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Abstract

Successful integration of pervasive sensor networks in
mission critical applications depends on the ability of these
networks to cope with and reasonably perform under the
worst-case scenarios. One of the key performance measures
is the network’s ability to route information from the source
node to the intended destination. This paper introduces a
general framework with which worst-case routing perfor-
mance of sensor networks can be evaluated and compared.
Ultimately, our method can either be used as a design opti-
mization tool, or a decision making tool to select and price
contending sensor network designs.

1 Introduction

Originally designed for military applications, sensor net-
works have steadily entered many areas of civilian applica-
tions. While many early civilian sensor networks were lim-
ited to non-critical remote environmental monitoring sys-
tems, state of the art sensor networks are integrated into
many current and future designs of mission critical civilian
data monitoring systems.

For example, the Advanced National Seismic System
(ANSS) [1] and the Pacific Tsunami Warning System op-
erated by the National Weather Service [2] are two large
networks of sensors designed to reliably detect, measure,
report, and track large scale, catastrophic geological events
moving at the speed of several kilometers per second.

While these systems are wired sensor networks, many
future mission critical systems would be pervasive wireless
sensor networks designed to detect the presence of danger-
ous levels of biohazards, radiation, lethal mineshaft gases,
etc. In these applications, losing even one symbol, packet,
or file can have very disastrous consequences. In most
cases, the source node must strive to maximize the probabil-
ity of successfully transmitting the information to the des-
tination node. Retransmission might be impossible, as the
source nodes could have been destroyed or incapacitated.

Motivated by this problem, we introduce a worst-case
routing performance metric to measure and compare net-
work path lengths that depend on the paths’ probability
of failure under the worst-case scenario. Ideally, given a
source-destination pair, the path that minimizes this length
is selected for data transmission. The minimum path length
over all source-destination pairs can then be used to evaluate
the network’s worst case routing performance. For brevity,
we will refer to this metric as the Worst-Case Error (WCE)
metric, where “Error” can represent any types of failure.

In any metric, a path’s length depends on its edges’
lengths, and our WCE metric is no exception. However,
the WCE length also depends on how each network link
is modeled and parametrized. In this paper, we provide
three network models where each link is modeled as a q-
ary Symmetric Channel (q-SC), a q-ary Erasure Channel,
and a non-negative mean AWGN channel. These channels
are parametrized by their symbol error ratio, symbol era-
sure ratio, and the mean-variance pair. For convenience, we
consider these parameters as edge metrics referred to as the
“Bit Error Ratio” (BER) — which is quite a misnomer be-
cause our model is not restricted to binary channels, and the
parameter is not always a ratio.

To the best of our knowledge, we believe that our ap-
proach of using the BER and WCE metric to evaluate the
worst-case routing performance of pervasive sensor net-
works is new. Our algorithm is applicable to many other
network optimization problems: although here we use the
WCE metric for evaluating sensor networks, it can be used
in other network problems that attempt to minimize the
worst-case occurence probability of non-typical, but highly
catastrophic data transmission failures.

2 Formulation and Notation

The network is modeled with a digraph G = (V, E),
where V , E, and Π are the node, edge and path sets of
G. Two nodes s and d ∈ V are the source and destination
nodes, and Π ⊂ Π denotes the set of all paths from s to d.
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A path π ∈ Π whose nodes Vπ ⊂ V are connected by
Eπ ⊂ E is denoted by either 〈v0, . . . , vJ〉, 〈e1, . . . , eJ〉, or
〈v0, e1, . . . , eJ , vJ〉. The number of nodes (or edges) in π is
denoted by |π|v (or |π|e). The symbol 〈vi, vi+1〉 denotes the
edge (path) connecting the two (non-) adjacent nodes v i and
vi+1. A partial path πj of π denotes 〈v0, . . . , vj〉, with 0 <
j ≤ J , and a truncated path π̄j is 〈v0, e1, . . . , vj−1, ej〉.

Denote the message by B ∈ B, where B is the space
of all allowable messages in the network. Let Bi denote
the value of B as it departs from vi; and let B̄i denote
the value of B as it leaves ei. Both vi and ei are parts of
〈v0, e1, . . . , eJ , vJ〉, along which B evolves as follows:

B0
e1−→ B̄1

v1−→ B1
e2−→ B̄2

v2−→ · · · eJ−→ B̄J
vJ−→ BJ

where vi and ei correspond to the operators vi, ei ∈ E :
B → B given by Bi = vi(B̄i) and B̄i+1 = ei(Bi). The
operator for π is π = vJ ◦ eJ ◦ · · · ◦ e1 ◦ v0. For πj , it is
πj = vj ◦ ej ◦ · · · ◦ e1 ◦ v0, and for π̄j , it is π̄j = ej ◦
vj−1 · · · ◦ e1 ◦ v0. Thus, πj(B0) = Bj and π̄j(B0) = B̄j .

Define the function X : B × B → M that measures
the distance x ∈ M between a message B0 at v0 which
evolves into BJ at vJ , where v0 and vJ are connected by
〈v0, vJ 〉, andM is the metric space. The distance x from Bi

to Bi′ is denoted by x = Xi, i′ = X(Bi, Bi′), and Xi,ī′ is
a shorthand for X(Bi, B̄i′). If e = 〈vi, vi′〉 then we define
the shorthand X(e) = X(Bi, B̄i′).

Often, apart from B0, the messages Bi at vi are random
variables. Consequently, X0,i are also random variables.
Consider the random variable x = Xi,i′ that measures the
distance between the message at vi and its image at vi′ . De-
fine P (x, λ) as the probability density of x parameterized
by a vector λ ∈ Λ. For example, for x ∈ R and P Gaus-
sian, λ is the vector of P ’s mean and variance (μ, σ2). The
value λ = ∞ is reserved to denote the absence of connec-
tion between two nodes. Each edge ei in the network can
be characterized by its parameter λi

Finally, we define the worst case function x̄(λi, ε) that
computes, given a probability density P (x, λ i), the worst
case “possible” value of x, where “possible” values y are
defined as those y values with probability P (y, λi) > ε.

x̄(λi, ε) = maxx{ x | P (x, λi) ≥ ε , x ∈ M} (1)

Consider a path π = 〈e1, . . . , eJ〉 ∈ Π and its partial path
πj = 〈e1, . . . , ej〉 with 1 ≤ j ≤ J . For convenience, we
also define the function β : Π → Λ that maps a path π (or
an edge ei) into a density parameter λπ (or λi) and the func-
tion ω : Π → M that maps a path or an edge (given ε) into
its worst case value x ∈ M. For ei, the β and ω are related
to x̄(λi, ε) through: ω(ei) = x̄(β(ei), ε). For π, assuming
λπ is defined, similarly we have ω(π) = x̄(β(π), ε). The
next question is, how does λπ depend on λi’s, and how does
x̄(λπ, ε) depend on x̄i = x̄(λi, ε)?

Let us assume that the addition operation is defined in Λ
and M and is denoted by ⊕. If x1 = X(e1), x2 = X(e2),
λ1 = β(e1), λ2 = β(e2), x̄1 = ω(e1), x̄2 = ω(e2), and
π = 〈e1, e2〉, then we say xπ = x1 ⊕ x2, λπ = λ1 ⊕ λ2,
or x̄π = x̄1 ⊕ x̄2. For these expressions to make sense,
the ⊕, Λ and M have to obey the properties outlined in the
next section. With ⊕, we can now define xπ , λπ and x̄π

in terms of xi, λi and x̄i using a generalized summation:
xπ =

⊕
xi, λπ =

⊕
λi and x̄π =

⊕
x̄i. The pairings

of Λ and M with ⊕ form what we call the X, B, and W
algebras, from the X , β, and ω functions, respectively.

Between two nodes, the optimal path π∗ is the path with
the “shortest” path length from s to d when measured in the
X, B or W algebra (or metric). However, having ⊕, X , β,
and ω is not enough to calculate π∗. We need to compare
path lengths. Therefore we need a total order � on Λ and
M to evaluate expressions like xπ � xπ′ , λπ � λπ′ , or
x̄π � x̄π′ . Once � is defined, then we have:

x∗ = minπ{ xπ | π ∈ Π }
λ∗ = minπ{λπ | π ∈ Π }
x̄∗ = minπ{ x̄π = x̄(λπ, ε) | π ∈ Π } (2)

Example 1 (q-ary Symmetric Channels) Let Q be the q-
ary alphabet {0, . . . , q − 1}. Suppose that the source s pro-
duces n-symbol messages B ∈ Qn, with Bl ∈ Q, and
l = 1 . . . n. Each network link is modeled as a q-ary Sym-
metric Channel (q-SC) with symbol error rate p.

Let Bi (and bi = Bli) denote B (and Bl) as it departs
from vi; and let B̄i (and b̄i = B̄li) denote B (and Bl) as it
leaves ei. The transition probability defining a q-SC is:

P ( bi+1 | bi ) =

{
1 − p , bi = bi+1

p /(q − 1) , bi 
= bi+1.
(3)

The operators vi, ei ∈ E : Qn → Qn given by Bi =
vi(B̄i) and B̄i+1 = ei(Bi). The function X measures the
number of errors (Hamming distance) in B i compared to
Bi′ , denoted by x = Xi, i′ = X(Bi, Bi′) = | {l | bi 
=
bi′} |. In a q-SC, the scalar parameter that plays the role of
λ is p, the link symbol error probability. The probability
density function P (x, λ) = P (x, p) is:

P (x, p) =

⎧⎪⎨
⎪⎩

(
n
x

)
px (1 − p)n−x , p ∈ (0, 1)

δ(x) , p = 0
δ(x − n) , p = 1,∞

(4)

The B algebra is such that two adjacent edges e1 and e2 with
parameters λ1 and λ2 can be viewed as a single edge with
parameter λ = λ1 ⊕ λ2 = p1 ⊕ p2 defined by:

p1 ⊕ p2 = 1 − (1 − p1)(1 − p2) − (p1p2) / (q − 1)
x̄1 ⊕ x̄2 = max{ x | P (x, p1 ⊕ p2) ≥ ε } (5)
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Example 2 (q-ary Erasure Channels) The symbol q − 1
in Q is designated as a special erasure symbol. Each net-
work link is modeled as a q-ary Erasure Channel (q-EC)
with symbol erasure rate p. B can be defined as a block
with n packets of m symbols each, and erasures represent
lost packets. The transition probability for the q-EC is:

P ( bi+1 | bi ) =

{
1 − p , bi = bi+1

p , bi 
= bi+1 = q − 1.
(6)

The function X measures the number of erasures in B i

relative to Bi′ , denoted by x = Xi, i′ = X(Bi, Bi′) =
| {l | bi 
= bi′ = q − 1} |. The probability density func-
tion P (x, λ) is the same as in Example 1, except p is
the link symbol erasure probability and the B algebra is
λ = λ1 ⊕ λ2 = p1 ⊕ p2 defined by:

p1 ⊕ p2 = 1 − (1 − p1)(1 − p2) (7)

Example 3 (Non-negative-mean AWGN) In this exam-
ple, the message is a scalar B ∈ R

+ with non-negative-
mean AWGN on each link. This message could represent
the amount of degradation a packet has experienced so far.
Therefore, the source always transmits B0 = 0.

The AWGN is characterized by λ = (μ ≥ 0, σ2), where
μ is the mean, and σ2 the variance of the Gaussian density
and the transition probability density is given by:

P (Bi+1 |Bi ) = P (x; μ, σ2)

=
1√

2πσ2
exp

(−(x − μ)2

2σ2

)
(8)

where x = Bi+1−Bi. Two independent, adjacent edges e1

and e2 with parameters λ1 and λ2 can be treated as a single
edge with parameter λ = λ1 ⊕λ2 = λ1 + λ2, where the +
sign is the standard vector summation operator. Since x is
now continuous, we can solve for x̄ analytically by solving

x̄ = P−1(ε; μ, σ2) = μ +
√
−σ2 ln(2πε2σ2), (9)

which has one solution if 2πσ2 = ε−2, two solutions x̄−

and x̄+ if 2πσ2 < ε−2, and none if 2πσ2 > ε−2. Since
x̄ represents the worst case value for x, we always assume
x̄ = x̄+. From this result, we can also compute:

x̄1 ⊕ x̄2 = P−1(ε; μ1 + μ2, σ
2
1 + σ2

2). (10)

It is useful to think of λ’s as 2D vectors in a half strip Λ =
R × {σ2 ≤ ε−2/(2π)}, and the function x̄ as an element in
X̄ε : Λ → R, defining isocontours for each value of x̄.

A σ2 = 0, the value x̄ reaches its limit of μ. If we denote
G’s maximum path variance by σ2

max, then we must have
σ2 ≤ σ2

max = ε−2
max/(2π) so that ∀λ ∈ Λ, the value x̄

exists. For now, we claim that σ2
max is computed with the

longest path algorithm on G with edge metrics σ 2
i and usual

addition. Later, σ2
max is shown to guarantee closure on Λ.

3 Generalized Dijkstra’s Algorithm

The problem of finding the optimal path that minimizes
the metric of choice (x, λ, x̄, or others) in a DTN that is rep-
resented by a graph G can be solved using the Generalized
Dijkstra’s Algorithm (GDA) below [3]:

1: procedure GDA (G, m, s)
2: for all v ∈ V do
3: l[v] ← ∞
4: π[v] ← NIL

5: Q ← V
6: l[s] ← 0
7: while Q 
= ∅ do
8: u ← MIN(Q)
9: for all node v ∈ N(u) do

10: if l[v] � l [u] ⊕ m (u, v) then
11: l[v] ← l [u] ⊕ m (u, v)
12: π[v] ← u

The GDA is practically identical to the Dijkstra’s Algorithm
(DA) except for the relaxation step, where ⊕ and � opera-
tors act on a general metric space M (instead of the equiv-
alent step in DA, where + and ≤ operators act on R).

On line 9, N(u) denotes the set of all nodes adjacent to
u. The argument m is the BER lengths of the edges in G
each of which is an element in M, and m (u, v) is the BER
length of 〈u, v〉. Lines 10–12 perform the relaxation step
of the GDA. This step depends on the definitions of M, ⊕,
and �. If the GDA (in)correctly returns the path in G with
minimum length measured in M, then (M,⊕) and � are
said to be (in)compatible with the GDA. The following is
the required properties for compatibility:

Proposition 1 An algebra A = (M,⊕) and a total order
� is compatible with the GDA if and only if it satisfies all
the properties in the set denoted by P below:
P1 is a commutative monoid, that is, for a, b, c ∈ M :

• M is closed under ⊕ : a ⊕ b ∈ M ;
• ⊕ is associative : a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c ;
• 0 is the identity : a ⊕ 0 = 0 ⊕ a = a ;
• ⊕ is commutative : a ⊕ b = b ⊕ a.

P2 There exists ∞ ∈ M | a ⊕∞ = ∞⊕ a = ∞.

P3 � is a total order on M, i.e., � is :
• reflexive: a � a;
• anti-symmetric: if a � b and b � a then a = b ;
• transitive: if a � b and b � c then a � c ;
• total: for every a, b ∈ M either a � b or b � a.

P4 There exists the least element 0 that satisfies 0 � a .

P5 a ⊕ c ≺ b ⊕ c if a ≺ b and c ∈ M− {∞}.

PROOF: Refer to [3] for a complete proof. �
Next, we prove that the B algebra from examples 1–3 are

compatible with the GDA.
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Theorem 2 The algebras B = (Λ,⊕) defined in examples
1–3 and their respective total orders � satisfy all the prop-
erties in P, and thus compatible with the GDA.

PROOF: The proofs for q-SC and q-EC are omitted be-
cause they are mostly algebraic. For AWGN, since Λ ⊂
R

2+ and R
2+ is not a totally ordered set, we must define �

in terms of x̄(λ, ε) as follows:

λ � λ′ ⇔ x̄(λ, ε) < x̄(λ′, ε) or

x̄(λ, ε) = x̄(λ′, ε) and σ2 ≤ σ′2 (11)

In addition, we also define Λ as follows:

Λ =

(
R

+ × [0, σ2
max] ∩

{
λ :

μ

σ2
≥ ∂μ

∂σ2

∣∣∣∣
σ2

max

})
∪{∞}

Λ is depicted by the shaded region in figure 1. For a fixed
value of σ2, along any x̄ contour, the slope μ ′ = ∂μ/∂σ2

is equal for all μ and is maximized at σ2
max. If λ, λ′ have

slopes larger than μ′, their sum lies in a higher contour.
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Figure 1: The metric space Λ (shaded).

P1 Except for closure, the other monoid properties are ob-
vious because ⊕ is the standard vector addition. Because
Λ does not occupy the full non-negative octant, but rather
bounded by σ2 ≤ σ2

max = ε−2
max/(2π), in general closure is

not guaranteed. However, if we can compute:

σ2
max = max

π∈Π

{∑
i:vi∈Vπ

σ2
i

}
(12)

then closure is guaranteed. This value of σ 2
max can be ob-

tained by running the DA once on G, costing O(V 2). In
case one (or both) of the operands is ∞, then as in q-SC
and q-EC, by definition, the ⊕ sum is also ∞ ∈ Λ.
P2 The proof is derived from closure on ∞.
P3 The proof follows from the definition of Λ and �.
P4 Both terms in equation (9) are minimized when they
are zero, i.e., μ = 0 and either σ2 = 0 or σ2 = ε−2/(2π).
However, only λ = (0, 0) ∈ Λ, and is thus the 0 element.
P5 The proof is obvious from figure 1, the definition of Λ,
and concavity of the function μ(σ2).

Having proven the compatibility of B to GDA, we now
prove that the x̄ values in examples 1–3 are non-decreasing
functions of their respective λ’s, which means that the path
with minimum λ is also the path with minimum x̄.

The situation here is the opposite to the last theorem: the
proof for AWGN automatically follows from the definition
of λ � λ′ and is omitted. In contrast, the proof for q-SC
(and q-EC, which is luckily identical) is quite involved:

Lemma 3 For a given n and a fixed x, the probability
function P (x, p) is maximized at p = x

n . Furthermore,
P∗ = P (�n

2 �, 1
2 ) minimizes P (x, x

n ) over all x ∈ X .

PROOF: From the definition of P (x, p) in equation (4),
the lemma is true for x = 0 and x = n. Consider :

∂P (x,p)
∂p = P (x, p) (x

p − n−x
1−p ) = 0

Solving ( x
p − n−x

1−p ) = 0 for p gives us p = x
n , which maxi-

mizes the function P (x, p) for x ∈ (0, 1).
The next question is, for 0 < x < n, which x minimizes

P (x, x
n )? Unlike with p, we cannot differentiate P (x, p)

with respect to x because it is a discrete variable. Instead of
approximating P (x, p) with a Gaussian distribution, which
is valid only for certain n and p, we find the location of the
minimum using upper and lower bounds for

(
n
x

)
in [4] :

ξ(A) = eA nn+1
2

(2π)
1
2 (n−x)n−x+1

2 x x+1
2

(13)

λnx = λ(n, x) = ξ
(

1
12n − 1

12x − 1
12(n−x)

)
μnx = μ(n, x) = ξ

(
1

12n − 1
12x+1 − 1

12(n−x)+1

)
λnx <

(
n
x

)
< μnx

Using (13), P (x, p) is now lower- and upper-bounded by
two continuous and differentiable functions of x.

λnx px (1 − p)n−x < P (x, p ) < μnx px (1 − p)n−x

Since p = x
n , we substitute x = np into the equation above

and solve the p roots of the p derivatives of both the lower
and upper bounds of P (x, p ) to find the minima with re-
spect to p. The lower and upper bounds are minimized at
p = 1

2 . Since p = x
n , then x = n

2 , substituting into the
above inequality, we have:√

2
nπ e−

18n−1
12n(6n+1) < P (�n

2 �, 1
2 ) <

√
2

nπ e−
1
4n (14)

For large values of n the lower and upper bounds converge.
In fact, in (13), λnx converge to μnx for all x, including
at the discrete points 0 < x < n ∈ N. Thus the min-
ima for λnx and μnx over the continuous x must also be
the minimum for P (x, x/n) over the discrete x, denoted by
P∗ = P (�n

2 �, 1
2 ) �

A function f(x) is unimodal over x ∈ [a, b] if there ex-
ists an x0 such that f(x) is monotonically increasing for
x < x0 and monotonically decreasing for x > x0.
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Lemma 4 P (x, p) is unimodal over x and p.

PROOF: To prove unimodality over x, solve P (x, p) <
P (x+1, p) for x, giving x < np−(1−p) or x < x0 = �np�.
Similarly, P (x, p) > P (x + 1, p) or x > x0. Unimodality
over p is proven by differentiating with respect to p:

P ′(x, p) = ∂
∂p P (x, p) = P (x, p)(x

p − n−x
1−p )

P ′(x, p0) = 0 at p0 = x
n . For p < p0, we have P ′(x, p) > 0

and for p > p0, we have P ′(x, p) < 0. �

Corrolary 5 The set ε of admissible ε is [0, ε̄ = P∗].

PROOF: Recall that x̄(p, ε) = max{ x | P (x, p) ≥ ε}.
To ensure x̄(p, ε) is defined for all p ∈ Λ, for each value of
p we must have P (x, p) ≥ ε for some x. This condition is
trivially met if ε ≤ 0 because P (x, p) ≥ 0. If ε > P∗ , then
{ x | P (x, 1

2 ) ≥ ε} = ∅, and x̄(p, 1
2 ) is invalid. Thus, the

set of admissible ε is given by [0, P∗]. �
Denote by pi(x, ε) = pi(x) = { p ∈ Λ | P (x, p) = ε }i

the i-th roots of P (x, p) = ε given n and ε. From lemma 4,
if ε ∈ ε, then there is at least one root. At x = 0, the single
root is p0(0) = 0 and at x = n, it is p1(n) = 1. Except for
another special case when ε = P∗, where at the midpoint
xm =�n

2 � there is only one root to p0(xm) = p1(xm) = 1
2 ,

in general, there are two distinct roots p0(x), p1(x) ∈ [0, 1],
with p0(x) < x

n < p1(x). If ε goes toward 0, then p0(x) →
0 and p1(x) → 1, except p1(0) = 0 and p0(1) = 1. If ε goes
toward P∗, then p0(x) increases, while p1(x) decreases.

Define the sets P0 and P1, each having the n + 1 values
of p0(x) and p1(x), for 0 ≤ x ≤ n. These values are also
referred to as x0(p) and x1(p), for 0 ≤ p = x

n ≤ n.

Lemma 6 The roots p0(x) and p1(x) are non-decreasing
functions of x with p0(x) = p1(x) only at x = 0 and x = n
(or x = xm for the special case where

PROOF: First, observe that P (x, p) = P (x + 1, p) only
has one root at p = p× = x+1

n+1 between the maxima of
P (x, p) and P (x+1, p), i.e., x

n < p× < x+1
n . From lemma

4, this implies that if p < p× then P (x, p) > P (x + 1, p),
and if p > p×, P (x, p) < P (x + 1, p). Hence, p0(x) ≤
p0(x + 1) and p1(x) ≤ p1(x + 1). Therefore, both p0(x)
and p1(x) are non-decreasing functions of x. �

Theorem 7 The values x̄(p, ε) = max x=np {x0(p)} and
max x=np {x1(p)} are non-decreasing functions of p.

PROOF: First, the maxx function is used because it is
possible to have p0(x) = p0(x′) ∈ P0 for x 
= x′. For ex-
ample, if ε = 0, p0(0) = · · · = p0(n − 1) = 0 (the same
argument applies to P1). Just as maxx in x̄(p, ε) isolates the
largest x satisfying P (x, p) ≥ ε, the function maxx x0(p)
isolates the largest x satisfying P (x, p) = ε. After estab-
lishing a unique x for each p, the proof follows directly from
the monotonicity of p(x). �

4 Conclusion and Discussion

The preceding results provide us with a practical method
to measure the worst-case routing performance of a sensor
network. The method is based on the Generalized Dijk-
stra’s Algorithm (GDA), which requires the edge metric to
obey a certain set of necessary and sufficient conditions. We
provided three examples where the links are modeled as q-
ary symmetric channels, q-ary erasure channels, and non-
negative mean AWGN channels, each with its own edge
metric that is nothing more than the parameters of its trans-
mission failure probability density.

By letting the metric to be density parameters, we com-
puted any path length by appropriate combination of its
edge lengths according to the laws of probability, thus fully
preserving the stochastic nature of the routing problem (in-
stead of simply reducing the stochastic edge weights to
proxy deterministic values). In addition, we showed that
for a given level of “possibility threshold” ε, each edge den-
sity corresponds to a unique worst case value x̄. We showed
that edge worst case value can be combined into path worst
case values, and that the minimum x̄∗ of such values over a
network can be computed using the GDA.

The pair x̄∗ and ε allow us to compare the worst-case
network routing performance. Given a constant benchmark
worst-case value x̄ for all the networks {Gi} under evalua-
tion, we can solve for the εi value for each network Gi. The
network G∗ with the lowest value of ε∗ is the network with
the best worst-case routing performance. Alternatively, the
ε value can be fixed for all the networks under evaluation.
The worst-case values x̄i can then be compared to select the
network G∗ with the best worst-case performance, i.e., the
smallest failure rate x̄i among all the networks Gi.

Future work includes simulating or experimentally ver-
ifying the theoretical results presented herein, and gener-
alizing the results further to other types of edge weight
densities. Another interesting application would be to use
the worst-case performance evaluation method on actual or
planned pervasive mission critical sensor network projects.
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