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Abstract— We prove a strong converse for particular source
coding problems: the Ahlswede-Körner (coded side information)
problem, lossless source coding for multicast networks with side-
information at the end nodes, and the Gray-Wyner problem.
Source and side-information sequences are drawn i.i.d. according
to a given distribution on a finite alphabet. The strong converse
discussed here states that when a given rate vector R is not
D-achievable, the probability of observing distortion D for any
sequence of block codes at rate R must decrease exponentially
to 0 as the block length grows without bound. This strong
converse implies the prior strong converses for the point-to-point
network, Slepian-Wolf problem, and Ahlswede-Körner (coded
side information) problem.

I. INTRODUCTION

In the traditional source coding scenario, here called the
point-to-point network, comprised of one source node describ-
ing source X to one sink node across a single link, strong
converses for both lossless source coding and lossy source
coding have previously appeared in the literature. For example,
[1] treats i.i.d. finite-alphabet source sequences, and [2], [3],
and [4] treat more general source sequences. While the lossless
source coding theorem describes the family of rates that can
be achieved with arbitrarily small error probability, the strong
converse states that for any rate outside the rate region, the
probability of a correct reconstruction approaches 0 as the
blocklength grows without bound. Similarly, the rate-distortion
theorem describes the set of rates that can be achieved with
expected distortion no greater than D while its strong converse
demonstrates that the probability of observing distortion less
than D at any rate outside this region approaches 0 as the
blocklength grows without bound.

In this paper, we derive a strong converses for three prob-
lems: the Ahlswede-Körner (coded side information) prob-
lem, lossless source coding for multicast networks with side-
information at the end nodes, and the Gray-Wyner problem.
The source sequences are drawn i.i.d. according to a finite-
alphabet source distribution. Generalized from the strong con-
verse for lossy source coding of the point-to-point network
in [1], the strong converses of interest state that for any
distortion vector D when a rate vector R is not in the D-
achievable rate region, the probability of observing distortion
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at most D with a rate-R code decreases exponentially to 0 as
the blocklength n grows without bound. We call such a result
an exponentially strong converse to emphasize the speed of
convergence of the correct probabilities for the rate vectors
outside the rate region. The exponentially strong converse for
a network source coding problem is useful for a variety of
applications beyond basic understanding of how achievable
error probability varies with rate. For example, when the
exponentially strong converse holds, we can show that any
demands that can be achieved across a network with rate
0 across a given link can also be achieved when that link
is absent [5]. This property is actually quite subtle since it
requires demonstrating that asymptotically small rates across
the given link are never critical to that network’s operation.
Notice that this property is not trivial since single-letter char-
acterizations of the network with that additional link may not
be available even when a single-letter characterization of the
network without the 0-rate link is known. As mentioned above,
the exponentially strong converse holds for the point-to-point
network. For the point-to-point lossless case, the intuition is
that the probability of the strongly typical set A

∗(n)
ε (X) for

the finite-alphabet source X increases exponentially to 1 as
the length n grows without bound. We denote exponent by
τ(ε) > 0. Let B

(n)
ε denote the intersection of A

∗(n)
ε (X)

and the correct event for a given sequence of codes. When
the code’s probability of correctness equals 2−nc(n) for some
c(n) → 0,

1
n

log
|A∗(n)

ε (X)|
|B(n)

ε |
can be made arbitrarily small when ε > 0 is sufficiently small
and n is sufficiently large. This means that the rate R that is
sufficient to describe the set B

(n)
ε is asymptotically at least

1
n log |A∗(n)

ε (X)|.
We prove that the exponentially strong converse holds

for the lossless coded side information problem [6], lossless
source coding for the family of multicast networks with side
information at the end nodes, and the Gray-Wyner problem
[7]. The cut-set bound is tight for multicast networks with side
information at the end nodes by [8], and this family includes
the family of multicast networks [9] as a subfamily, which
includes the Slepian-Wolf problem [10] as a special case. The
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strong converse has been proven for the coded side information
problem in [11] and for the Slepian-Wolf problem in [12].
Neither of these results shows exponential decay.

The remainder of this paper is structured as follows. We
define the exponentially strong converse in Section II. We
show that the exponentially strong converse is true for the
coded side information problem in Section III. In Section IV,
we prove the exponentially strong converse for the family of
multicast networks with side information at the end nodes.
Finally, we prove the exponentially strong converse for the
Gray-Wyner problem in Section V.

II. DEFINITION OF THE EXPONENTIALLY STRONG
CONVERSE

We define the exponentially strong converse here. Notice
that for the network source coding problems discussed in
this paper, lossless source coding can be treated as a special
case of lossy source coding. Thus, it suffices to define the
exponentially strong converse for lossy source coding. In the
following definition, we use X1, . . . , Xs to denote the source
random variables and D = {(v,Xi) | v demands Xi} to
denote the set of demands in the given network source coding
problem [5].

Definition 1: We say that the exponentially strong converse
holds for network source coding problem N if and only if for
any distortion vector D and any rate vector R, R is not in the
achievable rate region if and only if for any sequence of rate-
R, length-n block codes {Cn} the probability of observing
distortion no greater than D decreases to 0 exponentially, i.e.,

lim inf
n→∞

− 1
n

log Pr
(

1
n

d(Xn
i , X̂n

i (v)) ≤ D ∀ (v, Xi) ∈ D
)

> 0,

where for all (v, Xi) ∈ D, X̂n
i (v) is the reproduction of Xn

i

at node v using Cn.
Our approach relies on strong typicality. We briefly mention

some properties that are useful here and fix the notation as
follows. Let W be a finite-alphabet random variable. For any
integer n and positive number ε > 0, let A

∗(n)
ε (W ) denote

the strongly typical set. (For example, see [13].) Lemma 1
states that the probability of the atypical set (A∗(n)

ε (W ))c

decreases exponentially to 0 as n grows without bound with
exponent greater than or equal to τ(ε) that depends only on
the distribution of W and ε. We state Lemma 1 without proof.

Lemma 1: For any ε > 0, when n is sufficiently large,
Pr(A∗(n)

ε (W )) ≥ 1− 2−nτ(ε) for some τ(ε) > 0.
Let Z be another finite-alphabet random variable. For zn ∈
Zn, let A

(n)
ε (W |Z = zn) denote the set of sequences wn ∈

Wn of which (wn, zn) is strongly typical.

III. THE LOSSLESS CODED SIDE INFORMATION PROBLEM

We here prove that the exponentially strong converse for the
lossless coded side information problem [6]. (See Fig. 1.) Our
proof follows the approach in [11], where the strong converse
theorem for this network source coding problem without
exponential decay has been proven. We start by redefining

f1,nX -
RX- - X

6

RY
f2,n-Y

Fig. 1. The coded side information problem.

some terms introduced in [11] that are useful in this section.
For simplicity, we use different notation and definitions from
those in [11] that are sufficient for our problem. Please refer
to [11] for more details.

Definition 2: For any positive integer n, positive number
δ > 0, and set B ⊆ Xn, define

ψδ(B) := {yn | Pr(Xn ∈ B | Y n = yn) ≥ 2−nδ}.
Definition 3: For any c > 0, ε > 0, and δ > 0, define

Ŝn(c, ε, δ) :=
1
n

log min |B|,
where the min is taken over all subsets B ⊆ Xn such that

Pr
(
Y n ∈ ψδ(B) ∩A∗(n)

ε (Y )
)
≥ 2−cn.

Define
T̂ (c) := min H(X|U),

where the min is taken over all random variables U such that
X → Y → U forms a Markov chain and I(Y ; U) ≤ c.

Theorem 1: [11, Theorem 1]For all ε > 0, δ > 0, and c > 0

lim
n→∞

Ŝn(c, ε, δ) = T̂ (c).

Theorem 2: The exponentially strong converse holds for the
coded side information problem.

Proof. Let (RX , RY ) be a rate pair such that there exists a
sequence of length-n rate-(RX , RY ) block codes {Cn}∞i=1

such that the correct probability Pr(Xn = X̂n) = 2−nc(n)

for some sequence {c(n)} satisfying limn→∞ c(n) = 0. Here
f1,n, f2,n, and gn are the encoding and decoding functions
of Cn (as shown in Fig. 1) and

X̂n = gn(f1,n(Xn), f2,n(Y n))

is the reproduction of Xn using code Cn. We want to show
that (RX , RY ) is achievable, i.e., that there exists a random
variable U such that X → Y → U forms a Markov chain
and that

RX ≥ H(X|U), RY ≥ I(Y ; U).

For any particular value u ∈ {1, 2, . . . , 2nRY } of the
encoding function f2,n, define

C(n)(u) := {xn | xn = gn(f1,n(xn), u)}.
By assumption,

2−nc(n) ≤
∑

yn∈Yn

(Pr(Y n = yn)×

Pr(C(n)(f2,n(yn)) | Y n = yn)
)

.
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Fix ε > 0. By Lemma 1,

Pr(A∗(n)
ε (X, Y )) ≥ 1− 2−nτ(ε)

for some τ(ε) > 0. Therefore when n is sufficiently large,
∑

yn∈A
∗(n)
ε (Y )

(Pr(Y n = yn)× (1)

Pr(C(n)(f2,n(yn)) | Y n = yn)
)

≥ 2−nc(n) − 2−nτ(ε) ≥ 2−nb(n,ε) (2)

for some sequence of positive numbers {b(n, ε)} such that
limn→∞ b(n, ε) = 0 for all ε > 0. Let S(n, ε) ⊆ A

∗(n)
ε (Y )

be the set of all yn ∈ A
∗(n)
ε (Y ) such that

Pr(C(n)(f2,n(yn)) | Y n = yn) ≥ 2−n2b(n,ε).

Then (2) implies

Pr(S(n, ε)) + (1− Pr(S(n, ε)))2−n2b(n,ε) ≥ 2−nb(n,ε),

which leads to Pr(S(n, ε)) > 2−n(b(n,ε)+ 1
n ) when n is

sufficiently large. Now by definition

S(n, ε) ⊆
⋃
u

(
ψ2b(n,ε)(C(n)(u)) ∩A∗(n)

ε (Y )
)

.

Hence
∑

u

Pr
(
ψ2b(n,ε)(C(n)(u)) ∩A∗(n)

ε (Y )
)
≥ 2−n(b(n,ε)+ 1

n ),

where the summation is taken over all u ∈ {1, . . . , 2nRY }.
Thus there exists an index u∗ such that

Pr
(
ψ2b(n,ε)(C(n)(u∗)) ∩A∗(n)

ε (Y )
)
≥ 2−n(b(n,ε)+ 1

n +RY ).

By the definition of Ŝn,

1
n

log |C(n)(u∗)| ≥ Ŝn

(
b(n, ε) +

1
n

+ RY , ε, 2b(n, ε)
)

.

Choose n sufficiently large so that 1
n + b(n, ε) < ε. By

Theorem 1,
1
n

log |C(n)(u∗)| ≥ T̂ (ε + RY ) + ε

when n is sufficiently large. Since C(n)(u∗) is the set of xn

that can be correctly decoded when f2,n(Y n) = u∗,
|C(n)(u∗)| ≤ 2nRX and hence

RX ≥ T̂ (ε + RY ) + ε

when n is sufficiently large. By the definition of T̂ , there
exists an auxiliary random variable U such that
X → Y → U , RX ≥ H(X|U) + ε, and RY ≥ I(Y ; U) + ε.
Letting ε → 0 completes the proof. ¤

IV. LOSSLESS SOURCE CODING FOR THE MULTICAST
NETWORKS WITH SIDE INFORMATION AT THE END NODES

In this section, we treat the family of multicast networks
with side information at the end nodes. The simplest in-
teresting example in this family is the problem of lossless

source coding with side information at the decoder. (See
Fig. 2.) The infinium of the set of losslessly achievable rates is
H(X|Y ), which corresponds to one of the two corner points
in the rate region of the Slepian-Wolf problem. We prove
the exponentially strong converse for this basic example in
Lemma 2 and then use it to conclude in Theorem 3 that the
exponentially strong converse holds for the family of multicast
networks with side information at the end nodes.

fnX -
R

- gn - X

6
Y

Fig. 2. The lossless source coding problem with side information at the
decoder.

Lemma 2: The exponentially strong converse holds for
lossless source coding problem with side information at the
decoder.

Proof. Let R > 0. Suppose that there exists a sequence of
length-n rate-R block codes Cn with correct probability

Pr(Xn = gn(fn(Xn), Y n)) = 2−nc(n)

for some sequence {c(n)} such that limn→∞ c(n) = 0,
where gn(fn(Xn), Y n) is the reproduction of Xn using
code Cn. We want to show that R is in the lossless rate
region by showing that R ≥ H(X|Y ).
For any positive integer n and positive real number ε > 0, let

B(n)
ε := A∗(n)

ε (X, Y ) ∩ {(xn, yn) : xn = gn(fn(xn), yn)}.
Lemma 1 implies that

Pr(A∗(n)
ε (X, Y )) ≥ 1− 2−nτ(ε)

for some τ(ε) > 0, so by an argument like the one used to
get (2),

Pr(B(n)
ε ) ≥ 2−nc(n) − 2−nτ(ε) = 2−nb(n,ε) (3)

when n is sufficiently large for some sequence of positive
numbers {b(n, ε)} such that limn→∞ b(n, ε) = 0 for all
ε > 0. Hence there exists a yn

0 ∈ A
∗(n)
ε (Y ) such that

Pr(B(n)
ε |Y n = yn

0 ) ≥ 2−nb(n,ε). (4)

Since for all xn ∈ A
∗(n)
ε (X|Y n = yn

0 )

Pr(Xn = xn|Y n = yn
0 ) ≤ 2−n(H(X|Y )−2ε),

(4) implies that

|B(n)
ε ∩ {Y n = yn

0 }| ≥ 2n(H(X|Y )−2ε−b(n,ε)). (5)

Since Cn has rate R and Bn
ε ∩ {Y n = yn

0 } is by definition
the set of pairs (xn, yn

0 ) ∈ A
∗(n)
ε (X, Y ) such that xn can be

correctly decoded when Y n = yn
0 ,

2nR ≥ |B(n)
ε ∩ {Y n = yn

0 }|.
Thus (5) implies that R ≥ H(X|Y )− 2ε− b(n, ε) for all n
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and ε. Since ε > 0 is arbitrary, letting n →∞ gives

R ≥ H(X|Y ).

¤

Applying Lemma 2 and the tightness of the cut-set bound
in this scenario, we conclude this section by Theorem 3.

Theorem 3: The exponentially strong converse holds for the
multicast network with side information at the end nodes.

V. THE GRAY-WYNER PROBLEM

v0X1, X2
-

6
v1- X̂1(D1)

?- X̂2(D2)v2

-

-

Fig. 3. The Gray-Wyner network.

Given D = (D1, D2) ≥ 0. The lossy rate region for
the Gray-Wyner problem equals the closure of the set of all
(R0, R1, R2) for which there exists a random variable U with
alphabet size |U| ≤ |X1||X2|+ 2 such that

R0 ≥ I(X;U), R1 ≥ RX1|U (D1), R2 ≥ RX2|U (D2), (6)

where X = (X1, X2) denotes the source vector and
RXi|U (Di) is the conditional rate-distortion function for
source Xi and side information Ui at distortion Di for i ∈
{1, 2}.

Theorem 4 proves the exponentially strong converse for
the Gray-Wyner Problem. We sketch the proof in this paper
and the details can be found in [14]. The main idea of the
proof is that when the exponent of the probability of achieving
distortion D is asymptotically zero, the given rate vector is D-
achievable for another distribution X that is close to PX. The
approach then follows the method of proving the converse of
the region (6) in [7] that turns the dimension-n description of
the rate vectors into a single-letter form. Lemma 3 shows the
existence of another distribution which is close to PX such
that the given rate vector R is D-achievable for this new
distribution.

Lemma 3: Let W be a random variable with alphabet
W and distribution PW . Let {B(n)} be any sequence of
sets B(n) ⊆ Wn such that PW n(B(n)) = 2−nb(n) for
some sequence of non-negative numbers {b(n)}∞n=1 satisfying
limn→∞ b(n) = 0. Then there exist a sequence {a(n)}∞n=1 of
non-negative numbers and a sequence {Q(n)

W n} of distributions
on Wn such that

lim
n→∞

a(n) = 0, lim
n→∞

Q
(n)
W n(B(n)) = 1

2−na(n)PW n(wn) ≤ Q
(n)
W n(wn) ≤ 2na(n)PW n(wn)

∀wn ∈ Wn.

Proof. For all wn ∈ B(n), define

Q
(n)
W n(wn) =

2n(b(n)+ 1√
n

)
PW n(wn)

2n(b(n)+ 1√
n

)
PW n(B(n)) + (1− PW n(B(n)))

.

For all wn /∈ B(n), define

Q
(n)
W n(wn) =

PW n(wn)

2n(b(n)+ 1√
n

)
PW n(B(n)) + (1− PW n(B(n)))

.

Then

Q
(n)
W n(B(n)) ≥ 2

√
n

2
√

n + 1
→ 1 as n →∞

2−n( 1√
n

+ 1
n )

PW n(wn) ≤ Q
(n)
W n(wn) ≤ 2n(b(n)+ 1√

n
)
PW n(wn)

∀ wn ∈ Wn

as desired. ¤

Theorem 4: The exponentially strong converse holds for the
Gray-Wyner Problem.

Proof. Let R = (R0, R1, R2) be a rate vector and PX denote
the source distribution. Suppose that there exists a sequence
of length-n, rate-R block codes {Cn} such that

lim
n→∞

− 1
n

Pr
(
Ed(Xn

i , X̂n
i ) ≤ Di ∀ i ∈ {1, 2}

)
= 0,

where X̂n
1 and X̂n

2 are reproductions of Xn
1 and Xn

2 at the
nodes v1 and v2, respectively. (See Fig. 3.) We want to show
that R is in the region described in (6).

For ε > 0, let

B(n)
ε := A∗(n)

ε (X)∩{xn | d(xn
i , X̂n

i (xn)) ≤ nDi ∀ i ∈ {1, 2}}.
Then following the argument used to prove (3) leads to

Pr(B(n)
ε ) = 2−nb(n,ε) (7)

for some sequence of non-negative numbers {b(n, ε)} such
that limn→∞ b(n, ε) = 0 for all ε > 0.

By Lemma 3, there exists a sequence of non-negative
numbers {a(n, ε)}∞n=1 and a sequence of distributions
{Q(n,ε)

Xn } such that for all ε > 0,

lim
n→∞

a(n, ε) = 0, lim
n→∞

Q
(n,ε)
Xn (B(n)

ε ) = 1,

and for all xn ∈ Xn
1 ×Xn

2 ,

2−na(n,ε)PXn(xn) ≤ Q
(n,ε)
Xn (xn) ≤ 2na(n,ε)PXn(xn).(8)

Let n(ε) be a positive integer such that a(n(ε), ε) < ε and
Q

(n(ε),ε)

Xn(ε) (B(n(ε))
ε ) > 1− ε. Let Q

(ε)

Xn(ε) simply denote the
distribution Q

(n(ε),ε)

Xn(ε) . By the continuity of the lossy rate
region with respect to distortion vector, there exists τ1(ε)
with limε→∞ τ1(ε) = 0 such that the rate vector
n (R + τ1(ε) · 1) is in the D-achievable region for the
Gray-Wyner problem with respect to distribution Q

(ε)

Xn(ε) .
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Hence there exists a random variable U such that

n(ε)(R + τ1(ε)) · 1 ≥ (IQ(ε)(Xn(ε); U),

R
X

n(ε)
1 |U (n(ε)D1, Q

(ε)), R
X

n(ε)
2 |U (n(ε)D2, Q

(ε)),

where IQ(ε) and R
X

n(ε)
i |U (Di, Q

(ε)) (for i ∈ {1, 2}) are the
mutual information and conditional rate-distortion functions
evaluated according to distribution Q

(ε)

Xn(ε) . Let J(ε) be an
independent random variable uniformly distributed over
{1, . . . , n(ε)}. Define Uj = (U,Xj−1

1 ) for all
j ∈ {1, . . . , n(ε)}. Then

IQ(ε)(Xn(ε);U) =
n(ε)∑

j=1

IQ(ε)(Xj ;U |Xj−1
1 )

= n(ε)IQ(ε)(XJ(ε); UJ(ε), J(ε)) + HQ(ε)(Xn(ε))
−n(ε)HQ(ε)(XJ(ε)).

Similarly, for i = 1, 2,

R
X

n(ε)
i |U (nDi, Q

(ε)) ≥ n(ε)RXi,J(ε)|UJ(ε),J(ε)(Di, Q
(ε)).

Since XJ(ε) has finite alphabet X1 ×X2, there exists a
conditional distribution QVn(ε)|XJ(ε)

for a random variable
Vn(ε) with alphabet size |X1||X2|+ 2 such that for i = 1, 2,

IQ(ε)(XJ(ε); UJ(ε), J(ε)) = IQ(ε)(XJ(ε); Vn(ε))

RXi,J(ε)|UJ(ε),J(ε)(Di, Q
(ε)) ≥ RXi,J(ε)|Vn(ε)

(Di, Q
(ε)).

We next show that

lim
ε→0

Q
(ε)
XJ(ε)

(x) = PX(x) ∀ x ∈ X1 ×X2 (9)

lim
ε→0

HQ(ε)(Xn(ε))
n(ε)

−HQ(ε)(XJ(ε)) = 0. (10)

First, for all xn(ε) ∈ Xn(ε)
1 ×Xn(ε)

2 and for all α ∈ X1 ×X2,

Q
(ε)

Xn(ε)(XJ(ε) = α|Xn(ε) = xn(ε)) =
|{i | xi = α}|

n(ε)
.

Hence for all xn(ε) ∈ B
(n(ε))
ε ⊆ A

∗(n(ε))
ε (X) and for all

∀α ∈ X1 ×X2,

|Q(ε)

Xn(ε)(XJ(ε) = α|Xn(ε) = xn(ε))− PX(α)| < ε

|X1||X2| .

The fact that Q
(ε)

Xn(ε)(B
(n(ε))
ε ) > 1− ε leads to

|Q(ε)

Xn(ε)(XJ(ε) = α)−PX(α)| < ε

|X1||X2|+ε ∀ α ∈ X1×X2,

which proves (9). By the uniform continuity of mutual
information and entropy functions on finite-alphabet random
variables, (9) implies that for i = 1, 2,

|HQ(ε)(XJ(ε))−HP (X)| < τ2(ε)
|IQ(ε)(XJ(ε); Vn(ε))− IP (X;Vn(ε))| < τ2(ε)

|RXi,J(ε)|Vn(ε)
(Di, Q

(ε))−RXi|Vn(ε)
(Di, P )| < τ2(ε)

for some τ2(ε) such that limε→∞ τ2(ε) = 0, and IP and HP

are mutual information and entropy functions evaluated

according to the distribution PX,Vn(ε) = PXQVn(ε)|X. Hence
for proving (10), it remains to show that

lim
ε→∞

HQ(ε)(Xn(ε))
n(ε)

= HP (X).

By (8), for all xn(ε) ∈ B
(n(ε))
ε ⊆ A

∗(n(ε))
ε (X),

| − 1
n(ε)

log QX(ε)(xn(ε)) +
1

n(ε)
log PXn(ε)(xn(ε))| ≤ a(n, ε) < ε

and
| 1
n(ε)

log PXn(ε)(xn(ε))−HP (X)| < τ3(ε)

for some τ3(ε) such that limn→∞ τ3(ε) = 0. Let

τ4(ε) := ε + τ3(ε) + ε log |X1||X2|.
Since Q

(ε)

Xn(ε)(B
(n(ε))
ε ) > 1− ε,

| 1
n(ε)

HQ(ε)(Xn(ε)) −HP (X)| < τ4(ε),

which proves (10). Hence the rate vector

R + (τ1(ε) + τ2(ε) + τ4(ε)) · 1
is in the achievable rate region of the Gray-Wyner problem
for the distribution PX, which proves the desire result by
letting ε → 0. ¤
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