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PROGRAMMABLE CONTROL OF NUCLEATION FOR
ALGORITHMIC SELF-ASSEMBLY∗
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Abstract. Algorithmic self-assembly, a generalization of crystal growth processes, has been pro-
posed as a mechanism for autonomous DNA computation and for bottom-up fabrication of complex
nanostructures. A “program” for growing a desired structure consists of a set of molecular “tiles”
designed to have specific binding interactions. A key challenge to making algorithmic self-assembly
practical is designing tile set programs that make assembly robust to errors that occur during initi-
ation and growth. One method for the controlled initiation of assembly, often seen in biology, is the
use of a seed or catalyst molecule that reduces an otherwise large kinetic barrier to nucleation. Here
we show how to program algorithmic self-assembly similarly, such that seeded assembly proceeds
quickly but there is an arbitrarily large kinetic barrier to unseeded growth. We demonstrate this
technique by introducing a family of tile sets for which we rigorously prove that, under the right
physical conditions, linearly increasing the size of the tile set exponentially reduces the rate of spu-
rious nucleation. Simulations of these “zig-zag” tile sets suggest that under plausible experimental
conditions, it is possible to grow large seeded crystals in just a few hours such that less than 1 per-
cent of crystals are spuriously nucleated. Simulation results also suggest that zig-zag tile sets could
be used for detection of single DNA strands. Together with prior work showing that tile sets can
be made robust to errors during properly initiated growth, this work demonstrates that growth of
objects via algorithmic self-assembly can proceed both efficiently and with an arbitrarily low error
rate, even in a model where local growth rules are probabilistic.
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1. Introduction. Molecular self-assembly is an emerging low-cost alternative to
lithography for the creation of materials and devices with subnanometer precision [49,
25]. Whereas top-down methods such as photolithography impose order externally
(e.g., a mask with a blueprint of the desired structure), bottom-up fabrication by self-
assembly requires that this information be embedded within the chemical processes
themselves.

Biology demonstrates that self-assembly can be used to create complex objects.
Organisms produce sophisticated and functional organization from the nanometer
scale to the meter scale and beyond. Structures such as virus capsids, bacterial flag-
ella, actin networks, and microtubules can assemble from their purified components,
even without external direction from enzymes or metabolism. This suggests that
spontaneous molecular self-assembly can be engineered to create an interesting class
of complex supramolecular structures. A central challenge is how to create a large
structure without having to design a large number of unique molecular components.

Algorithmic self-assembly has been proposed as a general method for engineering
such structures [50] by making use of local binding affinities to direct the placement
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1582 REBECCA SCHULMAN AND ERIK WINFREE

Fig. 1.1. Assembly of DNA strands into DNA tiles and DNA crystal lattices. The configurations
are depicted using the NAMOT modeling program [48]. Stages of an assembly reaction during an
anneal are separated by successive arrows. Strands with different sequences are shown in different
colors. At high temperatures (first stage) strands are free. As the temperature is lowered, strands
assemble into tiles (second stage). Each tile displays four sticky ends. Example sequences are shown
for a pair of complementary sticky ends, one on each tile. As the temperature is lowered further,
tiles successively join to form lattices (third through sixth stages).

of molecules during growth. The binding of a particular molecule at a particular
site is viewed as a computational or information transfer step. By designing only a
modest number of molecular species, which constitute the instructions or program for
how to grow an object, complex objects can be constructed in principle [38, 47, 10].
Because a self-assembly reaction occurring in a well-mixed vessel is inherently parallel,
it is necessary to ensure that the molecules that encode the instructions for assembly
execute these reactions in the correct order. The primary concern of this paper is
how to design a set of molecules that correctly initiate the execution of a self-assembly
program. We address this question theoretically, using a model that is commonly used
to study crystallization [26], but which incorporates the particularities of algorithmic
self-assembly.

To motivate the model we use, we first describe a specific molecular system
that can implement algorithmic self-assembly experimentally. DNA double crossover
molecules [15] and related complexes [23, 29, 55, 21] (henceforth, “DNA tiles”) have
the necessary regular structure and programmable affinity to implement algorithmic
self-assembly, and simple periodic [53, 23, 42] and algorithmic [28, 37, 3, 4] self-
assembly reactions have been realized experimentally. As an example, consider one of
the DNA double crossover molecules shown in Figure 1.1, which self-assembles from
4 strands of synthetic DNA. The sequences have been designed such that the desired
pseudoknotted configuration maximizes the Watson–Crick complementarity. Since
the energy landscape for folding is dominated by logical complementarity more so than
by specific sequence details, it is possible to design similar double crossover molecules
with completely dissimilar sequences. To date, nearly 100 different molecules of this
type have been synthesized.
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Interactions between DNA tiles are dictated by the base sequences of each of four
single-stranded overhangs, termed “sticky ends,” which can be chosen as desired for
each tile type. Tiles assemble through the hybridization of complementary sticky ends.
The free energy of association for two tiles in a particular orientation is assumed to
be dominated by the energy of hybridization between their adjacent sticky ends. The
hybridization energy is favorable when complementary sticky ends bind, but negligible
or unfavorable for noncomplementary sticky ends. The DNA tiles shown assemble
(Figure 1.1) via the binding of sticky ends to four adjacent molecules; repeated binding
between DNA tiles and assemblies can produce a lattice. When multiple tile types
are present in solution, each site on the growth front of the crystal preferentially will
select from solution a tile that makes the most favorable bonds. Under appropriate
physical conditions, a tile that can attach by two sticky ends will be secured in place,
while tiles that attach by only a single sticky end usually will be rejected due to a
fast dissociation reaction. We call these “favorable” and “unfavorable” attachments,
respectively.

The design of an algorithmic self-assembly reaction begins with the creation of a
tile program and its evaluation in an idealized model of tile interaction, the abstract
Tile Assembly Model (aTAM) [51]. A DNA tile is represented as a square tile with
labels on each side representing the four sticky ends. Polyomino tiles with labels on
each unit-length of the perimeter can be used in addition to square tiles, since it is pos-
sible to generate the corresponding DNA structures. A tile program consists of a set
of such tiles, the strength with which each possible pair of labels binds, a designated
seed tile, and a strength threshold τ . Under the aTAM, growth starts with a desig-
nated assembly of tiles (usually just the seed tile) and proceeds by allowing favorable
attachments of tiles to occur. That is, tiles may be added where the total strength
of the connections between the tile and the assembly is greater than or equal to the
threshold τ . Addition of tiles is irreversible. At a given step, any allowed attachment
may be performed. An example of a structure that can be constructed using algo-
rithmic self-assembly, a Sierpinski triangle, is shown in Figure 1.2(a). Beginning with
the seed tile, assembly in the aTAM will result in the growth of a V-shaped boundary
that is subsequently (and simultaneously) filled in by “rule tiles” that obtain their
inputs from their bottom sides and present their outputs on their top sides. The
four rule tiles for this self-assembly program have inputs and outputs corresponding
to the four cases in the look-up table for XOR. The assembly of these tiles therefore
executes the standard iterative procedure for building Pascal’s triangle mod 2. While
the Sierpinski triangle construction is particularly simple, algorithmic construction
is widely applicable: Tile sets for the construction of a variety of desired products
have been described [50, 24, 35, 1, 10, 2], including a tile set capable of universal
construction [47].

The aTAM captures the essential algorithmic mechanisms of generalized crystal
growth and makes it possible to program self-assembly processes in a straightforward
way. In contrast to assembly in the aTAM, however, the assembly of DNA tiles
is neither errorless nor irreversible, nor is it guaranteed to start from a seed tile.
For example, in experimental demonstrations of algorithmic self-assembly [37, 3],
between 1% and 10% of tiles mismatched their neighbors, and only a small fraction
of the observed crystals were properly nucleated from seed molecules. Following [39],
Figure 1.2(b) illustrates how unseeded nucleation and unfavorable attachments can
lead to undesired assemblies.

To theoretically study the rates at which errors occur, we need a model that in-
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Fig. 1.2. The Sierpinski tile set. (a) Because DNA tiles are generally not rotationally sym-
metric, formal tiles cannot be rotated. The lower diagram shows the seeded growth of the Sierpinski
tiles according to the aTAM at τ = 2. The small tiles indicate the (only) four sites where growth
can occur. When growth begins from a seed, no more than one tile type can attach at each location,
so assembly always produces the same pattern. (b) Errors can result from improper nucleation when
assembly does not begin from the seed tile. Tile sets containing a tile that can polymerize due to
strong bonds are particularly prone to nucleation errors. Improper nucleation can produce a long
facet where a single insufficient attachment can allow a surrounding block of tiles to attach favor-
ably. Different such blocks of tiles may be incompatible, leading to an inevitable mismatch at their
interface. The straight arrow indicates a site where such a mismatch must occur. (c) The rates of
tile assembly and disassembly in the kinetic Tile Assembly Model (kTAM). For the growth of an
isolated crystal under unchanging tile concentrations, the forward (association) rate in the kTAM
is rf = kf [tile] = kfe

−Gmc , while the reverse (dissociation) rate is rr,b = kfe
−bGse for a tile that

makes bonds with total strength b. Parameters Gmc and Gse govern monomer tile concentration and
sticky-end bond strength, respectively. A representative selection of possible events is shown here.
Attachments with reverse rates rr,1 are unfavorable for Gmc > Gse. The kTAM approximates the
aTAM with threshold τ when Gmc = τGse − ε, for small ε. The same set of reactions is favorable
or unfavorable in the two models.

cludes energetically unfavorable events. The kinetic Tile Assembly Model (kTAM) [51]
describes the dynamics of assembly according to an inclusive set of reversible chemi-
cal reactions: a tile can attach to an assembly anywhere that it makes even a weak
bond, and any tile can dissociate from the assembly at a rate dependent on the total
strength with which it adheres to the assembly (see Figure 1.2(c)). The kTAM is
a lattice-based model in which free tiles are assumed to be well mixed in solution
and effects within the crystal such as bending or pressure differences are ignored.
The kTAM has been used to study the trade-off between crystal growth rate and the
frequency of mismatches (errors) in seeded assemblies [51, 17]. One result of these
studies is that, in principle, the rate of mismatch errors can be reduced by assem-
bling crystals more slowly. Analysis of assembly within the kTAM also suggests that
it is possible to control assembly errors by reprogramming an existing tile set so as
to introduce redundancy. “Proofreading tile sets” [52, 7, 34, 46] transform a tile set
by replacing each individual tile with a k × k block of tiles, exponentially reducing
seeded growth errors with respect to the size of the block. These results support
the notion that the aTAM, despite its simplicity, provides a suitable framework for
the design of algorithmic crystal growth behavior, i.e., that any tile program for the
aTAM can be systematically modified to work with arbitrarily low error rates in the
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more realistic kTAM. However, previous work did not adequately address the issue
of nucleation errors, which requires extending the kTAM from treating only seeded
growth to treating all reactions occurring in solution.

What is needed is a method of transforming a tile set to reduce the rate of
nucleation errors without significant slowdown. The transformed tile set must satisfy
two conflicting constraints: when assembly begins from a seed tile, it must proceed
quickly and correctly, whereas assembly that starts from a nonseed tile must overcome
a substantial barrier to nucleation in order to continue.

How is it possible to have a barrier to nucleation only when no seed is present? In
a mechanism for the control of one-dimensional polymerization, found in both biol-
ogy [44, 9] and engineering [13], a seed induces a conformational or chemical change to
monomers, without which monomers cannot polymerize. For example, in spontaneous
actin polymerization, it is proposed that a trimer occasionally bends to form an incipi-
ent helix that allows for further growth [44]. The Arp 2/3 protein complex imitates the
shape of an unfavorable intermediate of the spontaneous actin nucleation process [22].
In contrast, in two- and three-dimensional systems—condensation of a gas [31], crys-
tallization [30], or in the Ising model [45]—classical nucleation theory [56, 11] predicts
that a barrier to nucleation exists because clusters have unfavorable energies propor-
tional to the surface area of the cluster (possibly due to interfacial tension or pressure
differences with respect to the surrounding solution), and favorable energies propor-
tional to the volume of the cluster. Because volume grows more quickly than surface
area as clusters grow larger, a supersaturated regime exists where small clusters tend
to melt, but above a critical size, cluster growth rather than melting is favored. In
some crystalline ribbons or tubes, growth is initially in two dimensions and is disfa-
vored because of unfavorable surface area/volume interactions, up to the point that
the full-width ribbon or tube has been formed. For these materials, a seed structure
could allow immediate growth by providing a stable analogue to a full-width assembly.
Protein microtubules [33] and DNA tubes [32, 36, 27] are believed to exhibit this type
of nucleation barrier.

In this paper we describe a tile set family, the zig-zag tile sets, for the control of
nucleation during algorithmic self-assembly. Zig-zag tiles can assemble immediately
on a seed tile to grow potentially long ribbons of predefined width. In the absence of a
seed tile, only full-width ribbons can continue to grow exclusively by favorable attach-
ments. That is, there is a critical size barrier (based on unfavorable surface/volume
energy interactions) that prevents spurious nucleation. By redesigning the tile set
it is possible to increase the width and therefore the critical size. We prove that in
principle this method exponentially reduces the rate at which assemblies without a
seed tile grow large (unseeded growth), while maintaining the rate of growth that
starts from a seed tile and proceeds roughly according to the aTAM (seeded growth).

Used as part of an error-reducing tile set transformation, the zig-zag tiles solve the
aforementioned problem of controlling nucleation during algorithmic growth. With an
appropriate seed, zig-zag ribbons can play the same role as the V-shaped boundary in
Figure 1.2(a). Since rule tiles are not likely to spuriously nucleate on their own under
optimal assembly conditions [51], once this boundary has set up the correct initial
information, algorithmic self-assembly will proceed with few spurious side products.

In section 2, we describe the zig-zag tile set family in detail. In section 3, we
introduce a variant of the kTAM that is appropriate for the study of nucleation. In
section 4 we analyze thermodynamic constraints on ribbon growth in our model. In
section 5, we prove our main theorem, that the rate of spurious nucleation decreases
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exponentially with the width of the zig-zag tile set. In contrast, the speed of seeded
assembly decreases only linearly with width. Thus, for a given volume we can con-
struct a tile set such that no spurious nucleation is expected to occur during assembly.
This illustrates how the logical redesign of molecules can be qualitatively more effec-
tive in preventing undesired nucleation than just controlling physical quantities such
as temperature and monomer concentration. In section 6, we use simulations to pro-
vide numerical estimates of nucleation rates. These estimates suggest that reasonably
sized zig-zag tile sets can be expected to be effective in the laboratory.

2. The zig-zag tile set. A self-assembly program is a set of tiles that assembles
into a desired shape or set of shapes. The zig-zag tile set (Figure 2.1(a)) of width k
contains tiles that assemble into a periodic ribbon of width k (Figure 2.1(b)). Zig-zag
tile sets of widths k ≥ 2 can be constructed. A zig-zag tile set includes a top tile and
a bottom tile, each having the same shape as two horizontally connected square tiles.
Each of the k − 2 rows between the top and bottom tiles contains two unique middle
tiles that alternate horizontally. The alternation of two tile types along the columns
enforces the columnwise staggering of the top and bottom tiles. Each tile label has
exactly one match on another tile type, so the tiles cannot assemble to form any other
structures held together by sticky end bonds.

Top Tile

Bottom Tile

Middle Tiles

(a) (b)

L-Shaped
Seed Tile

(c)

W-Shaped

Seed Tile

(d)

Fig. 2.1. The zig-zag tile set and seed tiles. (a) The width 4 zig-zag tile set. Each shape
represents a single tile. Tiles have matching bonds of strength 1 when the shapes on their edges
match. (b) The ribbon structure formed by the zig-zag tile set. (c) The L-shaped seed nucleates
linear assemblies. (d) The W-shaped seed tile, with appropriate tiles for vertical zig-zag growth,
could nucleate V-shaped assemblies.

The tile set is designed to operate in a physical regime where the attachment of
a tile to another tile or assembly by two matching sides is energetically favorable, but
an attachment by only one bond is energetically unfavorable. In the aTAM, these
conditions translate to growth with a threshold of 2. Growth without a seed tile in
the zig-zag tile set goes nowhere in the aTAM—no two tiles can join with a strength
of at least 2. In contrast, growth can proceed from an L-shaped or W-shaped seed tile
(Figures 2.1(c) and 2.1(d)). Figure 2.2(a) illustrates the only possible growth path
in the aTAM from the L-shaped seed. The staggering of the top and bottom tiles
allows growth to continue indefinitely along a zig-zag path. Note that the top and
bottom tiles alternately provide the only way to proceed to each successive column.
Assemblies that do not span the full width (k tiles) either cannot bind top tiles or
cannot bind bottom tiles, and thus cannot grow indefinitely. Growth from a seed tile
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→ → → → → → ...
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←→ →← ←→ →← ←→ →←...

(b)

Fig. 2.2. Zig-zag tile set growth. (a) Seeded growth of a zig-zag tile set in the aTAM. The
same growth pattern occurs reversibly in the kTAM when Gmc = 2Gse − ε. (b) Unseeded growth. A
possible series of steps by which the tiles could spuriously nucleate in the kTAM.

of less than full width would stall. For example, with a seed tile of width k − 1, the
top tile could not attach by two bonds to the assembly.

In the kTAM, seeded growth occurs in the same pattern as in the aTAM. Unlike
in the aTAM, however, there are also series of reactions that can produce a full-
width assembly in the absence of a seed tile. The formation of such an assembly is
called a spurious nucleation error. An example of such unseeded growth is shown
in Figure 2.2(b). Under the conditions of interest, some steps in spurious nucleation
are energetically favorable, but at least k − 1 must be unfavorable before the full-
width assembly is formed. Once the full-width assembly is formed, further growth is
favorable. Spurious nucleation is a transition from assemblymelting, where assemblies
are more likely to fall apart than they are to get larger, to assembly growth, where each
assembly step is energetically favorable. Any assembly where melting and growth are
both energetically favorable is called a critical nucleus.

Classical nucleation theory [56, 11] predicts that the rate of nucleation is limited
by the concentration of the most stable critical nucleus, [Ac]. Intuitively, because
more unfavorable reactions are required to form critical nuclei in a wider zig-zag
tile set, [Ac] should decrease exponentially with k. This argument is not rigorous,
however, because the number of different types of critical nuclei for a zig-zag tile set
also increases with k. The rate of spurious nucleation is proportional to the sum of
the concentrations of all these critical nuclei. We will show in the following sections
that despite the increase in the number of kinds of critical nuclei that can form as k
increases, under many conditions nucleation rates do decrease exponentially with k.

3. The self-assembly model. To analyze the process of tile assembly, we for-
mally describe the mass-action kTAM. For a given tile set, kTAM describes the set of
possible assemblies, their reactions, and the dynamics of these reactions. The kTAM
has been previously used to analyze complex tile programs [37, 52] and is a general
framework for understanding algorithmic self-assembly. Here, we extend the kTAM
to include polyomino tiles. We also introduce a variant of the kTAM in which the
concentrations of all possible assemblies are considered. This is in contrast to the orig-
inal kTAM, which tracks only a single, seeded assembly. Our extension is appropriate
for studying nucleation, where growth can begin from any tile. Also in contrast to
previous work with the kTAM, which used stochastic chemical kinetics, we introduce
mass-action kinetics below. Both mass-action and stochastic kinetics are accepted
models of chemical kinetics [12], but mass-action is more tractable analytically and
the results of both models generally converge when large populations of molecules are
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considered. In section 6, we find that simulations of nucleation using stochastic kinet-
ics are consistent with the bounds on nucleation rates we prove using the mass-action
model.

A tile type t consists of a shape and a set of bond types on each unit edge of the
shape. The shape is either a unit square or a polyomino, a finite, connected set of
unit squares.1 The set of possible bond types is referred to as Σ. A set of tile types
is denoted by T. A tile (as contrasted with a tile type) is a tuple of a tile type and
a location, which is specified by L = (x, y), where L is the coordinate location of the
leftmost top unit square within the polyomino. The set of tiles (all possible tile types
in all possible locations) is referred to as T . A translation of a tile has the same tile
type as the original. Tiles cannot be rotated. Tiles that abut vertically or horizontally
are bound if they have the same labels on the abutting sides. A set of tiles is bound
if there is a path of bound tiles between any two tiles in the set.

An assembly A is an equivalence class with respect to translation of a nonover-
lapping, bound finite set of one or more tiles. The set of assemblies is denoted by A,
and the set of assemblies consisting of two or more tiles is denoted by A2+. We will
also use the notation for the set of tiles, T , to refer to the assemblies that have only
one tile, i.e., A −A2+. A set of tiles Ã is considered the canonical representation of
A if Ã ∈ A and

∀〈t, (xi, yi)〉 ∈ Ã, xi ≥ 0 and yi ≥ 0,

∃y, t′ s.t. 〈t′, (0, y)〉 ∈ Ã and

∃x, t′′ s.t. 〈t′′, (x, 0)〉 ∈ Ã.

That is to say, the canonical representation uses a coordinate system such that
the reference locations of the tiles just fit into the upper right quadrant of the plane
with no negative coordinates. Note that polyomino tiles may extend into the other
three quadrants, as long as the location of the leftmost top unit of each polyomino is
in the first quadrant. For an assembly A,

width(A) = max
x
|y1 − y2| + 1, s.t. 〈t1, L1〉, 〈t2, L2〉 ∈ A,

(x, y1) = L1, (x, y2) = L2.

This definition measures width with respect to the reference points for polyomino
tiles, ignoring the extent of the other unit squares within the polyomino. length(A)
is defined analogously. Note that the definitions of length and width given here are
designed to maximize the clarity of the analysis that follows and may not be appro-
priate for other analyses of tile assembly. The addition relation is defined between an
assembly A ∈ A2+ and a tile t so that A+ t = B if and only if Ã and t are bound but
nonoverlapping, and Ã ∪ t is a member of equivalence class B. For the attachment
of two tiles to each other, we need to be careful to correctly count the number of
ways tiles can attach.2 We consider the set of tile types T to be listed in some order.
The addition relation is defined between two tiles t1 = 〈t1, L1〉 and t2 = 〈t2, L2〉 if

1Here connected means that every unit square in the polyomino must have at least one side that
abuts the side of another unit square in the polyomino. That is, the polyomino’s component squares
cannot be merely diagonally touching.

2This definition is crafted to correctly count the number of distinct ways in which tiles can attach
to each other such that, first, the system will satisfy detailed balance given the free energies assigned
to tiles and assemblies at the end of this section, and, second, the dynamics of tile interaction will be
unchanged if tiles are given irrelevant markings—e.g., if a new tile, with the same binding labels as
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either t1 comes before t2 in the ordering of tiles or t1 = t2 and for L1 = (x1, y1) and
L2 = (x2, y2), either y1 < y2 or x1 < x2 and y1 = y2 and t1 ∪ t2 = Ã for some A ∈ A.
In this case, t1 + t2 = A.

Bound tiles have a bond between them. The standard free energy, G◦, of an
assembly A is defined as G◦(A) = −bGse, where b is the number of bonds in the
assembly and Gse (the sticky end energy) is the unitless free energy of a single bond.

The dynamics in the kTAM consists of a set of reactions in which assemblies grow
larger or smaller.

In this paper, we consider all possible accretion reactions: reactions either between
two tiles or between a tile and an assembly. We also assume that the number of
available single tiles does not change during the course of assembly (i.e., the reaction
is “powered” by some process or circumstance that keeps monomer concentrations
constant).

Formally, the set of powered accretion reactions are

R = {A+ t→ B + t, B → A : A,B ∈ A2+, t ∈ T , A+ t = B}
∪ {t1 + t2 → A+ t1 + t2, A→ ∅ : t1, t2 ∈ T , A ∈ A2+, t1 + t2 = A} .

The appearance of single tiles on both sides of the association reactions and
neither side of the dissociation reactions reflects the powered model’s assumptions
that the number of single tiles remains constant.

In the mass-action kTAM, the dynamics of an assembly process are governed by
mass-action kinetics. Mass-action kinetics is based on an ideal situation where tiles
and assemblies exist in infinite quantities and move at random through a solution
of infinitely large volume. To distinguish the relative abundance of tile types and
assemblies in the system, we use the notion of concentration, which denotes the number
of copies of the relevant tile type or assembly within a unit volume. The concentration
of species A is denoted [A].

Tiles and assemblies form or are consumed because of reactions that happen
spontaneously or as a result of collisions between the reactants. This leads to the
concentrations of assemblies changing over time. In a physical reaction vessel, an
association reaction (a reaction where multiple species interact) occurs at a rate pro-
portional to the frequency with which all the species involved come into physical
contact. When the possible reactants are well mixed and moving randomly through
solution, the frequency with which such contact occurs is proportional to the prod-
uct of the concentrations of all the reactant species. Likewise, dissociation reactions,
which have only one reactant, occur randomly with constant probability per time
unit per molecule. Even though individual reactions occur stochastically, when the
number of particles is infinite, the total reaction rate is deterministic.

These observations lead to mass-action kinetics, which is an idealized model of
chemical reactions in a well-mixed vessel [12]. The proportionality constant that
relates the product of the concentrations of the reactant species to the rate at which

an existing tile, is added and the concentration of both new and old tiles are half that of the original,
then in the new system the total concentration of both tile types will have the same dynamics as the
original tile’s concentration in the original system. The definition can be examined by considering
the number of ways in which different tiles can attach to each other. Two tiles of the same type with
the same label on all four sides can attach in exactly two distinct ways, two tiles of different type
but with the same label on all four sides can attach in exactly eight ways, and two tiles of different
types for which the left side of the first tile matches the right side of the second tile, but such that
all other bonds are nonmatching, can attach in exactly one way.
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the reaction occurs is a rate constant. In general, for a chemical reaction
∑

i niSi →∑
j mjSj with rate constant k, where Si are chemical species and ni,mj ∈ Z

≥0 are
the reactant and product stoichiometries (the number of times the reactant or product

species occurs), mass-action dynamics [12] predict
d[Sj]
ds = k(mj − nj)

∏
i[Si]

ni . Mass
action reactions occur in parallel, so that dynamics add linearly for multiple reactions.

In the kTAM, each reaction has a forward rate constant kf that we assume to be
the same for all reactions, and a backward rate constant kr = kfe

−ΔG◦
, where ΔG◦ is

the difference between the sum of the unitless standard free energies of the reactants
and that of the products (where the standard free energy of a single tile is 0). The
concentration of all tile types is held at e−Gmc . (Identical concentrations are con-
sidered for convenience only; Appendix A shows how our formalism can be extended
trivially to treat reactions where species have different concentrations.) Assemblies
consisting of more than a single tile have an initial concentration of 0. Thus, for an
assembly A at time point s,

(3.1)
d[A]

ds
= kf

( ∑
A+t→B+t,
B→A ∈R

eG
◦(B)−G◦(A)[B]− [A]e−Gmc

+
∑

B+t→A+t,
A→B ∈R

[B]e−Gmc − eG
◦(A)−G◦(B)[A] +

∑
t1+t2→A+t1+t2,

A→∅∈R

e−2Gmc − eG
◦(A)[A]

)
.

Each term in the first summation is the difference between the rate at which A and
a tile react to form a larger assembly B and the rate at which the larger assembly B
decomposes into A and a tile. Each term in the second summation is the difference
between the rate of formation of A by a reaction where a single tile binds to a smaller
assembly B, and the rate of decomposition of A into assembly B and a single tile.
The terms in the final summation are the rate of formation of A from two single tiles
and its dissociation into two single tiles. These final terms are nonzero only if A is an
assembly composed of exactly two tiles. In the remainder of this paper, we refer to
the mass-action kTAM with powered accretion reactions as simply “the kTAM.”

The free energyG(A) (in contrast to the standard free energyG◦(A)) reflects both
the entropy loss due to crystal formation and the enthalpy gain of assembly. For an as-
sembly A with n tiles and b bonds, it is defined as G(A) = G◦(A)+nGmc. The steady
state concentration of an assembly A is given by [A]ss = e−G(A) = e(bGse−nGmc). Re-
call that Gmc > 0 and Gse > 0, so that the energetic penalty of adding an additional
tile can be compensated for by forming sufficiently many new bonds. A smaller G(A)
is more favorable and corresponds to a higher steady state concentration.

This model satisfies detailed balance within A2+. That is, for all reaction pairs
A→ B and A+ t→ B+ t, kf [t][A]ss = kr[B]ss, where kf and kr are the forward and
reverse rates in the respective reactions, and for reaction pairs t1+t2 → A and A→ ∅,
kf [t1][t2] = kr[A]ss. A proof that the kTAM satisfies detailed balance is contained in
Appendix A.

4. Thermodynamics of zig-zag assemblies. To prove that nucleation rates
of zig-zag ribbons decrease exponentially as their widths increase, we would first like
to identify the critical nuclei for spurious nucleation. Thermodynamic constraints
provide a powerful tool: Because undesirable assemblies have unfavorable energies,
we can conclude that they occur rarely without having to consider rates. (In contrast,
assemblies with favorable energies may or may not form quickly, depending upon
details of the kinetics; such analyses form the bulk of sections 5 and 6.)
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We therefore consider the free energy landscape, where each point in the landscape
corresponds to a particular type of assembly. Optimal control over nucleation is
achieved in a regime where zig-zag growth is favorable, but the growth of less than
full-width (thin) assemblies is unfavorable.

Within the kTAM, the energy landscape for assemblies is formally described by
the free energy G(A) = nGmc − bGse, which can be evaluated directly for any given
assembly A. Gse and Gmc describe the physical conditions for assembly. Changing
Gse and Gmc can bring the system into two qualitatively different phases. In the
melted phase, G(A) is bounded below by Gmc for all A, meaning that no assembly
has a concentration of more than e−Gmc at steady state. In contrast, in the crystalline
phase, G(A) can continue to decrease without bound (so [A]ss = e−G(A) can increase
without bound) as certain polymeric assemblies become longer and longer—that is,
adding a repeat unit to the assembly strictly decreases its free energy.3 Within the
crystalline phase, there are regimes where the elongation of different types of polymers
is favorable or unfavorable. To ensure that thin polymers do not tend to grow, it is
enough to show that for each of these polymer types, longer polymers have a higher
free energy than shorter ones.

To characterize the energy landscape formally, we consider the important classes
of polymeric assemblies and evaluate their free energies. In Figure 4.1(b), B–F show
the 6 main types of polymeric assemblies4 for ribbons of width 4 by indicating the
repeat group that may be added (by a series of accretion reactions, as shown in
Figure 4.2) to extend the polymer. To determine whether adding a repeat group
results in a higher or lower energy assembly, we evaluate ΔG = G(Am+1)−G(Am) =
ΔnGmc −ΔbGse, where Am is a polymeric assembly with m repeat units. If ΔG is
negative, then longer polymeric assemblies of this type are more favorable, and we
can expect this kind of assembly to grow at some rate. This gives a linear condition
on Gse and Gmc, specifying a regime of physical conditions in which a certain class
of long assembly is favorable. For example, for polymer type E, each repeat unit
adds 4 tiles (Δn = 4) and 6 bonds (Δb = 6), so these polymers grow if 4Gmc −
6Gse < 0, i.e., Gmc

Gse
< 3

2 . Similar calculations result in the phase diagram shown in
Figure 4.1(a), which shows the melted phase A, in which no polymers are favorable,
and the crystalline phase divided into regimes B–F, wherein one additional type of
polymer becomes favorable in each successive regime. In all these calculations, the

ratio τ
def
= Gmc

Gse
plays a critical role.

Figure 4.1(c) shows the 2k − 3 classes of polymeric assemblies for the width k
zig-zag tile set (excluding the full-width ribbons) along with the condition on τ that
determines when polymer elongation is favorable. Exclusively the elongation of full-

width ribbons is favorable when 2 > τ > 4(k−2)+1
2(k−2)+1 = 2 − 1

2k−3 . That is, when

2 > τ > 2− 1
2k−3 , zig-zag growth is favorable, but the elongation of all less than full-

width polymers is unfavorable. The regime where 2 > τ > 2 − 1
2k−3 will be referred

to as optimal nucleation control conditions.

3In powered models, formal steady state concentrations can continually increase. This may seem
nonphysical, but it is not problematic; it reflects the fact that providing unbounded materials can
lead to an unbounded accumulation of product, and that longer polymers do not achieve steady state
within the time during which the powered model is an appropriate model.

4“Imperfect” long assemblies, such as an assembly with more tiles in one column than another,
can be considered as a member of the class corresponding to a more complete assembly of the same
length and width. Since removing tiles from a “perfect” assembly strictly increases its free energy,
these “imperfect” assemblies have strictly lower concentrations than their corresponding “perfect”
assembly.
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τ = 2

τ = 9/5
τ = 5/3

τ = 3/2

τ = 1

A
B

C

D

E

F

Gse

Gmc

(a)

A Unassociated tiles B Width 4 growth C Width 3 growth

D Width 2 growth
with double tile

E Width 2 growth
without double tile

F Random aggregation

( )
m

→← ( )
m+1

( )
m

→← ( )
m+1

( )
m
→← ( )

m+1
( )

m
→← ( )

m+1

( )
m
→← ( )

m+1

( )
m→← ( )

m+1

(b)

k − 1 τ < 4(k−2)+1
2(k−2)+1

k − 2 τ < 4(k−3)+1
2(k−3)+1

τ < 5
3 τ < 1

k − 2 τ < 2− 1
k−2 k − 3 τ < 2− 1

k−3
τ < 3

2 τ < 1

(c)

Fig. 4.1. Physical conditions where zig-zag polymer elongation is favorable. Gmc (ln(tile
concentration)) and Gse (bond strength) define a set of physical conditions for zig-zag tile assembly.

τ = Gmc
Gse

. (a) Phase diagram of the width 4 zig-zag tile set. In phase A, above the line τ = 2, no

assembly reactions are favorable, whereas in regimes B, C, D, E, and F, progressively more types of
assemblies (shown in (b)) become favorable. (b) The polymeric assemblies which become favorable
in the regimes B–F shown in (a). Polymers shown for earlier regimes are also favorable in later
phases: the polymer shown for regime B is favorable in regimes C–F and so on. (c) The assemblies
that can form from a zig-zag tile set of width k and the physical conditions (in terms of τ) in which
these assemblies becomes favorable.

τ = 1.75

5Gmc − 6Gse

6Gmc − 7Gse

7Gmc − 9Gse

8Gmc − 11Gse

9Gmc − 13Gse

10Gmc − 15Gse

→←

←→ ←→ ←→ ←→
(a)

τ = 1.75

5Gmc − 6Gse

6Gmc − 7Gse

7Gmc − 9Gse

8Gmc − 11Gse

→←

←→ ←→
(b)

Fig. 4.2. Zig-zag polymerization reactions. The addition of a polymer unit to a thin assem-
bly consists of an initial unfavorable accretion reaction followed by a series of favorable accretion
reactions. (a) A favorable polymerization reaction. The positive free energy change from the four
favorable accretion reactions is larger than the negative energy change from the initial unfavorable
accretion reaction. Thus, the elongation of polymers of width 3 is favorable when τ = 1.75. (b)
An unfavorable polymerization reaction. The positive free energy change from the two favorable
accretion reactions is not large enough to compensate for the negative energy change from the initial
unfavorable accretion reaction, so that the elongation of polymers of width 2 is unfavorable when
τ = 1.75.
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Reaction ΔG Maximum τ for
reaction to be favorable

→← 2Gmc − 3Gse
3
2

→← 4Gmc − 7Gse
7
4

( )
m
→←( )

m

2mGmc − (4m− 1)Gse
4m−1
2m = 2− 1

2m

Fig. 4.3. Reactions that increase width, the ΔG for those reactions, and the resulting conditions
(in terms of τ) where those reactions are favorable.

Figure 4.3 enumerates the assemblies for which growing wider (rather than longer)
is favorable. Like the polymerization of thin ribbons, a reaction to produce a wider as-
sembly from a thinner one consists of an initial unfavorable accretion reaction followed
by a series of favorable accretion reactions to complete the new row. The number of
favorable reactions determines the values of τ for which the overall reaction is favor-
able. Very long but thin assemblies can favorably grow wider even when τ is close to
2, so for optimal nucleation control it is necessary that elongation of thin assemblies
be unfavorable. Otherwise, a favorable path to nucleation exists: an assembly can
grow longer until it is favorable for it to grow wider and then it can grow to full width.

An example of the difference in the energy landscape between the regime where
only the elongation of full-width polymers is favorable (optimal nucleation control
conditions) and a regime where the growth of thinner polymers is also favorable can
be seen in Figure 4.4. In each landscape, the critical nuclei divide the energy landscape
into two basins whose lowest energy assemblies are infinite polymers or fully melted,
respectively. A critical nucleus can, via a series of energetically favorable increases
or decreases in length or width, either reach full width or melt away. The principal
critical nucleus is the most stable critical nucleus. We start by considering the two
landscapes under optimal nucleation control conditions, the two left landscapes of
Figure 4.4. In these landscapes, the critical nuclei are of width k − 1 (or width k)
for both tile set widths, and the most favorable path to nucleation for both tile sets
is for a crystal of length 2 to grow to full width. Thus, the barrier to nucleation for
a tile set of width 8 is higher than the barrier to nucleation for a tile set of width
4. In contrast, when τ = 1.77, the principal critical nucleus is the same for both tile
sets: it is an assembly of width 3 and length 4. Under these conditions, the spurious
nucleation rate of the tile set of width k = 8 will not be appreciably smaller than the
nucleation rate of the tile set of width k = 4.

The primary theorem of the next section will apply only under optimal nucleation
control conditions. While this region covers only a small fraction of area in the phase
diagram shown in Figure 4.3, a slow anneal from a high temperature where τ � 2
to a temperature in which τ < 1 will pass through this regime, and a slow enough
anneal will allow the bulk of the reaction to take place in this regime. Therefore,
it is reasonable to consider a mechanism for the control of nucleation which is valid
only in this narrow range of physical conditions. In the next section, we analyze the
nucleation rates of the zig-zag tile set within this regime.
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Zig-zag tile set of width 4, τ = 1.95
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Fig. 4.4. Example energy landscapes. Coarse-grained depictions of the energy landscapes
for two zig-zag tile sets of different widths under two different physical conditions. Each square
in the grid represents a “perfect” assembly of the labeled width and length. The shading in the
square corresponding to each width and length represents the energy of a rectangular assembly of
those dimensions. Darker is more favorable. Contour lines group assemblies of similar energies.
Large circles denote assembly sizes that are critical nuclei. The most favorable critical nucleus (the
principal critical nucleus) is denoted by a large hollow circle.

5. An asymptotic bound on spurious nucleation rates. The kTAM pre-
dicts the concentration of each assembly at all times. For most tile sets, the number
of possible assemblies is large, and the individual concentrations of many kinds of
intermediate assemblies are not necessarily of interest. However, the sheer number of
possible assemblies and possible assembly pathways can significantly affect the overall
rate of spurious nucleation, and they cannot simply be ignored. Understanding the
contribution of many different assembly types to the total spurious nucleation rate
is the main technical challenge in what follows. It is often helpful to talk about the
concentration of a class C ⊂ A of assemblies, [C] = ∑

A∈C[A]. The derivative of the

concentration of a class of assemblies, d[C]
ds =

∑
A∈C

d[A]
ds , can be calculated as the

difference between the rate at which assemblies join the class and that at which they
leave the class. Reactions which produce new members of the class from assemblies
not in the class are the inward perimeter reactions, Rin = {A + t → B + t, A →
B, t1 + t2 → B + t1 + t2 : A /∈ C, B ∈ C}. Reactions which use up members of the
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+ ←→
(a)

+ ←→
(b)

+ ←→
(c)

Fig. 5.1. Spurious nucleation reactions. Three spurious nucleation reactions for a zig-zag tile
set of width 4. The reaction may be either favorable or unfavorable. In (b), the addition is favorable
when Gmc = 2Gse − ε for small ε, because two new bonds are formed; in (a) and (c), the addition
is unfavorable, because in each reaction only one new bond is formed.

class to produce assemblies not in the class (or single tiles) are the outward perimeter
reactions, Rout = {B + t→ A+ t, B → A, B → ∅ : A /∈ C, B ∈ C}.

Define the flux across a set of reactions R at time s as

(5.1) F (R, s) =
∑

A+t→B+t∈R

kf [A]se
−Gmc +

∑
B→A∈R

kfe
G◦(B)−G◦(A)[B]s

+
∑

t1+t2→A+t1+t2∈R

kf e
−2Gmc +

∑
A→∅∈R

kfe
G◦(A)[A]s,

where [A]s is the value of [A] at time point s. Then d[C]
ds (s) = F (Rin, s)− F (Rout, s).

We will use these formalisms to bound the rate of spurious nucleation in a zig-zag
tile set of width k. The spuriously nucleated assemblies for a zig-zag tile set of width
k will be denoted Ck. Let the top tile in Figure 2.1(a) be designated tt, the bottom
tile tb, and the seed tile ts. Formally,

(5.2) Ck = {A ∈ A : ∃(x, y), (w, z) ∈ Z
2 s.t. A(x, y) = tt, A(w, z) = tb, and

∀(q, r) ∈ Z
2, A(q, r) �= ts}.

Note that the assemblies in Ck do not contain a seed tile, and we are measuring the
rate of formation of zig-zag ribbons without seed tiles.

The inward perimeter reactions for [Ck], which we call the spurious nucleation
reactions and denote by Rin

k , are the reactions for which the product is a full-width
assembly, but the reactant is not. In other words, they are the addition reactions
which produce width k assemblies from assemblies of width k − 1 by adding either
a top or bottom double tile (Figure 5.1). As shown in section 4, under optimal
nucleation control conditions these reactions demarcate the point at which sustained
growth can proceed by exclusively favorable steps. The outward perimeter reactions,
which we call the ribbon shrinking reactions and denote by Rout

k , are those in which
a tile falls off a full-width assembly to produce an assembly of width k − 1. For
assemblies that have suffered a ribbon shrinking reaction, there is also a downhill
path to complete melting in an energy landscape of the type shown in Figure 4.4
under optimal nucleation control conditions.

The overall rate of spurious nucleation of width k zig-zag crystals (in units of
molar per second),

nk(s) =
d[Ck]
ds

(s) = F (Rin
k , s)− F (Rout

k , s),

may be integrated over time to obtain the total concentration of spuriously nucleated
assemblies. Furthermore, an upper bound on nk(s) similarly translates into an upper
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bound on the concentration of spuriously nucleated assemblies. Because the growth
path for full-width ribbons is so favorable (zig-zag growth), one such bound is ob-
tained by neglecting the ribbon shrinking reactions and considering just the spurious
nucleation reactions:

n+
k (s) = F (Rin

k , s) > nk(s).

In what follows, “the rate of spurious nucleation” refers to nk(s), the rate at which
the concentration of spuriously nucleated assemblies increases. We distinguish this
rate from n+

k (s), the rate of formation of all full-width assemblies, whether they later
shrink or not, by referring to the latter as “the rate of spurious nucleation reactions
(or events).”

Theorem 5.1. For a zig-zag tile set of width k > 2, if 2 > Gmc

Gse
> 2−δ, δ < 1

2k−3 ,

and Gse > 2k ln 2
1−(2k−3)δ , then for all times s, nk(s) < 4kfe

(δ−k)Gse .

Proof. Since n+
k (s) < nk(s), we can prove the theorem by showing that n+

k (s) <
4kfe

(δ−k)Gse . All the spurious nucleation reactions are addition reactions, so if we
compute n+

k (s) using (5.1), the second and fourth terms of the expression are both
zero. Spuriously nucleated assemblies are defined as assemblies of width k, so the
reactants in the spurious nucleation reactions are of width k − 1 (only accretion
reactions are allowed). For a tile set of width k > 2, the third term of (5.1)—the
contribution of the interaction of two tiles—also drops out. Therefore, for a tile set
of width k > 2 with spurious nucleation reactions Rin

k ,

(5.3) nk(s) ≤ n+
k (s) =

∑
A+t→B+t∈Rin

k

kf [A]e
−Gmc ,

where [A] is the concentration of assembly A at time point s.
While it is in general difficult to calculate [A] at an arbitrary time point, the

following lemma shows that the concentration of an assembly can be bounded by its
concentration at steady state, which is easy to compute.

Lemma 5.2. In a mass-action powered accretion kTAM, if in the initial state only
single tiles have a positive concentration, then every assembly has a concentration less
than or equal to its steady state concentration at all time points.5

Proof. See Appendix B.
Lemma 5.2 implies that

F (Rin
k , s) ≤

∑
A+t→B+t∈Rin

k

kf [A]sse
−Gmc ,

where [A]ss is the concentration of assembly A at steady state.
Partitioning the summation according to the length of the reactant assembly gives

(5.4) F (Rin
k , s) ≤

∞∑
l=1

∑
length(A)=l

A+t→B+t∈Rin
k

kf [A]sse
−Gmc .

5The concentration of the class Ck , which at the conditions we consider contains an infinite
number of assemblies, is actually infinite at steady state. The inward flux, as we will show, is finite
because the concentration of unnucleated assemblies stays finite at steady state, even though there
are also an infinite number of unnucleated assemblies.
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(a) (b)

Fig. 5.2. Assembly dimensions of rectangular assemblies. (a) A k − 1 = 3 by l = 8 assembly.
(b) A k − 1 = 3 by l = 7 assembly.

To be a reactant in a spurious nucleation reaction, A must have a width of k− 1.
Because all bonds in a zig-zag tile set assembly are unique to a given location within
the ribbon repeat unit, any potential tile addition either matches the assembly on all
sides, such that no errors occur, or matches on no sides, such that the addition does
not produce a bound assembly. Thus, A cannot have any mismatches. Each assembly
A in the preceding summation can therefore be viewed as a k − 1 by l rectangular
assembly of one of the types shown in Figure 5.2 with zero or more tiles missing.6

2Gse > Gmc by assumption, so the free energy of a k − 1 by l assembly cannot be
more favorable than the free energy of the k − 1 by l rectangle that contains it, since
any missing tiles in the rectangle could be added by favorable reactions. Therefore,
the concentration of any k − 1 by l assembly at steady state must be no larger than
the concentration of its corresponding k− 1 by l rectangular assembly. Note that this
bound is very loose, since most assembly types have several tiles attached by only one
bond and therefore have a higher free energy. Let Ak−1,l be a k − 1 by l rectangular
assembly, and let C(k − 1, l) be the number of assemblies of width k − 1 and length
l. Each assembly can bind a single tile in up to l/2 locations (since the tile must be
a double tile) along either the top or bottom edge. Thus,

F (Rin
k , s) <

∞∑
l=1

∑
length(A)=l

A+t→B+t∈Rin
k

kf [Ak−1,l]sse
−Gmc(5.5)

≤
∞∑
l=1

C(k − 1, l)
l

2
kf [Ak−1,l]sse

−Gmc .(5.6)

A counting argument shows that C(k − 1, l) < 2(k−1)l+1, so

F (Rin
k , s) <

∞∑
l=1

2(k−1)llkf [Ak−1,l]sse
−Gmc .(5.7)

The steady state concentration of an unseeded assembly with n tiles and b bonds
is given by [A]ss = e−nGmc+bGse . The assembly Ak−1,l contains (k − 2)l small tiles
and �l/2� top (or bottom) tiles. There are (l − 1)(k − 2) horizontal bonds between
small tiles and �l/2� − 1 horizontal bonds between large tiles. In addition, there are
up to l vertical bonds in each of the k − 2 spaces between rows of tiles. Therefore,

[Ak−1,l]ss ≤ exp (− ((k − 2)l+ l/2)Gmc + ((k − 2)(l − 1) + l/2 + (k − 2)l)Gse) .

6It could also be a subset of a rectangular assembly with top instead of bottom tiles, but the
free energy of both kinds of assemblies is the same. To account for this, we include a 2 prefactor in
the number of assemblies corresponding to a k − 1 by l rectangle, thereby counting both assemblies
with top tiles and assemblies with bottom tiles.
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Applying the assumption Gmc > (2− δ)Gse and simplifying,

[Ak−1,l]ss < exp

[
(2 − k)Gse +

(
kδ − 1

2
− 3δ

2

)
lGse

]
.

Thus,

F (Rin
k , s) < kf e

−Gmce(2−k)Gse

∞∑
l=1

l2(k−1)le(kδ−
1
2− 3δ

2 )lGse .

Since kδ − 1
2 − 3δ

2 < 0 when k > 2 and δ < 1
2k−3 , bounding Gse from below

preserves the inequality. Therefore, when Gse > 2k ln(2)
1−(2k−3)δ ,

F (Rin
k , s) < kfe

−Gmce(2−k)Gse

∞∑
l=1

l2(k−1)le(kδ−
1
2− 3δ

2 )l 2k ln(2)
1−(2k−3)δ(5.8)

= kfe
−Gmce(2−k)Gse

∞∑
l=1

l2(k−1)le−kl ln 2(5.9)

= kfe
−Gmce(2−k)Gse

∞∑
l=1

l2−l(5.10)

= 2kfe
−Gmce(2−k)Gse(5.11)

= 2kfe
(δ−k)Gse .(5.12)

This theorem says that the spurious nucleation rate, nk, decreases exponentially
with k and with Gse, within the limits of applicability of the theorem—which requires
larger Gmc for larger k, and hence slower growth rates. The strength of the theorem,
therefore, lies in the extent to which spurious nucleation decreases faster than the
growth rate, rk, of seeded crystals. These relative rates translate into the degree of
purity that can be obtained when attempting to grow seeded crystals: Suppose the
concentration of seeds is c, and they are grown to a length L during a time period
s = L/rk. The concentration of unseeded crystals that will have spuriously nucleated
in that time is less than s·nk = L· nk

rk
, i.e., the fraction of crystals that were spuriously

nucleated is less than L
c · nk

rk
. (When we use nk without specifying a particular time, we

mean its steady state value, which is an upper bound.) Regardless of what length or
amount of seeded crystals is desired, reducing nk

rk
is the relevant metric for increasing

the yield of desired structures.
One way to study the trade-off between nk and rk is to ask, given a target growth

rate r, what is the lowest nucleation rate that can be achieved by adjusting Gmc and
Gse while maintaining rk = r? Previous work [51] has shown that near the τ = 2 phase
boundary that is relevant to our theorem, the growth rate is closely approximated by

rk =
kf

k − 1
(e−Gmc − e−2Gse),

measured in layers per second. The lowest nucleation rate for a given target growth
rate r is then n∗

k(r) = min Gse,Gmc
s.t. rk=r

nk. A plot of n∗
k(r) vs. r, if it could be calculated,

would reveal how much the spurious nucleation rate decreases when the growth rate
is decreased. Theorem 5.1 only gives us an upper bound on n∗

k(r), but even so, this
already gives us a characterization of the advantage provided by wider zig-zag crystals.
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Specifically, choosing 2Gse − Gmc = ε = ln k, δ = 1
2

(
1

2k−3

)
, and Gse > 4k ln k,

then (5.12) guarantees that

n∗
k < nk < 2kfe

−Gmce(2−k)Gse

= 2kfe
−(Gmc−2Gse)e−kGse

= 2kfe
εe−kGse

= 2kfe
lnke−kGse

= 2kfke
−kGse .

Define nB
k = 2kfke

−kGse . Also

rk =
kf

k − 1
(e−Gmc − e−2Gse) =

kf
k − 1

(eε−2Gse − e−2Gse) = kf e
−2Gse.

The ratio nk

rk
describes the trade-off between assembly speed rk and spurious

nucleation nk. This ratio can be no larger than
nB
k

rk
. For k > 2 and the chosen

parameters,

nB
k

rk
=

2kfke
−kGse

kf e−2Gse
= 2ke(2−k)Gse < 2ke(2−k)4k ln k,

which decreases exponentially with k. Thus, under these conditions, seeded zig-zag
crystals can be grown with exponentially greater yield as width increases.

The bound nB
k where ε = 0.1 is plotted against rk in Figure 5.3 for k = 3, 4, 5,

and 6. While these bounds characterizing the trade-off between n∗
k and rk are rigorous,

because Theorem 5.1 is so loose, it is expected that n∗
k is actually much lower than

the bound nB
k . In the following sections, we will see that this is true; furthermore,

the true slopes are even steeper than those obtained by Theorem 5.1.
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Fig. 5.3. Analytical upper bounds, steady state calculations, and asymptotic simulations of
spurious nucleation rates. The graph compares the growth rate rk (in layers/s) and the rate of
spurious nucleation events, n+

k (in M/s), for 2Gse − Gmc = ε = 0.1. kf = 6 × 105/M/s and

for all points Gse > 2k ln 2
1−(2k−3)δ

for k = 3, 4, 5, and 6. Analytical upper bounds on the nucleation

rate (nB
k = 4kf e

(δ−k)Gse) are those given by Theorem 5.1. The method of numerical calculation
of spurious nucleation reaction rates at steady state, n+

k , is described in section 6.1. Stochastic

simulation methods (giving n#
k ) are described in section 6.2.
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6. Numerical estimates of spurious nucleation rates. Having proven in
the previous section that zig-zag tile sets can be designed to achieve arbitrarily low
spurious nucleation rates relative to the growth rates (using a loose upper bound), we
now ask whether the nucleation barrier provided by zig-zag tile sets is sufficient for
practical implementation in the laboratory (which requires more accurate quantitative
assessments). There are two main concerns: first, as each tile must be synthesized,
k must be small (6 is currently practical, while 50 is currently too large); second,
assembly time must not be too long. (Growing 1000 layers of seeded crystals with less
than 1% spurious nucleation—which we refer to as the “typical reaction”—seems like
a reasonable goal to accomplish within one week.) Because the analytic bounds of
section 5 are too loose to allow us to obtain a realistic evaluation of nucleation rates,
we now develop more accurate numerical calculations and stochastic simulations for
estimating spurious nucleation rates.

The analysis in section 5 overestimates the spurious nucleation rate in three ways.
First, it overestimates the concentration of almost all kinds of assemblies by assum-
ing they have the same concentration as a rectangular assembly of the same length
and width, and it overcounts the number of different types of assemblies. Second,
Lemma 5.2 shows that the spurious nucleation rate at steady state is the maximal
spurious nucleation rate. However, it may take longer to approach steady state than
the time needed to run a “typical reaction,” and far from steady state, the spurious
nucleation rate may be much smaller than the spurious nucleation rate at steady state.
Last, this analysis defines a spurious nucleation event for a zig-zag tile set of width k
as a reaction that produces an assembly of width k, and neglects the backward reac-
tion. In practice, many reactions that form an assembly of width k are unfavorable,
so that the product assembly frequently shrinks back to a subcritical size instead of
growing larger. When conditions only slightly favor growth, even assemblies contain-
ing several layers have a reasonable chance of shrinking to nothing before they grow
substantially. We expect nk � n+

k in this case.
While it is not possible to compute the nucleation rate exactly, in this section

we describe three numerical techniques that correct each inaccuracy described above
for zig-zag tile sets of widths k = 3, 4, 5, and 6. In section 6.1, we compute the
rate at which ribbons of width k are formed at steady state using a much more
accurate count of the number and steady state concentration of assemblies. These
computations show that the analytic bound of Theorem 5.1 is too high by at least
4 orders of magnitude for the range of parameters studied. In section 6.2 we use
a stochastic simulation of tile assembly to estimate the rate of spurious nucleation
reactions Rin

k . Our results indicate that spurious nucleation reactions occur during a
“typical reaction” at a rate that is no more than an order of magnitude lower than
the rate at steady state computed in section 6.1. In section 6.3, we use the stochastic
simulation to investigate whether the rate of spurious nucleation reactions (n+

k =
F (Rin

k , s)) in a typical reaction accurately predicts the rate at which large assemblies
appear (which at steady state is equivalent to nk(s) = F (Rin

k , s) − F (Rout, s)). We
find that for the range of parameters studied, at least 99% of assemblies that reach
full width will melt before growing into large crystals, and thus our other estimates
of spurious nucleation rates may be overestimates of nk by at least two orders of
magnitude. In section 6.4, we show that these results together indicate that a zig-
zag tile set of width 5 or 6 should be large enough to prevent almost all spurious
nucleation in a “typical reaction,” while maintaining reasonable assembly speeds. We
conclude with an important caveat to these results. Our results are derived under
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a powered accretion model of kTAM, while in experiments, small assemblies may
aggregate rather than growing exclusively by single tile additions, thus potentially
producing nuclei that reach a critical size more quickly than our simulations indicate.

6.1. Spurious nucleation rates at steady state. Recall that for a zig-zag
tile set of width k > 2, the steady state rate of spurious nucleation reactions is given
by the sum

n+
k = lim

s→∞F (Rin
k , s) =

∞∑
l=1

∑
A+t→B+t∈Rin

k

s.t. length(A)=l

kf [A]sse
−Gmc ,

which ignores the rate at which spuriously nucleated assemblies dissolve back into
prenucleated assemblies. While [A]ss is known (at steady state, for an assembly A
with n tiles and b bonds, [A]ss = ebGse−nGmc), it is not practical to compute the
sum exactly because there are an infinite number of spurious nucleation reactions.
Additionally, it can be impractical to evaluate the inner sum even for a single value of
l: no efficient algorithm is known for exactly enumerating the reactions in Rin

k (see,
e.g., [19] for the related problem of counting polyominos). The number of distinct
reactions increases exponentially with the length of A, so it is prohibitive to calculate
all but the first terms of the sum.

Despite these difficulties, the expression can be calculated precisely, with known
error bounds, for many k. The following lemma shows that under many reaction
conditions of interest, the sum converges quickly, and its value can be approximated
by summing only the first few terms.

Lemma 6.1. When Gse > (ln 10)(k − 2) + ln 4, Gmc = 2Gse − ε, 0 ≤ ε < 1
2k−3 ,

k > 2, and l is even,

∞∑
p=l+1

( ∑
A+t→B+t∈Rin

k

s.t. length(A)=p

kf [A]sse
−Gmc

)
< 2

( ∑
A+t→B+t∈Rin

k

s.t. length(A)=l

kf [A]sse
−Gmc

)
.

Proof. See Appendix C.
Thus, to calculate the spurious nucleation rate to an accuracy of 1

ε , it is only
necessary to compute the inner sums of the series until the sum of the current value
of l is (even and) less than 1

2ε . (Note that this approach does not directly yield a
proof of an analytic bound for arbitrary k, because the formula for the nucleation rate
is not a closed form expression.)

We have used this series truncation method to calculate the rate of spurious
nucleation to 1 part in 104 for k = 3, 4, 5, and 6 and for a range of Gse, Gmc

for which ε = 0.1. The values of Gse, Gmc, and k used were in a regime in which
Lemma 6.1 applies. The results are shown in Figure 5.3.

In addition to the numerical calculations providing lower estimates, the slopes
of logn+

k vs. log rk in Figure 5.3 are larger than those of lognB
k vs. log rk. Specif-

ically the numerical calculations give slopes k+2
2 , compared to the analytic bounds

that give slopes k
2 . Is this reasonable? In the limit as Gmc → ∞, all spurious

nucleation should be dominated by the single species with the highest steady state
concentration (adding tiles becomes so unfavorable that other species can be ne-
glected). The analysis in section 4 suggests that this assembly is the one shown in
Figure 6.1. The steady state concentration of this assembly A for a tile set of width
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Fig. 6.1. Hypothesized principal critical nucleus for most spurious nucleation reactions. The
rate of spurious nucleation reactions by this assembly (shown in successively lighter shades of gray
for tile sets of widths 3, 4, 5, and 6) accounts for a large portion of spurious nucleation at slow
speeds, and also accounts for the rate of increase in spurious nucleation rates as assembly gets faster.

k is [A]ss = e−(2k−3)Gmc+(3k−6)Gse = e−kGse+(2k−3)ε, where ε = 2Gse − Gmc. If all
forward nucleation reactions involve A, then

(6.1) n+
k ≈ 2kf [A]sse

−Gmc = 2kfe
−(k+2)Gse+(2k−4)ε,

while the speed of growth is

rk =
kf

k − 1

(
e−Gmc − e−2Gse

)
= kf e

−2Gse
eε − 1

k − 1
,

and thus the slope would be k+2
2 , as observed. The rough estimate of n+

k given in
(6.1) is within a factor of three of the value calculated to an accuracy of 1 part in 104,
as guaranteed by Lemma 6.1.

6.2. Stochastic simulations for estimating forward nucleation rates be-
fore steady state is achieved. In order to determine whether the steady state
approximation is accurate over a typical spurious nucleation reaction, we simulated
zig-zag tile assembly for tile sets of widths k = 3, 4, 5, and 6 and measured the
rates of spurious nucleation events during the time it should take to grow 1000 layers
from seeds. Since there is an infinite number of powered accretion reactions, exact
simulation of growth under the kTAM using mass-action dynamics is not possible.
Instead, we simulated assembly growth using stochastic chemical reaction dynamics
for discrete numbers of molecular assemblies. Here, simulation is possible because
even though the probability of any of the infinite number of species arising is larger
than 0, the total number of species tracked at a given time is finite. To approximate
the nucleation rate, we simulated a tiny reaction volume and used these results to
predict the nucleation rate in a much larger volume.

We used the Gillespie algorithm [18] to sample the trajectories of stochastic dy-
namics of the zig-zag tiles in a small volume V , whose value is chosen to ensure the
accuracy of our nucleation rate estimate as described below. Following the powered
model, our simulation assumes the concentration of each tile type to be constant and
explicitly tracks each assembly in the volume containing more than one tile. Ini-
tially, no multitile assemblies are present. Single tiles are present at a concentration
of e−Gmc , so the rate of two tiles colliding (and thus producing a new assembly to
be explicitly tracked) is AkfV e−2Gmc molecules per second, where A is Avogadro’s
number. For each assembly containing two or more tiles, the rate of tile addition at
each available site is kf e

−Gmc and the rate at which a tile with b bonds falls off an
assembly is kfe

−bGse .
For k = 3, 4, 5, and 6 and a range of Gse and Gmc where ε = 0.1, we counted the

number of spurious nucleation events, m, that took place over the time course of a
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“typical reaction,” s = 1000/rk, in a volume V that was chosen large enough to ensure
that statistical error in m is less than 10% of its value (P > 0.95).7 If our simulations
yield a nucleation rate of m events per second, the molar rate of nucleation events
for a bulk volume is given by n#

k ≈ m
V A . The results of the simulation—which were

possible only for small enough Gse such that nucleation events were frequent enough
to be counted—are shown in Figure 6.2. For k = 3 and k = 4, these rates are within
a factor of 2 of the linear extrapolation of the curves from Figure 5.3, and for k = 5
and k = 6 these rates are within a factor of 10, indicating that the choice in section 5
to bound nucleation rates based on steady state concentrations did not affect our
estimate of nucleation rates too greatly. This should be expected, given that under
the conditions we studied, most steady state nucleation appears to involve assemblies
like the one shown in Figure 6.1.
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Fig. 6.2. Estimates of nucleation rates from stochastic simulations. n#
k and n50

k vs. rk for
k = 3, 4, 5, and 6. ε = 0.1. The line n = r is also plotted to illustrate values of n if there were no
improvement in nucleation rates with assembly slowdown.

6.3. Nucleation of long ribbons. In this paper, we have defined a spurious
nucleation reaction for a zig-zag tile set of width k as a reaction in which an assembly
of width k− 1 grows to width k. The goal was that this definition would be inclusive,
such that all long ribbons would undergo at least one spurious nucleation reaction,
but not too loose, such that most spurious nucleation reactions lead to a long ribbon.
However, many of these spurious nucleation reactions are not energetically favorable—
an assembly may briefly reach width k before a tile falls off. The assembly then either
melts or undergoes another spurious nucleation reaction.

At what rate do long ribbons appear? Using the stochastic simulation described
in the last section and the same range of physical reaction parameters, we measured
m′, the number of ribbons containing 50 tiles or more that were present at the end
of a “typical reaction,” for the widths 3, 4, 5, or 6. m′ is an estimate of the number
of spurious nucleation events that did not subsequently melt, and thus it provides
the basis for an estimate for nk. As only those crystals that nucleated sufficiently far
before the end of the simulation will have grown to a large enough size to have been

7That is, twice the standard deviation of the number of nucleation events per simulations is less
than 10% of the average number of nucleation events per simulation.
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Table 6.1

Estimated time needed to grow 1000 layers in 1 pmol of free tiles without any spurious nucleation,
based on approximations of the spurious nucleation rate. While the total number of tiles in each
reaction is constant, the volume differs depending on the speed, which determines the concentration
and the spurious nucleation rate.

Tile set width n+
k n#

k n50
k

3 3× 1024 years 1× 1023 years 9× 105 years

4 2× 108 years 3× 106 years 7 years

5 900 years 10 years 20 days

6 2 years 20 days 20 hours

counted, we use the formula n50
k

def
= m′

(s−(50rk/(k−1)))V A , where s is the time of the

simulation and 50rk/(k − 1) is the approximate time to grow to 50 tiles via zig-zag
growth. The results are shown in Figure 6.2.

These simulations suggest that much of the looseness of the analytical bound
on nucleation, nB

k , is caused by our neglecting crystals which undergo a nucleation
reaction and subsequently melt. At least 99% of crystals that undergo a spurious
nucleation do not grow into crystals consisting of 50 or more tiles. That is, nk � n+

k .

6.4. Expected effectiveness in practice. Do these results indicate that nu-
cleation control with tile sets of width 6 or less is good enough? Recall that our “rea-
sonable goal for a typical reaction” addresses how much time is needed to grow seeded
ribbons of 1000 layers with less than 1% of the crystals being spuriously nucleated.
The fraction of crystals that are spuriously nucleated is given by f = L

c
nk

rk
, where L is

the number of layers to be grown on seeds, and c is the concentration of seeds. While
the simulations only measured nk for large values of rk, it is possible to approximate
nk for smaller values of rk by assuming that the graph of log(nk) vs. log(rk) continues
as a line with constant slope as rk and nk decrease. We consider two cases. The first
situation (more stringent than “reasonable”) is to grow many ribbons—say, from 1 pi-
comole of each tile type, making 6× 108 ribbons of length 1000—and not have more
than a single spuriously nucleated crystal, i.e., f < 1.67× 10−9 and c = e−Gmc/1000.
To satisfy this constraint, we express f in terms of c using our estimates for nk, and
solve for c (and hence the concentration of free tiles and the volume of the reaction by
Ae−GmcV = 10−12 moles). The time needed to grow the crystals is therefore given
as L/rk for these conditions. The results, shown in Table 6.1, suggest that if n50

k is
accurate, then this stringent goal could be met using a width 6 zig-zag tile set and a
day of growth. The looser estimates and smaller tile set widths are less encouraging.
The second situation we consider is the “reasonable” one; again, c = e−Gmc/1000,
but now we only require f < 0.01. The results are shown in Table 6.2. In this case,
acceptable growth fidelity is predicted to be achieved in less than an hour for width
6, and for only slightly longer times for widths 5 and 4. However, all these estimates
are very sensitive to the coefficients of the linear fits to lognk vs. log rk, which are
imperfect because the relationship is not perfectly linear.

The analysis and simulations in this section support the idea that nucleation
control using the zig-zag tile set not only works in theory, but should be practical as
well. While in most respects our models appear complete, two effects which may be
important in the actual process of assembly are not included. One such effect is tile
depletion: while our model considers the concentration of free tiles to be constant,
in a typical experiment tiles are used up because they join assemblies. Since the
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Table 6.2

Estimated time needed to grow 1000 layers such that less than 1% of assemblies are spuriously
nucleated based on approximations of the spurious nucleation rate. The seed concentration is one-
thousandth the concentration of free tiles e−Gmc .

Tile set width n+
k n#

k n50
k

3 1× 1011 years 1× 1010 years 200 days

4 40 years 5 years 12 hours

5 10 days 2 days 1 hour

6 7 hours 2 hours 15 minutes

rate of spurious nucleation is concentration dependent, we would expect the rate of
spurious nucleation to be larger at the beginning of a reaction, when almost all free
tiles remain, than at the end, when many tiles are used up. Because of this effect, our
simulations may actually overestimate the spurious nucleation rate in experimental
systems.

However, our simulations also neglect an important possible reaction pathway
that may greatly increase the rate of spurious nucleation. While our model assumes
tiles must be added to assemblies one at a time, in an experiment, small assemblies can
also attach to each other. The formation and joining of several small assemblies may
be faster than the spurious nucleation pathways described in this paper. A complete
understanding of spurious nucleation of zig-zag tiles requires an understanding of the
speed of spurious nucleation reactions caused by the joining of small assemblies.

7. Conclusions.

7.1. Nucleation of algorithmic self-assembly. Our original motivation was
to show that self-assembly programs that work in the aTAM, in which it is straight-
forward to design tile sets that algorithmically assemble any computationally defined
structure, can also be made to work in the more realistic kTAM.

While tile sets that assemble correctly via unseeded growth in the aTAM with a
threshold of τ = 1 will assemble correctly in the kTAM under the right conditions,
programs to assemble structures can be exponentially larger (in terms of number of
tile types) than those with a threshold of τ = 2 [38]. However, tile sets that are
designed to assemble via seeded growth in the aTAM with a threshold τ = 2 may fail
in the kTAM because mismatch, facet, and spurious nucleation errors occur. These
problems are ameliorated by the limit of slow assembly speed [51]. Other work has
described methods to control mismatch errors and facet errors without significant
slowdown [52, 7, 34]. Here, we have developed a construction that may be used
to correct the last discrepancy, spurious nucleation errors, again without significant
slowdown.

It remains to be formally proven that these constructions can be combined to
control all types of errors simultaneously for any tile set of interest. No major dif-
ficulties are expected, however, in large part because mismatch and facet errors can
both be controlled by a single mechanism [7], and the control of spurious nucleation
errors works independently of this mechanism. Both methods work by transforming
an original tile set which works in the aTAM at τ = 2 into a new (typically larger)
tile set that is more robust to particular kinds of errors in the kTAM.

After this paper was submitted, experimental demonstration of a decrease in
nucleation rates with ribbon width supported the predictions made here [42]. Further
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→ +
growth→

↓ fragmentation{} growth←−
−→

fragmentation

Fig. 7.1. Exponential amplification of assemblies. Probe strands assemble onto a target sequence
to create a seed assembly, which nucleates zig-zag growth. Periodic fluid shear causes fragmenta-
tion of zig-zag assemblies, leading to exponential amplification. The diagonal structure of the seed
assembly shown here is a natural shape for assembling tiles on a scaffold strand [37].

experiments combining the techniques described here with proofreading techniques,
as predicted, resulted in algorithmic assembly where both mismatch error rates and
spurious nucleation error rates are low [4], and has enabled other algorithmic self-
assembly experiments [16]. It remains to be seen whether facet nucleation rates can be
lowered in experimental demonstrations of algorithmic self-assembly, but the principal
mechanism in the theoretical proposal for lowering facet nucleation error rates [7] has
been experimentally confirmed [8].

7.2. Detection of a single DNA molecule. Control over nucleation in algo-
rithmic self-assembly can be seen as a special case of the detection of a single molecule.
For a tile set of sufficiently large width, essentially nothing happens when no seed tiles
are present, whereas if even a single seed tile is added, growth by self-assembly will
result in a macroscopic assembly. Theorem 5.1 shows that the false-positive rate
for detection can be made arbitrarily small by design; the false-negative rate in the
kTAM is approximately 0. Although this idealized model does not consider many
factors that could lead to poorer detection in a real system, we don’t know of any
insurmountable problems with implementing single-molecule detection this way. So
far, experiments have shown that seeded growth can be much faster than unseeded
growth, even when seeds are present at much lower concentrations than the elements
of the zig-zag tile set [42, 4], and no lower limit for detection with current technology
has been established.

There are, however, two immediate drawbacks. First, detecting seed-tile assem-
blies is not as useful as detecting arbitrary DNA sequences. Second, the linear growth
of a single zig-zag assembly would require a long time lapse before a macroscopic
change is perceptible. As sketched in Figure 7.1, both obstacles appear surmount-
able. First, as in [28, 54], a set of strands can be designed to assemble double-crossover
molecules on a (sufficiently long) target strand with nearly arbitrary sequence, thus
creating the seed assembly if and only if the target strand exists. Second, since
fluid shear forces can fragment large DNA assemblies [20], intermittent application of
these forces could break large zig-zag assemblies, increasing the number of growing
ends with each fragmentation episode. This fragmentation process can be expected
to lead to exponential growth in the number of zig-zag assemblies without increasing
the false-positive rate. (When a spuriously nucleated assembly does eventually form,
of course, it will also be exponentially amplified.)
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Based on the analyses of the previous section, we can estimate the effectiveness of
this procedure. Is there a reasonable tile set width for which a single seed could amplify
to a level of detectability in a reasonably short time without any spurious nucleation
occurring within the given volume? Specifically, given a 10 μL reaction volume, a
minimum detection level of 105 crystals, and a protocol in which assemblies split after
growing on average to size 200 layers, we would like to determine the minimum time
and tile set width that meet these requirements. Creating 105 crystals requires first
growing from the seed to size 200, then 17 cycles of fragmentation followed by growing
100 additional layers (50 on each side), so amplification requires ta = 1050/rk sec-
onds. The expected time for the first nucleation event is tf = 1

nkVA , and our criteria

for reliable detection is tf > 100ta, i.e.,
nk

rk
< 1

105000V A . Based on the n50
k estimates

described in section 6.2, we use the approximation log(nk) + 2 = k+2
2 (log(rk)− 1.7).

Solving for ta as a function of k, we find that good results are obtained for experi-
mentally feasible widths. For example, with k = 12, reliable detection of a single seed
in V = 10 μL (i.e., 0.13 attomolar concentration) is ta ≈ 26 hours.

7.3. Exponential replication of inheritable information. The zig-zag con-
structions detailed in this paper propagate a single bit of information: the presence or
absence of the seed tile. Using a tile set that simply copies information, we could use
the exponential amplification reaction to detect and identify one of several different
target strands, by creating a tile set where the seed assemblies for each target strand
contain a different pattern of 1’s and 0’s.

Furthermore, considering the amplification process as replication, the information
encoded in the strip’s width can be seen as a form of inheritable information [41],
related to Cairns-Smith’s proposal for information replication within clays [5, 6]. A
zig-zag assembly replicates (in the appropriate culture medium consisting of tiles) by
growth of new layers followed by random fission [14]. Errors during growth, bit flips,
as well as errors that increase or decrease the width of the assembly, are inherited.
If one sequence of tiles has a greater reproductive fitness than other sequences—for
example, by having a different growth or fission rate—then Darwinian evolution can
be expected to occur. In principle, the right selective pressures on such a process
could induce the formation of arbitrarily complex crystal genotypes [43].

Appendix A. Mass-action kTAM satisfies detailed balance. This section
contains proof that the mass-action kTAM used in this paper satisfies detailed balance
within A2+. We prove two facts necessary to show this.

The proof also applies to the case, not considered in this paper, where different
tile types have different (but constant) concentrations. For a tile t , S(t) is defined as
the relative concentration of its corresponding tile type. Unit concentration is e−Gmc ,
such that the concentration of tile type t, [t] = S(t)e−Gmc . Additionally, while only
equal strength sticky ends are considered in this work, this proof shows that detailed
balance applies to a model of self-assembly with arbitrary sticky end strengths.

Lemma A.1. For all reaction pairs A + t → B + t and B → A, kf [t][A]ss =
kr[B]ss, where kf and kr are the rates of the respective reactions.

Proof.

kr[B]ss = kfe
G◦(B)−G◦(A)[B]ss

= kfe
G◦(B)−G◦(A)e−G(B)

= kfe
G◦(B)−G◦(A)e−(G

◦(B)+(
∑

t′∈B Gmc−ln(S(t′))))

= kfe
−G◦(A)e−

∑
t′∈B(Gmc−ln(S(t′))).
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Because A+ t = B,

= kfe
−G◦(A)e−

∑
t′∈A(Gmc−ln(S(t′)))e−Gmc+ln(S(t))

= kfe
−G(A)e−Gmc+ln(S(t))

= kf [A]ss[t].

Lemma A.2. For reaction pairs t1 + t2 → A and A→ ∅, kf [t1][t2] = kr[A]ss.
Proof.

kr[A]ss = kfe
G◦(A)[A]ss

= kfe
G◦(A)e−G(A)

= kfe
G◦(A)e−(G◦(A)+2Gmc−ln(S(t1))−ln(S(t2)))

= kfe
−Gmc+ln(S(t1))e−Gmc+ln(S(t2))

= kf [t1][t2].

Appendix B. Steady state concentration as a bound on assembly con-
centration in a powered accretion self-assembly model. This section contains
the proof of Lemma 5.2: In a mass-action powered accretion kTAM, if in the ini-
tial state only single tiles have a positive concentration, then every assembly has a
concentration less than or equal to its steady state concentration at all time points.

Suppose that this lemma is not true. Then there is a time at which the con-
centrations of one or more assemblies exceed their values at steady state. Since the
concentrations of all assemblies are zero initially, there must be a first time point s
at which for at least one assembly A, [A] = [A]ss. At this time point, the concen-
trations of all other assemblies are either at or below their respective steady state
concentrations. The rate of change of [A] is given by (3.1):

d[A]

ds
= kf

( ∑
A+t→B+t,
B→A ∈R

eG
◦(B)−G◦(A)[B]− [A]e−Gmc

+
∑

B+t→A+t,
A→B ∈R

[B]e−Gmc − eG
◦(A)−G◦(B)[A] +

∑
t1+t2→A+t1+t2,

A→∅∈R

e−2Gmc − eG
◦(A)[A]

)
.

Consider a single term in the second summation, [B]e−Gmc − eG
◦(A)−G◦(B)[A],

involving some assembly B. We know that [A] has reached its steady state concentra-
tion, so [A] = e−G(A). By assumption, [B] ≤ [B]ss = e−G(B). Assembly A includes
one more tile, t, than does assembly B, so G◦(A) − G◦(B) = G(A) − G(B) − Gmc.
Therefore,

[B]e−Gmc − eG
◦(A)−G◦(B)[A] = [B]e−Gmc − eG(A)−G(B)−Gmc[A]

= [B]e−Gmc − eG(A)−G(B)−Gmce−G(A)

= [B]e−Gmc − e−G(B)e−Gmc

= e−Gmc

(
[B]− e−G(B)

)
≤ 0.
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Similarly, for an assembly B that is a term in the first summation, B has the
extra tile t so that G◦(B)−G◦(A) = G(B)−G(A)−Gmc. The term can be simplified
to

eG
◦(B)−G◦(A)[B]− [A]e−Gmc = eG(B)−G(A)−Gmc[B]− e−G(A)e−Gmc

≤ eG(B)−G(A)−Gmce−G(B) − e−G(A)e−Gmc

= 0.

The terms in the third summation are also nonpositive, since

e−2Gmc − eG
◦(A)[A] = e−2Gmc − eG

◦(A)e−G(A)

= e−2Gmc − eG(A)−2Gmce−G(A)

= 0.

The change in concentration d[A]
ds (s) is composed entirely of terms of this form. Since

each of these terms is nonpositive, d[A]
ds (s) is nonpositive when [A] = [A]ss. Thus, [A]

can never rise above its steady state value.
As in Appendix A, this proof also applies to a model of self-assembly with arbi-

trary stoichiometry and sticky end strengths.

Appendix C. Fast convergence of nucleation rates at steady state. This
section contains a proof of Lemma 6.1 for zig-zag tile sets of width k.

We start by rewriting the lemma by using convenient notation to refer to the
inner sums within the series for n+

k , which refer to the rate of spurious nucleation
events involving assemblies A of width k − 1 and length l:

Np =
∑

A+t→B+t∈Rin
k

s.t. length(A)=p

kf [A]sse
−Gmc ,

such that n+
k =

∑∞
l=1 Nl. Now, Lemma 6.1 may be stated as follows:

When Gse > (ln 10)(k − 2) + ln 4, Gmc = 2Gse − ε, 0 ≤ ε < 1
2k−3 , k > 2, and l is

even, then
∑∞

p=l+1 Np < 2Nl.

To prove this lemma, we will prove two sublemmas.
Lemma C.1. If Gse > (ln 4) (k − 2) + ln 12

5 , Gmc = 2Gse − ε, l is even, and
0 ≤ ε < 1

2k−3 , then Nl+1 < 1
2Nl.

Proof. We will partition the assemblies of length l+ 1 into classes corresponding
to assemblies of length l. We will then show that the total spurious nucleation rate
of reactions containing the assemblies in each class is at least twice as small as the
spurious nucleation rate of reactions containing its corresponding assembly. The class
of assemblies of length l+1 corresponding to an assembly B of length l will be denoted
B̂.

To assign the assemblies to classes, we introduce a procedure that takes an as-
sembly A of width k− 1 and length l+1, and then “condenses” its right end to yield
an assembly B with width k − 1 and length l. Specifically, A and B are identical
except for the last two columns of A and the last column of B, and if A had a tile in
either the ultimate or penultimate column in some particular row, then B will have
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a tile in its last column in the same row. Recall that for valid zig-zag assemblies, if a
tile is present in a particular spot, its tile type is determined by its neighbors—thus,
we don’t have to specify tile types in our condensation procedure, since there is no
choice. Formally, we say that B = condensation(A) if

∀0 ≤ a < k − 1, 0 ≤ b < l − 1 : Ã(a, b) = B̃(a, b) and

∀0 ≤ a < k − 1 : B̃(a, l − 1) = 0 iff Ã(a, l − 1) = Ã(a, l) = 0.

Recall that Ã, the canonical representation of A, begins indexing sites at 0, so
the first column has index 0 and the last (l + 1)st column has index l. Also note
that since l is even, A cannot have a double tile extending into its last column, so no
double tiles are condensed.

To see that for every assembly A, condensation(A) is bound, note first that
A is an assembly, so it is bound. Furthermore, the connectivity graph of B =
condensation(A) (with a vertex for each tile and an edge for each abutting pair) is
just a graph-theoretic contraction of the connectivity graph of A that combines any
two vertices in the same row of the last two columns of A (then possibly adding some
extra edges). Therefore, B remains bound. Thus, each A of width l + 1 is assigned
to a unique, valid assembly B of width l.

Condensation is many-to-one, so there are many assemblies A that condense onto
the same smaller assembly B. We assign A to the class corresponding to the assembly
condensation(A), i.e., the class

B̂ = {A : condensation(A) = B} .

For a given assembly B of length l, the elements of B̂, all of length l + 1, can be
created by adding p tiles (1 ≤ p ≤ k − 2) to the (l + 1)st column of B, and then
removing h tiles (0 ≤ h ≤ p− 1) from the lth column.

Imagine making these changes one at a time, say from top to bottom, in each
row either moving or adding a tile. For each of the p− h tiles that are added to the
(l + 1)st column where the corresponding tiles in the lth column are not removed,
p − h tiles are added to the assembly and no more than 2(p − h) − 1 bonds may be
formed. For the h tiles that are moved from the lth to the (l + 1)st column, no tiles
are added, and no more bonds can be created (some might even be lost). Therefore,
for each such assembly A,

[A]ss ≤ e−(p−h)Gmce(2(p−h)−1)Gse[B]ss.

Let lA be the number of spurious nucleation reactions of which an assembly A is
a reactant. The rate of spurious nucleation events involving assemblies of length l+1
is therefore given by

Nl+1 =
∑

A,C∈A
s.t. A+t→C+t∈Rin

k

length(A)=l+1

kf [A]sse
−Gmc .

We now partition this sum by summing over all smaller assemblies B, and then for
each A ∈ B̂ (recall B̂ = {A s.t. condensation(A) = B}) we count the spurious
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nucleation reactions:

=
∑
B∈A

s.t. length(B)=l

∑
A∈B̂,C∈A

s.t. A+t→C+t∈Rin
k

kf [A]sse
−Gmc

≤
∑

A,B∈A
s.t. condensation(A)=B

length(B)=l

lAkf [A]sse
−Gmc .

Partitioning B̂ according to the number of tiles added and moved, and using our
inequality for [A]ss in terms of [B]ss, we have

≤
∑
B∈A

s.t. length(B)=l

k−2∑
p=1

(
k − 2

p

) p−1∑
h=0

(
p− 1

h

)
lAkf [B]sse

−(p−h)Gmce(2(p−h)−1)Gsee−Gmc .

Under the conditions of the lemma, Gmc > 2Gse − 1
2k−3 , so that

<
∑
B s.t.

length(B)=l

k−2∑
p=1

(
k − 2

p

) p−1∑
h=0

(
p− 1

h

)
lAkf [B]sse

−2(p−h)Gsee
p−h
2k−3 e(2(p−h)−1)Gsee−Gmc

=
∑
B s.t.

length(B)=l

k−2∑
p=1

(
k − 2

p

) p−1∑
h=0

(
p− 1

h

)
lAkf [B]sse

(p−h)
2k−3 e−Gsee−Gmc

=
∑
B s.t.

length(B)=l

lAkf [B]ss

k−2∑
p=1

(
k − 2

p

)
e

p
2k−3 e−Gse

p−1∑
h=0

(
p− 1

h

)
e

−h
2k−3 e−Gmc .

Noting that the inner sums are binomial expansions of (e.g., (1 + x)n =
∑n

i=0

(
n
i

)
xi)

or portions thereof, we can simplify further:

=
∑
B s.t.

length(B)=l

lAkf [B]ss

k−2∑
p=1

(
k − 2

p

)
e

p
2k−3 e−Gse(1 + e

−1
2k−3 )p−1e−Gmc .

Since for k > 2, 1
2 < (1 + e

−1
2k−3 )−1 < 3

5 ,

<
∑
B s.t.

length(B)=l

3

5
lAkf [B]ss

k−2∑
p=1

(
k − 2

p

)
e

p
2k−3 e−Gse(1 + e

−1
2k−3 )pe−Gmc

<
∑
B s.t.

length(B)=l

3

5
lAkf [B]ss

k−2∑
p=1

(
k − 2

p

)
e

p
2k−3 2pe−Gsee−Gmc

<
∑
B s.t.

length(B)=l

3

5
lAkf [B]ss

(
1 + 2e

1
2k−3

)k−2

e−Gsee−Gmc .
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Similarly, for k > 2, (1 + 2e
1

2k−3 ) < 4, and lA ≤ lB + 1 since the longer assembly A
can have at most one more spurious nucleation reaction than B, so

≤
∑
B s.t.

length(B)=l

3

5
(lB + 1)kf [B]sse

ln(4)(k−2)e−Gsee−Gmc

≤
∑
B s.t.

length(B)=l

6

5
lBkf [B]sse

ln(4)(k−2)e−Gsee−Gmc .

When Gse > ln(4)(k − 2) + ln(125 ),

<
∑
B s.t.

length(B)=l

1

2
lBkf [B]sse

−Gmc

=
1

2

∑
A+t→B+t∈Rin

k

s.t. length(A)=l

kf [A]sse
−Gmc =

1

2
Nl.

The above sublemma takes care of the smaller odd terms, but to show that the
entire summation is bounded, we show that the smaller even terms are also bounded.

Lemma C.2. If Gse > ln(10)(k− 2) + ln(4), Gmc > (2Gse − 1
2k−3 ), k > 2, and l

is even, then Nl+2 < 1
2Nl.

Proof. The proof for this sublemma is similar to that for Lemma C.1, except
that the condensation function is defined so that the presence of a double tile in the
(l + 1)st and (l + 2)nd columns is taken into account.

Here, we use a procedure that takes an assembly A of width k−1 and length l+2,
and then condenses its right end to yield an assembly B with width k−1 and length l.
Again, A and B are identical except for the rightmost three columns of A and the last
column of B, and if A has a tile in any of the last three columns in some particular
row, then B will have a tile in its last column in the same row. An added detail is
that we must now consider that the rightmost two columns of A may contain a double
tile; in this case, the rightmost two columns of B must have a double tile also. The
double tile may either be on the top or on the bottom; without loss of generality, we
assume it is on the bottom, since the other case can be treated identically. Again, the
tile types of the new tiles in B are determined by their neighbors. Formally, we say
that B = condensation′(A) if

∀0 ≤ a < k − 1, 0 ≤ b < l − 1, (a, b) �= (k − 2, l− 2) : Ã(a, b) = B̃(a, b), and

∀0 ≤ a < k − 1 : B̃(a, l − 1) = 0 iff Ã(a, l − 1) = Ã(a, l) = Ã(a, l + 1) = 0, and

B̃(k − 2, l− 2) = 0 iff Ã(k − 2, l− 2) = Ã(k − 2, l) = 0.

The proof that every assemblyA has a bound condensation′ is virtually identical
to the proof in the previous lemma. The rest of the proof is also similar, except that
different numbers of tiles may be removed from the (l + 1)st and (l + 2)nd columns.

For a given assembly A, creating Ã from B̃, where condensation′(A) = B,
requires adding p tiles, 1 ≤ p ≤ 2k − 3, to the (l + 1))st and (l + 2)nd columns of B,
and then removing h tiles, 1 ≤ h < k − 1, from the lth column.

For each of the p − h tiles that are added to the (l + 1)st column and (l + 2)nd
columns where the corresponding tiles in the lth column are not removed, p− h tiles
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are added to the assembly and no more than 2(p− h)− 1 bonds may be formed. For
the h tiles that are moved from the lth to the (l + 1)st column or (l + 2)nd, no tiles
are added and no more bonds can be created.

Thus, the spurious nucleation rate of these assemblies is given by

Nl+2 =
∑

A+t→C+t∈Rin
k

s.t. length(A)=l+2

kf [A]sse
−Gmc

<
∑
A,B

s.t. condensation′(A)=B
length(B)=l

lAkf [A]sse
−Gmc

<
∑
B s.t.

length(B)=l

2k−3∑
p=1

(
2k − 3

p

) k−2∑
h=0

(
k − 2

h

)
lAkf [B]sse

−Gmce−(p−h)Gmce(2(p−h)−1)Gse.

When Gmc > 2Gse − 1
2k−3 , this similarly reduces to

<
∑
B s.t.

length(B)=l

lAkf [B]sse
−Gmce−Gse(1 + e

−1
2k−3 )k−2(1 + e

1
2k−3 )2k−3

<
∑
B s.t.

length(B)=l

lAkf [B]sse
−Gmce−Gse

(
(1 + e

−1
2k−3 )(1 + e

1
2k−3 )2

)k−2

.

For k > 2, (1 + e
−1

2k−3 )(1 + e
1

2k−3 )2 < 10, and thus

<
∑
B s.t.

length(B)=l

lAkf [B]sse
−Gmce−Gse10k−2.

Therefore, when Gse > ln(10)(k − 2) + ln(4), and recalling that lA ≤ lB + 1,

<
∑
B s.t.

length(B)=l

1

4
(lB + 1)kf [B]sse

−Gmc

<
∑
B s.t.

length(B)=l

1

2
lBkf [B]sse

−Gmc

=
1

2

∑
A+t→B+t∈Rin

k

s.t. length(A)=l

kf [A]sse
−Gmc =

1

2
Nl.

Now, we can combine Lemmas C.1 and C.2 to derive Lemma 6.1. If l is even,

∞∑
p=l+1

Np = Nl+1 +Nl+2 +Nl+3 +Nl+4 + · · ·

<
1

2
Nl +

1

2
Nl +

1

4
Nl +

1

4
Nl + · · ·

< 2Nl.
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