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ABSIMCl 

Dynamical systems theory has been used to study 
nonlinear aircraft dyna~cs. A six degree of 
freedom mOdel that neqlects gravity has been 
analyzed. The aerodyn~c model, supplied by NASA, 
is for a generic swept winq fighter and includes 
nonlinearities as functions of the angle of attack. 
A continuation method was us~ to to calculate the 
steady states of the aircraft, and bifurcations of 
these steady states, as functions of the control 
deflections. Bifurcations were used to predict 
jump phenomena and the onset of periodiC motion 
for roll coupling instabilities and high angle 
of attack maneuvers. The pr~ictions were verified 
with numerical s~lations. 

List of Symbols 

a - angle of attack 
b - winq span 
B - sideslip angle 
c - winq chord 
da aileron deflection 
de - elevator deflection 
dr - rudder deflection 
q - qravity 
I x .- inertia about roll axis 
Iy - inertia about pitch axis 
I z - inertia about yaw axis 
1 - roll moment 
m - pitch moment 
n - yaw moment 
e - pitch anqle 
16 - roll anqle 
p - roll rate 
q - pitch rate 
Q dyna~c pressure 
r - yaw rate 
S wing surface area 
T thrust 
, yaw angle 
V aircraft speed 
W - aircraft weiqht 
X force along aircraft x-axis 
Y - force along aircraft y-axiS 
Z force along aircraft z-axis 

I. INTRODUCTION 

Nonlinear flight dynamics became important with 
the introduction of high speed, highly maneuverable 
pursuit aircraft in the 1940's. Inertial coupling 
of the lateral and longitudinal motions created 
instabilities that resulted in high tail loads and 
a loss of aircraft. Phillips' analysis of 1948 [lJ 
showed that aircraft with low inertia in roll could 
experience inertial instabilities in pitch or yaw 
for certain critical roll rates. 

Much of the subsequent research was devoted to 
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caleulating the ~ximum tail loads caused by the 
roll coupling instability. That result required 
estimating the maximum angles of sideslip and 
attack during the instability [2,3). The work led 
to the discovery that the roll coupling instability 
resulted in a jump of the state of the aircraft 
from one steady state to another (4]. A jump 
occurred when the state of the aircraft became 
unstable •. 

The steady states of an aircraft. and their 
stability, are continuous functions of the control 
surface deflections, so curves of steady states can 
be calculated as functions of the aileron, elevator, 
and rudder deflections. Changes in the stability 
of the steady states along those curves signify 
critical control surface deflections which cause 
instabilities. The roll coupling problem was 
thoroughly analyz~ by calculating the steady 
states of an aircraft and their changes of 
stability 1n reference (5]. 

The-benefit of calculatinq the steady states of 
an airc~aft is the global nature of the results. 
Steady states can be calculated for a range of 
control surface deflections and vill shov the 
qQalitative response ot the aircraft tor ~arious 
control surface deflections. The ability to 
predict the qQalitative response of the aircraft 
for all control surface deflections vill be very 
useful for deSigning control laws. Control laws 
could be designed to take advantaqe of the 
qualitative differences in the response of the 
aircraft in different fliqht reqimes. 

Numerical simulations are useful for studying 
nonlinear aircraft behavior, but many must be run 
to provide qualitative info~tion about the 
response of the aircraft. Only one specific case 
can be studied at a time, and it is practically 
impossible. to s~late all possible control.surface 
deflections. One is never sure if the response of 
the aircraft would be qualitatively similiar for 
slightly different control surface deflections 
unless the simulation is run. Numerical 
s~lations are very useful when used in 
conjunction with an analysis of the steady states 
of the aircraft. They can be used to explore 
reqions of instability that were discovered by 
analyzing the steady states of the aircraft. 

The nonlinearity of the equations of motion 
makes it difficult to dete~ne the steady states 
of an aircraft analytically. The equations of 
motion must be s~lified to study one type of 
motion or expensive iterative schemes must be used 
[6J. The roll coupling problem has typically been 
studied using a five degree of freedom model that 
neqlects the influence of gravity and assumes 
constant speed [7J. Few studies have attempted to 
analyze the steady states for high angle of aetack 
maneuvers because of the difficulty of determining 
the steady states of the necessarily more COmplex 
models. 



The introduction of continuation methods made 
it possible to det~rmine the steady states of the 
full equations of motion relatively quickly (81. 
Continuation methods are numerical techniques for 
calculating the steady states of systems of 
ordinary differential equations as a function of 
one of the parameters of the system. Thus, the 
steady states of an aircraft can be calculated as 
functions of the aileron, elevator, and rudder 
deflections. 

The steady states of an aircraft can be 
analyzed by detennining their stability as 
functions of the control surface deflections. A' 
change in the stability of a steady state causes 
the aircraft to jump from that steady state to a 
new stable motion. The new motion can be another 
steady state or a time dependent motion. For 
example, increasing the aileron deflection might 
cause an instability that results in a jump from 
steady to periodic motion. The result of an 
instability can be predicted by using dynamical 
systems theory. Dynamical systems theory provides 
rules for classifying instabilities and predicts 
the effects of each type of instability. 

In this work we analyze the roll coupling 
instability and high angle of attack aircraft 
dynamics by analyzing the steady states of an 
aircraft. The results obtained for the roll 
coupling problem show how easy it is to analyze 
inertial nonlinearities by studyinq the steady 
states of an aircraft. The analysis of high angle 
of attack maneuvers shows the ability to predict 
the onset of large amplitude motions. Instabilities 
are located for each type of motion and the results 
of these instabilities are predicted. Numerical 
simulations are used to verify the predictions. 

rr. THEORETICAL BACKGROUND 

2.1 Dynamical Systems Theory 

Dynamical systems theory is a relatively new 
field and has not been widely used to study the 
equations of motion for an aircraft. Many systems 
have been studied using dynamical systems theory. 
The forced Duffing oscillator has been extensively 
studied and bifurcations, periodic motions, and 
chaotic motions have been predicted and verified. 
The essential ideas of dynamicai systems theory 
used in this report are introduced in the following 
paragraphs. 

Dynamical systems theory is a methodology for 
studying systems of ordinary differential equations. 
The procedure involves calculating the steady 
states of the system and their stability as 
functions of the parameters of the system. The 
stability of a steady state is determined by 
linearizing the system about the steady state and 
calculating the eigenvalues. A steady state is 
stable if the real parts of all eigenvalues are 
negative. The state of the system will be 
attracted to stable steady states and repelled from 
unstable steady states. 

Changes in the stability of a steady state 
occur when the parameters of'the system are varied 
in such a way that the real parts of one or more 
eigenvalues change sign. Stability boundaries can 
be found by searching for steady states that have 
one or more eigenvalues with zero real parts. 
Changes in the stability of a steady state lead to 
qualitatively different responses for the system 
and are called bifurcations. 
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There are many different types of bifurcations 
and each type has a different effect on the 
response of the system. The effects of a 
bifurcation can be predicted by determining how 
many and what type of eigenvalues have zero real 
parts at the bifurcation. Bifurcations for which 
one real eigenvalue is zero lead to the creation 
or destruction of two or more steady states. 
Bifurcations for which one pair of complex 
eigenvalues has zero real parts lead to the 
creation or destruction of periodic motions. 
Bifurcations for which more than one real 
eigenvalue is zero or more than one pair of 
complex eigenvalues has zero real parts lead to 
very complex behavior and are beyond the scope 
of this report. Appendix A has one example of a 
saddle-node bifurcation for which one real 
eigenvalue is zero and one example of a Hopf 
bifurcation for which one pair of complex 
eigenvalues has zero real parts. More information 
on bifurcations can be found in reference (91. 

2.2 Continuation Methods 

Continuation methods rely on the fact that the 
steady states of a system of ordinary differential 
equations are continuous functions of the 
parameters of the system. The idea is to fix all 
parameters but one and trace the steady states as 
functions of this parameter. Figure 1 shows how 
the algorithm works for the saddle-node bifurcation 
shown in Appendix A. 
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Figure 1 

One steady state must initially be known, 
(cl,xl). The slope of the curve at·this point can 
be calculated by taking the derivative of the 
equation given by setting ~ - O. Linear 
extrapolation can then be used to approximate the 
next point on the curve, (c2, x2):. 

The next point on the curve can also be 
approximated by extrapolating through two known 
points as shown in Figure 2. This is more 
efficient than the previous method as it is not 
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necessary to calculate the derivative of the 
system. This is especially important for large 
systems of equations. 

Newton's method can be used to reduce the error 
of the approximation to an acceptable value. The 
whole curve of fixed points can be calculated in 
this manner. The stability of the steady states 
can be checked at each point and any change in 
stability will signify a bifurcation. There are 
other continuation method algorithms [10,11]; in 
this work we used the algorithm developed by 
Doedel and Kernevez [12]. 

III. MODEL OF THE AIRCRAFT DYNAMICS 

The purpose of this work has been to use 
dynamical systems theory to analyze the equations 
of motion for an aircraft. The work concentrated 
on the roll coupling problem for several reasons. 
The main reason was that the roll coupling problem 
involved an instability that resulted in a jump in 
the state of the aircraft. Thus, there was good 
reason to believe that the instability was caused 
by a bifurcation of the steady states of the 
aircraft. 

Dynamical systems theory could be used to 
determine if the jumP. was indeed caused by a 
bifurcation of the steady states of the aircraft. 
It could also be used to determine what caused the 
instability. The flight regimes in which the 
instability occurred could also be determined. 
The roll coupling problem also has the advantage 
that the effect of gravity can be neglected 
resulting in a simplified set of equations. 

The equations of motion for an aircraft consist 
of: 

rotational equations 

(Iz·-Ix.l pr + m 

- translational equations 

~ - q - tana(p cosa + r sinal + 1 (Z cosa 
fWcosS 

X sina + W(sina sine + cosa cose cos~)l 

B p siDa - r cosa + -l:.- (Y cosS - X cosa sinS 
MV 

- Z sina sins + W(cosa sins sine 

+ cosS cose sin~ - sina sinS cose cosm» 

V ___ l_(X cosa cosS + Y sins + Z sina cosB) 
M 

+ g(sin B cose sin~ + sina cosS cose cos~ 

- cosa cosS sine) 

- Euler angles 

~ - p + tane (q sin~ + r cos~) . 
e q cos~ - r siri~ 

• - (q sin~ + r cos~) sec9 

This study neglected gravity which decouples Euler's 
equations from the rotational and translational 
equations. This reduces the system to six coupled 
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equations. Gravity has been neglected to reduce 
computation time, as the number of computations 
grows as the square of the number of equations. 

The system of equations, including the 
aerodynamic model, used in this study is shown 
below. The aerodynamic model was taken from 

p. 

q. 

r -

a 

(Iy-Iz) 
qr +-1..(S ls + da 1 da + dr 1 dr 

Ix Ix 

+ P 1 p+ r 1 r) 

(Iz -Ix) pr +-t- (m(a) + de mde + q mq) 
Iy y 

(Ix:-I;,;:) 
pq 

Iz. 
+-L(S 

I z 
nS + da nda + dr ndr 

+ p np + r nr ) 

q - tanS (p cos a + r sinal + HVC~sS (-T sina 

+ (Z + de Zde)cosa - (X + de Xdelsina) 

B .' p sina - r cosa + M \ «B Y s + da Yda + dr Ydr 

+ p Yp + r YrlCOSB - (X + de xde)cosa sinS 

+ (Z + de Zde)sina sinB - T cosa sinB 

v -+ ( (B YB + da YcIa. + dr Ydr + p Yp + r Yr)sinB 

+ (X + de XdJ cos a cosS + (Z + de Zde) sina cosB 

+ T cosa cosB 

reference [13]. The model is symmetriC with 
respect to aileron deflection and all aerodynamic 

-coefficients are nonlinear functions of angle of 
attack for angles from -10 to +90 degrees. The 
coefficients were reported in increments of five 
degrees and were fitted using a cubic spline with 
tenson. The fits of the negative lift coefficient 
(ezl and the pitching moment coefficient (Cm) are 
shown in Figure 3. It is necessary to use a 
curve fit that has smooth first derivatives for 
convergence of the continuation method. The 
aerodynamic coefficients are not functions of the 
sideslip angle, but this could easily be added. 

a) 1 

o 

-1 

-2 
-1~---~1~~~~~---~----J 

Angle of Attack (deg) 



b) 0.2 .---,--,r----.---..--.., 

o 

-0.2 

-0.4 

-0.6 

Angle of Attack (deg) 

Figure 3 

IV. RESULTS 

4.1 Roll Coupling 

We have studied the roll coupling problem by 
determining the steady states of the equations of 
motion and seeking bifurcations. The steady states 
are plotted as functions of the aileron setting for 
fixed rudder and elevator settings. The thrust to 
weight ratio is .12, the atmospheric density is 
.237 kg/m, and the rudder deflection is zero for 
the results given here. Thus, the altitude is 
assumed constant and there is no control of yaw 
motion. 

Fiqure 4 shows the steady states for a roll 
from the trim condition. There are six plots in 
Fiqure 4 because we are studying a six degree of 
freedom model; each plot shows one degree of 
freedom. Figure 4 also shows that there are 
several steady states for any aileron deflection. 
This can be seen by drawing a vertical line 
representing a constant aileron deflection on any 
of the plots in Fiqure 4. The line intersects 
several curves of fixed points; each intersection 
shows a possible steady state for the aircraft. 
For example, the trim condition can be found by 
drawing a vertical line representing zero aileron 
deflection on Fiqures 4(a)-(f). The trim condition 
is given by the stable steady state labelled A in 
Fiqures 4(a)-(f). 

Only one branch of steady states in Figures 
4 (a) - (f) is stable ("ShOwn as a solid line). The 
other steady states, represented by dashed lines, 
are unstable. This convention will be used 
throughout the paper. Unstable steady states vill 
not shov up in flight tests or numerical simulations 
, as these steady states are unstable to small 
perturbations causing the aircraft to diverge from 
these states. Thus for rolls from trim only one 
steady state vill be observed. Note that we have 
no information on possible time dependent motions. 
We are only studying steady states, that i~ states 
with no rotational or translational accelerations. 

The existence of multiple steady states can 
have strong consequences on the dynamics of the 
aircraft. While only one steady state is stable 
for rolls from trim (Fiqures 4(a)-(f», it is 
possible that changing another parameter, such as 
the elevator deflection, could cause one of the 
unstable branches to become stable. There would 
then be two possible stable motions for the 
aircraft ana a pilot could find himself in either 
type. It is very important to monitor the 
stability of all branches of steady states as 

a) 
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control surface deflections or other parameters 
are varied. While all branches of steady states 
were monitored in this study, the following results 
show only those branches containing stable steady 
states. 

Figure 4 shows the symmetry of the aerodynamic 
~del with respect· to aileron deflection. The 
longitudinal motions (Figures 4(bl, (dl, (fll are 
symmetric with respect to t~e aileron deflection: 
positive and negative aileron deflections cause the 
same pitch rate, angle of attack, and speed. 
Lateral motions (Figures 4(a), (cl,(ell are 
antisymmetric with respect to aileron deflections: 
positive and negative aileron deflections cause 
roll rates, yaw rates, and sideslip angles of the 
same magnitude but opposite signs. Subsequent 
results will show only positive roll rate solutions. 

Figure 5 shows the steady states for an 
elevator setting of 3 degrees. The elevator 
setting has only been increased by 1.35 degrees 
from the case shown in Figure 4, but there is a 
vast difference in the nature of the steady state 
solutions. The branch of stable steady states in 
Figure 5 contains several bifurcations: saddle-node 
bifurcations are labelled by Circles and Hopf 
bifurcations are labelled by x's. The branch of 
stable steady states in Figure 4 did not contain 
any bifurcations, so there should be a qualitative 
difference in the response of the aircraft for 
rolls from trim and rolls with an elevator setting 
of 3 degrees. 

The motion of the aircraft for rolls from trim 
can be inferred from Figure 4. Assume the aircraft 
stares from the trim condition represented by point . 
A in Figures 4(a)-(f). Applying negative aileron 
deflection would cause the state of the aircraft to 
follow the curve of stable steady states (allowing 
for transient motions). Increasing the aileron 
deflection to -30 degrees will cause the state of 
the aircraft to go from point A to point B in 
Figures 4(a)-(f). Following the curve of steady 
states from A to B shows that the state of the 
aircraft would change in a continuous fashion. 

Now perform the same maneuver for an elevator 
deflection of 3 degrees. As shown in Figures 
5(a)-(c), for zero aileron deflection the aircraft 

·has zero roll and yaw rates, and a negative ·pitch 
rate (pitch down maneuverl. Increasing the aileron 
deflection from zero causes the state of the 
aircraft to follow the curve of stable. steady 
states in Figures 5(a)-(f). The state of the 
aircraft would change continuously from state A to 
state B. If the aileron deflection is increased 
past state B the aircraft must jump to state C. 

A simulation of this maneuver is shown in 
Figure 6. The state of the aircraft is given by 
Figures 6(a)-(f) and the aileron input is shown 
in Figure 6(g). The aileron deflection was 
increased enough to cause the jump from state B to 
state C in Figures 5(a)-(f) to occur. The jump is 
clearly shown in the yaw rate (Figure 6(c)) and 
the angle of attack (Figure 6(dl) at a time of 
25 secondS. 

Figures 5(c)-(d) show that as the aileron 
is increased from zero (point A) the yaw rate and 
angle of attack should both become more negative. 
This behavior is shown in Figures 6(c)-(d) for 
times from zero to 15 seconds. Figures 5(c)-(d) 
show that increasing the aileron deflection past· 
tke saddle-node bifurcation at point B will cause 
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the yaw rate and angle of attack to jump to 
positive values. This jump occurs in Figures 
6 (c)-(d) at a time of 25 seconds. Comparing ~he 
yaw rate and angle of attack given for state C in 
Figures 5(c)-(d) with the final yaw rate and angle 
of attack in Figures 6(c)-(d) shows that the state 
of the aircraft after the jump can be predicted by 
knowing the steady states of the aircraft. 

Figure 7 shows the aileron settings which 
cause bifurcations, for a range of elevator 
deflections. The figure can be interpreted by 
comparing it with Figure 5. The bifurcation in 
Figures 5(a)-(f) (labelled S, 0, E) occur at fixed 
aileron deflections and an elevator deflection of 
3 degrees. The location of these bifurcations can 
be plotted as functions of elevator and aileron 
deflections with all other parameters held constant; 
points S, 0, and E.in Figure 7 represent .the 
bifurcations labelled S, 0, and E in Figure 5. 
Figure 7 shows that the control surface 
deflections which cause bifurcations can be plotted 
as continuous functions. 

4~----~r.-----~~-----' 

3.5 
Elevator 

Deflection 3 

(deg) 2.5 

1.5 ..b.-----::h.-----!.:----~ 
10 

Aileron Deflection (deg) 

Figure 7 : Bifurcation Diagram 

The jump in the state of the aircraft caused by 
the saddle-node bifurcation at state S in Figures 
5(a)-(f) is due to inertial coupling. This can be 
seen by studying the individual components that 
compose the moments in roll, pitch, and yaw. 
Figure 8 shows the main contribut~ons.of inertial 
and aerodynamic terms to the roll, pitch, and yaw 
moments for a range of aileron deflections and an 
elevator deflection of 3 degrees (case shown in 
Figur~ 5) • . 

Figure 8(a) shows that the roll moment caused 
by da lda.(Curve 1) is balanced by the damping in 
roll, p lp, (curve 3) for most aileron deflections. 
Near the saddle-node bifurcation (da--14) sideslip 
builds up causing a positive roll moment due to 
B 1 S (curve 2). For this moment to be balanced by 
p lp the roll rate must increase as lp remains 
essentially constant as there is very little change 
in the angle of attack during the maneuver (see 
Figure Sed»~. 

Figure 8(b) shows that for aileron deflections 
less than 5 degrees the pitching moment caused by 
the elevator deflection, de ~e' (cu~ 4) is 
balanced by the pitching moment due to angle of 
attack, mea), (curve 1) as would be expected for 
linear aircraft dynamics. For aileron settings 
near -14 degrees the contribution of mea) decreases 
very rapidly and changes sign because the angle of 
attack changes signs (see Figure 5(d»). The 
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decrease J.n mea) is accompanied by an increase in 
the inertial moment (curve 2). For aileron 
def1ectJ.ons greater than -14 degrees (past the 
saddle-node bifurcatJ.on) the maJ.n contrJ.butJ.ons to 
the pitchJ.ng moment are de mde and the inertJ.al 
moment. Thus the saddle-node bJ.furcatJ.on changes 
the pitching moment balance from one domJ.nated by 
aerodynamJ.c terms (curves 1 and 4) to one composed 
of inertJ.al and aerodynamJ.c terms (curves 2 and 4) . 

Figure 8(c) shows that the yaw moment balance 
is between the inertJ.al term (curve 1) and the 
dJ.rectional stabilJ.ty term S nS (curve 2). This 
shows one source for the buJ.ldup of sideslJ.p, whJ.ch 
was shown to cause an increase in the roll rate 
through the term S ls. As the aJ.leron deflection 
is increased the roll rate increases causing the 
J.nertia1 term (curve 1) to increase. For this 
moment to be balanced the sJ.deslip angle must 
increase as nB is essentially constant because the 
the angle of attack does not change much during the 
maneuver. 
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The jump in the state of the aircraft caused by 
the roll coupling instability involves a complex 
balancing of moments. The increase in the inertial 
couplJ.ng moments causes the aircraft to jump from a 
flJ.ght regime dominated by aerodynamic moments to 
one involving aerodynamic and inertial moments. 
While no one term causes the roll coupling 
instability, the aerodynamJ.c terms m(al and nS play 
a large part. Changing these coefficients should 
have an effect on the instability. Increasing mla) 
would allow it to balance larger moments caused by 
de mde and inertial coupling (see Figure 8 (b) ) • 
The saddle-node bifurcation would then be moved to 
a larger aileron deflection. 

Similiarly by increasing ns less sideslip would 
be needed to balance the inertial moment in yaw 
(see Figure S(cl). Thus less roll rate would be 
needed"to balance the roll moment caused by B ls 
(see Figure 8(c)) and less inertial moment J.n pitch 
would buildup. Again the effect would be to allow 
larger aileron deflections before the saddle-node 
bifurcation would occur. 

Fiqures 9(al-(d) show the effect of changing 
mea) and nS on the steady states of the aircraft 
for an elevator setting of 3 degrees (cf. Figure 81. 
Changing these coefficients has little effect on 
the steady states of the aircraft for large or 
small aileron deflections. The main effect occurs 
between the saddle-node bifurcations (S and C) 
where inertial forces start to become important. 

Fiqure 9(a) shows that increasing mea) 
increases the aileron deflection where the saddle­
node bifurcation occurs. This allows higher roll 
rates to be achieved before the bifurcation occurs. 
Fiqures 9(b)-(d) show that increasing mea) and ns 
reduces the buildup of pitch rate, yaw rate, and 
sideslip for aileron deflections less than those 
required for the bifurcation to occur (i.e. between 
points A and S) • 

The effect of changing mea) and nB on the 
critical control deflections which cause the two 
saddle-node bifurcations (shown as solid lines) 
in Figure 7 is shown in Fiqure 10. Curve 2 in 
Figure 10 is the same curve shown in figure 7. 
The curves show that increasing mea) and ns allows 
larger aileron deflections before a saddle-node 
bifurcation occurs for a range of "elevator 
deflections. 

Fiqure 11 shows the steady states for an 
elevator deflection of 4 degrees. A comparision of 
Figures Sand 11 shows that increasing the aileron 
deflection from 3 to 4 degrees leads to very 
dJ.fferent steady states. In particular Fiqure 11 
has two separate branches of steady states," while 
Fiqure 5 has only one. This can easLly be seen by 
comparing Figures Sed) and 11(d). Thus one of the 
unstable branches of steady states shown in Fiqure 
4 becomes stable as the elevator deflection is 
increased from 1.65 to 4 degrees. 

The effect of the Hopf bifurcation at state 4 
in Figures 11(a)-(f) can be seen in the simulation 
shown in Fiqure 12. The maneuver can be understood 
by comparing Figures 11(a)-(f) with Fiqures 12(a)­
(g). The simulation starts from state 1 in Fiqures 
11(al-(f). When the aJ.leron deflection is 
increased up to and past state 2 the state of the 
aircraft must jump to state 3. The effect of this 
jump can be seen particularly well in the sudden 
jump in the yaw rate and angle of attack at a time 
of 15 seconds in Figures 12(c)-(d). 
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The aileron deflection is then decreased, as 
shown in Figure 12(g), causing the aircraft to go 
from state 3 (Figures ll(a)-(f) through the Hopf 
bifurcation at state 4 and finally to state 5. The 
Hopf bifurcation leads to the growing oscillations 
seen in Figures 12(a)-(e) for times between 30 and 
90 seconds. The limit cycle becomes unstable when 
the aileron deflection is returned to zero and the 
aircraft returns to its initial state. 

Figures 11(a)-(f) and 12(a)-(f) show that 
saddle-node bifurcations also cause hysterisis type 
behavior. The state of the aircraft jumped from 
state 2 to state 3 (figure 11) when the aileron 
deflection was increased past state 2. When the 
aileron deflection was decreased from state 3 the 
aircraft did not jump back to state 2 but went to 
state 5. Only when the aileron deflection was 
returned to zero did the aircraft jump back to the 
initial branch of steady states. 

4.2 High Angle of Attack Dynamics 

The previous methodS can also be used to study 
high angle of attack aircraft motion. While the 
present aircraft model might not be valid for high 
angle of attack flight, the following results show 
the type of information that could be obtained from 
a more complete model. 

Figures 13(a)-(f) show' the steady states of the 
aircraft for an elevator setting of -13 degrees. 
The figures Show that for aileron deflections 
larger than about 6 degrees there are no stable 
steady states. For flight regimes where there are 
no stable steady states the aircraft must undergo 
some type of time dependent motion. This can be 
seen in the simulation in Figures 14(a)-(g). 

The simulation starts with the aircraft in 
state A of Figure 13. The aileron deflection is 
increased causing the aircraft to go from state A 
up to and past state B. The aileron deflection is 
then held constant at a value just past that at 
state B. Figures 14(a)-(f) show that the aircraft 
exhibits time dependent motion when the aileron 
deflection is held constant at 7 degrees (i.e. for 
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times greater than 20 seconds) . 

For times between 20 and 80 seconds there is 
only a slight change in the state of the aircraft. 
This is most apparent in the roll and yaw rates 
(Figures 14(a) and (c)). The aircraft undergoes a 
sudden violent motion at a time of 80 seconds. The 
magnitude of the motion is suprisingly large. The 
roll rate changes from 80 to -40 deg/sec in only a 
few seconds (Figure 14(a)). The simulation had to 
be stopped as the angle of attack exceeded the 
limit of the aerodynamic model. 

It is clearly very important to know if and 
when this type of motion could occur. Figure 15 
shows that there are curves of saddle-node and Hopf 
bifurcations above which no stable steady states 
exist. This information could be used to put 
limits on the control deflections or at least,to 
sho~ which flight regimes need further s'tudy. 

-12.-------,r-------, 

Elevator 

-14 
Deflection 

(deg) 

Aileron Deflection (deg) 

Figure 15 Bifurcation Diagram 

V. CONCLUSIONS 

The above results show the value of using 
continuation methods and dynamical systems theory 
to analyze the equations of motion for an aircraft. 
The efficiency of the method makes it possible to 
study various ~eqions.of the flight envelope and 
look for instabilities like the roll coupling 
instability. It is not necessary to simplify the 
equations of motion to study known phenomena, so it 
is possible to find some unexpected phenomena. 

The method also has great potential for 
designing control laws. Figures like Figure 6 
could be made three dimensional by including 
rudder deflection as another variable. There 
would then be surfaces of control deflections which 
cause bifurcations .' Control laws could be designed 
to avoid these surfaces. These surfaces would be 
functions of the altitude, Mach number, and thrust 
setting, so these variables would have to be 
incorporated into the control laws. 

A knowledge of which control deflections cause 
bifurcations can also be used to escape from 
motions caused by a bifurcation. A pilot would 
know the correct control surface deflections to 
cause the aircraft to bifurcate back to the 
desired state, or knowing all the steady states of 
the aircraft a pilot could pick the best combination 
of control surface deflections to get to the 
desired steady state. 
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The above analysis can also be extended to 
periodic motions. It is possible to obtain curves 
of periodic motions as a function of the control 
settings similiar to the curves of steady states 
shown in this work. Periodic motion could then be 
avoided by staying away from control surface 
deflections which cause stable periodic motions. 

ACKNOWLEDGEMENTS 

This work was partly supported by Caltech funds 
and partly by a grant from the National Aeronautics 
and Space Administration, Ames Dryden Flight 
Research Center. 

REFERENCES 

1. Phillips, ~. H.: Effect of Steady Rolling on 
Longitudinal and Directional Stability. 
TN-l627, 1948. 

2. Pinsker, W. G.: Charts of Peak Amplitudes in 
Incidence and Sideslip in Rolling Maneuvers Due 
to Inertia Cross Coupling. ARC RM No. 3293, 1962. 

3. Rhoads, D. W. and Schuler, J. M.: A Theoretical 
and Experimental Study of Airplane Dynamics in 
Large Disturbance Maneuvers. Journal of 
Astronautical Sciences, Vol. 24, July 1957. 

4. Gates, O. B. and Minka, K.: Note on a Criterion 
for Severity of Roll Induced Instability. 
Journal of Aerospace Sciences, May 1959. 

5. Young, J. W., Schy, A. A., and Johnson, K. G.: 
Pseudosteady State Analysis of Nonlinear Aircraft 
Maneuvers. Proceedinds of 7th AlAA Atmospheric 
Flight Hechanics Conference, August 11-13, 1980. 

6. Adams, W. M.: Analytic Prediction of Aircraft 
Equilibrium Spin Characteristics. NASA TN 0-6926, 
1972. 

7. Hacker, T. and Oprisiu, C.: A Discussion of the 
Roll Coupling Problem. Progress in Aerospace 
Sciences, Vol. ,15 Pergamon Press, Oxford, 1974. 

8. Guichteau, P.: Bifurcation Theory Applied to the 
Study of Control Losses on Combat Aircraft. 
Proceedings AGARD/FHP Symposium on Combat 
Aircraft Maneuverability, October 5-8, 1981. 

9. Guckenheimer, J. and Holmes, P.: Nonlinear 
OSCillations, Dynamical Systems, and Bifurcations 
of Vector Fields. Springer-Verlag, New York, 1983. 

10. Keller, H. B.: Numerical Solution of Bifurcation 
and Nonlinear Eigenvalue Problems. Applications 
of Bifurcation Theory, Academic Press, New York 
1977. 

11. Kubicek, M.: Algorithm 502: Dependence Of the 
Solution of Nonlinear Systems on a Parameter. 
ACH Transactions on Mathematical Software, 2, 
1976. 

12. Doedel, E. J. and Kernevez, J. P.: Software for 
Continuation Problems in Ordinary Differential 
Equations With Applications. Preprint. 

13. Young, J. W., Schy, A. A.,and Johnson, K. G.: 
Steady State Analysis of Nonlinear Aircraft, 
Maneuvers. NASA TP 1758, 1980. 



APPENDIX A 

The following examples show how bifurcations 
can be found and how they effect the response of 
the system. The saddle-node bifurcation is the 
simplest bifurcation with one zero eigenvalue. 
Saddle-node bifurcations cause the creation of one 
unstable steady state (saddle) and one stable 
steady state (node), hence the name saddle-node 
bifurcation. Saddle-node bifurcations are common 
in physical problems and ca~cause jump phenomena 
when the stable steady state is destroyed, as the 
system must jump to a new steady state or time 
dependent motion. The Hopf bifurcation is the 
simplest example of a bifurcation for which one 
pair of complex eigenvalues has zero real parts 
Hopf bifurcations are common in physical systems 
and cause the creation or destruction of periodic 
motion. 

A1. Saddle-Node Bifurcation 

Consider the equation 

• ·2 
X·C-lC. 

The steady states of this equation (x - 0) are 
given by x - ±.[C. If c is negative there are no 
steady states. Linearizing the equation about the 
steady state x -fC gives the equation 

u - -2«: u 

where u - x -~. The eigenvalue, e - -2~, is 
naqative so the steady state is stable. Applying 
the same analysis to the steady state x - -;,c shows 
that it is unstable. These results are plotted in 
Figure 16. The solid line shows the steady stable 
states and the dashed line the unstable steady 
states. The vertical lines with the arrows show 
the evolution of the system in time for fixed 
values of c and some chosen initial condition (x,c). 
The arrows represent increasing time. 

The system has a bifurcation at c - 0 as the 
eigenvalue at (x,c) - (0,0) is zero. Thus, the 
system should exhibit different qualitative 
behaviors for c less than zero and for c greater 
than zero. This is clearly shown in Figure 17. 
For the same initial value of x the system responds 
differently for positive and negative values of c. 
If c is positive the system approaches the steady 
state, x -V!, shown in Figure 16. If c is negative 
there are no stable steady states and x continually 
decreases. 

1 ~----~-----r----~----~ x 

o 

-1 
-O~.~--~----~O~--~----~.5 

C 

Figure 16 
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t 

Figure 17 

A2. Hopf Bifurcation 

Consider the system written in polar cOordinates 

e 1. 

This system has a fixed point at the origin for all 
values of c and a periodic orbit, or limit cycle, 
for c > 0 given by r -is. The system must be 
transformed to rectangular coordinates to calculate 
the eigenvalues of the the steady state r - O. In 
rectangular coordinates the system is given by . 

x . 
y 

linearizing about the origin gives the system 

which has eigenvalues e - c ± i, where i -I=i. The 
origin is stable for c < 0 and unstable for c > O. 
For c - 0 the eigenvalues at the origin are purely 
imaginary. Thus, the origin undergoes a Hopf 
bifurcation for c - 0 which creates the limit cycle 
r -(.C. This is shown in figure 18. 

c<O 

Figure 18 


