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ABSTRACT 

An analytical analysis has been developed to 
investigate the behavior of unsteady motions in 
combustion chambers. The model accommodates the 
third-order nonlinear acoustics and a second-order 
combustion respo!!se. Ths !nt!~nces of various 
linear and nonlinear parameters on the limit 
oyoles and triggering of pressure osoillations are 
disoussed in detail. Results indicate that the 
third-order acoustics has little influence on the 
triggering of instability. It only affects the 
limiting amplitudes and the'stability domains of 
limit cycles. The nonlinear combustion response 
plays an essential role in determining the 
charaoteristics of triggering. 

1 • INTRODUCTION 

Unsteady motions exoited and sustained by 
combustion processes are a fundamental problem in 
the development of high performance propulsion 
systems. The essential oause is the high rate of 
energy release confined to a volume in which 
energy losses are relati vely small. Only a very 
small amount of chemical energy needs to be 
transformed to meohanical energy of time-varying 
fluid motions to produce. unacceptable excursion of 
pressure oscillations. The ensuing vibrations of 
the structure may lead to failure of the structure 
itself or of equipment and instrumentation. 

Two types of nonlinear instabilities ha!!. 
been commonly observed. They are classified as 
spontaneous and pulsed OSCillations according to 
the mechanisms of initiation. Spontaneous 
instabilities requIre no external dist~~banoes and 
arise from causes entirely to the system. 
Typically, a small unstable initial disturbance 
grows exponentially for some time, eventually 
reaching a limiting amplitude. Pulsed 
OSCillation, also known as triggered instability, 
refers to initiation of instabilities by finite 
amplitude disturbance in a system which is 
otherWise stable to small perturbatiOns. 
Instabilities occur only if the amplitude of 
initial disturbance exceeds certain critical value. 
Both spontaneous and pulsed instabilities 
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necessarily involve nonlinear processes. It is 
impossible for a disturbance to be triggered to a 
limiting amplitude by linear processes alone. 
However, the form and order of nonlinearities for 
each case may by quite different. 

There are two important quest1.oru! of 
practical concern: What amplitudes will unstable 
oscillations reach, and what sort of initial 
disturbances will cause a linearly stable system 
to exhibit oscillations? Both are related to the 
fundamental behavior of a nonlinear system and can 
be translated as theoretical problems of general 
nature. The first deals with the conditions for 
the existence and stabi11ty of limit CYCles, a 
matter previously addressed by the authors. ,2 
The second is related to the triggering of 
combustion instabilities. It appears that 1n 
order to answer this quest10n, nonlinear 
influences higher than second order must be 
considered. The purpose of this paper is to 
develop a third-order nonlinear acoustio model 
within which a broad study of triggering of 
combustion instab1lities can be conducted. 

Several analyses of nonlinear combust10n 
instabilities have been carried out. Powel13 
considered pressure OSCillations in liquid 
propellant rockets. With the aid of the methods 
Of normal mode expansion and spatial averaging, he 
was able to derive a system of ordinary 
differential equations for the amp11tude of each 
mode, which was then solved numerically. Kooker 
and Zinn4 studied triggering in solid propellant 
rockets by solving numerically the conservation 
equations with various combustion response 
functions included. Powell, et a.l. 5 also emploY'3d 
a'similar technique described in Ref. 3 for 
investigation of pressure oscillations in solid 
propellant rockets. Recently, Levine and Baum6- 8 
conducted extensive numerioal studies of pulse 
triggered instability in solid rocket motors. The 
scheme 1s capable of describing multi-shock, 
steep-fronted type of instabilities in various 
tactical motors. Very good comparison between 
calculated and measured9 wave motiOns was 
obtained. 

In spite of the significant progress made so 
far, these numerical works suffer a common 
deficiency. They provide detailed results for 
each special situation. Many cases must be 
calculated to perceive trend and to draw 
conclusions concerning general behavior. As an 
alternative, we resort to analytical approximate 
methods here. In the following sections, a 
general framework accommOdating various linear and 



nonlinear processes is first developed. The 
influences of the third-order acoustics and 
nonlinear combustion response are then discussed 
in detail. 

2. CONSTRUCTION OF THE NONLINEAR WAVE EQUATION 

The nonlinear wave equation for the pressure 
can be constructed by suitably manipulating the 
conservation equations and the equation of state. 
The method extends the previous model for the 
second-order nonlinear acoustics 10 and 
accommodates third-order nonlinearities. In brief 
outline, the conservation equations for a 
two-phase mixture of gas and solid particles are 
first written in the following form. 

~ + J . 
at 

Vp pV • J + W (2.1) 

aJ + + + 
p at + pu • Vu • -17!' "' F (2.2) 

12.+ pV + + • Vp + (2.3) at Y • u • -u P 

The function W represents the mass conversion rate 
of condensed phases to gas per unit volume, F 
is the force of interaction between the gas and 
condensed phases, and P is the sum of the heat 
release associated with chemical reaction and the 
energy transfer between two phases. The next step 
is based on the decomposition of flow variables 
into mean and time-varying parts. 

- + p • p + p'(t,r) 

(2.4) 

p - p + p' (t ,;) 

Now substitute (2.4) in (2.1)-(2.3), collect 
coefficients of like powers, and rearrange the 
results to produce the nonlinear wave equation 
valid to third order. 

(2.5) 

tt;e function h contai;1S an linear and nonlinear 
influences of acoustic motiOns, me~n flow, and 
combustion. Care must be exercised in treating 

\

t.he nonlinear terms. It the Mach number of the 
mean flow and the amplitude of the oscillation 
have the same order of magnitude, the 
contri butions from the_OQDl1near ~At~-~ 
~~~~~1I~ For convenience, the source 
term h is further written as 

h • h + h + h + h 
~ £ V ££ 

(2.6) 

The subscripts ~, E, and v represent respectively 
the linear processes, the second-order 
~asdynamics and all nonlinear contributions for 
F' and P'. Their explicit expressions are given 
in Ref. 10. The third-order acoustic term h££ 
is shown to be~~ , 

\ ...t~e~-:-5 
1 V'i'''''' S tj. . ~ 

i 

2 

n' + + ] h • -v • [~2 (u' • V)U' ££ a 

Y-l V (,2 au') 
+ -=-=4 • p at 

2p a 
(2.7) 

The couplings between mean flow variations 
acoustic motions are not included, but can 
treated in the same manner. 

,"" 
and 3~JP-;.t.J/ 

be ca'It~' 
The boundary condition associated with (2.5) 

is found by taking the component Vp' normal to the 
boundary: 

; • Vp' (2.8) 

where the third-order term is 

+ Y-1 2 aU'] + 
V)u' - -=-=4 p' at' n 

2p a (2.9) 

The solution of the wave equation (2.5) is 
approximated by a synthesis of the normal modes of 
the chamber, but with unknown time-varyIng 
ampli tudes. 

p'(;,t) - p i nn(t) 'n(;) 
n 

n (t) + 
i ~ V." (r) 
n Y k

n 
n 

(2.10a) 

(2.10b) 

where '" is the normal mode function satisfying 

(2.11) 

(2.12) 

The basis of this expansion is that many of the 
observed combustion instabilities are composed of 
several harmonic motions with mode shapes 
corresponding to the normal modes of the system. 
It can be applied to describe a wide variety of 
motions, including shock-like osc1llations. 

Atter substituting (2.10) in (2.5), 
mul tiplying the result by 1Pn, and integrating over 
the entire volume, we obtain the set of crdinary 
dUferential equations for the ampl1tl.'''''! of 
each mode. 

+ 2 • F nn IIln nn n (2.13) 

The forcing function Fn is 

-2 
F a [III ." hdv + II ." fds] n . -~ n n 

n 

(2.14) 

and 

E 2 ~ If I ." 2dv n n (2.15) 



Thus, the problem comes down to solving the set 
(2.13) for the time-dependent amplitude, to give 
the evolution of the system subject to a specified 
initial condition. 

If only the nonlinear contributions from 
acoustic wave motions are considered, Fn can be 
expressed more conveniently as 

Fn • - f [Dni"i + Eni"i] 

- L L [Anij"i nj + Bnij"i"j] 
i j (2.16) 

- L L L [Rnijm"i"j n.n + Snijmni nj"ai] 
i j 01 

The coefficients Dni and Eni arise from linear 
processes, and the nonlinear coefficients are 
defined as follows. 

'. 4 _ I;-fk ~ 2'J 
"'n i j 

I 
Bnij • ~~j (Y-1) ;2 (k1

2 + k
j
2) 

Rnijm • -2y~~~12~k~2E--=2 [kn
2 

I 'n'mV'l 
i j n 

- I (V, • V, ) (V •• V. )dv] 
i j n 01 

S • nijm 

and 

(2.17a) 

(2.17b) 

(2.170) 

(2.17d) 

2 
Inij - I .i'j~ndV/En (2.17e) 

/) 0>1 J~ithin the present representation of unsteady 
1 V""": 1 motions. _the amplitude of acoustic wave is asSUlDed 
'j~"" to have the same order of magnItude of the Ma5lb 
.:. -:t..d !!J,ID!b.!ilI:._Qt: tbe me.an....r.l...~ Consequently, the 
'1'it1:/ influences of the mean flow do not appear directly 

. .::;...--'". in the nonlinear terms. The nonlinear 
interactions in (2.16) simPly calise energy 

/~f exch~~between modes which then generates 
';.J.-. harmonics in the acoustic field. 
:'t;u.p:-~ 
t . (' Owing to the nonl1nearit1es and the couplings 
.,/J;''' ~ between modes, the exact analytical approach to 
f j~ L(2.13) is formidable. However, considerable 

c ,T' simplif1 cation can be achieved by taking advantage 
',J' of the fact that 1n most practical situations the 

wave amplitudes vary quite s~owly, the fractional 
Change being small in one cycle of the oscillation. 
There are certainly situations in which this 
assumption may not hold, but as the limit cycle is 
approached, changes in amplitude obviously take 
place much more slowly on a time scale associated 
with the normal mode oscillations. A convenient 
procedure to follow th1s observation 1s based on 
the method of time averaging. In the following 
remarks, an approximate solution technique using 
the method of time averaging 1s developed to solve 
the set (2.13) for the time behavior of each 
acoustic mode. 

Method of Time Averaging 

The solutions based on the time-averaging 
procedure start with the method ot variation ot 
parameters which transform the time-varying 
amplitude nn to two variables An and Bn. 

nn(t) • An(t) sinoont + Bn(t) cosoont 

• rn(t) sin(oont + tn(t)] (2.18) 

where An and Bn are slowly varying functions of 
time. Atter substituting in (2.13) impOSing the 
condition 

(2.19) 

and integrating the result over the periOd of the 
fundamental mode, we obtain the approximate 
equatiOns tor An and Bn. For 10ng1 tudinal mode ot 
oscillations, this procedure eventually leads to 
the tollowing equations. 
dAn 
~ - anAn + anBn 

+ ~n t ~ (Ai Aj (6n ,i+j - 6n,i-j - 6n,j-i) 

- BiBj(6n•i +j + 6n•i - j + 6n•j - i )] 

+ En f 1 ~ [AiAjBm(6n.m-i-j + 6n•i +j - m 

6 - 6 + 26 6 ) - n.l-j-m n.l+m-j n,m i,j 

-! BiBjBm(6n.m-i-j+ 6n ,i+j-m+ 6n ,i+j+m 

+ 6 - 66 6i j) n.i+m-j n.m, 

- 4~:;1)(AIAjBm + BIBjB~): 6n ,m6t,j] 
(2.20 ) ,----, .... _---

dBn 
- - - a A + a B dt n n n n 

.. ~n t ! 2AiBj<6n.i+j + 0n,i-f - 6n ,j_i) 

+ 6 - <5 + 6 n,i+j+m n,j-m-i n,m-i+j 

- 6 + 6 - 26 6 ) n,l-j-m n,i+m-j n,m l,j 

- 6 + 66 01 j) n,i+m-j n,m, i:tL.<<t:...ii" 

+ 4(y-1) (A A A + B B A ) 
Y+l i j m i j m 6 0 9" ;ir'-4<ii" n,m i ,j 

(2.21 ) 

p 0(1) = I 
) ~E a;2 
~ 
t~..L 



where 8 and E are coefficients arising from the 
second- and third-order nonlinear acoustics, 
respectively, and defined as 

and Y+' 
E ---III 

64y2 , 

3. LIMIT CYCLES FOR TWO MODES 

As a first approach, the coupling between the 
first two modes of oscillation is considered. 
This case represents the simplest possible 
situation and may serve as the basis for analyzing 
more complicated problems. The equations for An 

I' 2 
d'l' , 
dt - - 8(- - 21'2) sin'l' 

1'2 

+ (-29, + 92) 

+ 2(E, + E2) (1' 22 - 1',2) 

where 'I' denotes the phase difference between 
modes, defIned as 

(3.9) 

Note that the third-order acoustic coupling does 
not appear explicitly in the equations for the 

/' wave amplitudes; it only affects the energy and Bn reduce to 

dA, 
r. J tv \exchange rate between modes through its influence 

i I. /' t,... , f- on the phase shift '1'. 

\);!.~~ ~'~~~~~"l~mit 'CYC-l'~',-th~-~av~ am~~~tude ~?"\I ar- - alA, + 9,B, - 8(A,A2 + B,B2) 

+ £,(A,2 + B,2)B, 

2 2 
- £2(A2 + B2 )B, 

dB, 
ar- - -9,A, + a,B, - 8(A,B2 - A2B,) 

_ £,(A,2 + B,2)A, 

+ £2(A2
2 

+ B2
2)A, 

dA2 2 2 ar- - a 2A2 + 9zB2 + 8(A, - B, ) 

+ 2£, (A2
2 

+ B22)B2 

2 2 
2£2(A, + B, )B2 

dB
2 ar- - -9zA2 + a2B2 + 2SA,B, 

- 2£, (A2
2 

+ B22)A2 

/ each mode remains constant. This implies from 

(3.2) 

(3.3) 

(3.7) and (3.8) that the phas~ shift 'I' is also a 
'·'COIOSt=.t. F!)llOlling some ctr'aight-

forward mani pulations, we ootain thE! Hmi"ing, 
ampH tudes. 

where 

{ -(1,a2 
1"0 - 8 cos '1'0 

(1, 
1'20 - 8 cos'!'o 

a, - (2(1, + (2)82 

a2 - (-29, + Gz)82 

a3 - 2a,(a, + (12)(£' + £2) 

(3.10) 

(3.'" 

(3.12) 

(3.'3a) 

(3.' 3b) 

(3.' 3c) 

The subscript 0 denotes values in the limit cycle. 
Because 1"0 is real, in order fcr the right-hand­
side of (3.10) to be real, we must have '1 

+ 2£2(A,2 + B,2)A2 (3.4) (3. , 4) if £4l .. r/t,l-"'Jt;, 
.<'t' •• U : r~ .. · '''f:/.;.if~ 

, Ii, a2 < 0 

The coefficients ~i ~,d E2 are asSOCiated with the 
third-order coupling, defined as 

y-, 
---III 

16y2 , 
(3.5) 

To facilitate analYSiS, An and Bn can be written 
in terms of the amplitude and phase. 

(3.6) 

Substitute in (3.')-(3.4) and rearrange the result 
to gi ve 

dr, 
ar- 3 el,r, - S 1',1'2 cos'!' 

dr 2 2 ar- = el2r 2 + S 1', cos 'I' <3.8) 

4 

This ls!:h~,r.:,L~!lt j~cessary.a!'ld suffIcient '" ' .1 ._~_e_"'" 
condition for the existence of 11m~t cY<:.I.e. If c\}' i"'."""': ' 
one mode 1s' statle •. thenthe ot.her m,)de must be ",<c" 

unstable. The ~erconditions/)can be deri.ed 
from (3~'2) SinceO·-S""·cc:,.S'2~{" giving 

(3. '5) 

If the third-order coefficients £, and £2 vanish, 
the results of the second-order mOdel are fully 
recovered. In practice, £, and £2 are very small, 
the deviation from the second-order model is 
expected to be negligible. 



Stability of Limit Cycle 

So far we have determined the conditions for \ 
the existence of limit cycles. The remaining task. 
is to determine the conditions under which the 
limit cycle is stable. The procedure conSists of 
examining the behavior of the system in the 
neighborhood of the limit cycles. Now set 

r, • r,O + r,', etc., (3.16) 

the primed quantity being assumed small, and 
substitute in (3.7)-(3.9) to derive the 
variational equatiOns for r1', r2', and ". 
Following the common praotice, we deoompose the 
tlme- and spat1al-dependent parts of eaoh 
perturbatlon quantlty 

r 1' • r1 expo.t) 

r 2' • r2 exp(>.t) 

'1' • ? exp(A~j 

Substltutlon of the above expresslons in the 
varlatlonal equatlons and rearrangement of the 
result to give the oharacterlstlcs equatlon for A. 

(3.18) 

where the coeffloients b1' b2' and b3 are 
functions of the linear and nonlinear parameters. 
In order for the limlt cycle to be stable, all 
roots of peA) must have negatlve real part. From 
the Routh-Hurwitz crlterla, the sufflolent and 
necessary condltlons for this to be true are 

(3.19) 

The above inequallties can be written explloltly 
as 

where 

a, + 2a3 tan'Po < 0 

a4 • (II, + (12) B 2 

a5 • 1122a2/111 

(3.20a) 

(3.20b) 

(3.20d) 

(3.20a) 

Compared wlth the second-order acoustio mOdel, the 
third-order model offers two solutions for the 
limit cycle, corresponding to the "+" and "-" Sign 
1n (3.1Z). However, it can be shown that only the 
case with the "-" sign satisfies the condition 
(3.20b), which is always Violated by the other' 
case. Thus, the stable limit cycle appears to be 
unique. Figures' and 2 show the regions in which 
stable limit cycles exist, based on the second­
and third-order models, respectively. The 
third-order nonlinearity modifies the stability 
domain, especially in the region' $ 112/11, $ 2. 
Figure 3 shows an example illustrating the 
existence of limit cycle, in which the dashed and 
solid lines represent the results based on the 
second- and third-order models, respectively. The 
difference between these two models is quite 
small. 
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Triggering 

In order to study the triggering phenomenon, 
the stabllltles characterlstlos In the 
neighborhood of the trlvial solution r,O • r20 • 0 
must be examined. Wlthin the present analysis in 
whlch only the nonlinearlties ariSing from 
acoustios is oonsidered, the condltion for the 
existence of llmit oycle (3.'4) precludes the 
posslbillty that a llnearly stable system (II, < 0, 
112 < 0) may exhlbit flnlte-amplitude osclllations. 
Thus, the third-order acoustl0 nonlinearlty Is not 
a sufflolent condltlon for trlggering of -
combustion Instabllitles. This statement can be 
further examlned from the energy balance paint of 
vlew. To see this, we flrst multiply (3.7) and 
(3.8) by r, and r2, respeotlvely, to obtain the 
equatiOns for the energy of each mode. 

2 
1 dr, 2 2 
2<it- lI,r, Br, r 2 oos'l' (3.2'a) 

., 
, dr 2- 2 2 
2<it- IIf2 + Br, r 2 cos'P (3.21b) 

The nonlinear gasdynam10s simply serves as a means 
at transfer of energy between modes. It does not 
contrlbute to the growth or decay of the wave, 
even with the thlrd-order nonllnearlties inoluded. 

II. NONLINEAR COMBUSTION RESPONSE 

We have so far investlgated the influences of 
nonlinear gasdynam10s on the behavior of unsteady 
mot 1 ons • Results clearly indicate that the 
thlrd-order acoustics do not ohange the 
fundamental characteristics of the system. It 
only modlfles the llmltlng amplitudes of the 
second-order waves. In order to study the 
trlggerlng phenomenon, one must resort to other 
nonllnear effects. In this seotlon, a general 
framework aocommodatlng second-order nonllnear 
gasdynamlcs and combustion response is construotec. 
to investlgate nonlinear stability. As a speolflc 
examgle, the ad-hoc formula proposed by Levlne and 
Baum is used for the combustlon response funotion. 
The purposes are to help explain the numerical 
results obtained Baum and Levlne, and to identify 
some Important attrlbutes to nonllnear oombustlon 
instabllities. 

The formulation follows the same pro;,;e~ure 
leading to the nonlinear wave equatlon (2.5) 
except for the inoluslon of the following 
nonllnear oombustion response. 

'II • Wpe [1 + Rve I u' I ] (4.1) 

). 
where W is the instantaneous propellant burning 
rate, Wpo is the burning rate based on the linear 
pressure-coupled response, and Rvo is the 
velOOity-ooupled response funotion. Now 
substltute (4.,) in (2.6) and (2.8), expand the 
results to second-order, and combine with (2.'4) 
to produce the forctpg function associated with 
unsteady combustion'(.. - <;. r, (.c ...... ~ -tl..!",;-s 

{Fn}combustion 

• -Y- ff ljJ !.. eclP' + C
2
P' I u' I ]ds 

- E 2 n at 
p n (4.2) 



where C, and C2 are associated with the linear and 
nonlinear combustion processes, respectively. 
These coefficients are, in general, determined by 
the propellant properties and can be expressed 
conveniently by the pressure and velocity coupled 
response functions. Substitution of (2.'0) in 
(4.2) gives the contribution from the nonlinear 
combustion response. 

(Fnlnonlinear combustion 

. ::a: If L ni 'i I L ~ V'J \ VljIn ds 
n i J kJ (4.3) 

For two modes of longitudinal oscillation, the 
above equation can be approximated, within second­
order accuracy, by 

{F,lnonlinear combustion 

. ~ ;" 1 n, I (4.ila) 

{F2}nonlinear combustion 

• ~ ;'21;" I (4. 4b) 

and 

- 2 c2a 

YE 2 
(4.4e) 

n 

where t and R stand for the combustor length and 
diameter, respectively. In deriving the above 
expressions for F, and F2' the wave amplitude of 
the second mode is assumed to be much less than 
that of the first mode, an assumption which seems 
to be valid in many practical cases. The 
dimensionless coefficient G accommodates the 
influences of combustion processes and chamber 
geometry. 

With the aid of the method of time averaging 
described in Section 2, we finally obtain the 
equations for the amplitude and phase of each mode 

dr, 
- 8r ,r 2 COS", + 

2 (4.5) at . a,r, ~,r, 

dr 2 2 ~2 (4.6) 
at . aZ2 

+ 8r, cos '1', + "4 r,r2('5 + cos"2) 

d'l', 
2 

-29, + 92 + 8(2r2 
r, 

sin'i', at- - -j r 2 
~2 

+"4 r, sln"2 (4.7) 

d'l'2 
-49, + 48 r 2 sin", (4.8) at -

where 

'1', • 2~1 - ~2 (4.9a) 

'1'2 - 4~1 (4.9b) 

E,;1 
28 

• 4511 Gw, (4.9c) 
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(4.9d) 

Note that ~, and ~2 arise from nonlinear 
combustion response, producing a self-coupling 
term for the first mode and a cross-coupling term 
for the second mode. For a given propellant, ~, 
and ~2 are mainly functions of combustor geometry 
and speed of sound. 

Special Case with ~, • ~2 • 0 

To aid in understanding and to simplify the 
analysis, we first consider a special case with 
all phases set to be zero, ~1 • ~2 • O. The more 
general case with nonzero phase will be discussed 
in a later section. Basically, the phase has a 
significant influence on the rate of energy 
exchange between modes, and consequently, affects 
the limiting amplitudes of oscillations and the 
stability domain of the system. However, the 
fundamental behavior of the u~~teady motions 
remains largely unchanged. 

For ~, • ~2 • 0, (4.5) and (4.6) reduce to 

dr, 2 ar- - a,r, • 8r ,r2 + ~,r, (4.10) 

(4.'" 
In limit cycles, r, and r2 are constants, giving 
the amplitude of each mode, 

-(a2~,+4a'~2) ± l'(a2~,-4a'~2)2 - 4a,a282 r, 0 • --=-...:.---:.-=---2:::--...::....!.---!.-=----!.-=--
28 + 8~, ~2 (4.'2) 

a, + ~,r,O 
r20 • 8 (4.13) 

Two limit cycles exist in correspondence to the 
ft+" and "_ft signs in (4.12). To simplify 
notation, we use r10(') andr'0(2) to represent 
the two limiting amplitudes respectively. 

The condition for the existence of limit 
cycle requires that the argument in the square 
root be positive. Consequently, 

(4.,4) 

The stability behavior of limit cycles can be 
studied following the same approach described in 
Section 3. We first decompose the wave amplitudes 
as 

Substitute in (4.'0) and (4."), and linearize the 
result to get the variational equations for r,' 
and r2'. 

dr,' (4.'6) 
~ • (a, - sr 20 + 2E,;,r,0) r,' - Br,Or2 ' 

dr 2 ' (4.'7) 
~ • (2Br,o + 4~2r20)r,' + (a2 + 4~2r'O)r2' 



Then set 1',' - 1', exp(At) and 1'2' • 1'2 exp(At), 

and substitute in (4.16) and (4.17) to obtain the 
characteristic equation for A. 

A2 + al A + a2 - 0 (4.18) 

where 

al - -[(~1 + 4~2)rl0 + eE2] (4.19a) 

a2 • [4~2al + ~1(l2 + 21'10 (a2 + 4~1~2)] 1'10 
(4.19b) 

For stable limit cycles, the real part of A must 
be negative, giving the condition that 

al > 0 

a2 > 0 

(4.20) 

( 4.21) 

Since triggering refers to the excitation of 
pressure oscillatlons in a llnearly stable system, 
the requlrement c~ negat! ';e l1~~ar growth 
constants togetl1er with (4.14), (4.20), and (4.21). 
constltute the condltions for the exlstence of 
trlggerlng in the sense of stable limit cycle. 
The overall result is sketched in Flgure 4. The 
shaded reglons represent the parameter domains 1n 
which triggering takes place. The branches with 
posltive and nefatlve ~1 lead to the l1mit1ng 
amp11tudes rl0( ) and 1'10(2), respect1vely, in 
accordance with the conditlon of (4.21). It is 
interesting to note that for this special case, 
the conditions for the existence of triggering 
depend only on the ratio of linear growth 
constants, a2/al, and the ratlo of the non11near 
acoust1c coefflcient a to the parameter ~1' The 
system is more susceptIble to tr1ggering as the 
ratio a2/al increases. Figure 5 shows a typical 
example illustrating the existence of trIggering. 
If the initial wave amplitudes are less than some 
critical values, then the disturbances decay and 
finally vanish completely. 

The triggering phenomenon can be best 
interpreted from the standpoint of energy balance. 
We now multiply (4.10) by 1'1 and (4.11) by 1'2 to 
give the rate of energy change of each mode. 

2 , dr 1 2 2 3 2(it- a,r, - Sr 1 1'2 + F.:,r, (4.21) 

2 
1 dr 2 2 + 2 

+ 4~2rlr2 2 2(it- a 2r 2 srl 1'2 (4.22) 

These equations imply that the nonlinear 
combustion provides energy to the system, which is 
then dissipated by the linear processes. In order 
to drive and sustain OSCillations, the initlal 
dlsturbance must be greater than the threshold 
value to overcome the energy losses. The 
nonlinear acoustics only serve as a brldge for 
energy exchange between modes. 

Effects of Frequency Shift 

The analysis of the general case with nonzero 
frequency shift is much more involved. The major 
difficulty is aSSOCiated with interpretation of 
the complicated formulas for the stability 
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conditions of limit cycles. As an alternative, an 
extensive numerical study was performed to 
investigate the effects of frequency shift on 

~!~~:~i~~' re:~~~i!S r~~·~~!,~~,~gh~~~'·"~i~=~rty ,1 
€'l'ilr'Tf'l!·q'tiency"'·s1i'trt~1'r.m e'~"thS''''IrI:tr'' '.~'~""" \ ..... ,._ .. __ ...... _._ ...... , .. , ... " ..... ,. "~." .•.• ,.'''''»._.,,,,!'L ... Jng .. ___ I 

ampl1 tude~o.r 9~.cgI~~J.~n~_ .'ffi,d, ~.hEt_.Q.~l'amet.e1'l \ 
"domain in w'hi ch, tr.lggerlng,.,takas",.-pl-aee. However ,% 
1t' has minor inn uence on the global behavior of " 
unsteady motions. F1gures 5 and 6 show two 
typ1cal examples illustrating the existence of 
trigger1ng. For the general case, if the initial 
disturbances are sufficiently large, th'en the wave 
amplitudes increase and eventually reach the limit 
cycle with amplitudes greater than those of the 
spec1al case. 

5. CONCLUSION 

An analytical analysis has been constructed 
to invest1gate the behavior of unsteady motions in 
combust10n chambers. The model extends the 
previous model for second-order acoustics and 
accommodates the third-order acou:tic 
nonlinearities and a second-order combustion 
response. Results 1ndicate that while the 
third-order acoustics sttects the limiting 
amp11tudes and the stab1lity domain of limit 
cycles, it has 11ttle influence on the tr1ggering 
ot combustion instability. The nonlinear 
combustion response plays an essentIal role in 
determ1ning the characteristics of trigger1ng. 
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SECOND - ORDER ACOUSTICS 

Fig. 1 Illustration of the Necessary and 
Sufficient Conditions for Stable Limit 
Cycles Based on the Second-order 
Acoustic Model, - 29, + 92 • 0.25. 

nURD - ORDER AcousTICS 

Fig. 2 

-0.2 
STABLE LIMIT CYCLES 

Illustration of the Necessary and 
SuffiCient Conditions for Stable Limit 
Cycles Based on the Third-Order Acoustic 
Model, -20' + 02 ~ 0.25. 
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