f(n) =
k∑

m=1

g(m)e2πimn/k,

where g(m) is also periodic (mod k), and is given by

27.10.3 g(m) =
1
k

k∑
n=1

f(n)e−2πimn/k.

An example is Ramanujan’s sum:

27.10.4 ck(n) =
k∑

m=1

χ1(m)e2πimn/k,

where χ1 is the principal character (mod k). This is
the sum of the nth powers of the primitive kth roots of
unity. It can also be expressed in terms of the Möbius
function as a divisor sum:

27.10.5 ck(n) =
∑
d|(n,k)

dµ

(
k

d

)
.

More generally, if f and g are arbitrary, then the
sum
27.10.6 sk(n) =

∑
d|(n,k)

f(d)g
(
k

d

)
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is a periodic function of n (mod k) and has the finite
Fourier-series expansion

27.10.7 sk(n) =
k∑

m=1

ak(m)e2πimn/k,

where
27.10.8 ak(m) =

∑
d|(m,k)

g(d)f
(
k

d

)
d

k
.

Another generalization of Ramanujan’s sum is the
Gauss sum G(n, χ) associated with a Dirichlet charac-
ter χ (mod k). It is defined by the relation

27.10.9 G(n, χ) =
k∑

m=1

χ(m)e2πimn/k.

In particular, G(n, χ1) = ck(n).
G(n, χ) is separable for some n if

27.10.10 G(n, χ) = χ(n)G(1, χ).
For any Dirichlet character χ (mod k), G(n, χ) is

separable for n if (n, k) = 1, and is separable for every
n if and only if G(n, χ) = 0 whenever (n, k) > 1. For a
primitive character χ (mod k), G(n, χ) is separable for
every n, and

27.10.11 |G(1, χ)|2 = k.

Conversely, if G(n, χ) is separable for every n, then
χ is primitive (mod k).

The finite Fourier expansion of a primitive Dirichlet
character χ (mod k) has the form

27.10.12 χ(n) =
G(1, χ)
k

k∑
m=1

χ(m)e−2πimn/k.

27.11 Asymptotic Formulas: Partial Sums

The behavior of a number-theoretic function f(n) for
large n is often difficult to determine because the func-
tion values can fluctuate considerably as n increases. It
is more fruitful to study partial sums and seek asymp-
totic formulas of the form

27.11.1
∑
n≤x

f(n) = F (x) +O(g(x)),

where F (x) is a known function of x, and O(g(x)) repre-
sents the error, a function of smaller order than F (x) for
all x in some prescribed range. For example, Dirichlet
(1849) proves that for all x ≥ 1,

27.11.2
∑
n≤x

d(n) = x log x+ (2γ − 1)x+O
(√
x
)
,

where γ is Euler’s constant (§5.2(ii)). Dirichlet’s divi-
sor problem (unsolved in 2009) is to determine the least
number θ0 such that the error term in (27.11.2) is O

(
xθ
)

for all θ > θ0. Kolesnik (1969) proves that θ0 ≤ 12
37 .

Equations (27.11.3)–(27.11.11) list further asymp-
totic formulas related to some of the functions listed
in §27.2. They are valid for all x ≥ 2. The error terms
given here are not necessarily the best known.

27.11.3
∑
n≤x

d(n)
n

=
1
2

(log x)2 + 2γ log x+O(1),

where γ again is Euler’s constant.

27.11.4
∑
n≤x

σ1(n) =
π2

12
x2 +O(x log x).

27.11.5

∑
n≤x

σα(n) =
ζ(α+ 1)
α+ 1

xα+1 +O
(
xβ
)
,

α > 0, α 6= 1, β = max(1, α).

27.11.6
∑
n≤x

φ(n) =
3
π2
x2 +O(x log x).

27.11.7
∑
n≤x

φ(n)
n

=
6
π2
x+O(log x).

27.11.8
∑
p≤x

1
p

= log log x+A+O

(
1

log x

)
,

where A is a constant.

27.11.9

∑
p≤x

p≡h (mod k)

1
p

=
1

φ(k)
log log x+B+O

(
1

log x

)
,

where (h, k) = 1, k > 0, and B is a constant depending
on h and k.

27.11.10
∑
p≤x

log p
p

= log x+O(1).

27.11.11

∑
p≤x

p≡h (mod k)

log p
p

=
1

φ(k)
log x+O(1),

where (h, k) = 1, k > 0.
Letting x → ∞ in (27.11.9) or in (27.11.11) we see

that there are infinitely many primes p ≡ h (mod k) if
h, k are coprime; this is Dirichlet’s theorem on primes
in arithmetic progressions.

27.11.12
∑
n≤x

µ(n) = O
(
xe−C

√
log x

)
, x→∞,

for some positive constant C,

27.11.13 lim
x→∞

1
x

∑
n≤x

µ(n) = 0,

27.11.14 lim
x→∞

∑
n≤x

µ(n)
n

= 0,

27.11.15 lim
x→∞

∑
n≤x

µ(n) log n
n

= −1.
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Each of (27.11.13)–(27.11.15) is equivalent to the
prime number theorem (27.2.3). The prime num-
ber theorem for arithmetic progressions—an extension
of (27.2.3) and first proved in de la Vallée Poussin
(1896a,b)—states that if (h, k) = 1, then the number
of primes p ≤ x with p ≡ h (mod k) is asymptotic to
x/(φ(k) log x) as x→∞.

27.12 Asymptotic Formulas: Primes

pn is the nth prime, beginning with p1 = 2. π(x) is the
number of primes less than or equal to x.

27.12.1 lim
n→∞

pn
n log n

= 1,

27.12.2 pn > n log n, n = 1, 2, . . . .

27.12.3

π(x) = bxc − 1−
∑

pj≤
√
x

⌊
x

pj

⌋

+
∑
r≥2

(−1)r
∑

pj1<pj2<···<pjr≤
√
x

⌊
x

pj1pj2 · · · pjr

⌋
,

x ≥ 1,
where the series terminates when the product of the first
r primes exceeds x.

As x→∞

27.12.4 π(x) ∼
∞∑
k=1

(k − 1)!x
(log x)k

.

Prime Number Theorem

There exists a positive constant c such that
27.12.5

|π(x)− li(x)| = O
(
x exp

(
−c
√

log x
))

, x→∞.

For the logarithmic integral li(x) see (6.2.8). The best
available asymptotic error estimate (2009) appears in
Korobov (1958) and Vinogradov (1958): there exists a
positive constant d such that

27.12.6

|π(x)− li(x)|
= O

(
x exp

(
−d(log x)3/5 (log log x)−1/5

))
.

π(x)− li(x) changes sign infinitely often as x→∞;
see Littlewood (1914), Bays and Hudson (2000).

The Riemann hypothesis (§25.10(i)) is equivalent to
the statement that for every x ≥ 2657,

27.12.7 |π(x)− li(x)| < 1
8π
√
x log x.

If a is relatively prime to the modulus m, then there
are infinitely many primes congruent to a (mod m).

The number of such primes not exceeding x is

27.12.8

x

φ(m)
+O

(
x exp

(
−λ(α)(log x)1/2

))
,

m ≤ (log x)α, α > 0,

where λ(α) depends only on α, and φ(m) is the Euler
totient function (§27.2).

A Mersenne prime is a prime of the form 2p − 1.
The largest known prime (2009) is the Mersenne prime
243,112,609 − 1. For current records online, see http:
//dlmf.nist.gov/27.12.

A pseudoprime test is a test that correctly identi-
fies most composite numbers. For example, if 2n 6≡ 2
(mod n), then n is composite. Descriptions and com-
parisons of pseudoprime tests are given in Bressoud and
Wagon (2000, §§2.4, 4.2, and 8.2) and Crandall and
Pomerance (2005, §§3.4–3.6).

A Carmichael number is a composite number n for
which bn ≡ b (mod n) for all b ∈ N. There are infinitely
many Carmichael numbers.

Additive Number Theory

27.13 Functions

27.13(i) Introduction

Whereas multiplicative number theory is concerned
with functions arising from prime factorization, addi-
tive number theory treats functions related to addition
of integers. The basic problem is that of expressing a
given positive integer n as a sum of integers from some
prescribed set S whose members are primes, squares,
cubes, or other special integers. Each representation of
n as a sum of elements of S is called a partition of n,
and the number S(n) of such partitions is often of great
interest. The subsections that follow describe problems
from additive number theory. See also Apostol (1976,
Chapter 14) and Apostol and Niven (1994, pp. 33–34).

27.13(ii) Goldbach Conjecture

Every even integer n > 4 is the sum of two odd primes.
In this case, S(n) is the number of solutions of the equa-
tion n = p + q, where p and q are odd primes. Gold-
bach’s assertion is that S(n) ≥ 1 for all even n > 4.
This conjecture dates back to 1742 and was undecided
in 2009, although it has been confirmed numerically up
to very large numbers. Vinogradov (1937) proves that
every sufficiently large odd integer is the sum of three
odd primes, and Chen (1966) shows that every suffi-
ciently large even integer is the sum of a prime and a
number with no more than two prime factors.

For an online account of the current status of Gold-
bach’s conjecture see http://dlmf.nist.gov/27.13.
ii.

http://dlmf.nist.gov/27.12
http://dlmf.nist.gov/27.12
http://dlmf.nist.gov/27.13.ii
http://dlmf.nist.gov/27.13.ii
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27.13(iii) Waring’s Problem

This problem is named after Edward Waring who, in
1770, stated without proof and with limited numerical
evidence, that every positive integer n is the sum of four
squares, of nine cubes, of nineteen fourth powers, and
so on. Waring’s problem is to find, for each positive in-
teger k, whether there is an integer m (depending only
on k) such that the equation

27.13.1 n = xk1 + xk2 + · · ·+ xkm

has nonnegative integer solutions for all n ≥ 1. The
smallest m that exists for a given k is denoted by
g(k). Similarly, G(k) denotes the smallest m for which
(27.13.1) has nonnegative integer solutions for all suffi-
ciently large n.

Lagrange (1770) proves that g(2) = 4, and during
the next 139 years the existence of g(k) was shown for
k = 3, 4, 5, 6, 7, 8, 10. Hilbert (1909) proves the exis-
tence of g(k) for every k but does not determine its
corresponding numerical value. The exact value of g(k)
is now known for every k ≤ 200, 000. For example,
g(3) = 9, g(4) = 19, g(5) = 37, g(6) = 73, g(7) = 143,
and g(8) = 279. A general formula states that

27.13.2 g(k) ≥ 2k +
⌊

3k

2k

⌋
− 2,

for all k ≥ 2, with equality if 4 ≤ k ≤ 200, 000. If
3k = q2k + r with 0 < r < 2k, then equality holds
in (27.13.2) provided r + q ≤ 2k, a condition that is
satisfied with at most a finite number of exceptions.

The existence of G(k) follows from that of g(k) be-
cause G(k) ≤ g(k), but only the values G(2) = 4 and
G(4) = 16 are known exactly. Some upper bounds
smaller than g(k) are known. For example, G(3) ≤ 7,
G(5) ≤ 23, G(6) ≤ 36, G(7) ≤ 53, and G(8) ≤ 73.
Hardy and Littlewood (1925) conjectures that G(k) <
2k + 1 when k is not a power of 2, and that G(k) ≤ 4k
when k is a power of 2, but the most that is known (in
2009) is G(k) < ck log k for some constant c. A survey
is given in Ellison (1971).

27.13(iv) Representation by Squares

For a given integer k ≥ 2 the function rk(n) is defined
as the number of solutions of the equation

27.13.3 n = x2
1 + x2

2 + · · ·+ x2
k,

where the xj are integers, positive, negative, or zero,
and the order of the summands is taken into account.

Jacobi (1829) notes that r2(n) is the coefficient of
xn in the square of the theta function ϑ(x):

27.13.4 ϑ(x) = 1 + 2
∞∑
m=1

xm
2
, |x| < 1.

(In §20.2(i), ϑ(x) is denoted by θ3(0, x).) Thus,

27.13.5 (ϑ(x))2 = 1 +
∞∑
n=1

r2(n)xn.

One of Jacobi’s identities implies that

27.13.6 (ϑ(x))2 = 1 + 4
∞∑
n=1

(δ1(n)− δ3(n))xn,

where δ1(n) and δ3(n) are the number of divisors of
n congruent respectively to 1 and 3 (mod 4), and by
equating coefficients in (27.13.5) and (27.13.6) Jacobi
deduced that

27.13.7 r2(n) = 4 (δ1(n)− δ3(n)) .

Hence r2(5) = 8 because both divisors, 1 and 5, are
congruent to 1 (mod 4). In fact, there are four rep-
resentations, given by 5 = 22 + 12 = 22 + (−1)2 =
(−2)2 + 12 = (−2)2 + (−1)2, and four more with the
order of summands reversed.

By similar methods Jacobi proved that r4(n) =
8σ1(n) if n is odd, whereas, if n is even, r4(n) = 24
times the sum of the odd divisors of n. Mordell (1917)
notes that rk(n) is the coefficient of xn in the power-
series expansion of the kth power of the series for ϑ(x).
Explicit formulas for rk(n) have been obtained by sim-
ilar methods for k = 6, 8, 10, and 12, but they are more
complicated. Exact formulas for rk(n) have also been
found for k = 3, 5, and 7, and for all even k ≤ 24.
For values of k > 24 the analysis of rk(n) is consider-
ably more complicated (see Hardy (1940)). Also, Milne
(1996, 2002) announce new infinite families of explicit
formulas extending Jacobi’s identities. For more than
8 squares, Milne’s identities are not the same as those
obtained earlier by Mordell and others.

27.14 Unrestricted Partitions

27.14(i) Partition Functions

A fundamental problem studies the number of ways n
can be written as a sum of positive integers ≤ n, that
is, the number of solutions of

27.14.1 n = a1 + a2 + · · · , a1 ≥ a2 ≥ · · · ≥ 1.

The number of summands is unrestricted, repetition is
allowed, and the order of the summands is not taken into
account. The corresponding unrestricted partition func-
tion is denoted by p(n), and the summands are called
parts; see §26.9(i). For example, p(5) = 7 because there
are exactly seven partitions of 5: 5 = 4 + 1 = 3 + 2 =
3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

The number of partitions of n into at most k parts
is denoted by pk(n); again see §26.9(i).
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27.14(ii) Generating Functions and Recursions

Euler introduced the reciprocal of the infinite product

27.14.2 f (x) =
∞∏
m=1

(1− xm), |x| < 1,

as a generating function for the function p(n) defined in
§27.14(i):

27.14.3
1

f (x)
=
∞∑
n=0

p(n)xn,

with p(0) = 1. Euler’s pentagonal number theorem
states that

27.14.4

f (x) = 1− x− x2 + x5 + x7 − x12 − x15 + · · ·

= 1 +
∞∑
k=1

(−1)k
(
xω(k) + xω(−k)

)
,

where the exponents 1, 2, 5, 7, 12, 15, . . . are the pen-
tagonal numbers, defined by

27.14.5 ω(±k) = (3k2 ∓ k)/2, k = 1, 2, 3, . . . .
Multiplying the power series for f (x) with that for

1/ f (x) and equating coefficients, we obtain the recur-
sion formula
27.14.6

p(n) =
∞∑
k=1

(−1)k+1 (p(n− ω(k)) + p(n− ω(−k)))

= p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · · ,
where p(k) is defined to be 0 if k < 0. Logarithmic dif-
ferentiation of the generating function 1/ f (x) leads to
another recursion:

27.14.7 n p(n) =
n∑
k=1

σ1(n) p(n− k),

where σ1(n) is defined by (27.2.10) with α = 1.

27.14(iii) Asymptotic Formulas

These recursions can be used to calculate p(n), which
grows very rapidly. For example, p(10) = 42, p(100) =
1905 69292, and p(200) = 397 29990 29388. For large n

27.14.8 p(n) ∼ eK
√
n/(4n

√
3),

where K = π
√

2/3 (Hardy and Ramanujan (1918)).
Rademacher (1938) derives a convergent series that also
provides an asymptotic expansion for p(n):
27.14.9

p(n)

=
1

π
√

2

∞∑
k=1

√
kAk(n)

[
d

dt

sinh
(
K
√
t
/
k
)

√
t

]
t=n−(1/24)

,

where

27.14.10 Ak(n) =
k∑
h=1

(h,k)=1

exp
(
πis(h, k)− 2πin

h

k

)
,

and s(h, k) is a Dedekind sum given by

27.14.11 s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
.

27.14(iv) Relation to Modular Functions

Dedekind sums occur in the transformation theory of
the Dedekind modular function η(τ), defined by

27.14.12 η(τ) = eπiτ/12
∞∏
n=1

(1− e2πinτ ), =τ > 0.

This is related to the function f (x) in (27.14.2) by

27.14.13 η(τ) = eπiτ/12 f
(
e2πiτ

)
.

η(τ) satisfies the following functional equation: if
a, b, c, d are integers with ad− bc = 1 and c > 0, then

27.14.14 η

(
aτ + b

cτ + d

)
= ε(−i(cτ + d))

1
2 η(τ),

where ε = exp(πi(((a+ d)/(12c))− s(d, c))) and s(d, c)
is given by (27.14.11).

For further properties of the function η(τ) see
§§23.15–23.19.

27.14(v) Divisibility Properties

Ramanujan (1921) gives identities that imply divisibil-
ity properties of the partition function. For example,
the Ramanujan identity

27.14.15 5
(f
(
x5
)
)5

(f (x))6
=
∞∑
n=0

p(5n+ 4)xn

implies p(5n+ 4) ≡ 0 (mod 5). Ramanujan also found
that p(7n+ 5) ≡ 0 (mod 7) and p(11n+ 6) ≡ 0
(mod 11) for all n. After decades of nearly fruitless
searching for further congruences of this type, it was
believed that no others existed, until it was shown in
Ono (2000) that there are infinitely many. Ono proved
that for every prime q > 3 there are integers a and b
such that p(an+ b) ≡ 0 (mod q) for all n. For example,
p(1575 25693n+ 1 11247) ≡ 0 (mod 13).

27.14(vi) Ramanujan’s Tau Function

The discriminant function ∆(τ) is defined by

27.14.16 ∆(τ) = (2π)12(η(τ))24, =τ > 0,

and satisfies the functional equation

27.14.17 ∆
(
aτ + b

cτ + d

)
= (cτ + d)12 ∆(τ),

if a, b, c, d are integers with ad− bc = 1 and c > 0.
The 24th power of η(τ) in (27.14.12) with e2πiτ = x

is an infinite product that generates a power series in
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x with integer coefficients called Ramanujan’s tau func-
tion τ(n):

27.14.18 x

∞∏
n=1

(1− xn)24 =
∞∑
n=1

τ(n)xn, |x| < 1.

The tau function is multiplicative and satisfies the more
general relation:
27.14.19

τ(m) τ(n) =
∑

d|(m,n)

d11 τ
(mn
d2

)
, m,n = 1, 2, . . . .

Lehmer (1947) conjectures that τ(n) is never 0 and ver-
ifies this for all n < 21 49286 39999 by studying various
congruences satisfied by τ(n), for example:

27.14.20 τ(n) ≡ σ11(n) (mod 691).
For further information on partitions and generating

functions see Andrews (1976); also §§17.2–17.14, and
§§26.9–26.10.

Applications

27.15 Chinese Remainder Theorem

The Chinese remainder theorem states that a system of
congruences x ≡ a1 (mod m1), . . . , x ≡ ak (mod mk),
always has a solution if the moduli are relatively prime
in pairs; the solution is unique (mod m), where m is the
product of the moduli.

This theorem is employed to increase efficiency in
calculating with large numbers by making use of smaller
numbers in most of the calculation. For example, sup-
pose a lengthy calculation involves many 10-digit inte-
gers. Most of the calculation can be done with five-digit
integers as follows. Choose four relatively prime mod-
uli m1,m2,m3, and m4 of five digits each, for example
216 − 3, 216 − 1, 216 + 1, and 216 + 3. Their prod-
uct m has 20 digits, twice the number of digits in the
data. By the Chinese remainder theorem each integer
in the data can be uniquely represented by its residues
(mod m1), (mod m2), (mod m3), and (mod m4), re-
spectively. Because each residue has no more than five
digits, the arithmetic can be performed efficiently on
these residues with respect to each of the moduli, yield-
ing answers a1 (mod m1), a2 (mod m2), a3 (mod m3),
and a4 (mod m4), where each aj has no more than five
digits. These numbers, in turn, are combined by the
Chinese remainder theorem to obtain the final result
(mod m), which is correct to 20 digits.

Even though the lengthy calculation is repeated four
times, once for each modulus, most of it only uses five-
digit integers and is accomplished quickly without over-
whelming the machine’s memory. Details of a machine

program describing the method together with typical
numerical results can be found in Newman (1967). See
also Apostol and Niven (1994, pp. 18–19).

27.16 Cryptography

Applications to cryptography rely on the disparity in
computer time required to find large primes and to fac-
tor large integers.

For example, a code maker chooses two large primes
p and q of about 100 decimal digits each. Procedures
for finding such primes require very little computer time.
The primes are kept secret but their product n = pq, a
200-digit number, is made public. For this reason, these
are often called public key codes. Messages are coded
by a method (described below) that requires only the
knowledge of n. But to decode, both factors p and q
must be known. With the most efficient computer tech-
niques devised to date (2009), factoring a 200-digit num-
ber may require billions of years on a single computer.
For this reason, the codes are considered unbreakable,
at least with the current state of knowledge on factoring
large numbers.

To code a message by this method, we replace each
letter by two digits, say A = 01, B = 02, . . . , Z = 26,
and divide the message into pieces of convenient length
smaller than the public value n = pq. Choose a prime
r that does not divide either p− 1 or q − 1. Like n, the
prime r is made public. To code a piece x, raise x to the
power r and reduce xr modulo n to obtain an integer y
(the coded form of x) between 1 and n. Thus, y ≡ xr

(mod n) and 1 ≤ y < n.
To decode, we must recover x from y. To do this,

let s denote the reciprocal of r modulo φ(n), so that
rs = 1 + t φ(n) for some integer t. (Here φ(n) is Euler’s
totient (§27.2).) By the Euler–Fermat theorem (27.2.8),
xφ(n) ≡ 1 (mod n); hence xt φ(n) ≡ 1 (mod n). But
ys ≡ xrs ≡ x1+t φ(n) ≡ x (mod n), so ys is the same
as x modulo n. In other words, to recover x from y we
simply raise y to the power s and reduce modulo n. If p
and q are known, s and ys can be determined (mod n)
by straightforward calculations that require only a few
minutes of machine time. But if p and q are not known,
the problem of recovering x from y seems insurmount-
able.

For further information see Apostol and Niven
(1994, p. 24), and for other applications to cryptography
see Menezes et al. (1997) and Schroeder (2006).

27.17 Other Applications

Reed et al. (1990, pp. 458–470) describes a number-
theoretic approach to Fourier analysis (called the arith-
metic Fourier transform) that uses the Möbius inversion
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(27.5.7) to increase efficiency in computing coefficients
of Fourier series.

Congruences are used in constructing perpetual cal-
endars, splicing telephone cables, scheduling round-
robin tournaments, devising systematic methods for
storing computer files, and generating pseudorandom
numbers. Rosen (2004, Chapters 5 and 10) describes
many of these applications. Apostol and Zuckerman
(1951) uses congruences to construct magic squares.

There are also applications of number theory in
many diverse areas, including physics, biology, chem-
istry, communications, and art. Schroeder (2006) de-
scribes many of these applications, including the de-
sign of concert hall ceilings to scatter sound into broad
lateral patterns for improved acoustic quality, precise
measurements of delays of radar echoes from Venus and
Mercury to confirm one of the relativistic effects pre-
dicted by Einstein’s theory of general relativity, and the
use of primes in creating artistic graphical designs.

Computation

27.18 Methods of Computation: Primes

An overview of methods for precise counting of the
number of primes not exceeding an arbitrary integer
x is given in Crandall and Pomerance (2005, §3.7).
T. Oliveira e Silva has calculated π(x) for x = 1023, us-
ing the combinatorial methods of Lagarias et al. (1985)
and Deléglise and Rivat (1996); see Oliveira e Silva
(2006). An analytic approach using a contour integral
of the Riemann zeta function (§25.2(i)) is discussed in
Borwein et al. (2000).

The Sieve of Eratosthenes (Crandall and Pomerance
(2005, §3.2)) generates a list of all primes below a given
bound. An alternative procedure is the binary quadratic
sieve of Atkin and Bernstein (Crandall and Pomerance
(2005, p. 170)).

For small values of n, primality is proven by showing
that n is not divisible by any prime not exceeding

√
n.

Two simple algorithms for proving primality re-
quire a knowledge of all or part of the factorization
of n − 1, n + 1, or both; see Crandall and Pomerance
(2005, §§4.1–4.2). These algorithms are used for test-
ing primality of Mersenne numbers, 2n− 1, and Fermat
numbers, 22n + 1.

The APR (Adleman–Pomerance–Rumely) algorithm
for primality testing is based on Jacobi sums. It runs in
time O

(
(log n)c log log log n

)
. Explanations are given in

Cohen (1993, §9.1) and Crandall and Pomerance (2005,
§4.4). A practical version is described in Bosma and
van der Hulst (1990).

The AKS (Agrawal–Kayal–Saxena) algorithm is the
first deterministic, polynomial-time, primality test.
That is to say, it runs in time O((log n)c) for some
constant c. An explanation is given in Crandall and
Pomerance (2005, §4.5).

The ECPP (Elliptic Curve Primality Proving) algo-
rithm handles primes with over 20,000 digits. Explana-
tions are given in Cohen (1993, §9.2) and Crandall and
Pomerance (2005, §7.6).

27.19 Methods of Computation:
Factorization

Techniques for factorization of integers fall into three
general classes: Deterministic algorithms, Type I prob-
abilistic algorithms whose expected running time de-
pends on the size of the smallest prime factor, and
Type II probabilistic algorithms whose expected running
time depends on the size of the number to be factored.

Deterministic algorithms are slow but are guaran-
teed to find the factorization within a known period of
time. Trial division is one example. Fermat’s algorithm
is another; see Bressoud (1989, §5.1).

Type I probabilistic algorithms include the Brent–
Pollard rho algorithm (also called Monte Carlo method),
the Pollard p − 1 algorithm, and the Elliptic Curve
Method (ecm). Descriptions of these algorithms are
given in Crandall and Pomerance (2005, §§5.2, 5.4, and
7.4). As of January 2009 the largest prime factors found
by these methods are a 19-digit prime for Brent–Pollard
rho, a 58-digit prime for Pollard p − 1, and a 67-digit
prime for ecm.

Type II probabilistic algorithms for factoring n rely
on finding a pseudo-random pair of integers (x, y) that
satisfy x2 ≡ y2 (mod n). These algorithms include the
Continued Fraction Algorithm (cfrac), the Multiple
Polynomial Quadratic Sieve (mpqs), the General Num-
ber Field Sieve (gnfs), and the Special Number Field
Sieve (snfs). A description of cfrac is given in Bres-
soud and Wagon (2000). Descriptions of mpqs, gnfs,
and snfs are given in Crandall and Pomerance (2005,
§§6.1 and 6.2). As of January 2009 the snfs holds the
record for the largest integer that has been factored by
a Type II probabilistic algorithm, a 307-digit compos-
ite integer. The snfs can be applied only to numbers
that are very close to a power of a very small base.
The largest composite numbers that have been factored
by other Type II probabilistic algorithms are a 63-digit
integer by cfrac, a 135-digit integer by mpqs, and a
182-digit integer by gnfs.

For further information see Crandall and Pomerance
(2005) and §26.22.

For current records online, see http://dlmf.nist.
gov/27.19.

http://dlmf.nist.gov/27.19
http://dlmf.nist.gov/27.19
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To calculate a multiplicative function it suffices to de-
termine its values at the prime powers and then use
(27.3.2). For a completely multiplicative function we
use the values at the primes together with (27.3.10).
The recursion formulas (27.14.6) and (27.14.7) can be
used to calculate the partition function p(n). A similar
recursion formula obtained by differentiating (27.14.18)
can be used to calculate Ramanujan’s function τ(n), and
the values can be checked by the congruence (27.14.20).

For further information see Lehmer (1941, pp. 5–83)
and Lehmer (1943, pp. 483–492).

27.21 Tables

Lehmer (1914) lists all primes up to 100 06721. Bres-
soud and Wagon (2000, pp. 103–104) supplies tables and
graphs that compare π(x), x/log x , and li(x). Glaisher
(1940) contains four tables: Table I tabulates, for all
n ≤ 104: (a) the canonical factorization of n into pow-
ers of primes; (b) the Euler totient φ(n); (c) the divisor
function d(n); (d) the sum σ(n) of these divisors. Ta-
ble II lists all solutions n of the equation f (n) = m
for all m ≤ 2500, where f (n) is defined by (27.14.2).
Table III lists all solutions n ≤ 104 of the equation
d(n) = m, and Table IV lists all solutions n of the
equation σ(n) = m for all m ≤ 104. Table 24.7 of
Abramowitz and Stegun (1964) also lists the factoriza-
tions in Glaisher’s Table I(a); Table 24.6 lists φ(n), d(n),
and σ(n) for n ≤ 1000; Table 24.8 gives examples of
primitive roots of all primes ≤ 9973; Table 24.9 lists all
primes that are less than 1 00000.

The partition function p(n) is tabulated in Gupta
(1935, 1937), Watson (1937), and Gupta et al. (1958).
Tables of the Ramanujan function τ(n) are published
in Lehmer (1943) and Watson (1949). Lehmer (1941)
gives a comprehensive account of tables in the theory of
numbers, including virtually every table published from
1918 to 1941. Those published prior to 1918 are men-
tioned in Dickson (1919). The bibliography in Lehmer
(1941) gives references to the places in Dickson’s His-
tory where the older tables are cited. Lehmer (1941)
also has a section that supplies errata and corrections
to all tables cited.

No sequel to Lehmer (1941) exists to date, but many
tables of functions of number theory are included in Un-
published Mathematical Tables (1944).

27.22 Software

See http://dlmf.nist.gov/27.22.

References

General References

The main references used in writing this chapter are
Apostol (1976, 1990), and Apostol and Niven (1994).
Further information can be found in Andrews (1976),
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