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ABSTRACT

In this paper we present an introduction to Compressive Sam-

pling (CS), an emerging model-based framework for data ac-

quisition and signal recovery based on the premise that a sig-

nal having a sparse representation in one basis can be recon-

structed from a small number of measurements collected in a

second basis that is incoherent with the first. Interestingly, a

random noise-like basis will suffice for the measurement pro-

cess. We will overview the basic CS theory, discuss efficient

methods for signal reconstruction, and highlight applications

in medical imaging.

Index Terms— Compressive sampling, sparse signal rep-

resentations, random measurements, tomography, MRI

1. INTRODUCTION

Many natural phenomena give rise to signals having a sparse

representation in some basis or dictionary. Consider, for ex-

ample, a basis Ψ = [ψ1 ψ2 · · ·ψN ] for signals in R
N ; two

common possibilities are the Fourier and wavelet transforms.

A digital signal x ∈ R
N can be represented as a linear com-

bination x = Ψα of the basis elements ψn (the columns of

Ψ), with α ∈ R
N providing the appropriate weights. As-

suming a suitable choice of the basis Ψ, it is often the case

in practice that many entries in α are approximately zero,

with only K � N coefficients carrying the significant infor-

mation. Naturally, the conciseness of such a representation

permits efficient signal processing and data compression. A

more surprising and far-reaching implication, however, is that

the assumed compressibility of the signal has significant bear-

ings on the acquisition process itself. In fact, such signals can

actually be acquired using far fewer samples than the signal

size apparently demands.

In this paper, we present an introduction to Compressive

Sampling (CS) [1–3], an emerging model-based framework

for data acquisition and signal recovery in which sparse sig-

nals can be reconstructed from very small numbers of mea-

surements — far fewer than the signal size N and propor-

tional instead to the sparsity level K. A key requirement of

the CS samples is that they be collected in a measurement
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Fig. 1. Peppers image and one subband of its wavelet transform

(magnitudes shown; vertical subband). The relatively few significant

wavelet coefficients tend to cluster around the edges of the objects in

the image. Many such images will be highly compressible, with the

locations of significant coefficients changing from image to image.

basis Φ that is incoherent with the sparsity basis Ψ. Interest-

ingly, a random noise-like basis Φ will suffice for the mea-

surement process, as will a partial Fourier transform for MR

imaging applications.

2. COMPRESSIVE SAMPLING (CS)

2.1. Sparse and compressible signal models

Many natural signals have concise representations when ex-

pressed in the proper basis. Consider, for example, the Pep-
pers image in Figure 1 and its wavelet transform. Although

nearly all pixels in the original image have nonzero values, the

wavelet coefficients offer a concise summary: most wavelet

coefficients are small, and the relatively few large coefficients

(clustered around edges in the image) are all that is required

to reconstruct the original image pixels with high accuracy.

Summarizing the above mathematically, consider a sig-

nal x ∈ R
N (such as an N -pixel image) and let Ψ =

[ψ1 ψ2 · · ·ψN ] be an orthonormal basis (such as a wavelet

basis) for signals in R
N . We can write x = Ψα, where α is

an N × 1 coefficient vector that can be computed from the

signal x:

αn = 〈ψn, x〉, n = 1, 2, . . . , N. (1)

CS relies on a specific model for the signal x, namely that

it be sparse or compressible in the basis Ψ. By sparse we

mean that the coefficient vector α has precisely K nonzero

entries, where potentiallyK � N . (We write ‖α‖0 = K; the

�0 “norm” of a vector counts its nonzero entries.) By com-
pressible we mean that the sorted magnitudes of the coeffi-
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cients in α decay quickly, and that α is well-approximated as

an N × 1 vector with just K nonzero entries.

Under either of these assumptions, the signal x has a very

compact representation in terms of the significant coefficients

in α; a simple method for data compression would simply be

to compute α from x (via (1), for example) and then encode

the locations and values of the K significant coefficients. In-

deed, this basic idea forms the core of modern signal and im-

age compression schemes such as JPEG-2000 [4].

Unfortunately, this compression process requires (a) di-

rect access to the sparse basis Ψ, and (b) computing all N
of the coefficients α, as the locations of the significant co-

efficients may not be known in advance. The recent theory

of CS suggests however, that the relevant information in the

signal x can be captured using a small number of nonadap-

tive (even random) measurements of the signal. This suggests

the potential for very efficient acquisition of sparse data, or

equivalently, highly accurate recovery of sparse data from un-

dersampled measurements.

2.2. Incoherent sampling
We suppose that, rather than computing the N coefficients α
directly using (1), we collect M < N measurements

ym = 〈φm, x〉, m = 1, 2, . . . ,M, (2)

using M measurement vectors φm that are fixed in advance

and not dependent on α (or more generally, on Ψ at all). We

let Φ denote the M ×N measurement matrix whose rows are

the vectors φT
m; we have then that the compressive measure-

ments y = Φx, where x ∈ R
N and y ∈ R

M .

Under certain conditions on the number of measurements

M and the matrix Φ, it is possible to recover the signal x
from the compressive measurements y, even though (a) the

length of y may be significantly smaller than x, and (b) the

measurement matrix Φ may look nothing like the sparse basis

Ψ. Indeed, because we do not permit Φ to depend on α, this

second property is actually critical — in the Peppers image,

for example, if Φ simply contained M arbitrary wavelet basis

functions (where M � N ), many significant wavelet coeffi-

cients would likely go completely unmeasured. Instead it is

important that each measurement vector φm combine infor-

mation from all of the sparse vectors ψn. There are several

ways of quantifying this notion of incoherence. The essential

requirement, when Φ is chosen as a random M × N subma-

trix of an N × N measurement basis, is that the rows of the

measurement basis and the columns of the sparsity basis have

small inner product; we refer the reader to [5] for additional

details and discussion.

Suitable incoherence is assured for various useful pairs

(Ψ,Φ), for example when Ψ is the identity matrix (or the

finer scales of a wavelet transform) and Φ is a random subset

of M = O(K logN) rows from the discrete Fourier matrix.

(This is essentially the conventional MRI setting [1, 6].) In-

terestingly, however, a measurement matrix Φ generated ran-
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Fig. 2. Sparse signal recovery from M = 100 random measure-

ments of a length N = 256 signal. The probability of successful

recovery depends on the sparsity level K; the dashed curves repre-

sent a reweighted �1 algorithm that outperforms the traditional un-

weighted �1 approach (solid curve).

domly with iid Gaussian or Bernoulli (±1) entries will, with

exceptionally high probability (assumingM = O(K logN)),
be incoherent with an arbitrary sparse basis Ψ.

2.3. Model-based recovery via �1 minimization
The process of recovering the signal x from the measurements

y is ill-posed in general when M < N : there exist an infinite

number of candidate signals x̂ for which Φx̂ = Φx = y. The

key to CS recovery is to select among these candidates by

imposing the model of sparsity or compressibility.

Supposing x is K-sparse in the dictionary Ψ, and assum-

ing suitable incoherence between Ψ and Φ (and hence that

M = O(K logN)), then the convex optimization problem1

min ‖α̂‖1
(
=

∑
|α̂n|

)
such that y = ΦΨα̂ (3)

will return the correct coefficient vector α̂ = α (and hence the

correct signal x̂ = Ψα̂ = x). Figure 2 shows a simple exper-

iment with N = 256. For several values of K, we construct

K-sparse signals randomly in the time domain (Ψ is the iden-

tity matrix), assigning zero-mean, unit-variance Gaussian co-

efficient values to K nonzero elements in random positions.

For each signal we set M = 100 and construct a random

M × N measurement matrix Φ with iid Gaussian entries.

The solid black curve denotes the probability (over 100 trials

with random x and Φ) of correctly recovering the K-sparse

signal from the measurements y = Φx. We see that, using

M = 100 measurements, we can correctly recover K-sparse

signals with very high probability when K ≈ 25 = M/4.

It is important to stress that the CS generalizes well to

more realistic settings. In cases where x is not strictly sparse

1Problem (3) can be recast as a linear program and solved efficiently. See

www.l1-magic.org for a complete software suite.
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but rather compressible, the estimate α̂ obtained from (3) will

approximate α with quality comparable to the best possible

K-sparse approximation to α [2, 3]. Also, in the case of noisy

measurements y = Φx + z, the �1 recovery program can be

modified as follows

min ‖α̂‖1 such that ‖y − ΦΨα̂‖2 ≤ ε, (4)

yielding a reconstruction with provable accuracy bounds [7].

2.4. Impact and applications

CS can permit radically more efficient methods for data acqui-

sition, as it suggests that data obeying a sparse or compress-

ible model need only be sampled (via the measurement pro-

cess Φ) at a rate proportional to its information levelK � N .

Indeed the potential randomness of Φ is particularly intrigu-

ing for applications in which the sparse basis Ψ is unknown at

the encoder or impractical to implement for data compression

— the knowledge and ability to implement Ψ are required

only for the decoding or recovery of x. Viewed from a medi-

cal imaging perspective, the only way to acquire x may be to

use a Φ of a certain modality (such as a subsampled Fourier

transform); assuming a sparse basis Ψ exists for x that is also

incoherent with Φ, efficient and accurate signal recovery will

be possible. Still other implications of the CS theory con-

cern error correction in communications channels [8] and dis-

tributed source coding for sensor networks [9].

3. ALTERNATIVE RECONSTRUCTION METHODS

As discussed above, the key to identifying the proper signal

x from among an infinite number of possibilities is to use a

model. The requirement of a small �1-norm (as a measure of

sparsity or compressibility) is one such model; it is generally

effective, but also general purpose, and certainly not represen-

tative of the wide range of models developed over the years

for signal and image processing. Let us briefly mention two

possibilities for incorporating such models.

3.1. TV minimization

One alternative to �1 minimization is motivated not from the

perspective of sparsity but from the (related) observation that

many natural images have limited spatial variability. This is

captured by the image’s “total variation” (TV), the sum of the

magnitudes of the discrete image gradient at each point:

TV(x) =
∑
i,j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2.

For an early use of the TV norm in image processing, see [10].

As an alternative to (3), the optimization problem

min TV(x) such that y = Φx (5)

can be solved efficiently as a second-order cone program.

As an example, we consider the angiogram shown in the

left panel of Figure 3. From this N = 256 × 256 = 65536
pixel real-valued image x we collect M = 9368 complex-

valued measurements y along 80 radial lines in the Fourier

domain. In the center panel we show the result of simple

backprojection. In the right panel we show the result of TV

minimization, which produces a reconstruction with far fewer

artifacts. For this experiment, we have supplemented the

TV minimization with a nominal amount of side information

about the �1 norm of the image’s wavelet coefficients; for the

full details of this experiment we refer the reader to [11].

3.2. Reweighted �1 minimization
Returning again to the setting of �1 minimization, we discuss

a slight reformulation that improves the recovery of sparse

signals. Historically, the motivation for choosing the �1 norm

in (3) comes from the fact that it provides a convex relaxation

of a more desirable but intractable optimization problem

min ‖α̂‖0 such that y = ΦΨα̂. (6)

Let W denote an N × N matrix with nonzero entries

w1, w2, . . . , wN along the diagonal and zeros elsewhere.

We note that in (6), the norm ‖α̂‖0 can be replaced by

the reweighted norm ‖Wα̂‖0 without changing the solution.

However, minimizing the corresponding relaxation

min ‖Wα̂‖1 such that y = ΦΨα̂, (7)

will not return the same solution as the unweighted norm

‖α̂‖1 in (3).

Our goal is to obtain a set of weights W that actually im-

prove upon the �1 norm, making it behave more like the �0
norm. The key difference between the �1 and �0 norms is the

dependence on magnitude — larger coefficients are penalized

more heavily than smaller coefficients, unlike the democratic

penalization of the �0 norm. Ideally the weightsW could cor-

rect for this imbalance, by setting wn inversely proportional

to αn. Of course, the true coefficients α are not known in ad-

vance, but an iterative procedure can be used that alternates

between estimating α̂ and redefining the weights. The algo-

rithm is as follows

1. Set the iteration i = 1. Set w
(1)
n = 1 for n =

1, 2, . . . , N .

2. Let α̂(i) be the solution to (7) with weights wn = w
(i)
n .

3. Set w
(i+1)
n = (|α̂(i)

n |+ ε)−1.

4. Increment i and go to step 2.

The parameter ε in step 3 should be set slightly smaller than

the expected entries of α. As demonstrated below, the recov-

ery process is somewhat robust to the choice of ε.
As an alternative interpretation of this reweighted �1 re-

covery algorithm, it is interesting to note that every iteration

of the above algorithm is guaranteed [12] to decrease the fol-

lowing function of α̂:
∑N

n=1 log(|α̂n| + ε). This objective
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Fig. 3. Angiogram recovery from compressive (simulated MR) measurements. Left panel: original image. Center panel: backprojection from

80 lines in Fourier domain, PSNR = 10 log10(2552/MSE) = 22.15dB. Right panel: TV minimization reconstruction, PSNR = 26.81dB.

function is concave (not convex) but more closely resembles

the �0 norm. Unfortunately the algorithm is guaranteed only

to converge to a local (not necessarily global) minimum.

Figure 2 shows the results of reweighting �1 for the exper-

iment described in Section 2.3; the dashed curves represent

several different values for the parameter ε. We see a marked

improvement over the unweighted �1 algorithm — with the

proper choice of ε, the ability to recover sparse signals has

increased from K ≈ 25 = M/4 to K ≈ 33 = M/3.

Preliminary and ongoing work has also shown promising

results from reweighted versions of other CS recovery algo-

rithms. For example, in the case of noisy measurements we

have experimented with a reweighted version of the quadrat-

ically constrained �1 program (4). For moderate noise lev-

els, reweighting typically yields signal estimates with 30-40%

lower mean-square error (MSE) than the unweighted algo-

rithm. Additional details will appear in a subsequent paper.

4. CONCLUSIONS AND EXTENSIONS

CS provides a powerful model-based framework for recover-

ing data from incomplete information and has many promis-

ing implications in data acquisition, medical imaging, remote

sensing, etc. There is a vast array of literature available in this

field, ranging from the practical to the mathematical, which

we have been unable to properly survey in this short paper.

We refer the reader to [13] for a more detailed survey of the

key CS principles, to [14] for various possible extensions of

the CS methodology, and to dsp.rice.edu/cs for a more

comprehensive collection of CS references.

Our presentation has focused on sparse and compressible

models, but as we mentioned in Section 3, similar concise

models for signal structure can also be incorporated. Another

such model, which we have omitted for brevity, concerns the

case where the signal x depends on some K-dimensional pa-

rameter θ; example parameters include the orientation and po-

sition of an edge within an image, the position of a camera

photographing a scene, etc. In these cases, the set of possible

signals x traces out a K-dimensional manifold in the ambient

signal space R
N . For reasons highly related to the preced-

ing discussion of incoherence, in certain situations manifold-

modeled signals can be recovered from small numbers of

compressive measurements. We refer the reader to [15, Chap-

ter 6] for more detailed information and examples, including

experiments aimed at improving image reconstruction from

compressive measurements.
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