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Optimal Control Strategies for
Robust Certification1

We present an optimal control methodology, which we refer to as concentration-of-
measure optimal control (COMOC), that seeks to minimize a concentration-of-measure
upper bound on the probability of failure of a system. The systems under consideration
are characterized by a single performance measure that depends on random inputs
through a known response function. For these systems, concentration-of-measure upper
bound on the probability of failure of a system can be formulated in terms of the mean
performance measure and a system diameter that measures the uncertainty in the opera-
tion of the system. COMOC then seeks to determine the optimal controls that maximize
the confidence in the safe operation of the system, defined as the ratio of the design
margin, which is measured by the difference between the mean performance and the
design threshold, to the system uncertainty, which is measured by the system diameter.
This strategy has been assessed in the case of a robot-arm maneuver for which the
performance measure of interest is assumed to be the placement accuracy of the arm tip.
The ability of COMOC to significantly increase the design confidence in that particular
example of application is demonstrated. �DOI: 10.1115/1.4001375�
Introduction
The objective of this work is the development of an optimal

ontrol methodology for the minimization of the probability of
ailure of a system. Thus, we consider systems that are stochastic
nd whose operation can succeed or fail with a certain probability.
n addition, the operation of the system depends on a certain set of
ontrol variables. For these systems, the mathematical and com-
utational problems that we address concerns the determination of
ptimal control laws that result in the least possible probability of
ailure of the system.

Often, the probability of failure of a system—and its depen-
ence on the control variables—is not known. However, for cer-
ain classes of systems, upper bounds of the probability of failure
an be formulated—and computed—with some generality. For in-
tance, consider systems that are deterministic except for the ran-
omness of their inputs X. Suppose, in addition, that the safe
peration of the system requires that a certain performance mea-
ure Y be below a threshold a, and that the performance measure
epends on the inputs through a response function F�X�. Under
hese assumptions, concentration-of-measure inequalities �cf. e.g.,
1–3�, Sec. 2 of this paper for a brief review� provide convenient
pper bounds for the probability of failure of the system. These
pper bounds are attractive because they depend solely on two
uantities: the mean performance of the system and a system di-
meter that measures the uncertainty in the operation of the sys-
em. The computations of both parameters is straightforward, al-
eit possibly costly: the mean performance can be computed by
onte Carlo sampling and the diameter by a global optimization
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over the space of inputs. In lieu of an exact probability of failure,
we may instead seek optimal controls that minimize a probability
of failure upper bound, such as supplied by concentration-of-
measure inequalities. The proposed methodology, called
concentration-of-measure optimal control �COMOC�, is intro-
duced in Sec. 3. The resulting optimal controls then maximize the
design margin, i.e., the difference between the threshold and the
mean performance for safe operation, or reduce the uncertainty in
the operation of the system, as measured by the system diameter,
or both.

We assess the COMOC in a specific area of application: posi-
tioning accuracy in robotic-arm maneuvers, modeled as three-
dimensional systems of rigid bodies �4,5�. The system is made
stochastic by first assuming that the lengths of various segments
of the arm are random, and second, that in addition, the system
experiences random forcing due to side wind. We investigate a
particular robot-arm maneuver whose successful operation re-
quires a minimum arm tip positioning accuracy, both by determin-
istic analysis of the nominal geometry of the system without wind
forces and by COMOC. For completeness, a brief account of the
discrete mechanics and optimal control for constrained systems
�DMOCC� methodology employed in the deterministic calcula-
tions is included in Sec. 4. DMOCC is a direct transcription
method transforming the optimal control problem into a con-
strained optimization problem, where the boundary conditions and
the discrete equations of motion serve as equality constraints. In
particular, DMOCC is designed for mechanical systems whose
dynamics itself is holonomically constrained. The results of nu-
merical experiments are collected in Sec. 5. In the particular ex-
ample under consideration, COMOC reduces the concentration-
of-measure probability of failure upper bound by about one order
of magnitude with respect to the deterministic optimal control.

2 Concentration-of-Measure Inequalities for Uncer-
tainty Quantification and Certification

The application of concentration-of-measure inequalities for

uncertainty quantification and certification of engineering systems
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s relatively new �3�. For completeness, we proceed to give a brief
ccount of concentration-of-measure inequalities as they bear on
he type of systems and applications under consideration here.

The goal is to certify whether a system is likely to perform
afely and reliably within the design specifications. Suppose that
he system operates safely if its performance measure Y �A�E is
n the admissible set A and is considered to fail if Y �Ac=E \A is
n the inadmissible set Ac, where E is an Euclidian space. For
ystems characterized by a single performance measure, the ad-
issible set often is of the form A= �−� ,a�, where a is the thresh-

ld for the safe operation of the system. The system is certified
hen the probability of failure P�Y �Ac� is less than a prespeci-
ed tolerance �, i.e., if

P�Y � Ac� � � �1�

ften, however, the probability of failure of a system is not
nown, and its direct computation, e.g., by Monte Carlo sampling,
s prohibitively expensive. Such is the case, for instance, of sys-
ems of large dimensionality for which failure is a rare event. In
hese cases, rigorous certification can still be achieved if a prob-
bility of failure upper bound can be determined, namely, by re-
uiring that the probability of failure upper bound be less than the
olerance �. For systems whose randomness can be characterized
y means of random inputs, a convenient class of upper bounds is
upplied by concentration-of-measure inequalities, which we
riefly summarize. A rigorous certification methodology can then
e formulated based on such concentration-of-measure inequali-
ies �3�.

For present purposes, it suffices to assume that a perfect model
or the system’s response is available, i.e., a mathematical model
hat describes the system exactly. In particular, errors stemming
rom numerical approximations are neglected. For simplicity, we
estrict attention to the quantification of uncertainty of a single
erformance measure Y �E and assume that the relation Y
F�X� describes the system exactly in terms of the random vector
:�→�1� . . . ��M, where �� ,U ,P� is a probability space �6�.
et E�Y� denote the mean performance of the system and assume

hat it belongs to the interior of A. Then, if F is integrable and the
nput parameters are independent, McDiarmid’s inequality �7�
tates that

P�Y − E�Y� � − r� � exp�− 2
r2

DF
2 � �2�

here r�0 and the diameter of the system is defined as

DF
2 = �

k=1

M

sup
X1,. . .,Xk−1,Xk+1,. . .,XM�X1�. . .Xk−1�Xk+1,. . .,�XM

� sup
�Ak,Bk��Xk

2
�F�X1, . . . ,Ak, . . . ,XM� − F�X1, . . . ,Bk, . . . ,XM��2

�3�

hus, the diameter is the sum of the maximum squared oscillation
n response from a random variable pair �independent and identi-
ally distributed� varying in turn when all random variables are
llowed to vary over their entire ranges, and provides a measure
f the uncertainty in the operation of the system. Using r= �a
E�Y��+=max�0,a−E�Y��, the bound �2� can be rewritten as an
pper bound on the probability of failure

P�Y � Ac� � exp�− 2
�a − E�Y��+

2

DF
2 � �4�

ften, however, the mean performance E�Y� is not known a priori
nd must be estimated. For instance, the mean performance can be
stimated by performing m evaluations of the model F�X� based
n unbiased Monte Carlo sampling of the input parameters, result-
ng in predicted performance measures Y1 , . . . ,Ym. The corre-

ponding mean performance estimate is
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	Y
 =
1

m�
i=1

m

Yi �5�

When the mean performance is estimated by sampling, the prob-
ability of failure can only be determined to within a predefined
estimation tolerance �� reflecting the randomness of 	Y
. Specifi-
cally, if

	 = DFm−1/2�− log ���1/2

then, with probability 1−��

P�Y � Ac� � exp�− 2
�a − 	Y
 − 	�+

2

DF
2 � �6�

A rigorous certification criterion can now be obtained by requiring
that this bound be less than the probability of failure tolerance,
with the result

CF �
M

U
�

�a − 	Y
 − 	�+

DF
��log�1

�
�7�

Here M = �a− 	Y
−	�+ may be interpreted as a design margin, U
=DF as a measure of the uncertainty in the operation of the sys-
tem, and CF as a confidence factor. Certification then requires the

confidence factor �CF� to be in excess of the value �log ��1 /��. It
is interesting to observe, comparing Eq. �6� to Eq. �4�, that the
estimation of the mean performance reduces the margin by the
value 	 to account for statistical deviations. This margin hit can
be reduced to an arbitrary small value by carrying out a suffi-
ciently large number of model evaluations.

It is instructive to compare the probabilities of failure bounds
obtained from concentration-of-measure inequalities with those
determined directly by random sampling. Consider an empirical
probability measure


m =
1

m�
i=1

m

�Yi

obtained via traditional random sampling methods. Here

�Y = 
1 for Y � Ac

0 for Y � A
�

Then Hoeffding’s inequality �8� gives

P�Y � Ac� � 
m�Ac� +� 1

2m
log

1

��

with probability 1−��. This bound reveals that the number of
experiments required to certify a system based on statistical sam-
pling alone is of the order of �1 /2��−2 log�1 /���. For computa-
tionally expensive models, the number of function evaluations
becomes restrictive and unreasonable as �� decreases. By contrast,
the diameter in the concentration-of-measure inequality �6� is in-
dependent of �, which confers concentration-of-measure inequali-
ties a considerable advantage when failure is a rare event and the
required probability of failure is low.

3 Concentration-of-Measure Optimal Control
With this concept, to compute for probability of failure upper

bounds at hand, one can design the system such that confidence in
its safe operation is improved via COMOC.

Suppose that the system under consideration is a controlled
dynamical system with time-dependent states x : �t0 , tN�→Rnx and
controls � : �t0 , tN�→Rn�, where t� �t0 , tN��R denotes the time
and N ,nx ,n� ,nh�N. Let the dynamical system be specified by

ẋ�t� = ��x�t�,��t��

x�t0� = x0 �8�
h�x�t�� = 0
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ith the smooth function � :Rnx �Rn�→Rnx, the initial value x0
Rnx, and the path constraints h :Rnx→Rnh. In general, the quan-

ification of uncertainty of a performance measure Y and the cor-
esponding CF are dependent on the complete system, i.e., on
0 , � , h and �, and one could aim at improving the system such
hat the probability of failure decreases. However, in many prac-
ical situations, one has to deal with the given system equations,
nitial conditions, and path constraints, but can manipulate the
ontrols more easily. Therefore, we seek to determine the optimal
ontrol laws that result in the least possible probability of failure
y identifying the objective function for optimal control with the
robability of failure P�Y 
a�. Often, however, the probability
�Y 
a� is not known explicitly. In these cases, we seek instead

o minimize a concentration-of-measure upper bound of the prob-
bility of failure such as Eq. �6�.

Indicate the dependence of the performance measure on a given
ontrol law by Y�=F��X�. Then one is faced with the following
ptimal control problem:

min
��·�

�− CF���� � −
M�

U� � −
�a − 	Y�
 − 	��+

DF�
�9�

ubject to Eq. �8�, where the system equations, initial conditions,
nd path constraints serve as constraints for the optimization. Evi-
ently, by this choice of objective function the optimal control �
eeks to maximize confidence in the safe operation of the systems
ither by increasing the placement margin M�, i.e., by decreasing
− 	Y�
, or by reducing the uncertainty U� of the maneuver, i.e.,
y reducing the diameter DF�, or both.

Discrete Mechanics and Optimal Control of Con-
trained Multibody Dynamics

The equations of motion of a controlled mechanical system
ubject to holonomic constraints may be formulated in terms of
he states and controls by applying a constrained version of the
agrange–d’Alembert principle. DMOCC, a structure preserving
cheme for the optimal control of such systems, is derived in from
efs. �4,5�, using a discrete analog of that principle. Structure
reservation is inherited when the system is reduced to its mini-
al dimension by the discrete null space method. Together with

he initial and final conditions on the configuration and conjugate
omentum, the reduced discrete equations serve as nonlinear

quality constraints for the minimization of a given objective
unctional. The algorithm yields a sequence of discrete configura-
ions together with a sequence of actuating forces, optimally guid-
ng the system from the initial to the desired final state. In par-
icular, for the optimal control of three-dimensional multibody
ystems, a force formulation consistent with the joint constraints
s introduced in Ref. �5�, and consistency of the evolution of mo-

entum maps is proved for different types of joints. Ober-
löbaum et al. �9� focused on the analysis of discrete mechanics
nd optimal control �DMOC in the unconstrained case� and gives
proof of convergence of the DMOC-solution to that of the origi-
al �continuous� optimal control problem.

In this section, the formulation of DMOCC is summarized
riefly. Then, it is described how the robot arm is modeled as a
patially fixed spherical pair, and a short overview on the main
ngredients for the optimal control of the robot arm is given. Fi-
ally, DMOCC will be used to determine a cost minimizing robot-
rm maneuver in the deterministic setting.

4.1 DMOCC. The equations of motion for forced, holonomi-
ally constrained systems can be derived via a variational prin-
iple. Quite different strategies for the treatment of the constraints
re at the disposal. One possibility described for conservative sys-
ems in Ref. �10� is to transform the differential algebraic equa-
ions �DAEs� by a null space method with reparameterization.
nalogous steps can be performed in the temporal discrete varia-
ional setting to derive the forced constrained discrete Euler–

ournal of Computational and Nonlinear Dynamics
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Lagrange equations and their reduction to minimal dimensions.
Again, these steps have been investigated in detail in Ref. �10� for
conservative systems and in Ref. �5� for forced systems, and the
method is summarized here.

Consider an n-dimensional mechanical system with the time-
dependent configuration vector q�t��Q and velocity vector q̇�t�
�Tq�t�Q in the tangent space Tq�t�Q to the configuration manifold
Q. Let the configuration be constrained by the function g�q�=0
�Rm with constraint manifold C= �q�Q �g�q�=0� and influenced
by the force field f :Rn−m�TQ→T�Q.

Corresponding to the configuration manifold Q, the discrete
phase space is defined by Q�Q, which is locally isomorphic to
TQ. For a constant time-step h�R, a path q : �t0 , tN�→Q is re-
placed by a discrete path qd : �t0 , t0+h , . . . , t0+Nh= tN�→Q �N
�N�, where qn=qd�tn� is viewed as an approximation to q�tn� at
tn= t0+nh. The action integral is approximated in a time interval
�tn , tn+1� using the discrete Lagrangian Ld :Q�Q→R and the dis-
crete constraint function gd :Q→R. Similarly, �n=�d�tn� approxi-
mates the Lagrange multiplier, while the force field f is approxi-
mated by two discrete forces fn

− , fn
+ :T�U�Q→T�Q.

4.1.1 Discrete Constrained Lagrange–d’Alembert Principle.
The discrete version of the constrained Lagrange–d’Alembert
principle requires the discrete path �qn�n=0

N and multipliers ��n�n=0
N

to fulfill

��
n=0

N−1 �Ld�qn,qn+1� −
1

2
gd

T�qn� · �n −
1

2
gd

T�qn+1� · �n+1� + �
n=0

N−1

�fn
− · �qn

+ fn
+ · �qn+1� = 0

for all variations ��qn�n=0
N and ���n�n=0

N with �q0=�qN=0, which is
equivalent to the constrained forced discrete Euler–Lagrange
equations

D2Ld�qn−1,qn� + D1Ld�qn,qn+1� − Gd
T�qn� · �n + fn−1

+ + fn
− = 0

�10�
g�qn+1� = 0

for n=1, . . . ,N−1, where Gd�qn� denotes the Jacobian of gd�qn�
and D	Ld denotes the derivative of the discrete Lagrangian with
respect to the 	th variable. Due to the variational derivation of
this scheme, the discrete trajectory conserves a discrete symplec-
tic form and is consistent in momentum maps, i.e., any change in
the value of a momentum map reflects exactly the applied forces
�11�. Furthermore, the solution shows “good energy behavior” in
the sense that energy is not gained or dissipated numerically,
which is typical for symplectic methods �12�.

4.1.2 The Discrete Null Space Method. To eliminate the dis-
crete constraint forces from the equations, a discrete null space
matrix fulfilling range �P�qn��=null�Gd�qn�� is employed. Pre-
multiplying �10�1 by the transposed discrete null space matrix
cancels the constraint forces, i.e., the Lagrange multipliers are
eliminated from the set of unknowns, and the system’s dimension
is reduced to n.

4.1.3 Nodal Reparameterization. A reduction in the system to
the minimal possible dimension can be accomplished by a local
reparameterization of the constraint manifold. At the time nodes,
qn=F�un ,qn−1� is expressed in terms of the discrete generalized
coordinates un�U�Rn−m by the map F :U�Rn−m�Q→C, such
that the constraints are fulfilled. The discrete generalized control
forces are assumed to be constant in each time interval �see Fig.
1�. First of all, the effect of the generalized forces acting in
�tn−1 , tn� and �tn , tn+1� is transformed to the time node tn via �n−1

+

= �h /2��n−1 and �n
−= �h /2��n. Second, the components of the dis-

+ − �
crete force vectors fn−1 , fn �Tqn
Q can be calculated as

JULY 2010, Vol. 5 / 031008-3

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



w
m

s

h
r
o
w
g
t
o
s
i
E

c

F
c

0

Downloa
fn−1
+ = BT�qn��n−1

+ fn
− = BT�qn��n

−

ith the n� �n−m� configuration dependent input transformation
atrix BT :T�U→T�Q.
Upon insertion of the nodal reparameterization, the resulting

cheme

PT�qn��D2Ld�qn−1,qn� + D1Ld�qn,F�un+1,qn�� + fn−1
+ + fn

−� = 0

�11�

as to be solved for un+1, where qn+1 is obtained from local repa-
ameterization F of the constraint manifold. Note that the locality
f this reparameterization avoids the danger of singularities,
hich is present in formulations that start with a Lagrangian in
eneralized coordinates. The reduced scheme �11�� is equivalent
o the constrained scheme �10�; thus, it also has the key properties
f exact constraint fulfillment, symplecticity, and momentum con-
istency. While the constrained scheme �10� becomes increasingly
ll-conditioned for decreasing time-steps, the condition number of
q. �11� is independent of the time-step.

4.1.4 Boundary Conditions. In the next step, the boundary
onditions q�t0�=q0 and q̇�t0�= q̇0, and q�tN�=qN and q̇�tN�= q̇N

(b)

(a)

Fig. 2 Configuration of a rigid body
arm consisting of two rigid bodies

ig. 1 Relation of redundant forces fn−1
+ , fn

− at tn to piecewise
onstant discrete generalized forces �n−1 , �n
joint S1 and fixed in space by the spher

31008-4 / Vol. 5, JULY 2010
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are formulated in the discrete setting. Let q00�C be a fixed ref-
erence configuration, relative to which the initial configuration is
computed as q0=F�u0 ,q00�. To prescribe an initial configuration
at t0, one can request u0=u0. However, since the relative reparam-
eterization computes for qN in terms of uN and qN−1, prescribing
uN does not enforce a unique final configuration. Final configura-
tion conditions have to be formulated in terms of qN depending on
the specific system under consideration �see Sec. 4.2.1 for an ex-
ample�. Since in the present formulation of constrained forced
discrete variational dynamics on Q�Q, wherein velocities are not
properly defined, velocity conditions have to be transformed into
conditions on the conjugate momentum, which are defined at each
and every time node using a discrete Legendre transform. Three
different discrete Legendre transforms have been defined in Ref.
�5�. The reduced discrete Legendre transforms are the most appro-
priate version to formulate the boundary conditions on the mo-
mentum level as

PT�q0��D2L�q0, q̇0� + D1Ld�q0,q1� + f0
−� = 0

�12�
PT�qN��D2L�qN, q̇N� − D2Ld�qN−1,qN� − fN−1

+ � = 0

Here, the continuous Legendre transforms p0=D2L�q0 , q̇0� and
pN=D2L�qN , q̇N� are applied to the prescribed boundary velocities.

4.1.5 The Discrete Constrained Optimization Problem. To for-
mulate the optimal control problem for the constrained discrete
motion, an approximation

Jd�ud,�d� = �
n=0

N−1

Bd�un,un+1,�n� �13�

of the continuous objective functional J�q , q̇ , f�=�t0
tNB�q , q̇ , f�dt

has to be defined, where B�q , q̇ , f� :TC�T�Q→R is a given cost
function. The objective function �13� has to be minimized with
respect to ud= �un�n=0

N and �d= ��n�n=0
N−1 subject to a minimal set of

and initial configuration of the robot
bined into a spherical pair by the
„a…
com
ical joint S2 „b…
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nitial and final configuration constraints, initial and final momen-
um constraints �Eq. �12��, and discrete equations of motion �Eq.
11�� for n=1, . . . ,N−1. Furthermore, time-dependent path, con-
traints prescribing �parts of� the motion, and inequality con-
traints bounding the optimization variables can be present.

Remark 4.1 (Dimension of the constrained optimization prob-
em). The use of the discrete null space method with nodal repa-
ameterization yields a constrained optimization problem of mini-
al possible dimension: the optimization of Eq. �13� subject to

he boundary conditions and Eq. �11� includes the �2N+1��n
m� variables ud , �d and �N+3��n−m� constraints. In contrast to

hat, the constrained optimization problem resulting from the
agrange multiplier formulation �Eq. �10�� involves the N�2n
m�+n unknowns qd , fd , �d and �N−1��n+m�+4n constraints

this are �3N+1�m more variables and �N+1�2m more con-
traints�. Of course, this influences the computational costs and
he spectrum of available methods to solve the problem substan-
ially.

4.2 Deterministic Optimal Control of the Robot Arm. This
ection describes the constrained formulation of the cranelike ro-
ot arm and its optimal control using DMOCC to compute for the
ptimal trajectory and control sequence steering the arm from its
nitial position, as depicted in Fig. 2 �right�, to the final position,

(b)

(a)

Fig. 3 Final configuration of the rob
„�=1,2, I=1,2,3… „a… and the joint l
here the tip is located in xH, as shown in Fig. 3. The objective of

ournal of Computational and Nonlinear Dynamics
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this rest to rest maneuver is the minimization of the control effort
Jd�ud ,�d�=�n=0

N−1��n�2. The robot-arm model consists of two rigid
bodies and two spherical joint connections, the first body being a
cone and the second body being a cylinder �see Fig. 2, right�. The
first spherical joint S1 connects the two bodies by preventing rela-
tive translation. However, relative rotation of the bodies is not
constrained. The second joint S2 fixes the end of the cylinder in
space at xG.

In contrast to rotation based approaches to rigid body dynamics
taken from Refs. �13,14�, here, each rigid body is viewed as a
constrained continuum, which is described in redundant coordi-
nates subject to holonomic constraints �15,16�. The 	th rigid
body’s configuration variable

q	 = �
�	

d1
	

d2
	

d3
	
� � R12 	 = 1,2 �14�

consists of the placement of the center of mass �	�R3 and the
directors dI

	�R3 �I=1,2 ,3�, which are constrained to stay ortho-
normal during the motion �see Figs. 2 and 3, left�. The equations
of motion assume the form of DAEs with a constant mass matrix.

arm showing the director triads ˆdI
�
‰

tion vectors �	
�
„	=1,2… „b…
ot
This formulation circumvents many difficulties associated with
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otational parameters �17,18� and can be generalized easily to
hree-dimensional multibody systems consisting of many rigid
odies and also elastic structural elements �19,20�. The location of
he �th joint in the 	th body is characterized by coordinates ���

	�i

n the body frame �dI
	�, where 	 ,�=1,2 �see Fig. 3, right�

��
	 = ���

	�idi
	

4.2.1 Null Space Matrix. The null space matrix associated
ith the robot arm is given by

P�q� = �
�1

1̂ �2
2̂ − �2

1̂

− d1
1̂ 0

− d2
1̂ 0

− d3
1̂ 0

0 �2
2̂

0 − d1
2̂

0 − d2
2̂

0 − d3
2̂

�
ith the hat map ˆ:R3→so�3� and 0 denoting the 3�3 zero ma-

rix.

4.2.2 Nodal Reparameterization. Let 
n+1
1 and 
n+1

2 represent
he incremental rotation vectors pertaining to the two bodies. In
articular, the nodal reparameterization reads

qn+1 = �
xG + exp�
n+1

2̂ ��− ��2
2�n + ��1

2�n� − exp�
n+1
1̂ ���1

1�n

exp�
n+1
1̂ ��d1

1�n

exp�
n+1
1̂ ��d2

1�n

exp�
n+1
1̂ ��d3

1�n

xG − exp�
n+1
2̂ ���2

2�n

exp�
n+1
2̂ ��d1

2�n

exp�
n+1
2̂ ��d2

2�n

exp�
n+1
2̂ ��d3

2�n

�
odrigues’ formula is used to obtain a closed form expression of

he exponential map exp:so�3�→SO�3�, mapping skew-
ymmetric matrices to proper rotations �21�.

4.2.3 Actuation of the Robot Arm. The actuation of the arm is
wofold. First of all, the spherical joint connection S1 is actuated
y the joint torque ��1

�R3. It affects both bodies, where accord-
ng to “action equals reaction,” the resulting generalized forces on
he bodies are equal, but opposite in sign �22�. Second, the torque
�2

�R3 actuates S2 and affects the second body only.
The redundant forces on the bodies’ center of mass and the

irectors corresponding to the configuration variable �Eq. �14��
an then be computed as

f = �f1

f2 � = BT�q����1

��2

�

ith the 24�6 input transformation matrix
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BT�q� =�
0 0

1

2
d1

1̂ 0

1

2
d2

1̂ 0

1

2
d3

1̂ 0

0 0

−
1

2
d1

2̂ 1

2
d1

2̂

−
1

2
d2

2̂ 1

2
d2

2̂

−
1

2
d3

2̂ 1

2
d3

2̂

�
Angular momentum of the robot arm reads L= �

	=1

2

�	�p�
	 +dI

	

�pI
	, where the summation convention is used to sum over the

repeated index I. In the discrete setting, the angular momentum at
tn can be computed in terms of the conjugate momenta obtained
via the constrained discrete Legendre transform, or equivalently,
via the projected discrete Legendre transform �5�.

In the present case of the robot arm, the change in angular
momentum is induced by ��2

and the force due to the gravitational
potential

V�q� = �00 − M�
1g01�900M�

2g01�9�q

with the acceleration g�R and the total masses M�
	 �	=1,2� of

the bodies. In particular, the change in angular momentum in one
time interval is given by

Ln+1 − Ln = ���2
�n

+ + ���2
�n

− − ��n+1
1 + �n

1� �
h

2
�00 − M�

1g� − ��n+1
2

+ �n
2� �

h

2
�00 − M�

2g� �15�

The consistency of the momentum maps can be proven analyti-
cally and is illustrated numerically in Fig. 4.

4.2.4 Robot-Arm Maneuver in the Deterministic Setting. The
particular robot arm we consider consists of a cone of radius r1

=0.05 length l1=0.6, and mass M�
1 =10, and a cylinder of radius

r2=0.05, length l2=0.5, and mass M�
2 =5. One end of the cylinder

is fixed in space at xG= �000� by the spherical joint S2, while the
other end is coupled to the cylinder via S2. In the reference con-
figuration q00 depicted in Fig. 2 �right�, both bodies are tilted from
a vertical position by a rotation of � /4 around the axis e1. The
directors are aligned with the bodies’ principal axes of inertia such
that d3

	 coincides with the longitudinal axis.
At the start of the maneuver, the initial configuration must co-

incide with the reference configuration; thus, q0=q00 and the ini-
tial configuration condition for the optimal control problem reads
u0=06�1. In the final configuration, the tip of the cone must co-
incide with a prescribed location xH= �0−1.131 0.283� in space.
Using the vector �H

1 specifying the location of the tip in the body
frame �dI

1� �see Fig. 3, right�, the final configuration condition
reads �N

1 + ��H
1 �N−xH=03�1. The desired motion is a rest to rest

maneuver; thus, p0=pN=024�1 in the boundary conditions on the
momentum level �Eq. �12��. In the deterministic setting, the ob-
jective function �13� represents the control effort; therefore, the
convex objective function Jd�ud ,�d�=�n=0

N−1��n�2 is minimized sub-
ject to the described boundary conditions and the discrete equa-

tions of motion �Eq. �11��. Furthermore, bound constraints insure
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hat the components of the applied torques are in the range of
120� ����	

�i�n�120, where 	=1,2 , i=1,2 ,3 and n=0, N−1.
he maneuver takes place in tN=1.5, and N=15 time-steps of size
=0.1 are used.
The left hand plot in Fig. 4 shows the evolution of the kinetic,

otential, and total energies. In particular, the first plot illustrates
hat the maneuver starts and ends at rest. The evolution of the
omponents of angular momentum is shown on the right hand
ide. The bottom plot verifies Eq. �15� numerically �note that
�n

++�n
−� in the plot represents the entire right hand side of Eq.

15��. The evolution of the components of the torques in each joint
an be observed from Fig. 5 �left�. As described before, the
orques are constant in each time interval. Finally, the resulting tip
rajectory is depicted in Fig. 5 on the right hand side.

Remark 4.2 (Implementation). The constrained minimization
as been performed by the SQP solver FMINCON in MATLAB, which
an handle bound constraints on the optimization variables as well
s linear and nonlinear equality and inequality constraints. The
radient of the objective function and the Jacobian of the nonlin-
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Fig. 4 Evolution of the kinetic, pote
nents of the angular momentum „b….
the momentum maps are represente
ar equality constraints have been derived analytically, and are
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given as user-supplied derivatives to MATLAB. This substantially
reduces the computational costs compared with the case when
MATLAB approximates the derivatives via finite differencing.

Remark 4.3 (Inequality constraints). No inequality constraints
have been imposed on the minimization in this simulation. To
obtain more realistic maneuvers, it is necessary to prevent inter-
penetration of the two bodies via appropriate inequality con-
straints. This is left for future work.

5 Test Case: Minimizing the Probability of Failure for
a Robot-Arm Maneuver

In this section, the deterministic robot-arm maneuver from Sec.
4.2.1 is reconsidered in the presence of uncertainty. Specifically,
we consider two different uncertainty cases. First, there is uncer-
tainty in the geometry of the robot arm, i.e., the lengths l1 and l2

are uncertain. Second, uncertain operating conditions are repre-
sented by the presence of uncertain wind forces in addition to the
uncertain lengths. In all calculations we use the reduced varia-
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1 1.5
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1 1.5
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1 1.5
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1 1.5
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l, and total energies „a… and compo-
bottom plot on the right shows that

onsistently.
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The
d c
tional time-stepping scheme �11� obtained via the discrete null
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pace method with nodal reparameterization. By design, this
cheme is symplectic and represents changes in the momentum
aps exactly. Furthermore, energy is not gained or dissipated nu-
erically. As it is typical for the integration of constrained dy-

amics, the discrete equations of motion are implicit and need to
e solved iteratively, e.g., by means of a Newton–Raphson itera-
ion.

The performance measure Y of interest is assumed to be the
lacement accuracy of the arm tip, i.e., the distance from the arm
ip and its prescribed location xH at the end of the maneuver’s
uration of tN=1.5. Thus, in this case Y�d = ��N

1 + ��H
1 �N−xH� is

btained for a candidate control sequence �d by stepping forward
n time using Eq. �11� and the initial conditions described in Sec.
.2.1. From an optimal control point of view, this is similar to a
hooting approach to solve the concentration-of-measure optimal
ontrol problem �Eq. �9��. We additionally suppose that a position-
ng accuracy a is prescribed, so that the robot arm operates safely
f Y �a and fails if Y 
a. The goal is to find a control sequence �d
or which the confidence in safe operation is maximal, i.e., the
esulting objective function to be minimized is

− CF��d� � −
M�d

U�d
� −

�a − 	Y�d
 − 	�d�+

DF�d

�16�

he evaluation of the objective function �16� requires the evalua-
ion of the mean response and the diameter. In all calculations
resented here, the mean response �Eq. �5�� is computed by ran-
om Monte Carlo sampling, and the system diameter �Eq. �3�� and
ptimal controls �d are computed by simulated annealing. The
asic simulated-annealing algorithm is that described in Ref. �23�
nd has been enhanced with several user-specified options to suit
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Fig. 5 Evolution of the torque
ur needs. Details may be found in the Appendix. The starting
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controls for the iteration are set to the deterministic controls com-
puted in Sec. 4.2.1.

5.1 Uncertain Geometry. First, there are M =2 uncertain
variables. Length l1 can vary randomly in a range of 5% and l2

varies randomly in the range of 0.1% around the given value.
These values assure that their influence on the system’s uncer-
tainty is of the same order of magnitude.

The evolution of the mean performance, system diameter, and
concentration-of-measure probability of failure upper bound along
the simulated-annealing iteration for the determination of the op-
timal controls is shown in Fig. 6. As expected, both the position-
ing accuracy of the maneuver, which is measured by the mean
response 	Y
 with m=100, and the uncertainty in the operation of
the maneuver, which is measured by the diameter DF, show a
decreasing tendency. Correspondingly, the concentration-of-
measure probability of failure upper bound decreases from ini-
tially P=0.49 to Pbest=0.013722. This reduction in the probability
of failure may be alternatively interpreted as an increase in the
confidence that may be placed in the safe operation of the maneu-
ver, as measured by the confidence factor �Eq. �7��. Recall that the
right hand side of Eq. �6� is a random variable, and with probabil-
ity at most ��, it may fail to be an upper bound on the probability
of failure. This is why, for the optimal control sequence with
Pbest=0.013722 computed via Eq. �6� �using the empirical mean,
which is subject to large deviations as rare events�, the mean has
been recomputed with m=10000. Assuming that the latter empiri-
cal mean is an “accurate” approximation of the exact mean in Eq.
�4� results in the even lower probability of failure bound Pbest
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It bears emphasis that high confidence in the safe operation of a
ystem requires achieving a large design margin and a low uncer-
ainty simultaneously. More precisely, confidence requires that the
esign margin be large in relation to the uncertainty in the opera-
ion of the system, which underscores the importance of
uantifying—and mitigating by means of optimal control—
ystem uncertainties for purposes of certification. Here, again, the
bility of COMOC to increase the design confidence in the par-
icular example of the robot-arm maneuver becomes obvious.

5.2 Uncertain Wind Forces and Geometry. Second, in
ddition to the uncertain lengths, each body is affected by a ran-
om wind force in every time-step, hitting the body’s surface
round the center of mass in a prescribed location. Each compo-
ent of the two three-dimensional force vectors varies randomly
etween in ��0.001, 0.001�. Altogether, M =92 uncertain vari-
bles are present in this simulation. Figure 7 shows the evolution
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ig. 6 Uncertain geometry: simulated-annealing iteration for
he determination of the optimal controls; evolution of the „a…

ean performance, „b… system diameter, and „c… concentration-
f-measure probability of failure upper bound
f the mean performance with m=100, system diameter, and
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concentration-of-measure probability of failure upper bound along
the simulated-annealing iteration. The probability of failure upper
bound has been improved from P=1 to Pbest=0.11581. Also, here,
it can be observed that the Pbest has been found for a control
sequence that leads to �local� minima in the mean and diameter,
respectively. Again, assuming that the mean resulting from m
=10000 samples yields exactly the mean performance, Eq. �4�
bounds the probability of failure by Pbest=0.0567

6 Summary and Conclusions
We have presented an optimal control methodology, which we

refer to as COMOC, that seeks to minimize the concentration-of-
measure upper bound on the probability of failure of a system.
The systems under consideration are characterized by a single
performance measure that depends on random inputs through a
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Fig. 7 Uncertain wind forces and uncertain geometry:
simulated-annealing iteration for the determination of the opti-
mal controls; evolution of the „a… mean performance, „b… sys-
tem diameter, and „c… concentration-of-measure probability of
failure upper bound
known response function. In addition, the safe operation of the
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ystem is characterized by a threshold value of the performance
easure. For these systems, a concentration-of-measure upper

ound on the probability of failure of a system can be formulated
n terms of the mean performance measure and a system diameter
hat measures the uncertainty in the operation of the system. CO-

OC then seeks to determine optimal controls that maximize the
onfidence in the safe operation of the system, defined as the ratio
f design margin, which is measured by the difference between
he mean performance and the design threshold, to the system
ncertainty, which is measured by the system diameter. This strat-
gy has been assessed in the case of a robot-arm maneuver for
hich the performance measure of interest is assumed to be the
lacement accuracy of the arm tip. The ability of COMOC to
ncrease the design confidence in that particular example of appli-
ation is remarkable and bodes auspiciously for the approach.

The most severe limitation of the COMOC implementation pre-
ented in this paper is its computational expense. Each evaluation
f the confidence factor objective function requires the calculation
f the mean response and system diameter for a particular control,
hich, in turn, requires multiple solutions of the equations of
otion of the system. In order to reduce the computational ex-

ense to a tractable level, in the calculations presented here, the
ontrols have been constrained to remain close to the initial de-
erministic solution. It is conceivable that further gains in the de-
ign confidence could be achieved from an unrestricted control
ptimization, but the computational resources and infrastructure
equired for such an optimization are beyond the scope of this
aper. In view of these present limitations, the formulation of
fficient COMOC implementations that alleviate its computational
xpense clearly suggests itself as a subject of further research.
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ppendix: Optimization Algorithm
The basic simulated-annealing algorithm is that described in

ef. �23� and has been enhanced with several user-specified op-
ions to suit our needs. Define T as “temperature” and N as the
umber of function evaluations. We use a default cooling schedule
f Tnew=0.8�Told with T0=1.0. The optimization stops if T
1.0�10−8, N
Nmax=2000, or NR
300, where NR is the num-

er of successive rejected states. Temperature decrease happens if
T
30 or NS
20, i.e., if 30 function evaluations are made, or if

here are 20 successive accepted optimal states found at the cur-
ent temperature. The Boltzmann constant is set to 1.0.

The bound constraints on the random variables need to be sat-
sfied in the optimization algorithm as well. The neighbor-finding
outine intelligently seeks out neighboring states that assert com-
liance of any permutations of these constraints to find a new
31008-10 / Vol. 5, JULY 2010
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neighbor by projecting a randomly generated neighbor into a pa-
rameterized point within the constrained design space.
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