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Abstract— Lyapunov-like conditions that utilize generaliza-
tions of energy and barrier functions certifying Zeno behavior
near Zeno equilibria are presented. To better illustrate these
conditions, we will study them in the context of Lagrangian
hybrid systems. Through the observation that Lagrangian
hybrid systems with isolated Zeno equilibria must have a one-
dimensional configuration space, we utilize our Lyapunov-like
conditions to obtain easily verifiable necessary and sufficient
conditions for the existence of Zeno behavior in systems of this
form.

I. INTRODUCTION

Zeno behavior occurs in a hybrid system if an infinite

number of discrete transitions occur in a finite amount of

time. The goal of this paper is to study a specific type

of Zeno behavior, namely, Zeno behavior that occurs near

isolated Zeno equilibria. A Zeno equilibrium is a set of

points in the continuous domains of a hybrid system that are

invariant under the discrete dynamics (but not the continuous

dynamics). Isolated Zeno equilibria form the Zeno analogue

of isolated equilibria. Just as there can be complicated sets

of equilibria in dynamical systems, there can be much more

complicated sets of Zeno equilibria. Yet as the study of

isolated equilibria of dynamical systems has been hugely

successful, we believe that an important first step to the

understanding of Zeno behavior is the detailed study of

isolated Zeno equilibria.

The two main results of this paper are: Lyapunov-like

sufficient conditions for existence of Zeno behavior near

isolated equilibria, and a characterization of Zeno behavior

near isolated Zeno equilibria of Lagrangian hybrid systems.

Unlike classical Lyapunov theory, our Lyapunov-like con-

ditions for the existence of Zeno behavior actually involve

two functions on each domain. The first function is used in a

manner similar to standard Lyapunov functions, i.e., it is used

to prove positive invariance of compact sets around our Zeno

equilibria. The second function is a barrier function [1] used

to capture explicit information about how long an execution

spends in a continuous domain. In addition, these functions

appear to be searchable via polynomial optimization [2], [3].

Therefore, this result works toward the goal of automated

analysis of hybrid systems.

The second main result presented in this paper gives

necessary and sufficient conditions for Zeno behavior near

isolated Zeno equilibria of Lagrangian hybrid systems, which

model mechanical systems undergoing impacts. To obtain
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these conditions, we first show that Lagrangian hybrid sys-

tems with isolated Zeno equilibria must necessarily have a

one-dimensional configuration space. This simple structure

allows us to explicitly construct the desired Lyapunov-

like functions that prove the existence of Zeno behavior.

Moreover, due to the explicit nature of these functions, we

are able to demonstrate that one can check for the existence

and nonexistence of Zeno behavior by evaluating functions

given in the system description at a single point. This result

represents, to the authors’ knowledge, the only known nec-

essary and sufficient result for Zeno behavior in uncontrolled

hybrid systems. Necessary and sufficent conditions for Zeno

behavior in a significantly different class of controlled hybrid

systems were found in [4].

Although results presented in this paper make gains toward

a better understanding of Zeno behavior, they also indicate

possible future research directions. The most compelling

of these is motivated by the fact that isolated Zeno equi-

libria only occur in Lagrangian hybrid systems with one-

dimensional configuration spaces, indicating that to under-

stand Zeno behavior in Lagrangian hybrid systems, more

complicated sets of Zeno equilibria must be studied. Also,

due to the Lyapunov-like nature of the sufficient conditions

presented, the hope is that in the future these conditions could

be automated. Finally, the Lyapunov-like conditions given

in this paper also imply that Zeno executions converge to

the Zeno equilibria; that is, Zeno behavior is closely related

to the stability of Zeno equilibria. This relationship was

first noticed in [5], where the asymptotic stability of Zeno

equilibria was studied; in fact, the Lyapunov-like conditions

presented in that work are very similar to the conditions

presented in this paper. Yet, the claim made in [5] that the

asymptotic stability of Zeno equilibria implies the existence

of Zeno behavior has since proven to be incorrect. Therefore,

the connection between the stability of Zeno equilibria

and Zeno behavior still remains to be made, although this

paper provides strong evidence for the existence of such a

connection.

Due to the subtle and complex nature of Zeno behavior,

it has been studied in many forms and from many different

perspectives. Most of the conditions for Zeno behavior are

necessary and tend to be very conservative; see [6], [7],

[8] for general hybrid systems, and [9], [10] for linear

complementarity systems. Obtaining sufficient conditions for

the existence of Zeno behavior seems to be a much more

challenging task. Therefore, very few such conditions have

been given to date and those that have been obtained apply

to very limited classes of hybrid systems [11]. We also
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note that this paper studies Zeno behavior in Lagrangian

hybrid systems, which were studied in [12], [13] and [14]

as motivated by [15]. Finally, the characterization of Zeno

behavior presented in this paper complements the topological

characterization of Zeno behavior presented in [16].

II. HYBRID SYSTEMS & ZENO EQUILIBRIA

In this section, we introduce the basic notations on which

the rest of the paper will build. That is, we define hybrid

systems, executions, Zeno equilibria and convergence to

Zeno equilibria.

Definition 1: A hybrid system on a cycle is a tuple:

H = (Γ, D, G,R, F ),

where

• Γ = (Q, E) is a directed cycle, with

Q = {q0, . . . , qk−1},
E = {e0 = (q0, q1), e1 = (q1, q2),

. . . , ek−1 = (qk−1, q0)} .

We denote the source of an edge e ∈ E by source(e)
and the target of an edge by target(e).

• D = {Dq}q∈Q is a set of domains, where Dq is a

smooth manifold.

• G = {Ge}e∈E is a set of guards, where Ge ⊆
Dsource(e) is and embedded submanifold of Dsource(e).

• R = {Re}e∈E is a set of reset maps, where Re : Ge ⊆
Dsource(e) → Dtarget(e) is a smooth map.

• F = {fq}q∈Q, where fq : Dq → TDq is a Lipschitz

vector field on Dq.

Remark 1: Note that the motivation for considering hy-

brid systems on cycles, rather than hybrid systems on general

graphs, is that cycles are indicative of Zeno behavior (see [6]

and [8]). Therefore, beginning with hybrid systems defined

on cycles will greatly simplify our analysis, while still

capturing characteristic types of Zeno behavior.

Definition 2: An execution of a hybrid system H =
(Γ, D, G,R, F ) is a tuple:

χ = (Λ, I, ρ, C)

where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing

set,

• I = {Ii}i∈Λ where for each i ∈ Λ, Ii is defined as

follows: Ii = [τi, τi+1] if i, i + 1 ∈ Λ and IN−1 =
[τN−1, τN ] or [τN−1, τN ) or [τN−1,∞) if |Λ| = N ,

N finite. Here, for all i, i + 1 ∈ Λ, τi ≤ τi+1 with

τi, τi+1 ∈ R, and τN−1 ≤ τN with τN−1, τN ∈ R.

• ρ : Λ → Q is a map such that for all i, i + 1 ∈ Λ,

(ρ(i), ρ(i + 1)) ∈ E. This is the discrete component of

the execution.

• C = {ci}i∈Λ is a set of continuous trajectories, and

they must satisfy ċi(t) = fd(i)(ci(t)) for t ∈ Ii.

We require that when i, i + 1 ∈ Λ,

(i) ci(t) ∈ Dρ(i) ∀ t ∈ Ii

(ii) ci(τi+1) ∈ G(ρ(i),ρ(i+1))

(iii) R(ρ(i),ρ(i+1))(ci(τi+1)) = ci+1(τi+1).
(1)

When i = |Λ| − 1, we still require that (i) holds.

Note that the continuous initial condition of an execution

χ is given by c0(τ0) ∈ Dρ(0). The discrete initial condition

is given by ρ(0).

The object of study in this paper will be Zeno executions,

which are defined in the following manner:

Definition 3: An execution χ is Zeno if Λ = N and

lim
i→∞

τi = τ0 +
∞
∑

i=0

τi+1 − τi = τ∞

for some finite τ∞ ∈ R.

A hybrid system H is Zeno1 if there exists a Zeno

execution χ such that τi+1 − τi 6= 0 for some i ∈ N.

Zeno behavior can be likened to stability, in that both types

of behavior involve convergence. This motivates the study

of the type of equilibria associated to Zeno behavior: Zeno

equilibria. For more on Zeno behavior and Zeno equilibria,

see [12].

Definition 4: A Zeno equilibria of a hybrid system H =
(Γ, D, G,R, F ) is a set z = {zq}q∈Q satisfying the following

conditions for all q ∈ Q:

• For the unique edge e = (q, q′) ∈ E

– zq ∈ Ge,

– Re(zq) = zq′ ,

• fq(zq) 6= 0.

A Zeno equilibrium z = {zq}q∈Q is isolated if there are

neighborhoods Wq ⊂ Dq, q ∈ Q, such that there does not

exist another Zeno equilibrium ẑ = {ẑq}q∈Q with ẑq ∈ Wq

for all q ∈ Q.

Note that, in particular, the conditions given in Definition

4 imply that for all i ∈ {0, . . . , k − 1},

Rei−1
◦ · · · ◦ Re0

◦ Rek−1
◦ · · · ◦ Rei

(zi) = zi.

That is, the element zi is a fixed point under the reset maps

composed in a cyclic manner.

Definition 5: An execution χ with Λ = N converges to a

zeno equilibrium z = {zq}q∈Q if given any neighborhoods

Wq with zq ∈ Wq for all q ∈ Q, there exists j ∈ Λ such that

ck(t) ∈ Wρ(k) for all k ≥ j and all t ∈ Ik.

III. LYAPUNOV-LIKE CONDITIONS FOR THE EXISTENCE

OF ZENO BEHAVIOR

This section presents Lyapunov-like sufficient conditions

for the existence of Zeno behavior in hybrid systems on

cycles. These results apply to a general class of hybrid

1The motivation for this definition is that we want to exclude the
possibility that a hybrid system is “trivally” Zeno, i.e., the only Zeno
executions are executions that begin at a Zeno Equilibria
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systems, and are fundamental in establishing the results

presented in the Section V.

Conditions for Zeno behavior. We begin by introducing

the conditions that will imply the existence of Zeno behavior.

These involve conditions on the continuous and discrete

portion of the hybrid system, together with the “convergence

conditions” that indicate how executions will tend toward

Zeno equilibria. As these conditions are, in some sense,

analogous to stability conditions, it is not surprising that they

involve Lyapunov-like functions. In fact, on each domain,

they utilize two such functions—one is analogous to a

standard Lyapunov function, while the other is analogous

to a Barrier function [1]—that will interact through the

“convergence conditions.” Our conditions closely resemble

the conditions given in [5] but avoid problems arising from

slow convergence by enforcing geometric convergence in C1.

Let {zq}q∈Q be a Zeno equilibrium of a hybrid system

H , zq ∈ Wq ⊂ Dq be open neighborhoods of zq for all

q ∈ Q, Vq, Bq ∈ C1(Wq, R) and r < 1, a > 0 and b >
0 be constants. With this notation, consider the following

conditions:

Continuous Conditions for Events:

EC1: Vq(x) > 0 for all x ∈ Wq \ {zq} and

Vq(zq) = 0 for all q ∈ Q.

EC2: V̇q(x) = dVq(x)·fq(x) ≤ 0 for all x ∈ Wq

and q ∈ Q.

EC3: Bq(x) ≥ 0 for all x ∈ Wq and q ∈ Q.

EC4: Ḃq(x) = dBq(x) · fq(x) < 0 for all x ∈
Wq, and q ∈ Q.

Discrete Condition for Events:

ED1: Vq′(Re(x)) ≤ Vq(x) for all x ∈ Ge ∩ Wq,

q ∈ Q and the unique edge e = (q, q′).

Convergence Conditions:

C1: There exists q ∈ Q such that Vq′(Re(x)) ≤
rVq(x) for all x ∈ Ge ∩ Wq.

C2: Bq(x) ≤ b(Vq(x))a for all x ∈ Rê(Gê) ∩
Wq, q ∈ Q and the unique edge ê = (q′, q).

With these conditions in hand, we now present the main

result of this section.

Theorem 1: Let {zq}q∈Q be an isolated Zeno equilibrium

of a hybrid system H . If conditions EC1-EC4, ED1, C1 and

C2 hold, then there exists a neighborhood Zq of zq for all

q ∈ Q such that for all x0 ∈ Zq there exists a Zeno execution

χ = (Λ, I, ρ, C) with c0(τ0) = x0. Therefore, H is Zeno.

We prove this theorem using two lemmas.

Lemma 1: Let x(t) be the solution to ẋ = fq(x). If

conditions EC1-EC4 hold, then there exists a compact set

Ωα
q ⊂ Wq, indexed by α > 0, and a positive constant γq

with the following properties:

• There exists an open set Zq such that zq ∈ Zq ⊂ Ωα
q .

• There exists a time

τ ≤ Bq(x(0))

γq
< ∞

such that x(τ) ∈ Ge when x(0) ∈ Ωα
q , where here

e = (q, q′).

Proof: Similar to Lyapunov’s theorem, EC1 implies

that when α > 0 is small enough, the connected component

of the set:

Sα
q = {x ∈ Wq : Vq(x) ≤ α} (2)

containing zq is compact and contains a neighborhood of zq.

So we can restrict Wq to a neighborhood W̄q so that

Ωα
q = {x ∈ W̄q : Vq(x) ≤ α} (3)

is connected and compact. Further, Ωα
q contains a neighbor-

hood Zq of zq.

Since we have only a finite number of domains, we can

pick W̄q and a single α such that Ωα
q is connected and

compact for each domain.

From EC2, if x(0) ∈ Ωα
q , then x(t) ∈ Ωα

q for all t ≥ 0
as long as x(t) ∈ Dq. That is, x(t) remains in Ωα

q unless an

event occurs.

Now we use EC3 and EC4 to show that events occur in

finite time. Let

−γq = max
x∈Ωα

q

Ḃq(x) (4)

Since Ωα
q is compact and Ḃq(x) < 0 for x ∈ Ωα

q ⊂ Wq, we

must have γq > 0. So for t ≥ 0

Bq(x(t)) = Bq(x(0)) +

∫ t

0

Ḃq(x(σ))dσ ≤ Bq(x(0))− γqt.

Therefore, x(t) must reach the guard within time t∗ =
Bq(x(0))/γq by EC3.

Lemma 2: If conditions EC1-EC4 and ED1 hold, then

for each x0 ∈ Ωα
q , with α > 0 sufficiently small, there exists a

unique execution χ = (Λ, I, ρ, C) with c0(τ0) = x0, ρ(0) =
q and Λ = N.

Proof: Continuity of Re and (ED1) imply that for α >
0 as in Lemma 1 and all e = (q, q′) ∈ E, Re(Ge ∩ Ωα

q ) ⊂
Ωα

q′ .

Let c0(τ0) = x0 ∈ Ωα
q . Assume without loss of generality

that q = q0. Then, since our hybrid system evolves on a

directed cycle, conditions (i)-(iii) in (1) imply that

ρ(i) := qī, ī := i mod |Q|
So by construction, c0(τ0) ∈ Ωα

ρ(0).

Now, inductively assume that ci(τi) ∈ Ωα
ρ(i) for some

i ≥ 0. From Lemma 1, we can extend ci(τi) to a solution

ci(t) of ẋ = fρ(i)(x) such that at some finite time τi+1, we

have ci(τi+1) ∈ Geī
∩ Ωα

ρ(i). From above, Reī
(ci(τi+1)) ∈

Ωα
ρ(i+1). Therefore ci(τi) ∈ Ωα

ρ(i) implies that ci+1(τi+1) ∈
Ωα

ρ(i+1).

The above argument holds inductively, so if c0(τ0) ∈ Ωα
q0

,

then c0(τ0) extends to a unique execution χ = (Λ, I, ρ, C)
with Λ = N.

We will now use Lemmas 1 and 2 to prove Theorem 1

Proof: [of Theorem 1] Take x0 ∈ Ωα
q0

. Let χ be the

unique infinite execution with c0(τ0) = x0 ∈ Ωα
q0

. We show

the total time spent in Dq0
is finite.
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Repeated applications of C1 show that

Vq0
(cj|Q|(τj|Q|)) ≤ rjVq0

(c0(τ0)). (5)

Since Λ = N and cj|Q|(t) ∈ Wq0
for all j ≥ 0, t ∈ Ij|Q|

we can assume without loss of generality that cj|Q|(τj|Q|) ∈
Re|Q|

(Ge|Q|
) ∩ Wq0

. Lemma 1 guarantees that the interval

Ij|Q| has length τj|Q|+1 − τj|Q| ≤ Bq0
(cj|Q|(τj|Q|))/γq0

.

Thus we see the total time spent in Dq0
is

∞
∑

j=0

(τj|Q|+1 − τj|Q|) ≤ 1

γq0

∞
∑

j=0

Bq0
(cj|Q|(τj|Q|))

≤ b

γq0

(Vq0
(c0(τ0)))

a
∞
∑

j=0

(ra)
j

< ∞,

where second inequality follows from C2 and (5), and the

final inequality follows since r < 1 and a > 0.

The same argument shows that the execution spends only

a finite amount of time in domain Dq for all q ∈ Q.

Corollary 1: Any execution χ with Λ = N and c0(τ0) ∈
Zρ(0) converges to {zq}q∈Q.

IV. SIMPLE HYBRID MECHANICAL SYSTEMS

Mechanical systems undergoing impacts are naturally

modeled as hybrid systems. In this section, we will consider

hybrid systems of this form and demonstrate how one obtains

such systems from hybrid Lagrangians, which are the hybrid

analogue of Lagrangians. For more on hybrid Lagrangians

and Lagrangian hybrid systems, see [12], [13] and [14].

Lagrangians. Consider a configuration space2 Θ and a

Lagrangian L : TΘ → R given in coordinates by:

L(θ, θ̇) =
1

2
θ̇T M(θ)θ̇ − U(θ) (6)

where M(θ) is positive definite and symmetric and U(θ) is

the potential energy. For the sake of simplicity, we assume

Θ ⊂ R
n since all our results are local, i.e., we can work

within a coordinate chart. The equations of motion are then

given in coordinates by the Euler-Lagrange equations:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0.

In the case of Lagrangians of the form given in (6), the

Euler-Lagrange equations become:

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ) = 0,

where C(θ, θ̇) is the Coriolis matrix and N(θ) = ∂U
∂θ (θ).

Setting x = (θT , θ̇T )T , the Lagrangian vector field, fL,

associated to L takes the familiar form

ẋ = fL(x) =

(

θ̇

M(θ)−1(−C(θ, θ̇)θ̇ − N(θ))

)

. (7)

This process of associating a dynamical system to a La-

grangian will be mirrored in the setting of hybrid systems.

First, we introduce the notion of a hybrid Lagrangian.

2Note that we denote the configuration space by Θ rather than Q, due to
the fact that Q denotes the vertices of the graph of a hybrid system.

Definition 6: A hybrid Lagrangian is a tuple, L =
(Θ, L, h), where

• Θ ⊂ R
n is the configuration space,

• L : TΘ → R is a Lagrangian of the form give in (6),

• h : Θ → R is a unilateral constraint function, where

we assume that 0 is a regular value of h.

Domains from constraints. Given a smooth (unilateral

constraint) function h : Θ → R on a configuration space

Θ such that h−1(0) is a smooth manifold, i.e., 0 is a regular

value of h, we can construct a domain and a guard explicitly.

To this constraint function we have an associated domain,

Dh, defined to be the manifold (with boundary):

Dh = {(θ, θ̇) ∈ TΘ : h(θ) ≥ 0}.
Similarly, we have an associated guard, Gh, defined as the

following submanifold of Dh:

Gh = {(θ, θ̇) ∈ TΘ : h(θ) = 0 and dhθ θ̇ ≤ 0},
where dh(θ) =

(

∂h
∂θ1

(θ) · · · ∂h
∂θn

(θ)
)

. Note that the

requirement that 0 is a regular value of h is equivalent to

requiring that dh(θ) 6= 0 when h(θ) = 0.

Lagrangian Hybrid Systems. Given a hybrid Lagrangian

L = (Θ, L, h), the Lagrangian hybrid system associated to

L is the hybrid system

HL = (Γ = ({q}, {(q, q)}), DL, fL, GL, RL),

where DL = {Dh}, fL = {fL}, GL = {Gh} and RL =
{Rh} with Rh(θ, θ̇) = (θ, P (θ, θ̇)), where

P (θ, θ̇) = (8)

θ̇ − (1 + e)
dh(θ)θ̇

dh(θ)M(θ)−1dh(θ)T
M(θ)−1dh(θ)T .

Example 1: To provide an example of the concepts intro-

duced in this paper, we will consider the hybrid system mod-

eling a pendulum impacting the ground. This system has as

its hybrid Lagrangian the tuple Lpend = (R, Lpend, hpend),
where Lpend(θ, θ̇) = 1

2ml2θ̇2 − mgl sin(θ) and hpend(θ) =
sin(θ), with θ the angle of the pendulum from horizontal,

m the mass of the bob, l the length of the rod and g the

acceleration due to gravity.

From the hybrid Lagrangian Lpend, we obtain the hybrid

model of the pendulum:

Hpend = (Γ = ({q}, {(q, q)}), Dpend, Gpend, Rpend, Fpend),

where Dpend = {Dhpend
}, Fpend = {fLpend

}, Gpend =
{Ghpend

} and Rpend = {Rhpend
} with

Dhpend
=

{(

θ

θ̇

)

∈ R
2 : sin(θ) ≥ 0

}

Ghpend
=

{(

θ

θ̇

)

∈ R
2 : sin(θ) = 0 and θ̇ ≤ 0

}

Rhpend
(θ, θ̇) =

(

θ

−eθ̇

)

fLpend
(θ, θ̇) =

(

θ̇
− g

l cos(θ)

)
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where here 0 ≤ e ≤ 1 is the coefficient of restitution.

We note that (0, 0) and (π, 0) are isolated Zeno equilibria

of Hpend. Moreover, it is easy to verify through Theorem 2

that this system is Zeno, although we will use the results

presented in the next section to establish this fact. Also

note that this hybrid system is actually characteristic of

Lagrangian hybrid systems that have isolated Zeno equilibria

and are Zeno as will be seen in the next section.

V. ZENO BEHAVIOR IN LAGRANGIAN HYBRID SYSTEMS

In this section, we characterize Zeno behavior in La-

grangian hybrid systems with isolated Zeno equilibria. This

characterization relies, in a fundamental fashion, on the

following proposition.

Proposition 1: If the Lagrangian hybrid system HL has

an isolated Zeno equilibrium, then

L1: Θ is one-dimensional.

L2: The Zeno equilibria takes the form

z =

{(

θ∗

0

)}

.

L3: P (θ, θ̇) = −eθ̇, where 0 ≤ e ≤ 1 is the

coefficient of restitution.

Proof: L1: If z = {(θ∗, θ̇∗)T } is an isolated Zeno

equilibrium of HL, then there exists a neighborhood W of

(θ∗, θ̇∗)T that contains no equilibria of (7) and no other Zeno

equilibria. It follows that that (θ∗, θ̇∗)T is the unique fixed

point of Rh in W . Now for (θ, θ̇) ∈ GL, h(θ) = 0 and

dh(θ) 6= 0 so using the fact that M(θ)−1 is positive definite,

it follows that:

Rh(θ, θ̇) = (θ, θ̇) ⇐⇒ (dh(θ)θ̇)M(θ)−1dh(θ)T = 0

⇐⇒ dh(θ)θ̇ = 0.

Therefore, if dim(TθΘ) ≥ 2 then dh(θ)θ̇ = 0 defines a

hyperplane in TθΘ of points in the guard, each of which is

a fixed point of Rh. Thus, when dim(Θ) ≥ 2, there can be

no isolated Zeno equilibria.

L2 and L3 follow from L1.

Notation 1: From this point on, we adopt the following

notation: dh(θ) = h′(θ) and ∂U
∂θ (θ) = U ′(θ), since we

will be interested in h and U that are functions of one real

variable as a result of Proposition 1.

A Characterization of Zeno Behavior. We have shown that

hybrid Lagrangian systems with isolated Zeno equilibria are

necessarily quite simple. The main result in this section gives

an explicit characterization of isolated Zeno equilibria for

Lagrangian hybrid systems. We note that if z = {(θ∗, 0)T } is

an isolated Zeno equilibrium of a Lagrangian hybrid system

HL, then we can set θ∗ = 0 without loss of generality by

translating coordinates.

Theorem 2: Let HL be a Lagrangian hybrid system. If

z = {0} is an isolated Zeno equilibrium of HL, then there is

a neighborhood W of 0 such that for all x ∈ W there exists

a unique Zeno execution χ = (Λ, I, ρ, C) with c0(τ0) = x
converging to {0} if and only if

1) The coefficient of restitution e < 1
2) sign(h′(0)) = sign(U ′(0))

Before proving this theorem, we note that the following

functions:

V (θ, θ̇) =
1

2
M(θ)θ̇2 + U(θ) − U(0) (9)

B(θ, θ̇) =
M(0)

U ′(0)
θ̇ +

√

M(0)2

U ′(0)2
θ̇2 + 2

M(0)

U ′(0)
θ (10)

and constants:

a =
1

2
(11)

b = 2
√

2

∣

∣

∣

∣

∣

√

M(0)

U ′(0)

∣

∣

∣

∣

∣

(12)

r = e2 (13)

will be shown to satisfy the conditions in Theorem 1, thus

giving a proof of Zeno behavior in a neighborhood Z of 0.

Proof:

(⇐) We show that when sign(h′(0)) = sign(U ′(0)) and

e < 1, the functions and constants as by equations (9)-(13),

satisfy all the conditions of Theorem 1.

First, since fL(0) 6= 0 and {0} is an isolated Zeno

equilibrium, we can choose an open ball W around 0 such

that W contains no other Zeno equilibria and W contains

no equilibria of fL. Let W1 be the projection of W on the

θ-axis.

We will also repeatedly use the fact that elements in (Gh∪
Rh(Gh))∩W take the form (0, θ̇) ∈ R

2. Indeed, if (θ, θ̇)T ∈
Gh∩W , then h(θ) = 0, by definition of Gh. By L3, h(θ) = 0
imples that (θ, 0)T is a Zeno equilibrium in the ball W .

Therefore θ = 0 since, 0 is the only Zeno equilibrium in W .

Elements of Rh(Gh) ∩ W have the same form by L3.

EC1: Proving that V is positive on W \ {0} is equivalent

to showing that U(θ) > U(0) on W1 \ {0}. By taking the

Taylor series expansion of h(θ) about θ = 0, it follows

that sign(h(θ)) = sign(h′(0)θ). Now, from the Taylor series

expansion of U , we see that

U(θ) − U(0) = U ′(0)θ + O(θ2). (14)

Since we are assuming that sign(h′(0)) = sign(U ′(0)),
h(θ) > 0 implies h′(0)θ > 0 and thus U ′(0)θ > 0 on

W1 \ {0}. So U(θ) − U(0) > 0 on W1 \ {0} and EC1

holds.

EC2: Follows from conservation of energy.

EC3: Since Θ is one dimensional by L1, the vector field

fL becomes:

(

θ̇

θ̈

)

= fL(θ, θ̇) =

(

θ̇

− 1
M(θ)

(

1
2M ′(θ)θ̇2 + U ′(θ)

)

)

.

(15)

Since this vector field has no equilibrium points:

θ̈(0, 0) = −U ′(0)

M(0)
6= 0. (16)
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Moreover, M(0) > 0 and U ′(0)θ ≥ 0 imply
M(0)
U ′(0)θ ≥ 0.

So for (θ, θ̇)T ∈ W , we have
√

M(0)2

U ′(0)2
θ̇2 + 2

M(0)

U ′(0)
θ ≥

∣

∣

∣

∣

M(0)

U ′(0)
θ̇

∣

∣

∣

∣

.

Therefore, defining B as in equation (10), we have B(θ, θ̇) ≥
0 on W . Thus we have shown that EC3 holds.

EC4: Taking the time derivative of B, we see that

Ḃ(θ, θ̇) =
M(0)

U ′(0)
θ̈ +

M(0)
U ′(0) θ̇

√

M(0)2

U ′(0)2 θ̇2 + 2 M(0)
U ′(0)θ

(

1 +
M(0)

U ′(0)
θ̈

)

From equation (16), it follows that

M(0)

U ′(0)
θ̈(0, 0) = −1.

Therefore Ḃ is continuous at (0, 0)T and Ḃ(0, 0) = −1.

Thus Ḃ(θ, θ̇) < 0 in W and EC4 holds.

ED1 and C1: V (Rh(0, θ̇)) = e2V (0, θ̇), by L3 of Propo-

sition 1, and the definition of V .

C2: For (0, θ̇)T ∈ Rh(Gh) ∩ W ,

B(0, θ̇) =
M(0)

U ′(0)
θ̇ +

√

(

M(0)

U ′(0)
θ̇

)2

≤ 2

∣

∣

∣

∣

M(0)

U ′(0)

∣

∣

∣

∣

|θ̇|

= 2
√

2

∣

∣

∣

∣

∣

√

M(0)

U ′(0)

∣

∣

∣

∣

∣

V (0, θ̇)1/2.

Thus the relative size condition C2 holds with constants

defined by equations (11), (12).

(⇒) Suppose that there is a neighborhood W of 0 such

that for all x ∈ W there exists a unique Zeno execution

χ = (Λ, I, ρ, C) with c0(τ0) = x that converges to {0}.

sign(h′(0)) = sign(U ′(0)): Assume that sign(h′(0)) 6=
sign(U ′(0)). Since {0} is a Zeno equilibrium, U ′(0) 6= 0 by

(16). Similar to the proof of EC1, h(θ) > 0 implies h′(0)θ >
0 and U ′(0)θ < 0 near 0. So given any neighborhood W of

0, there exists a neighborhood N of 0 such that N × {0} ⊂
W and for all θ ∈ N \ {0}, U(θ) < U(0). If χ satisfies

c0(τ0) = (θ0, 0)T ∈ N × {0}, then ci(t) never reaches the

open set

{(θ, θ̇)T : V (θ, θ̇) > U(θ0)}

which contains the origin. Thus χ does not converge to the

origin.

e < 1: Now assume that sign(h′(0)) = sign(U ′(0)) but

e = 1. Then there is a neighborhood W of the origin such

that V (θ, θ̇) > 0 on W \ {0} from the proof of EC1. If

an execution χ has c0(τ0) = (θ0, θ̇0) ∈ W \ {0}, then

V (ci(t)) = V (θ0, θ̇0) for all i ∈ Λ and t ∈ Ii. Thus ci(t)
never reaches the open set

{(θ, θ̇)T : V (θ, θ̇) < V (θ0, θ̇)}

which contains the origin. Thus χ does not converge to the

origin.

Example 2: Consider the hybrid system Hpend, defined

in Example 1, modeling a pendulum impacting the ground.

From the pendulum’s Lagrangian, if follows that

Upend(θ) = mgl sin(θ) = mgl(hpend(θ)),

and so

sign(U ′
pend(0)) = sign(h′

pend(0)).

Therefore, the conditions of Theorem 2 hold if and only if the

coefficient of restitution e < 1. Thus, there is a neighborhood

W of (0, 0)T such that for all (θ, θ̇)T ∈ W , there is a Zeno

execution χ = (Λ, I, ρ, C) with c0(τ0) = (θ, θ̇) converging

to {(0, 0)T } if and only if e < 1.

An analogous statement holds for the Zeno equilibrium

{(π, 0)T }. As a result of Theorem 2, to prove that the

pendulum is Zeno we only needed to evaluate two known

functions at a single point.
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