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Matrix Completion With Noise
Predictions about the choices of those who may take part in choosing such items as

movies for rent can be accurately made with a relatively small number of examples.

By Emmanuel J. Candès and Yaniv Plan

ABSTRACT | On the heels of compressed sensing, a new field

has very recently emerged. This field addresses a broad range

of problems of significant practical interest, namely, the

recovery of a data matrix from what appears to be incomplete,

and perhaps even corrupted, information. In its simplest form,

the problem is to recover a matrix from a small sample of its

entries. It comes up in many areas of science and engineering,

including collaborative filtering, machine learning, control,

remote sensing, and computer vision, to name a few. This

paper surveys the novel literature on matrix completion, which

shows that under some suitable conditions, one can recover an

unknown low-rank matrix from a nearly minimal set of entries

by solving a simple convex optimization problem, namely,

nuclear-norm minimization subject to data constraints. Fur-

ther, this paper introduces novel results showing that matrix

completion is provably accurate even when the few observed

entries are corrupted with a small amount of noise. A typical

result is that one can recover an unknown n� n matrix of low

rank r from just about nr log 2n noisy samples with an error that

is proportional to the noise level. We present numerical results

that complement our quantitative analysis and show that, in

practice, nuclear-norm minimization accurately fills in the

many missing entries of large low-rank matrices from just a few

noisy samples. Some analogies between matrix completion and

compressed sensing are discussed throughout.

KEYWORDS | Compressed sensing; duality in optimization; low-

rank matrices; matrix completion; nuclear-norm minimization;

oracle inequalities; semidefinite programming

I . INTRODUCTION

Imagine that we only observe a few samples of a signal. Is it

possible to reconstruct this signal exactly or at least

accurately? For example, suppose we observe a few entries

of a vector x 2 R
n, which we can think of as a digital signal

or image. Can we recover the large fraction of entriesVof

pixels, if you willVthat we have not seen? In general,

everybody would agree that this is impossible. However, if

the signal is known to be sparse in the Fourier domain and,
by extension, in an incoherent domain, then accurateV
and even exactVrecovery is possible by ‘1 minimization

[11]; see also [22] for other algorithms, [17] and [18] for

other types of measurements, and [34] for different ideas.

This revelation is at the root of the rapidly developing field

of compressed sensing and is already changing the way

engineers think about data acquisition; hence this Special

Issue and others (see [2], for example). Concretely, if a
signal has a sparse frequency spectrum and we only have

information about a few time or space samples, then one

can invoke linear programming to interpolate the signal

exactly. One can of course exchange time (or space) and

frequency and recover sparse signals from just a few of

their Fourier coefficients as well.

Imagine now that we only observe a few entries of a

data matrix. Then is it possible to accuratelyVor even
exactlyVguess the entries that we have not seen? For

example, suppose we observe a few movie ratings from a

large data matrix in which rows are users and columns are

movies (we can only observe a few ratings because each

user is typically rating a few movies as opposed to the tens

of thousands of movies which are available). Can we

predict the rating a user would hypothetically assign to a

movie he/she has not seen? In general, everybody would
agree that recovering a data matrix from a subset of its

entries is impossible. However, if the unknown matrix is

known to have low rank or approximately low rank, then

accurate and even exact recovery is possible by nuclear

norm minimization [10], [14]. This revelation, which to

some extent is inspired by the great body of work in

compressed sensing, is the subject of this paper.
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From now on, we will refer to the problem of inferring
the many missing entries as the matrix completion problem.

By extension, inferring a matrix from just a few linear

functionals will be called the low-rank matrix recovery
problem. Now just as sparse signal recovery is arguably of

paramount importance these days, we do believe that

matrix completion and, in general, low-rank matrix recov-

ery is just as important, and will become increasingly

studied in years to come. For now, we give a few examples
of applications in which these problems do come up.

• Collaborative filtering. In a few words, collaborative

filtering is the task of making automatic predictions

about the interests of a user by collecting taste

information from many users [23]. Perhaps the most

well-known implementation of collaborating filter-

ing is the Netflix recommendation system alluded to

earlier, which seeks to make rating predictions about
unseen movies. This is a matrix completion problem

in which the unknown full matrix has approximately

low rank because only a few factors typically con-

tribute to an individual’s tastes or preferences. In the

new economy, companies are interested predicting

musical preferences (Apple Inc.), literary prefer-

ences (Amazon, Barnes and Noble), and many other

such things.
• System identification. In control, one would like to

fit a discrete-time linear time-invariant state-space

model

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ

to a sequence of inputs uðtÞ 2 R
m and outputs

yðtÞ 2 Rp, t ¼ 0; . . . ;N. The vector xðtÞ 2 R
n is the

state of the system at time t, and n is the order of

the system model. From the input/output pair

fðuðtÞ; yðtÞÞ : t ¼ 0; . . . Ng, one would like to

recover the dimension of the state vector n (the

model order) and the dynamics of the system, i.e.,
the matrices A, B, C, D, and the initial state xð0Þ.
This problem can be cast as a low-rank matrix

recovery problem; see [26] and references therein.

• Global positioning. Finding the global positioning of

points in Euclidean space from a local or partial set

of pairwise distances is a problem in geometry that

emerges naturally in sensor networks [7], [31],

[32]. For example, because of power constraints,
sensors may only be able to construct reliable

distance estimates from their immediate neigh-

bors. From these estimates, we can form a partially

observed distance matrix, and the problem is to

infer all the pairwise distances from just a few

observed ones so that locations of the sensors can

be reliably estimated. This reduces to a matrix

completion problem where the unknown matrix is
of rank two if the sensors are located in the plane

and three if they are located are in space.

• Remote sensing. The MUSIC algorithm [30] is

frequently used to determine the direction of

arrival of incident signals in a coherent radio-

frequency environment. In a typical application,

incoming signals are being recorded at various

sensor locations, and this algorithm operates by
extracting the directions of wave arrivals from the

covariance matrix obtained by computing the

correlations of the signals received at all sensor

pairs. In remote sensing applications, one may not

be able to estimate or transmit all correlations

because of power constraints [35]. In this case, we

would like to infer a full covariance matrix from

just a few observed partial correlations. This is a
matrix completion problem in which the unknown

signal covariance matrix has low rank since it is

equal to the number of incident waves, which is

usually much smaller than the number of sensors.

There are of course many other examples, including the

structure-from-motion problem [15], [33] in computer

vision, multiclass learning in data analysis [3], [4], and so on.

This paper investigates whether or not one can recover
low-rank matrices from fewer entries and, if so, how and

how well. In Section II, we will study the noiseless prob-

lem in which the observed entries are precisely those of

the unknown matrix. Section III examines the more

common situation in which the few available entries are

corrupted with noise. We complement our study with a

few numerical experiments demonstrating the empirical

performance of our methods in Section IV and conclude
with a short discussion (Section V).

Before we begin, it is best to provide a brief summary of

the notations used throughout this paper. We shall use

three norms of a matrix X 2 R
n1�n2 with singular values

f�kg. The spectral norm is denoted by kXk and is the largest

singular value. The Euclidean inner product between two

matrices is defined by the formula hX; Yi :¼ traceðX�YÞ,
and the corresponding Euclidean norm is called the
Frobenius norm and denoted by kXkF (note that this is the

‘2 norm of the vector of singular values). The nuclear norm
is denoted by kXk� :¼

P
k �k and is the sum of singular

values (the ‘1 norm of the vector f�kg). As is standard,

X � Y means that X � Y is positive semidefinite.

Further, we will also manipulate linear transformations

that act on the space R
n1�n2 , and we will use calligraphic

letters for these operators as in AðXÞ. In particular, the
identity operator on this space will be denoted by

I : Rn1�n2 ! R
n1�n2 . We use the same convention as

above, andA � I means thatA� I (seen as a big matrix)

is positive semidefinite.

We use the usual asymptotic notation, for instance

writing OðMÞ to denote a quantity bounded in magnitude

by CM for some absolute constant C > 0.
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II . EXACT MATRIX COMPLETION

Hereafter, M 2 R
n1�n2 is a matrix we would like to know as

precisely as possible. However, the only information avail-
able about M is a sampled set of entries Mij, ði; jÞ 2 �,

where � is a subset of the complete set of entries

½n1� � ½n2�. (Here and in the sequel, ½n� denotes the list

f1; . . . ; ng.) It will be convenient to summarize the infor-

mation available via P�ðMÞ, where the sampling operator

P� : Rn1�n2 ! R
n1�n2 is defined by

P�ðXÞ½ �ij ¼
Xij; ði; jÞ 2 �
0; otherwise.

�

Thus, the question is whether it is possible to recover our

matrix only from the information P�ðMÞ. We will assume
that the entries are selected at random without replace-

ment as to avoid trivial situations in which a row or a

column is unsampled, since matrix completion is clearly

impossible in such cases. (If we have no data about a spe-

cific user, how can we guess his/her preferences? If we

have no distance estimates about a specific sensor, how can

we guess its distances to all the sensors?)

Even with the information that the unknown matrix M
has low rank, this problem may be severely ill posed. Here

is an example that shows why: let x be a vector in R
n and

consider the n� n rank-1 matrix

M ¼ e1x� ¼

x1 x2 x3 � � � xn�1 xn

0 0 0 � � � 0 0

0 0 0 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 0 0

2
66664

3
77775

where e1 is the first vector in the canonical basis of Rn.

Clearly, this matrix cannot be recovered from a subset of

its entries. Even if one sees 95% of the entries sampled at

random, then we will miss elements in the first row with
very high probability, which makes the recovery of the

vector x and, by extension, of M impossible. The analogy in

compressed sensing is that one obviously cannot recover a

signal assumed to be sparse in the time domain by sub-

sampling in the time domain.

This example shows that one cannot hope to complete

the matrix if some of the singular vectors of the matrix are

extremely sparseVabove, one cannot recover M without
sampling all the entries in the first row; see [10] for other

related pathological examples. More generally, if a row (or

column) has no relationship to the other rows (or columns)

in the sense that it is approximately orthogonal, then one

would basically need to see all the entries in that row to

recover the matrix M. Such informal considerations led the

authors of [10] to introduce a geometric incoherence

assumption, but for the moment, we will discuss an even
simpler notion which forces the singular vectors of M to be

spread across all coordinates. To express this condition,

recall the singular value decomposition (SVD) of a matrix

of rank r

M ¼
X
k2½r�

�kukv�k (II.1)

in which �1; . . . ; �r � 0 are the singular values and

u1; . . . ; ur 2 R
n1 , v1; . . . ; vr 2 R

n2 are the singular vectors.

Our assumption is as follows:

kukk‘1 	
ffiffiffiffiffiffiffiffiffiffiffiffi
�B=n1

p
; kvkk‘1 	

ffiffiffiffiffiffiffiffiffiffiffiffi
�B=n2

p
(II.2)

for some �B � 1, where the ‘1 norm is of course defined

by kxk‘1 ¼ maxi jxij. We think of �B as being small, e.g.,

Oð1Þ, so that the singular vectors are not too spiky as

explained above.

If the singular vectors of M are sufficiently spread, the
hope is that there is a unique low-rank matrix that is

consistent with the observed entries. If this is the case, one

could, in principle, recover the unknown matrix by solving

minimize rankðXÞ
subject to P�ðXÞ ¼ P�ðMÞ (II.3)

where X 2 R
n1�n2 is the decision variable. Unfortunately,

not only is this problem NP-hard but also all known

algorithms for exactly solving it are doubly exponential in

theory and in practice [16]. This is analogous to the
intractability of ‘0-minimization in sparse signal recovery.

A popular alternative is the convex relaxation [10],

[14], [19], [21], [29]

minimize kXk�
subject to P�ðXÞ ¼ P�ðMÞ (II.4)

(see [6] and [28] for the earlier related trace heuristic).

Just as ‘1-minimization is the tightest convex relaxation of

the combinatorial ‘0-minimization problem in the sense

that the ‘1 ball of R
n is the convex hull of unit-normed

1-sparse vectors (i.e., vectors with at most one nonzero

entry), nuclear-norm minimization is the tightest convex

relaxation of the NP-hard rank minimization problem. To

be sure, the nuclear ball fX 2 R
n1�n2 : kXk� 	 1g is the

convex hull of the set of rank-one matrices with spectral

norm bounded by one. Moreover, in compressed sensing,

‘1 minimization subject to linear equality constraints can
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be cast as a linear program (LP) for the ‘1 norm has an LP
characterization: indeed, for each x 2 R

n, kxk‘1
is the

optimal value of

maximize hu; xi
subject to kuk‘1 	 1

with decision variable u 2 R
n. In the same vein, the

nuclear norm of X 2 R
n1�n2 has the SDP characterization

maximize hW;Xi
subject to kWk 	 1 (II.5)

with decision variable W 2 R
n1�n2 . This expresses the fact

that the spectral norm is dual to the nuclear norm. The

constraint on the spectral norm of W is an SDP constraint

since it is equivalent to

In1
W

W� In2

� �
� 0

where In is the n� n identity matrix. Hence, (II.4) is an

SDP, which one can express by writing kXk� as the optimal

value of the SDP dual to (II.5). We note that specialized

algorithms taking advantage of the problem structure have

been shown to outperform interior-point methods by

several orders of magnitude (see [8] and [27]).

In [14], it is proven that nuclear-norm minimization
succeeds nearly as soon as recovery is possible by any

method whatsoever.

Theorem 1 [14]: Let M 2 R
n1�n2 be a fixed matrix of rank

r ¼ Oð1Þ obeying (II.2) and set n :¼ maxðn1; n2Þ. Suppose

we observe m entries of M with locations sampled

uniformly at random. Then there is a positive numerical

constant C such that if

m � C�4
Bn log2 n (II.6)

then M is the unique solution to (II.4) with probability at

least 1�n�3. In other words, with high probability,
nuclear-norm minimization recovers all the entries of M
with no error.

As a side remark, one can obtain a probability of success

at least 1�n�� for a given � by taking C in (II.6) of the form

C0� for some universal constant C0. The probabilistic nature

of this result stems from the assumption that the revealed

entries of M are sampled from the uniform distribution.

Another interpretation is that matrix completion is exact
for Bmost[ sampling sets obeying (II.6).

An n1�n2 matrix of rank r depends upon rðn1þn2�rÞ
degrees of freedom.1 When r is small, the number of

degrees of freedom is much less than n1n2, and this is the

reason why subsampling is possible. (In compressed

sensing, the number of degrees of freedom corresponds

to the sparsity of the signal, i.e., the number of nonzero

entries.) What is remarkable here is that exact recovery by
nuclear-norm minimization occurs as soon as the sample

size exceeds the number of degrees of freedom by a couple

of logarithmic factors. Further, observe that if �
completely misses one of the rows (e.g., one has no rating

about one user) or one of the columns (e.g., one has no

rating about one movie), then one cannot hope to recover

even a matrix of rank 1 of the form M ¼ xy�. Thus one

needs to sample every row (and also every column) of the
matrix. When � is sampled at random, it is well estab-

lished that one needs at least on the order Oðn log nÞ for

this to happen, as this is the famous coupon collector’s

problem. Hence, (II.6) misses the information theoretic

limit by at most a logarithmic factor.

To obtain similar results for all values of the rank, [14]

introduces the strong incoherence property with parameter

� stated below.
A) Let PU (respectively, PV ) be the orthogonal

projection onto the singular vectors u1; . . . ; ur

(respectively, v1; . . . ; vr). For all pairs ða; a0Þ 2
½n1� � ½n1� and ðb; b0Þ 2 ½n2� � ½n2�

hea; PUea0 i �
r

n1
1a¼a0

����
���� 	�

ffiffi
r
p

n1

heb; PV eb0 i �
r

n2
1b¼b0

����
���� 	�

ffiffi
r
p

n2
:

B) Let E be the Bsign matrix[ defined by

E ¼
X
k2½r�

ukv�k : (II.7)

For all ða; bÞ 2 ½n1� � ½n2�

jEabj 	 �
ffiffi
r
pffiffiffiffiffiffiffiffiffi
n1n2
p :

These conditions do not assume anything about the

singular values. As we will see, incoherent matrices with a

small value of the strong incoherence parameter � can be

1This can be seen by counting the number of parameters in the
singular value decomposition.
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recovered from a minimal set of entries. Before we state
this result, it is important to note that many model

matrices obey the strong incoherence property with a

small value of �.

• Suppose the singular vectors obey (II.2) with

�B ¼ Oð1Þ (which informally says that the singular

vectors are not spiky). Then with the exception of a

very few peculiar matrices, M obeys the strong

incoherence property with � ¼ Oð
ffiffiffiffiffiffiffiffiffiffi
log n
p

Þ.2

• Assume that the column matrices ½u1; . . . ; ur� and

½v1; . . . ; vr� are independent random orthogonal

matrices. Then with high probability, M obeys the

strong incoherence property with � ¼ Oð
ffiffiffiffiffiffiffiffiffiffi
log n
p

Þ,
at least when r � log n so as to avoid small samples

effects.

The sampling result below is general, nonasymptotic,

and optimal up to a few logarithmic factors.

Theorem 2 [14]: Let M 2 R
n1�n2 be a fixed rank-r matrix

with strong incoherence parameter �, and set n :¼
maxðn1; n2Þ. Suppose we observe m entries of M with

locations sampled uniformly at random. Then there is a

numerical constant C such that if

m � C�2nr log6 n (II.8)

then M is the unique solution to (II.4) with probability at

least 1�n�3.

In other words, if a matrix is strongly incoherent and

the cardinality of the sampled set is about the number of

degrees of freedom times a few logarithmic factors, then

nuclear-norm minimization is exact. This improves on an

earlier result of Candès and Recht [10], who provedV
under slightly different assumptionsVthat on the order of

n6=5r log n samples were sufficient, at least for values of the

rank obeying r 	 n1=5.

We would like to point out a result of a broadly similar

nature, but with a completely different recovery algorithm

and with a somewhat different range of applicability, which

was recently established by Keshavan et al. [24]. Their

conditions are related to the incoherence property
introduced in [10] and are also satisfied by a number of

reasonable random matrix models. There is, however,

another condition that states the singular values of the

unknown matrix cannot be too large or too small (the ratio

between the top and lowest value must be bounded). This

algorithm 1) trims each row and column with too many

entries; i.e., replaces the entries in those rows and columns

by zero; and 2) computes the SVD of the trimmed matrix,
truncates it as to only keep the top r singular values (note

that the value of r is needed here), and rescales. The result

is that under some suitable conditions discussed above, this

recovers a good approximation to the matrix M provided

that the number of samples is on the order of nr. The

recovery is not perfect, but one can then perform local
minimization to achieve exact recovery provided that one

has more samples, on the order of nr maxðlog n; rÞ (the

recovery is stable provided that the noise level is small

[25]). This work builds upon an earlier spectral technique

developed in the literature of computer science [5], which

also proves stability, but under stronger conditions.

A. Geometry and Dual Certificates
We cannot possibly rehash the proof of [14, Th. 2] in

this paper, or even explain the main technical steps,

because of space limitations. We will, however, detail

sufficient and almost necessary conditions for the low-rank

matrix M to be the unique solution to the SDP (II.4). This

will be useful to establish stability results.

The recovery is exact if the feasible set is tangent to the

nuclear ball at the point M (see Fig. 1), which represents

the set of points ðx; y; zÞ 2 R
3 such that the 2 � 2

symmetric matrix
x y
y z

� �
has nuclear norm bounded by

one. To express this mathematically,3 standard duality

theory asserts that M is a solution to (II.4) if and only if

there exists a dual matrix � such that P�ð�Þ is a

subgradient of the nuclear norm at M, written as

P�ð�Þ 2 @kMk�: (II.9)

Recall the SVD (II.1) of M and the Bsign matrix[ E (II.7). It

is well known that Z 2 @kMk� if and only if Z is of the form

Z ¼ EþW (II.10)

2Specifically, there is a generic random model under which
� ¼ Oð

ffiffiffiffiffiffiffiffiffiffi
log n
p

Þ with very high probability; see [10].

Fig. 1. The blue shape (courtesy of Recht) represents the nuclear ball

(see the main text); the plane represents the feasible set.

3In general, M minimizes the nuclear norm subject to the linear
constraints AðXÞ ¼ b, A : Rn1�n2 ! R

m, if and only if there is � 2 R
m

such that A�ð�Þ 2 @kMk�.
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where

PUW ¼ 0; WPV ¼ 0; kWk 	 1: (II.11)

In English, Z is a subgradient if it can be decomposed as the

sign matrix plus another matrix with spectral norm

bounded by one, whose column (respectively, row) space

is orthogonal to the span of u1; . . . ; ur, (respectively, of
v1; . . . ; vr). Another way to put this is by using notations

introduced in [10]. Let T be the linear space spanned by

elements of the form ukx� and yv�k , k 2 ½r�, and let T? be

the orthogonal complement to T. Note that T? is the set of

matrices obeying PUW ¼ 0 and WPV ¼ 0. Then,

Z 2 @kMk� if and only if

Z ¼ Eþ PT?ðZÞ; PT?ðZÞk k 	 1:

This motivates the following definition.

Definition 3 (Dual Certificate): We say that � is a dual

certificate if � is supported on � ð� ¼ P�ð�ÞÞ,
PTð�Þ ¼ E, and kPT?ð�Þk 	 1.

Before continuing, we would like to pause to observe

the relationship with ‘1 minimization. The point x? 2 R
n is

solution to

minimize kxk‘1

subject to Ax ¼ b (II.12)

with A 2 R
m�n if and only if there exists � 2 R

m such that

A�� 2 @kx?k‘1
. Note that if S? is the support of x?,

z 2 @kx?k‘1
is equivalent to

z ¼ eþ w; e ¼ sgn x?i
� �

; i 2 S?

0; i 62 S�

�

and

wi ¼ 0 for all i 2 S; kwk‘1 	 1:

Hence, there is a clear analogy and one can think of T
defined above as playing the role of the support set in the

sparse recovery problem.

With this in place, we shall make use of the following

lemma from [10].

Lemma 4 [10]: Suppose there exists a dual certificate �
and consider any H obeying P�ðHÞ ¼ 0. Then

kMþ Hk� � kMk� þ 1� PT?ð�Þk kð Þ PT?ðHÞk k�:

Proof: For any Z 2 @kMk�, we have

kMþ Hk� � kMk� þ hZ;Hi:

With � ¼ Eþ PT?ð�Þ and Z ¼ Eþ PT?ðZÞ, we have

kMþ Hk� � kMk� þ h�;Hi þ PT?ðZ� �Þ;Hh i
¼ kMk� þ Z� �;PT?ðHÞh i

since P�ðHÞ ¼ 0. Now we use the fact that the nuclear

and spectral norms are dual to one another. In particular,

there exists k�Zk 	 1 such that h�Z;PT?ðHÞi ¼ kPT?ðHÞk�.
Now pick Z such that PT?ðZÞ ¼ PT?ð�ZÞ so that
hZ;PT?ðHÞi¼kPT?ðHÞk�, and note that jh�;PT?ðHÞij¼
jhPT?ð�Þ;PT?ðHÞij 	 kPT?ð�ÞkkPT?ðHÞk�. Therefore

kMþ Hk� � kMk� þ 1� PT?ð�Þk kð Þ PT?ðHÞk k�

which concludes the proof. h
A consequence of this lemma is the sufficient

conditions below.

Lemma 5 [10]: Suppose there exists a dual certificate

obeying kPT?ð�ÞkG1 and that the restriction P�0T : T !
P�ðRn�nÞ of the (sampling) operator P� restricted to T is

injective. Then M is the unique solution to the convex

program (II.4).

Proof: Consider any feasible perturbation Mþ H
obeying P�ðHÞ ¼ 0. Then by assumption, Lemma 4 gives

kMþ Hk� > kMk�

unless PT?ðHÞ ¼ 0. Assume then that PT?ðHÞ ¼ 0; that is

to say, H 2 T. Then P�ðHÞ ¼ 0 implies that H ¼ 0 by the

injectivity assumption. The conclusion is that M is the

unique minimizer since any nontrivial perturbation
increases the nuclear norm. h

The methods for proving that matrix completion by

nuclear-norm minimization is exact consist in constructing

a dual certificate.

Theorem 6 [14]: Under the assumptions of either

Theorem 1 or Theorem 2, there exists a dual certificate

obeying kPT?ð�Þk 	 1=2. In addition, if p ¼ m=ðn1n2Þ is
the fraction of observed entries, the operator

PTP�PT : T ! T is one-to-one and obeys

p

2
I 
 PTP�PT 


3p

2
I (II.13)

where I : T ! T is the identity operator.
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The second part, namely, (II.13), shows that the
mapping P� : T ! R

n1�n2 is injective. Hence, the suffi-

cient conditions of Lemma 5 are verified, and the recovery

is exact. What is interesting is that the existence of a dual

certificate together with the near-isometry (II.13)Vin fact,

the lower boundVis sufficient to establish the robustness

of matrix completion vis-à-vis noise.

III . STABLE MATRIX COMPLETION

In any real-world application, one will only observe a few

entries corrupted at least by a small amount of noise. In the

Netflix problem, users’ ratings are uncertain. In the system

identification problem, one cannot determine the loca-

tions yðtÞ with infinite precision. In the global positioning

problem, local distances are imperfect. Lastly, in the

remote sensing problem, the signal covariance matrix is

always modeled as being corrupted by the covariance of
noise signals. Hence, to be broadly applicable, we need to

develop results that guarantee that reasonably accurate

matrix completion is possible from noisy sampled entries.

This section develops novel results showing that this is,

indeed, the case.

Our noisy model assumes that we observe

Yij ¼ Mij þ Zij; ði; jÞ 2 � (III.1)

where fZij : ði; jÞ 2 �g is a noise term that may be

stochastic or deterministic (adversarial). Another way to

express this model is as

P�ðYÞ ¼ P�ðMÞ þ P�ðZÞ

where Z is an n� n matrix with entries Zij for ði; jÞ 2 �
(note that the values of Z outside of � are irrelevant). All

we assume is that kP�ðZÞkF 	 � for some � > 0. For

example, if fZijg is a white noise sequence with standard

deviation �, then �2 	 ðmþ
ffiffiffiffiffiffi
8m
p

Þ�2 with high probabil-

ity, say. To recover the unknown matrix, we propose

solving the following optimization problem:

minimize kXk�
subject to P�ðX � YÞk kF 	 �: (III.2)

Among all matrices consistent with the data, find the one

with minimum nuclear norm. This is also an SDP, and let

M̂ be the solution to this problem.

Our main result is that this reconstruction is accurate.

Theorem 7: With the notations of Theorem 6, suppose

there exists a dual certificate obeying kPT?ð�Þk 	 1=2 and

that PTP�PT � ðp=2ÞI (both these conditions are true
with very large probability under the assumptions of the

noiseless recovery Theorems 1 and 2). Then M̂ obeys

kM� M̂kF 	 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp minðn1; n2Þ

p

s
� þ 2� (III.3)

with Cp ¼ 2þ p.

For small values of p (recall this is the fraction of
observed entries), the error is of course at most just about

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 minðn1; n2Þ=p

p
�. As we will see from the proof, there is

n o t h i n g s p e c i a l a b o u t 1 / 2 i n t h e c o n d i t i o n

kPT?ð�Þk 	 1=2. All we need is that there is a dual

certificate obeying kPT?ð�Þk 	 a for some a G 1 [the value

of a only influences the numerical constant in (III.3)].

Further, when Z is random, (III.3) holds on the event

kP�ðZÞkF 	 �.
Roughly speaking, our theorem states the following:

when perfect noiseless recovery occurs, then matrix comple-
tion is stable vis-à-vis perturbations. To be sure, the error is

proportional to the noise level �; when the noise level is

small, the error is small. Moreover, improving conditions

under which noiseless recovery occurs has automatic

consequences for the more realistic recovery from noisy

samples.
A significant novelty here is that there is just no

equivalent of this result in the compressed sensing or

statistical literature, for our matrix completion problem

does not obey the restricted isometry property (RIP) [12].

For matrices, the RIP would assume that the sampling

operator obeys

ð1� �ÞkXk2
F 	

1

p
P�ðXÞk k2

F 	 ð1þ �ÞkXk
2
F (III.4)

for all matrices X with sufficiently small rank and � G 1

sufficiently small [29]. However, the RIP does not hold

here. To see why, let the sampled set � be arbitrarily
chosen and fix ði; jÞ 62 �. Then the rank-1 matrix eie

�
j

whose ði; jÞth entry is one, and vanishes everywhere else,

obeys P�ðeie
�
j Þ ¼ 0. Clearly, this violates (III.4).

It is nevertheless instructive to compare (III.3) with

the bound one would achieve if the RIP (III.4) were true.

In this case, [20] would give

kM̂�MkF 	 C0p�1=2�

for some numerical constant C0Vthat is, an estimate that

would be better by a factor proportional to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðn1; n2Þ

p
.

It would be interesting to know whether or not estimates,
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which are as good as what is achievable under the RIP, hold
for the RIPless matrix completion problem. We will return

to such comparisons later (Section III-B).

We close this section by emphasizing that our methods

are also applicable to sparse signal recovery problems in

which the RIP does not hold (the authors are currently

writing a paper describing these results).

A. Proof of Theorem 7
We use the notation of the previous section and begin

the proof by observing two elementary properties. The first

is that since M is feasible for (III.2), we have the cone
constraint

kM̂k� 	 kMk�: (III.5)

The second is that the triangle inequality implies the tube
constraint

P�ðM̂�MÞ
		 		

F
	 P�ðM̂�YÞkFþkP�ðY�MÞ
		 		

F
	 2�

(III.6)

since M is feasible. We will see that under our hypotheses,

(III.5) and (III.6) imply that M̂ is close to M. Set M̂ ¼
Mþ H and put H� :¼ P�ðHÞ, H�c :¼ P�cðHÞ for short.

We need to bound kHk2
F ¼ kH�k2

F þ kH�ck2
F, and since

(III.6) gives kH�kF 	 2�, it suffices to bound kH�ckF.

Note that by the Pythagorean identity, we have

kH�ck2
F ¼ PTðH�cÞk k2

F þ PT?ðH�cÞk k2
F (III.7)

and it is thus sufficient to bound each term in the right-

hand side.

We start with the second term. Let � be a dual

certificate obeying kPT?ð�Þk 	 1=2; we have

kMþ Hk� � kMþ H�ck� � kH�k�

and

kMþ H�ck� � kMk� þ 1� PT?ð�Þk k½ � PT?ðH�cÞk k�:

The second inequality follows from Lemma 4. Therefore,

with kPT?ð�Þk 	 1=2, the cone constraint gives

kMk� � kMk� þ
1

2
PT?ðH�cÞk k� � kH�k�

or, equivalently

PT?ðH�cÞk k� 	 2kH�k�:

Since the nuclear norm dominates the Frobenius norm
kPT?ðH�cÞkF 	 kPT?ðH�cÞk�, we have

PT?ðH�cÞk kF 	 2kH�k�
	 2

ffiffiffi
n
p
kH�kF 	 4

ffiffiffi
n
p

� (III.8)

where the second inequality follows from the Cauchy–

Schwarz inequality and the last from (III.6).

To develop a bound on kPTðH�cÞkF, observe that the

assumption PTP�PT � ðp=2ÞI together with P2
T ¼ PT ,

P2
� ¼ P�, gives

P�PTðH�cÞk k2
F ¼ P�PTðH�cÞ;P�PTðH�cÞh i
¼ PTP�PTðH�cÞ;PTðH�cÞh i

� p

2
PTðH�cÞk k2

F:

But since P�ðH�cÞ ¼ 0 ¼ P�PTðH�cÞ þ P�PT?ðH�cÞ,
we have

P�PTðH�cÞk kF ¼ P�PT?ðH�cÞk kF

	 PT?ðH�cÞk kF:

Hence, the last two inequalities give

PTðH�cÞk k2
F 	

2

p
P�PTðH�cÞk k2

F

	 2

p
PT?ðH�cÞk k2

F: (III.9)

As a consequence of this and (III.7), we have

kH�ck2
F 	

2

p
þ 1


 �
PT?ðH�cÞk k2

F:

The theorem then follows from this inequality together

with (III.8).

B. Comparison With an Oracle
We would like to return to discussing the best possible

accuracy one could ever hope for. For simplicity, assume

that n1 ¼ n2 ¼ n, and suppose that we have an oracle
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informing us about T. In many ways, going back to the
discussion from Section II-A, this is analogous to giving

away the support of the signal in compressed sensing [13].

With this precious information, we would know that M
lives in a linear space of dimension 2nr� r2 and would

probably solve the problem by the method of least squares

minimize P�ðXÞ � P�ðYÞk kF

subject to X 2 T: (III.10)

That is, we would find the matrix in T that best fits the data

in a least squares sense. LetA : T ! � (we abuse notations

and let � be the range ofP�) defined byA :¼ P�PT . Then

assuming that the operator A�A ¼ PTP�PT mapping T
onto T is invertible (which is the case under the hypotheses

of Theorem 7), the least squares solution is given by

MOracle :¼ðA�AÞ�1A�ðYÞ
¼Mþ ðA�AÞ�1A�ðZÞ: (III.11)

Hence

kMOracle �MkF ¼ ðA�AÞ�1A�ðZÞ
		 		

F
:

Let Z0 be the minimal (normalized) eigenvector of A�A
with minimum eigenvalue �min, and set Z ¼ ���1=2

min AðZ0Þ
(note that by definition P�ðZÞ ¼ Z since Z is in the range

of A).4 By construction, kZkF ¼ � and

ðA�AÞ�1A�ðZÞ
		 		

F
¼ ��1=2

min � a p�1=2�

since by assumption, all the eigenvalues ofA�A ¼ PTP�PT

lie in the interval ½p=2, 3p=2�. The matrix Z defined above

also maximizes kðA�AÞ�1A�ðZÞkF among all matrices

bounded by �, and so the oracle achieves

kMOracle �MkF � p�1=2� (III.12)

with adversarial noise. Consequently, our analysis loses affiffiffi
n
p

factor vis-à-vis an optimal bound that is achievable via

the help of an oracle.

The diligent reader may argue that the least squares
solution above may not be of rank r (it is at most of rank 2r)

and may thus argue that this is not the strongest possible

oracle. However, as explained below, if the oracle gave T

and r, then the best fit in T of rank r would not do much
better than (III.12). In fact, there is an elegant way to

understand the significance of this oracle, which we now

present. Consider a stronger oracle that reveals the row

space of the unknown matrix M (and thus the rank of the

matrix). Then we would know that the unknown matrix is

of the form

M ¼ MCR�

where MC is an n� r matrix and R is an n� r matrix whose

columns form an orthobasis for the row space (which we

can build since the oracle gave us perfect information). We

would then fit the nr unknown entries by the method of

least squares and find X 2 R
n�r minimizing

P�ðXR�Þ � P�ðYÞk kF:

Using our previous notations, the oracle gives away T0 � T,

where T0 is the span of elements of the form yv�k , k 2 ½r�,
and is more precise. If A0 : T0 ! � is defined by A0 :¼
P�PT0

, then the least squares solution is now

A�0A0

� ��1A�0ðYÞ:

Because all the eigenvalues ofA�0A0 belong to ½�minðA�AÞ;
�maxðA�AÞ�, the previous analysis applies, and this

stronger oracle would also achieve an error of size about

p�1=2�. In conclusion, when all we know is kP�ðZÞkF 	 �,

one cannot hope for a root-mean-squared (rms) error better

than p�1=2�.
Note that when the noise is stochastic, e.g., when Zij is

white noise with standard deviation �, the oracle gives an

error bound that is adaptive and is smaller as the rank gets

smaller. Indeed, EkðA�AÞ�1A�ðZÞk2
F is equal to

�2trace ðA�AÞ�1
� �

� 2nr� r2

p
�2 � 2nr

p
�2 (III.13)

since all the 2nr� r2 eigenvalues of ðA�AÞ�1
are just about

equal to p�1. When nr
 m, this is better than (III.12).

IV. NUMERICAL EXPERIMENTS

We have seen that matrix completion is stable amid noise. To

emphasize the practical nature of this result, a series of

numerical matrix completion experiments were run with

noisy data. To be precise, for several values of the dimension

n (our first experiments concern n� n matrices), the rank r,

and the fraction of observed entries p ¼ m=n2, the following

4To clarify, Z0 is itself a matrix, but it may be useful to think of it as
vector with n1n2 entries.
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numerical simulations were repeated 20 times, and the
errors averaged. A rank-r matrix M is created as the product

of two rectangular matrices M ¼ MLM�R, where the entries

of ML;MR 2 R
n�r are independent identically distributed

(i.i.d.) Nð0; �2
n :¼ 20=

ffiffiffi
n
p Þ.5 The sampled set � is picked

uniformly at random among all sets with m entries. The

observations P�ðYÞ are corrupted by noise as in (III.1),

where fZijg is i.i.d. Nð0; �2Þ; here, we take � ¼ 1. Lastly,

M̂ is recovered as the solution to (IV.1) below.
For a peek at the results, consider Table 1. The rms

error defined as kM̂�MkF=n measures the rms error per

entry. From the table, one can see that even though each

entry is corrupted by noise with variance one, when M is a

1000 by 1000 matrix, the rms error per entry is 0.24. To

see the significance of this, suppose one had the chance to

see all the entries of the noisy matrix Y ¼ Mþ Z. Naively

accepting Y as an estimate of M would lead to an expected
MS error of EkY �Mk2

F=n2 ¼ EkZk2
F=n2 ¼ 1, whereas the

MS error achieved from only viewing 20% of the entries is

kM̂�Mk2
F=n2¼ :242¼ :0576 when solving the SDP (IV.1).

Not only are we guessing accurately the entries we have

not seen but also we Bdenoise[ those we have seen.

In order to stably recover M from a fraction of noisy

entries, the following regularized nuclear-norm minimiza-

tion problem was solved using the FPC algorithm from [27]:

minimize
1

2
P�ðX � YÞk k2

F þ �kXk�: (IV.1)

It is a standard duality result that (IV.1) is equivalent to

(III.2) for some value of �, and thus one could use (IV.1) to

solve (III.2) by searching for the value of �ð�Þ giving

kP�ðM̂� YÞkF ¼ � (assuming kP�ðYÞkF > �). We use

(IV.1) because it works well in practice and because the

FPC algorithm solves (IV.1) nicely and accurately. We also
remark that a variation on our stability proof could also

give a stable error bound when using the SDP (IV.1).

It is vital to choose a suitable value of �, which we do

with the following heuristic argument: first, simplifying to

the case when � is the set of all elements of the matrix, note

that the solution of (IV.1) is equal to Y but with singular

values shifted towards zero by � (soft-thresholding), as can

be seen from the optimality conditions of Section II by
means of subgradients; or see [9]. When � is not the entire

set, the solution is no longer exactly a soft-thresholded

version of Y but, experimentally, it is generally close. Thus,

we want to pick � large enough to threshold away the noise

(keep the variance low) and small enough not to overshrink

the original matrix (keep the bias low). To this end, � is set

5The value of �n is rather arbitrary. Here, it is set so that the singular
values of M are quite larger than the singular values of P�ðZÞ so that M
can be distinguished from the null matrix. Having said that, note that for
large n and small r, the entries of M are much smaller than those of the
noise, and thus the signal appears to be completely buried in noise.

Table 1 RMS Error ðkM̂�MkF=nÞ as a Function of n When Subsampling

20% of an n� n Matrix of Rank Two. Each RMS Error Is Averaged Over

20 Experiments

Fig. 2. Comparison among the recovery error, the oracle error times

1.68, and the estimated oracle error times 1.68. Each point on the plot

corresponds to an average over 20 trials. (Top) In this experiment,

n ¼ 600, r ¼ 2, and p varies. The x-axis is the number of

measurements per degree of freedom (df). Middle: n varies whereas

r ¼ 2, p ¼ 0:2. (Bottom) n ¼ 600, r varies, and p ¼ 0:2.
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to be the smallest possible value such that if M ¼ 0 and
Y ¼ Z. Then it is likely that the minimizer of (IV.1) satisfies

M̂ ¼ 0. It can be seen that the solution to (IV.1) is M̂ ¼ 0 if

kP�ðYÞk 	 � (once again, check the subgradient or [9]).

Then the question is: what is kP�ðZÞk? If we make a

nonessential change in the way � is sampled, then the

answer follows from random matrix theory. Rather than

picking � uniformly at random, choose � by selecting each

entry with probability p, independently of the others. With
this modification, each entry ofP�ðZÞ is i.i.d. with variance

p�2. Then if Z 2 R
n�n, it is known that n�1=2kP�ðZÞk !ffiffiffiffiffi

2p
p

�, almost surely as n!1. Thus we pick � ¼ ffiffiffiffiffiffiffi
2np
p

�,

where p ¼ m=n2. In practice, this value of � seems to work

very well for square matrices. For n1 � n2 matrices, based

on the same considerations, the proposal is � ¼ ð ffiffiffiffin1
p þffiffiffiffiffi

n2
p Þ ffiffiffipp � with p ¼ m=ðn1n2Þ.

In order to interpret our numerical results, they are
compared to those achieved by the oracle; see Section III-B.

To this end, Fig. 2 plots three curves for varying values of

n, p, and r: 1) the rms error introduced above, 2) the rms

error achievable when the oracle reveals T and the prob-

lem is solved using least squares, and 3) the estimated

oracle root expected MS error derived in Section III-B,

i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
df=½n2p�

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
df=m

p
, where df ¼ rð2n� rÞ. In our

experiments, as n and m=df increased, with r ¼ 2, the rms
error of the nuclear norm problem appeared to be fit very

well by 1.68
ffiffiffiffiffiffiffiffiffiffiffi
df=m

p
. Thus, to compare the oracle error to

the actual recovered error, we plotted the oracle errors

times 1.68. We also note that in our experiments, the rms

error was never greater than 2.25
ffiffiffiffiffiffiffiffiffiffiffi
df=m

p
.

No one can predict the weather. We conclude the

numerical section with a real-world example. We retrieved

from the Web site [1] a 366 � 1472 matrix whose entries
are daily average temperatures at 1472 different weather

stations throughout the world in 2008. Checking its SVD

reveals that this is an approximately low-rank matrix as

expected. In fact, letting M be the temperature matrix and

calling M2 the matrix created by truncating the SVD after

the top two singular values gives kM2kF=kMkF ¼ :9927.

We first tested whether the incoherence assumptions

described above were satisfied. Since M2 contained almost
all of the energy in M, we measured �B in terms of the

singular vectors of M2 and found �B ¼ 3:83, which we

considered to be small.

To test the performance of our matrix completion

algorithm, we subsampled 30% of M and then recovered an

estimate M̂ using (IV.1). Note that this is a much different

problem than those proposed earlier in this section. Here,
we attempt to recover a matrix that is not exactly low rank,

but only approximately. The solution gives a relative error

of kM̂�MkF=kMkF ¼ :166. For comparison,6 exact

knowledge of the best rank-2 approximation achieves

kM2 �MkF=kMkF ¼ :121. Here � has been selected to

give a good cross-validated error and is about 535.

V. DISCUSSION

This paper reviewed and developed some new results
about matrix completion. By and large, low-rank matrix

recovery is a field in complete infancy and abounding with

interesting and open questions. If the recent avalanche of

results in compressed sensing is any indication, it is likely

that this field will experience tremendous growth in the

next few years.

At an information-theoretic level, one would like to

know whether one can recover low-rank matrices from a
few general linear functionals, i.e., fromAðMÞ ¼ b, where

A is a linear map from R
n1�n2 ! R

m. In this direction, we

would like to single out the original result of Recht et al.
[29], who showedVby leveraging the techniques and

proofs from the compressed sensing literatureVthat if

each measurement is of the form hAk;Xi, where Ak is an

independent array of i.i.d. Gaussian variables (a la

compressed sensing), then the nuclear norm heuristics
recovers rank-r matrices from on the order of nr log n such

randomized measurements.

At a computational level, one would like to have

available a suite of efficient algorithms for minimizing the

nuclear norm under convex constraints and, in general, for

finding low-rank matrices obeying convex constraints.

Algorithms with impressive performance in some situa-

tions have already been proposed [9], [27], but the
computational challenges of solving problems with

millions if not billions of unknowns obviously still require

much research. h
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