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Abstract

For a discrete mechanical system on a Lie group G determined by a (reduced) Lagrangian � we
define a Poisson structure via the pull-back of the Lie-Poisson structure on g

∗ by the corresponding
Legendre transform. The main result shown in this paper is that this structure coincides with the
reduction under the symmetry group G of the canonical discrete Lagrange 2-form ωL on G × G. Its
symplectic leaves then become dynamically invariant manifolds for the reduced discrete system.

1 Introduction

Background. For systems on finite dimensional Lie groups G with Lagrangians L : TG → R that are
G-invariant, discrete analogues of Euler-Poincaré and Lie-Poisson reduction theory (see, for example,
Marsden and Ratiu [MR 99]) were developed in [MPeS 98]. The resulting discrete equations provide
“reduced” numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G
is used as the discrete approximation of TG, and a discrete Lagrangian L : G×G→ R is constructed in
such a way that the G-invariance property is preserved. Reduction by G results in a new “variational”
principle for the reduced Lagrangian � : G→ R, which then determines the discrete Euler-Poincaré (DEP)
equations. Reconstruction of these equations is consistent with the usual Veselov discrete Euler-Lagrange
equations developed in [WM 97, MPS 98], which are naturally symplectic-momentum algorithms. Fur-
thermore, the solution of the DEP algorithm leads directly to a discrete Lie-Poisson (DLP) algorithm.
For the reader’s benefit we summarize main results of the discrete reduction in the Appendix.

Motivation. Discretization of an Euler-Poincaré system on TG results in a system on G × G defined
by a Lagrangian L. If it is regular, the Legendre transformations FL define a symplectic form (and,
hence, a Poisson structure) on ∆ ⊂ G × G via the pull-back of the canonical form from T ∗G. Then,
general Poisson reduction applied to these discrete settings defines a Poisson structure on the reduced
space U := πd(∆) ⊂ G. This approach was adopted in Theorem 2.2 of [MPeS 98].

Alternatively, without appealing to the reduction procedure, a Poisson structure on a Lie group can
be defined using ideas of Weinstein [W 96] on Lagrangian mechanics on groupoids and their algebroids.
The key idea can be summarized in the following statements. A smooth function on a groupoid defines
a natural (Legendre type) transformation between the groupoid and the dual of its algebroid. This
transformation can be used to pull back a canonical Poisson structure from the dual of the algebroid,
provided the regularity conditions are satisfied.

2 Dynamics on groupoids and algebroids

We briefly summarize results from Weinstein [W 96] and refer the reader to the original paper for details
of proofs and definitions. Let Γ be a groupoid over a set M , with α, β : Γ → M being its source and

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216138655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


target maps, with a multiplication map m : Γ2 → Γ, where Γ2 ≡ {(g, h) ∈ Γ× Γ | β(g) = α(h)}. Denote
its corresponding algebroid by A.

The Lie groupoids relevant to our exposition are the Cartesian product G×G of a Lie group G, with
multiplication (g, h)(h, k) = (g, k), and the group G itself. The corresponding algebroids are the tangent
bundle TG and the Lie algebra g, respectively. The dual bundle to a Lie algebroid carries a natural
Poisson structure. This is the Poisson bracket associated to the canonical symplectic form on T ∗G and
the Lie-Poisson structure on g∗, respectively.

Lagrangian mechanics on a groupoid Γ is defined as follows. Let L be a smooth, real-valued function
on Γ, L2 the restriction to Γ2 of the function (g, h) �→ L(g) + L(h).

Definition 2.1. Let ΣL ⊂ Γ2 be the set of critical points of L2 along the fibers of the multiplication map
m; i.e. the points in ΣL are stationary points of the function L(g) +L(h) when g and h are restricted to
admissible pairs with the constraint that the product gh is fixed [W 96].

A solution of the Lagrange equations for the Lagrangian L is a sequence . . . , g−2, g−1, g0, g1, g2, . . .
of elements of Γ, defined on some “interval” in Z, such that (gj , gj+1) ∈ ΣL for each j.

The Hamiltonian formalism for discrete Lagrangian systems is based on the fact that each Lagrangian
submanifold of a symplectic groupoid determines a Poisson automorphism on the base Poisson manifold.
Recall that the cotangent bundle T ∗Γ is, in addition to being a symplectic manifold, a groupoid itself,
the base being A∗; notice that both manifolds are naturally Poisson. The source and target mappings
α̃, β̃ : T ∗Γ→ A∗ are induced by α and β.

Definition 2.2. Given any smooth function L on Γ, a Poisson map ΛL from A∗ to itself, which may be
said to be generated by L is defined by the Lagrangian submanifold dL(Γ) (under a suitable hypothesis of
nondegeneracy) [W 96].

The appropriate “Legendre transformation” FL in the groupoid context is given by α̃ ◦ dL : Γ→ L∗

or β̃ ◦ dL : Γ → L∗, depending on whether we consider right or left invariance (through the definition
of maps α̃ and β̃). The transformation FL relates the mapping on Γ defined by ΣL with the mapping
ΛL on A∗. FL also pulls back the Poisson structure from A∗ to Γ, which, in general, is defined only
locally on some neighborhood U ⊂ Γ. In the context of a Lie group, this means that any regular function
� : G→ R defines a Poisson structure on U . We shall address this issue in the next sections. The reader
is referred to [W 96] for an application of the above ideas to the groupoid M ×M when the manifold M
does not necessarily have group structure.

3 DEP as generators of Lie-Poisson Hamilton-Jacobi equations

A Lie group G is the simplest example of a groupoid with the base being just a point. Its algebroid is the
corresponding Lie algebra g, with the dual being g∗. Consider left invariance and let a general function L
on the group be specified by the discrete reduced Lagrangian � : G→ R. Then, the Legendre transform
defined above is given by F� = L∗

g ◦ d� : G→ g∗, where d� : G→ T ∗G. Using these transformations we
define Πk−1 ≡ F�(fkk−1) = L∗

fkk−1
◦ d�(fkk−1). Recall the DEP equation (4.4) for left-invariant systems

: L∗
fk+1k

d�(fk+1k) − R∗
fkk−1

d�(fkk−1) = 0, where we have identified the notations �′ and d�. The later
equation can be rewritten as a system

{
Πk = L∗

f ◦ d�(f),
Πk+1 = R∗

f ◦ d�(f),
(3.1)

where the first equation is to be solved for f (which stands for fk+1k) which then is substituted into the
second equation to compute Πk+1.

This system is precisely the Lie-Poisson Hamilton-Jacobi system described in [GM 88] with the re-
duced discrete Lagrangian � playing the role of the generating function. This means that there is no need
to find an approximate solution of the reduced Hamilton-Jacobi equation [GM 88]. Notice also that the
DLP equation is a direct consequence of the system (3.1): Πk+1 = Ad∗

f−1
k+1k
·Πk.



The following diagrams relate the dynamics on G and on g∗:

G
Σ�−→ G�F�

�F�

g∗
Λ�−→ g∗

fkk−1
Σ�−→ fk+1k�F�

�F�

Πk−1
Λ�−→ Πk,

(3.2)

where Σ� and Λ� are given in Definitions 2.1 and 2.2.

4 Some Advantages of Structure-preserving Integrators

As we mentioned above, the “Legendre transform” F� allows us to put a Poisson structure on the Lie
group G, which, of course, depends on the discrete Lagrangian on G × G, and hence on the original
Lagrangian L on TG (if we consider this from the discrete reduction point of view). It follows that the
reduction of the discrete Euler-Lagrange dynamics on G × G is necessarily restricted to the symplectic
leaves of this Poisson structure, so that these leaves are invariant manifolds, and correspond (under F�∗)
to the symplectic leaves (coadjoint orbits) of the continuous reduced system on g∗.

These ideas are the content of the following theorems. Here we state the theorems (for the case of
right invariance) and only sketch their proofs. The reader is referred to [MPeS 99] for details. Analogous
theorems hold for the case of left invariant systems.

Theorem 4.1. Let L be a right invariant Lagrangian on TG and let L be the Lagrangian of the cor-
responding discrete system on U ⊂ G × G. Assume that L is regular, in the sense that the Legendre
transformation FL : ∆→ FL(∆) ⊂ T ∗G is a local diffeomorphism, and let the quotient maps be given by

πd : G×G→ (G×G)/G ∼= G and π : T ∗G→ (T ∗G)/G ∼= g∗.

Let � be the reduced Lagrangian on G defined by L = � ◦ πd, and let F� : G → g∗ be the corresponding
Legendre transform. Then the following diagram commutes:

G×G FL−→ T ∗G�πd

�π

G
F�−→ g∗.

(4.1)

Idea of the proof. Choosing appropriate coordinate systems on each space, we can rewrite this diagram
as follows:

(gk, gk+1)
FL−→ (gk, pk =

∂L

∂gk
)�πd

�π

f = Rg−1
k+1
gk µ = R∗

gk
pk,

where f stands for fkk+1 = gkg
−1
k+1. To close this diagram and to verify the arrow determined by F�

compute the derivative of L using the chain rule and use definitions of the partial derivative ∂f/∂gk and
the Legendre transformation F� :

µ = R∗
gk
pk = R∗

gk

∂(� ◦ π)
∂gk

= R∗
gk

(
R∗

g−1
k+1

∂�

∂f

)
= R∗

f

∂�

∂f
= R∗

f ◦ �′(f), (4.2)

Corollary 4.1. Reconstruction of the discrete Lie-Poisson (DLP) dynamics on g∗ by π−1 corresponds
to the image of the discrete Euler-Lagrange (DEL) dynamics on G ×G under the Legendre transforma-
tions FL and results in an algorithm on T ∗G approximating the continuous flow of the corresponding
Hamiltonian system.



Idea of the proof. The proof follows from the results of the previous section, in particular, diagram (3.2)
relates the DLP dynamics on g∗ with the DEP dynamics on U ⊂ G which, in turn, is related to the DEL
dynamics on ∆ ⊂ G×G via the reconstruction.

Theorem 4.2. The Poisson structure on the Lie group G obtained by reduction of the Lagrange sym-
plectic form ωL on ∆ ⊂ G × G via πd coincides with the Poisson structure on U ⊂ G obtained by the
pull-back of the Lie-Poisson structure ωµ on g∗ by the Legendre transformation F�. (see diagram (4.1)
above).

The proof is based on the commutativity of the following diagrams

∆ ⊂ G×G FL−→ T ∗G�πd

�π

U ⊂ G F�−→ g∗

ωL

FL
∗

←− ωcan�(π−1)∗

ωf
F�∗←− ωµ

and the G invariance of the unreduced symplectic forms.

Discussions

Main Results of this Paper. We show that when a discrete Lagrangian L : G×G→ R is G-invariant,
a Poisson structure on (a subset) of one copy of the Lie group G can be defined which governs the
corresponding discrete reduced dynamics. The symplectic leaves of this structure become dynamically
invariant manifolds which are manifestly preserved under the structure preserving discrete Euler-Poincaré
algorithm.

We apply Weinstein’s results on Lagrangian mechanics on groupoids and algebroids [W 96] to the
setting of regular Lie groups. Then, starting with a discrete Euler-Poincaré system on G one can readily
recover, by means of the Legendre transformation, the corresponding Lie-Poisson Hamilton-Jacobi system
on g∗ analyzed by Ge and Marsden [GM 88].

Various Important Remarks. First of all, we remark that the discrete symplectic structure ωL is not
globally defined, but rather is only nondegenerate in a neighborhood ∆ of the diagonal in G × G, i.e.
whenever gk and gk+1 are nearby. It follows then that the reduced Poisson structure {f, h}G need only
be defined on U , where U is the image of ∆.

An important remark to Corollary 4.1 which follows from the results in [KMO 99] is that, in general,
to get a corresponding algorithm on the Hamiltonian side which is consistent with the corresponding
continuous Hamiltonian system on T ∗G, one must use the time step h-dependent Legendre transform
given by the map

(gk, gk+1) �→ (gk,−hD1L(gk, gk+1)).

The results of this paper are not effected, however, as we assume h to be constant and so we would
simply add a constant multiplier to the corresponding symplectic and Poisson structures. For variable
time-stepping algorithms, this remark is crucial and must be taken into account.

More General Configuration Spaces or Where to Go. The ideas outlined in this paper carry over
to the integration of systems defined on a general configuration space M with some symmetry group G.
In this case, the reduced discrete space (M ×M)/G inherits a Poisson structure from the one defined
on M ×M (analogously to (4.5)). Its symplectic leaves again become dynamically invariant manifolds
for structure-preserving integrators and can be viewed as images of the symplectic leaves of the reduced
Poisson manifold T ∗M/G under appropriately defined “Legendre transformations”.

The groupoid-algebroid formalism is very well suited to the discrete gauge field theory generalization
as well as to discrete semi-direct product theory. The latter is related to the recent results of Bobenko
and Suris [BS 98]. It would be very interesting to develop the semi-direct product point of view on the
discrete level. The relation to Routhian reduction and how it can fit into the discrete semi-direct product
theory should be further investigated.



Last but not least, the groupoid-algebroid formalism can be used to define a Poisson structure on a
Lie algebra g using the duality between Lie-Poisson and Euler-Poincaré reduced systems on g∗ and g,
respectively. A reduced Lagrangian l determines the Legendre transformations Fl from g to g∗ and its
pull-back Fl∗ defines Casimirs on g by Cg(ξ) = Fl∗ ·Cg∗(ξ). Besides purely theoretical interest, this can
have applications for the analysis of dynamics on Lie algebras.
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Appendix: Discrete Reduction

In this appendix we review the discrete Euler-Poincaré reduction of a Lagrangian system on G × G
considered in detail in [MPeS 98]. See [V 88, V 91, WM 97, MPS 98, LS 96, BS 98] for various related
aspects of discrete mechanics. We approximate TG by G × G and form a discrete Lagrangian L :
G × G → R from the original Lagrangian L on TG. We choose discretization schemes for which the
discrete Lagrangian L inherits the symmetries of the original Lagrangian L: L is G-invariant on G × G
whenever L is G-invariant on TG. In particular, the induced right (left) lifted action of G onto TG
corresponds to the diagonal right (left) action of G on G × G. Then, application of discrete variational
principle results in discrete Euler-Lagrange (DEL) equations as well as the discrete symplectic form ωL

The discrete Euler-Poincaré algorithm. The discrete reduction of a right-invariant system proceeds
as follows. The induced group action on G × G by an element ḡ ∈ G is simply right multiplication in
each component: ḡ : (gk, gk+1) �→ (gkḡ, gk+1ḡ), for all gk, gk+1 ∈ G. (Of course, some systems such as the
rigid body are left invariant.)

The quotient map is given by πd : G×G→ (G×G)/G ∼= G, (gk, gk+1) �→ gkg−1
k+1. We note that one

may alternatively use gk+1g
−1
k instead of gkg−1

k+1 as the quotient map; this alternative choice is used in
[BS 98]. The projection map defines the reduced discrete Lagrangian � : G → R for any G-invariant
L by � ◦ πd = L, so that �(gkg−1

k+1) = L(gk, gk+1)
A reduced discrete variational principle results in the discrete Euler-Poincaré (DEP) equations

R∗
fkk+1

�′(fkk+1)− L∗
fk−1k

�′(fk−1k) = 0 (4.3)

for k = 1, ..., N − 1, where R∗
f and L∗

f are the right and left pull-backs by f , respectively, and �′ :
G → T ∗G is the differential of � defined as follows. Let gε be a smooth curve in G such that g0 = g
and (d/dε)|ε=0g

ε = v, then �′(g) · v = (d/dε)|ε=0�(gε). In the case that L is left invariant, the discrete
Euler-Poincaré equations take the form

L∗
fk+1k

�′(fk+1k)−R∗
fkk−1

�′(fkk−1) = 0 (4.4)

where fk+1k ≡ g−1
k+1gk is in the left quotient (G×G)/G.

The symplectic structure ωL naturally defines a Poisson structure on ∆ ⊂ G × G (which we shall
denote {·, ·}G×G) by the relation {F,H}G×G = ωL(XF , XH). Then, Theorem 2.2 of [MPeS 98] states
that if the action of G on G × G is proper, the algorithm on G defined by the discrete Euler-Poincaré
equations (4.3) preserves the induced Poisson structure {·, ·}G on U ⊂ G given by

{f, h}G ◦ πd = {f ◦ πd, h ◦ πd}G×G (4.5)

for any C1 functions f, h on U , where U = πd(∆).

Reconstruction. Using the definition fkk+1 = gkg
−1
k+1, the DEL algorithm can be reconstructed from

the DEP algorithm by

(gk−1, gk) �→ (gk, gk+1) = (f−1
k−1k · gk−1, f

−1
kk+1 · gk),



where fkk+1 is the solution of (4.3). Indeed, f−1
kk+1 · gk is precisely gk+1. Similarly one shows that in the

case of a left G action, the reconstruction of the DEP equations (4.4) is given by (gk−1, gk) �→ (gk, gk+1) =
(gk−1 · f−1

kk−1, gk · f−1
k+1k).

The discrete Lie-Poisson algorithm In addition to reconstructing the dynamics on ∆ ⊂ G×G, one
may use the coadjoint action to form a discrete Lie-Poisson algorithm approximating the dynamics
on g∗ [MPeS 98]

µk+1 = Ad∗
fkk+1

·µk, (4.6)

where µk := Ad∗
g−1

k
µ0, µ0 is the constant of motion (the momentum map value), and the sequence

{fkk+1} is provided by the DEP algorithm on G. The corresponding discrete Lie-Poisson equations for
the left invariant system is given by Πk+1 = Ad∗

f−1
k+1k
·Πk, where Πk := Ad∗

gk
π0 and π0 is the constant

momentum map.
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Equations, to appear in Nonlinearity.

[MPeS 99] J.E. Marsden, S. Pekarsky, and S. Shkoller, Symmetry Reduction of Discrete La-
grangian Mechanics on Lie groups, submitted to CMP.

[MR 99] J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag,
1994. Second Edition, 1999.

[MoV 91] J. Moser and A.P. Veselov, Discrete versions of some classical integrable systems and
factorization of matrix polynomials, Comm. Math. Phys., 139, (1991), 217–243.

[V 88] A.P. Veselov, Integrable discrete-time systems and difference operators, Funk. Anal.
Prilozhen., 22, (1988), 1–13.

[V 91] A.P. Veselov, Integrable Lagrangian correspondences and the factorization of matrix poly-
nomials, Funk. Anal. Prilozhen., 25, (1991), 38–49.

[W 96] A. Weinstein, Lagrangian mechanics and groupoids, Fields. Inst. Comm., 7, (1996), 207–231.

[WM 97] J.M. Wendlandt and J.E. Marsden, Mechanical integrators derived from a discrete vari-
ational principle, Physica D, 106, (1997), 223–246.


