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ABSTRACT

An analytical analysis has been developed to
investigate the behavior of unsteady motions in
combustion chambers. The model accommodates the
third-order nonlinear acoustics and a second-order
combustion reaponse. The {nfluences cf varicus
linear and nonlinear parameters on the limit
cycles and triggering of pressure oscillations are
discussed in detail. Results indicate that the
third-order acoustics has 1little influence on the
triggering of instability. It only affects the
limiting amplitudes and the ‘stability domains of
limit cycles. The nonlinear combustion response
plays an essential role in determining the
characteristics of triggering.

1. INTRODUCTION

Unsteady motions excited and sustained by
combustion processes are a fundamental problem in
the development of high performance propulsion
systems. The essential cause is the high rate of
energy release confined to a volume in which
energy losses are relatively small. Only a very
small amount of chemical energy needs to be
transformed to mechanical energy of time-varying
fluid motions to produce, unacceptable excursion of
pressure oscillations. The ensuing vibrations of
the structure may lead to failure of the structure
itself or of equipment and instrumentation.

Two types of nonlinear instabilities have

been commonly observed. They are classified as
spontaneous and pulsed cscillations according to
the mechanisms of initiation. Spontaneous
instabilities require no external disturbances and
arise from causes entirely to the system.
Typically, a small unstable initial disturbance
grows exponentially for some time, eventually
reaching a limiting amplitude. Pulsed
oscillation, also known as triggered instability,
refers to initiation of instabilities by finite
amplitude disturbance in a system which is
otherwise stable to small perturbations.
Instabilities occur only if the amplitude of
initial disturbance exceeds certain critical value.
Both spontaneocus and pulsed instabilities
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necessarily involve nonlinear processes. It is
impossible for a disturbance to be triggered to a
limiting amplitude by linear processes alone.
However, the form and order of nonlinearities for
each case may by quite different.

There are two ilmportant questions of -
practical concern: What amplitudes will unstable
oscillations reach, and what sort of initial
disturbances will cause a linearly stable system
to exhibit oscillations? Both are related to the
fundamental behavior of a nonlinear system and can
be translated as theorestical problems of general
nature. The first deals with the conditions for
the existence and stability of limit cycles{ a
matter previously addressed by the authors.

The second is related to the triggering of
combustion instabilities. It appears that in
order to answer this question, nonlinear
influences higher than second order must be
The purpose of this paper 1is to
develop a third-order nonlinear acoustic model
within which a broad study of triggering of
combustion instabilities can be conducted.

Several analyses of nonlinear combustion
instabilities have been carried out. Powell3
considered pressure oscillations in liquid
propellant rockets. With the aid of the methods
of normal mode expansion and spatial averaging, he
was able to derive a system of ordinary
differential equations for the amplitude of each
mode, which was then solved numerically. Kooker
and ZInn“ studied triggering in solid propellant
rockets by solving numerically the conservation
equations with various combustion response
functions included. Powell, et 2l.5 also employed
a similar technique described in Ref. 3 for ot
investigation of pressure oscillations in solid
propellant rockets, Recently, Levine and Baumb-8
conducted extensive numerical studies of pulse
triggered instability in solid rocket motors. The
scheme is capable of describing multi-shock,
steep-fronted type of instabilities in various
tactical motors. Very good comparison between
calculated and measured’ wave motions was
obtained.

In spite of the significant progress made so
far, these numerical works suffer a common
deficiency. They provide detailed results for
each special situation. Many cases must be
calculated to perceive trend and to draw
conclusions concerning general behavior. As an
alternative, we resort to analytical approximate
methods here. In the following sections, a

- general framework accommodating various linear and
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nonlinear processes is first developed. The
influences of the third-order acoustics and
nonlinear combustion response are then discussed
in detail.

2. CONSTRUCTICON OF THE NONLINEAR WAVE EQUATION

The nonlinear wave equation for the pressure
can be constructed by suitably manipulating the
congervation equations and the equation of state.
The method extends the previous model for the
second-order nonlinear acousticsiO and
accommodates third-order nonlinearities.
outline, the conservation equations for a
two-phase mixture of gas and solid particles are
first written in the following form.

In brief

%% + J e Vp = = pV - J + W (2.1)
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The function W represents the mass conversion rate
of condensed phases to gas per unit volume,

is the force of interaction between the gas and
condensed phases, and P is the sum of the heat
release assoclated with chemical reaction and the
energy transfer between two phases. The next step
is based on the decomposition of flow variables
into mean and time-varying parts.

p =5+ (L)

8 =u (F) +0(t,r)

p =0 +p't,rF)

Now substitute (2.4) in (2.1)-(2.3), collect
coefficients of like powers, and rearrange the
results to produce the nonlinear wave equation
valid to third order.

2
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the function h contains ail linear and nonlinear
influences of acoustic motions, mean flow, and .
combustion. Care must be exercised in treating
the nonlinear terms. If the Mach number of the
mean flow and the amplitude of the oscillation
have the same order of magnitude, the

contributions from the noplinear acoustics gan be |

treated separately, For convenience, the source
term h is further written as
/4

h=h +h_+h +h (2.6) |
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The subscripts u, €, and v represent respectively
the linear processes, the second-order
gasdynamics and all nonlinear contributions for
F' and P'. Their explicit expressions are given
in Ref. 10. The third-order acoustic term hg.

1s shown to be
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The couplings between mean flow variations and ?ﬁ"*vléﬁLJ”

treated in the same manner.

(2.4);

acoustic motions are not included, but can be A 7/%

The boundary condition associated with (2.5)
is found by taking the component Vp' normal to the
boundary:
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where the third-order term is
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The solution of the wave equation (2.5) is
approximated by a synthesis of the normal modes of
the chamber, but with unknown time-varying
amplitudes.

PIRL) =5 I on(t) ¥ (F) (2.10a)
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where ¥, 13 the normal mode function satisfying

2 2
Vi, * ke, = 0 (2.11)
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The basis of this expansion is that many of the
observed combustion instabilities are composed of
several harmonic motions with mode shapes
corresponding to the normal modes of the system.
It can be applied to describe a wide variety of
motions, including shock-like oscillations.

After substituting (2.10) in (2.5),
multiplying the result by y,, and integrating over
the entire volume, we obtain the set of ordinary
differential equations for the amplitude of
8ach mode.

- 2
n, * ey n,o= Fn (2.13)
The forecing function Fp is
52
Fo o= - ——- (r1f Yohdv + SI g fds] (2.18)
El'l
and
2w sar v Pav (2.15)



)4é¢/} t%(

EP bl BRGNS Vﬂ“"/}ﬂ{a///;g aE

‘%"W*)/"M Ko 40,550 7 oy

Thus, the problem comee down to solving the set
(2.13) for the time-dependent amplitude, to give
the evolution of the system subject to a specified
initial condition.

If only the nonlinear contributions from
acoustic wave motions are considered, Fp can be
expressed more conveniently as

Fp= - E (ogufy * By ]
” } I[a Aats 1 j niJ“inJ]
J (2.16)
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The coefficients Dpy and Epy arise rrom linear
processes, and the nonlinear coefficients are
defined as follows.
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Within the present representation of unsteady
motions, the amplitude of acoustic wave is assumed

to have the same order of magnitude of the Mach
number. of the mean flqw, Consequently, the

‘ influences of the mean flow do not appear directly
in the nonlinear terms. _The nonlinear
interactions in (2.16

Lw%t1  exchange between modes which then generates

¢ ”ﬂL harmonics in the acoustic field.
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4 (' Owing to the nonlinearities and the couplings
}ijﬂf ibetween modes, the exact analytical. approach to

5 (2.13) is formidable. However, considerable
simplification can be achieved by taking advantage
of the fact that in most practical situations the
wave amplitudes vary quite slowly, the fractional
change being small in cne cyecle of the oscillation.
There are certainly situations in which this
assumption may not hold, but as the limit cycle is
approached, changes in amplitude obviously take
place much more slowly on a time scale associated
with the normal mode oscillations. A convenient
procedure to follow this observation is based on
the method of time averaging. In the following
remarks, an approximate solution technique using
the method of time averaging is developed to solve
the set (2.13) for the time behavior of each
acoustic mode.
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Method of Time Averaging

The solutions based on the time-averaging
procedure start with the method of variation of
parameters which transform the time-varying
amplitude np to two variables Ap and By.

M(t) = Ap(t) sinwpt + Bp(t) cosuwpt

= rp(t) sinfunt + o4(t)] (2.18)
where A, and B, are slowly varying functions of
time. After substituting in (2.13) imposing the
condition

An sinmnt + Bn cosmnt =0 (2.19)
and integrating the result over the period of the
fundamental mode, we obtain the approximate
equations for A, and Bnp. For longitudinal mode of
oscillations, this procedure eventually leads to
the following equations.
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where B8 and ¢ are coefficients arising from the
second- and third-order nonlinear acoustics,
respectively, and defined as

B = %%l w, and ¢ = 1:15 w,
64y
3. LIMIT CYCLES FOR TWO MODES
As a first approach, the coupling between the
first two modes of oscillation 1s considered.

This case represents the simplest possible
situation and may serve as the basis for analyzing
more complicated problems. The equations for Ap
and B, reduce to

5
y /i
—1 .G, +085 -B(AA +BB) | /«é» st
dt s B 12 7 12 \l’/
5
2 2 ;
* (A" + BBy
2 2
- ez(Az + B2 )51 (3.1)
a8,
JT " oA+ By - B(AB, - AB,)
2 2
e.I(A1 * 51 )A1
2 2
+ ep(h)2 + B, (3.2)
dA 2 2
Foo = ashy ¢ 08, + 8A% - B %)
2 2
* 2¢,(8,7 + 8,28,
2 2
2e,(4,°% + 8,28, Gy
as,
qT = TOAp B, * 2843,
2 2
2e1(A2 + B2 )A2
2 2
+ 26,8, % ¢ 3,54, (3.4)

The coefficients ¢; and e, are associated with the

third-order coupling, defined as

S-S LN
64y 16Y
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To facilitate analysis, Ap and B, can be written
in terms of the amplitude and phase.

&

3 o (3.5)

A = rn(t) coson(t),

n B, = r,(t) sine (t)

(3.6)

Substitute in (3.1)-(3.4) and rearrange the result
to give

dr1

FT T ory - B Ty cosyY (3.7)
ary 2

gt T 9fp * B ry cosy (3.8)

~egnstont.

2
r
dy 1
T " B(;— 21"2) siny
2
+ (=281 + 97)

+2(eq + e3) (ro2 - m2) (3.9)

. Wwhere ¥ denotes the phase difference between

modes, defined as

¥ =29 - &

j Note that the third-order acoustic coupling does
|

not appear explicitly in the equations for the
, wave amplitudes; it only affects the energy

:‘\exchange rate between modes through i1ts influence

on the phase shift ¥,

e

—

In the limit cycles, the wave amplitude of

each mode remains constant. This impllies from
(3.7) and (3.8) that the phase shift ¥ is also a
Following some ctraight- = 77
forward manipulations, we obtain the limicing
amplitudes.

N
T10 " “Foosy, (3.10)
Q
%
T2 " oot .10
o] .
2 /(2. . ..z
a,-2a.,a., t a, va, -4a_a_-la
cosZy = o 23 1" 2937793
o 2(a 2, a 2)
, 1 2 (3.12)
where
ay = (2ay + ap)82 (3.13a)
ay = (-28) + 85)82 (3.13p)
az = 201((:1 + ap)(eq + ep) (3.13¢)

The subscript o denotes values in the limit cycie.
Because rqg 1s real, in order for the right-hand-
side of (3.10) to be real, we must have

,'d.‘1a.2 <0

This i3 the first nscessary and sufficient - *4“£€‘
condition for_the existence of limit cycie. 'If
orfe mode is statle,.then the .other mude must be
unstable. The gther conditiong)can be derived
from (3.12) sing?ﬁ"fms?vg"s” 1, giving

a12 - Jaz(ap + a3z) > 0 (3.1%)

If the third-order coefficients g{ and e, vanish,
the results of the second-order model are fully
recovered. In practice, €1 and e, are very small,
the deviation from the second-order model is
expected to be negligible.

(3.14) ﬂ*

w &

¥




Stability of Limit Cyele Triggering

So far we have determined the conditions for , In order to study the triggering phenomenon,
the existence of limit cycles. The remaining task. the stabilities characteristics in the
is to determine the conditions under which the neighborhood of the trivial solution rig0 =rpg = 0
1imit cycle is stable. The procedure consists of must be examined. Within the present analysis in
examining the behavior of the system in the which only the nonlinearities arising from
neighborhood of the limit cycles. Now set acoustics is considered, the condition for the
existence of limit cycle (3.14) precludes the
ry = rig *+ ry', ete., (3.16) possibility that a linearly stable system (ay < 0,
ap < 0) may exhibit finite-amplitude oscilliations.
the primed quantity being assumed small, and .Thus, the third-order acoustic nonlinearity is not
substitute in (3.7)-(3.9) to derive the a sufficient condition for triggering of
variational equations for r¢', rp', and ?'. - combustion instabilities. This statement can be
Following the common practice, we decompose the further examined from the energy balance point of
time- and spatlal-dependent parts of each view. To see this, we first multiply (3.7) and
perturbation quantity (3.8) by rqy and rp, respectively, to obtain the
equations for the energy of each mode.
r1' -r, exp(At) >
18 e v (3.21a)
r,' = I, exp(At) , (3.17) P R L Py Tp co8 -2la
3 ' 2
¥' = ¢ exp(Ai) 1 dr2 o >
i ITd " %ot Br‘.l r, cos¥ (3.21b)
Substitution of the above expressions in the
variational equations and rearrangement of the
result to give the characteristics equation for A. gmt:‘;zﬁz:a:r@e:;y;;mtg:":::pigd::‘: ”Q;ta:o:sm:::"
P(A) = A3 + b1A2 + baA + by = 0 (3.18) contribute to the growth or decay of the wave,

even with the third-order nonlinearities included.

where the coefficients by, by, and b3 are
functions of the linear and nonlinear parameters.
In order for the limit cycle to be stable, all

We have so far investigated the influences of
roots of P(1) must have negative real part. From
the Routh-Hurwitz criteria, the sufficlent and nonlinear gasdynamics on the behavior of unsteady

motions. Results clearly indicate that the
necessary conditions for this to be true are third-order acoustics do not change the
: fundamental characteristics of the system, It .
by > 0, b3 > 0, bybz - b3 > 0 (3:19)  niy modifies the 1limiting amplitudes of the
second~order waves. In order to study the

4. NONLINEAR COMBUSTION RESPONSE

The ébove inequalities can be written explieitly

triggering phenomenon, one must resort to other
as nonlinear effects. In this section, a general
. <o (3.20a) framewor accommodating second-order nonlinear

Gy * a2 . gasdynamics and combustion response is constructec

ay + 2a3 tan¥o < 0 ‘ (3.20b) to investigate nonlinear stability. As a specific

examgle, the ad-hoc formula proposed by Levine and
Baum® is used for the combustion response function. _

ag - 2ay + bay cos?¥y - 2a3 tan¥y > 0 (3.20c) -
> ) ! «O 3 ° ) The purposes are to help explain the numerical

where : i : } results obtained Baum and Levine, and to identify
i - . some important attributes to nonlinear combustion
ay = (a1 + a2)82 - (3.20d) instabilities. ‘
= ap2p2 ' . : The formulzhion fcllows the same procecure

25 = e/ (3-202) leading to the nonlinear wave equation (2.5)
Compared with the second-order acoustic model, the except for the inclusion of the following
third-order model offers two solutions for the nonlinear combustion response.
limit cycle, corresponding to the "+" and "-" sign , 1)
in (3.12). However, it can be shown that only the C WaWpe [1 + Ry lur|] .
case with the "-" sign satisfies the condition 2
(3.20b), which is always violated by the other where W {s the instantanecus propellant burning
case. Thus, the stable limit cycle appears to be rate, Wpe 13 the burning rate based on the linear
unique. Figures 1 and 2 show the regions in which pressure-coupled response, and Ryp 1s the
stable 1limit cycles exist, based on the second- velocity-coupled response function. Now
and third-order models, respectively. The substitute (4.1) in (2.6) and (2.8), expand the
third-order nonlinearity modifies the stability results to second-order, and combine with (2.14)
domain, especially in the region 1 S ax/aq S 2. to produce the forcing function asipciated with
Figure 3 shows an example illustrating the unsteady combustiond ™ s. T, ks thesg
existence of limit cycle, in which the dashed and
30lid lines represent the results based on the {Fn}combustion
second- and third-order models, respectively. The v 3 '| '|
difference between these two models is quite - If ,yn 3% [C1p' + c2p u Jds
small, P En (4.2)



where Cy and Co are associated with the linear and
nonlinear combustion processes, respectively.

These coefficients are, in general, determined by

the propellant properties and can be expressed
conveniently by the pressure and velocity coupled
response functions. Substitution of (2.10) in
(4.2) gives the contribution from the nonlinear
combustion response.

{Fnlnonlinear combustion

n
I s ve, | vy, o
J k
3 (1.3)

For two modes of longitudinal oscillation, the
above equation can be approximated, within second-
order accuracy, by

{Fy lnonltnear combustion

U .
- §G n1l n1] (4.8a)
{F2}nonlinear combustion
- 32 . .
1—5-6 nzl n, {(4.4b)
and
-2
2 c,a
¢ - (AR 2 (8.4)
YEn :

where % and R stand for the combustor length and
diameter, respectively. In deriving the above
expressions for Fy and Fp, the wave amplitude of
the second mode 1s assumed to be much less than
that of the first mode, an assumption which seems
to be valid in many practical cases. The ’
dimensionless coefficient G accommodates the
influences of combustion processes and chamber
geometry.

With the aid of the method of time averaging
described in Section 2, we finally obtain the
equations for the amplitude and phase of each mode

dr, 2
T = a‘#‘ - 8r,r, cos¥, + E1r1 (5.5)
ar, 2 £, (4.6)
T oSfe 8r1 cos¥, + g r1r2(15 + cos?z)
d\l'1 r12
*T - -261 + 62 + B(2r2 - ;;—) sm\i1
%2 (4.7
M sin?z .7
dYZ
- -4e, + 48 r, siny, (4.8)
where
¥y = 2% - 9o (4.9a)
‘l’z = u¢1 (4.9b)
28 (4.9¢)

81 7 Ton 0w

32

825 &
Note that £y and £y arise from nonlinear
combustion response, producing a self-coupling
term for the first mode and a cross-coupling term
for the second mode. For a given propellant, &,
and £ are mainly functions of combustor geometry
and speed of sound.

(4.9d)

Special Case with &1 = ¢» = 0

To aid in understanding and to simplify the
analyais, we first consider a special case with
all phases set to be zero, ¢ = ¢ = 0. The more
general case with nonzero phase will be discussed
in a later section. Basically, the phase has a
significant influence on the rate of energy
exchange between modes, and consequently, affects
the limiting amplitudes of oscillations and the
stability domain of the system. However, the
fundamental behavior of the unsteady motions
remains largely unchanged.

For & = 93 = 0, (4.5) and (4.6) reduce to

dr,
T Tyt Ayt gy
ar

2 2
T"AFp tAry tlEnr,

In 1imit cycles, ry and r, are constants, giving
the amplitude of each mode,

2 (4.10)

(4.11)

'(u2€1*4a152) + 720251-30152)2 - Ma1a282

r
10 2
28" + 85,E, (5.12)
a, + g.r
r,, = ——110 (5.13)

20 8

Two limit cycles exist in correspondence to the
"+ and "=" signs i{n (4.12). To simplify
notation, we use rip and'r10(2) to represent
the two limiting amplitudes respectively.

The condition for the existence of limit
cycle requires that the argument in the square
root be positive. Consequently,

 (age, - HaE)? - daa,82 > 0 (4.14)
2™ 17z’ 172 °
The stability behavior of limit cycles can be
studied following the same approach described in

Section 3. We first decompose the wave amplitudes
as

ry = ’

V=Po+r' and rp= rog + rp' (4.15)
Substitute in (4.10) and (4.11), and linearize the
result to get the variational equations for ry'
and rat,

E:ll = (a, = Br,. +2E.r ) r ' - 8r r(?.TG)
dt 1 20 110 1 10° 2

ESEL = (28p, . + YE_r_dr. ' + (a, + BE r(u317?
dt 10 22071 2 22107 2



Then set r,' = ;1 exp(At) and r,’ = ;2 exp(At),

and substitute in (4.16) and (4.17) to obtain the
characteristic equation for A.

32 +ad vay;=0 (4.18)

where
ay = -{(gy + 4€2)r1g + @21 (4.19a)

ap = [4Esa1 + Ejaz + 2ryg (82 + 4g482)] ryo
(4,19p)

For stable limit cycles, the real part of i must
be negative, giving the condition that

a1 >0 (4.20)

az >0 (4.21)
Since triggering refers to the excitation of
pressure oscillations in a llnearly stable systen,
the requirement cf negative linear growth

constants together with (4.14), (4.20), and (4. 21)-

constitute the conditions for the existence of
triggering in the sense of stable limit cyecle.
The overall result is sketched in Figure 4. The
shaded regions represent the parameter domains in
which triggering takes place. The branches with
positive and ne¥at1ve €1 1ead to the limiting
amplitudes r10 ) and r10 , respectively, in
accordance with the condition of (4.21). It is
interesting to note that for this special case,
the conditions for the existence of triggering
depend only on the ratio of linear growth
constants, ap/at, and the ratio of the nonlinear
acoustic coefficient 8 to the parameter £y. The
system is more susceptible to triggering as the
ratio ap/ay increases. Figure 5 shows a typlcal
example illustrating the existence of triggering.
If the initial wave amplitudes are less than some
critical values, then the disturbances decay and
finally vanish completely.

The triggering phenomenon can be best
interpreted from the standpoint of energy balance.
We now multiply (4.10) by ry and (4,11) by rp to
give the rate of energy change of each mode.

2
dr .
1_1 . 2. 8.8 3
2 dt 7W7°1r1 8?1 r2 + E1P1 (4.21)
> .
lf:z_..ar + Br 21- + 4. r 2 (4.22)
2 dt 22 1 i *

These equations imply that the nonlinear
combustion provides energy to the system, which is
then dissipated by the linear processes. In order
o drive and sustain oscillations, the initial
disturbance must be greater than the threshold
value to overcome the energy losses. The
nonlinear acoustics only serve as a bridge for
energy exchange between modes.

Effects of Frequency Shift

The analysis of the general case with nonzero
frequency shift (s much more involved. ' The major
difficulty is associated with interpretation of
the complicated formulas for the stability

conditions of limit cycles. As an alternative, an
extensive numerical study was performed to
investigate the effects of frequency shift on
triggering. Results indlcate that for a given : {

FASRMOTERITE

combustion re3ponss TWHETIGH and cha gﬁy,\ H

T

EHS”freqﬁéﬁcy shtrtwmaywthange“

trlggering takes~place However,
{t“has mihor influence on the global behavior of
unsteady motions. Figures 5 and 6 show two
typical examples {llustrating the existence of
triggering. For the general case, if the initial
disturbances are sufficiently large, then the wave
amplitudes increase and eventually reach the limit
cycle with amplitudes greater than those of the
special case.

5. CONCLUSION

An analytical analysis has been constructed
to investigate the behavior of unsteady motions in
combustion chambers. The model extends the
previous model for second-order acoustics and
accommodates the third-order
nonlinearities and a second-order combustion
response. Results indicate that while the
third-order acoustics affects the limiting

amplitudes and the stability domain of limit
cycles, it has little influence on the triggering
of combustion instability. The nonlinear
combustion response plays an essential role in
determining the characteristics of triggering.
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