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ABSTRACT 

Experimental studies were carried out on a continuum Neoprene bind
er, a glass bead-filled-polyurethane binder, and unbound micro-pulver
ized ammonium perchlorate particles. As a result of stress relaxation 
and creep experiments, it is concluded that the large deformation be
havior of the filled binder can be described in part in term s of the large 
deformation behavior of the continuum binder. The time scale of relaxa
tion of stres s in the filled binder is much longer than that of the unfilled 
binder. It is determined by frictional processes between the filler and 
binder and also among the filler particles. 

As a result of relaxation and creep studies on ammonium perchlorate 
particles, it is found that the time scale of relaxation is of the same 
order of magnitude as that of the filled binder. In addition, it is believed 
that the static indeterminacy of the unbound particles helps to explain 
much of the strain variation at given stress level that is observed in 
tensile experiments of composite propellants. 

1. INTRODUCTION 

This memo presents an interim report of some of the studies being 
conducted at GALCIT on the mechanical properties of composite propellants. 
Because of the radically new approach to an understanding of these pro
perties which is presented below, the writer will first recall some of the 
historic facts associated with the evolution of our present day knowledge 
of composite propellants. Then will follow a discussion of studies 
carried out during the last six months. Finally, a statement of out-
standing problem s and projected future studie s will be cast forth. 

II. CHRONOLOGY 

After the discovery at Jet Propulsion Laboratory (1948) of "liquid 
polymers, II rubber-base propellants became a reality. It took six 
years (1954) to develop really useful rubber composite s based on poly
urethane, and polysulfide binders, and three more years (1957) to bring 
po1ybutadiene binders into the picture. All of these materials helped 
revolutionize the design of rocket motors. The era of large rocket motors 
(diam. > 30 in. ) opened up when binders could accommodate > 20 % thermal 
strain. 

Because of the importance of these binders, all rocket companies ini
tiated broad research programs on their physical and mechanical properties. 



In 1954, the writer, then an employee of the Aerojet-General Corporation, 
initiated a series of studies (1) on polyurethane composites which brought 
to light some of the most important features of this system. These are 
summarized below without harking back to the details which lead to these 
conclusions. 

1. The first response of a polyurethane composite to any stress field is 
elastic deformation with no attendant volume change. 

2. At some point in the deformation process, more or less well de
fined, the binder pulls away from the filler particles, with attendant vol
ume increase. 

3. The point at which this pullaway initiates may be markedly altered 
by the absence or presence of special additives which promote adhesion 
between the binder and the filler. In complete absence of such adhesives, 
the point of pullaway is blurred; and it may actually occur over a broad 
range of strain. Thus pullaway is associated with a distribution of ad-
he sion strengths. If the adhesion strength is weaker than the binder 
strength, the binder will pull away causing the composite to tear at some 
weak point. This will usually propagate locally and lead to the so-called 
11 zebra-stripe" type of local failure. If the adhesion strength is stronger 
than the binder strength, the binder will yield (highly-filled composites 
are not well cured) and will hang onto the particles. This will make for 
much higher ultimate strains at slightly lower ultimate stres s levels than 
in the absence of the adhesive-. 

4. Poisson's ratio, properly defined (d. below) falls off to a value of 
1/4 as pull away goes to completion. 

5. If the deformation process is interrupted and relaxation of stress 
allowed to occur, it is found that the filler particles are driven by local 
stres s concentrations in the binder and move slowly to new positions of 
equilibrium and retarded by binder-particle frictional forces. 

6. If the relaxation process is allowed to ensue indefinitely at a given 
strain level, a propellant sample will eventually fail providing a minimum 
critical strain of about 30% in simple tension is exceeded. Below this 
critical strain, the propellant sample will not fail but the original stress 
will relax to a few tenths of a psi. After removal of the given fixed 
strain, the sample will recover completely. It follows that, if a propellant 
sample is held at a fixed stress in excess of a few tenths of a psi, failure 
will ensue. 

These observations raise a number of questions: What is the time 
scale associated with the frictional forces? How important are inter
particle frictional forces as compared to binder-particle frictional forces? 
What is the meaning of the high critical strain relative to the low critical 
stre s s level? 

As a result of a number of growing convictions that arise out of these 
and later studie~, (2, 3, 4) the writer believes that the final understanding 
of the mechanical behavior of composite propellants must come out of 
separate studies on idealized systems: 
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1. The continuum binder. 

2. The unfilled foam ed binde r. 

3. The filled but completely dewetted binder. 

4. The filled binder in some defined state of adhesion to filler. 

5. The unbound filler (a granular medium). 

Each of these systems is discus sed below, in the course of which some of 
the answers to the previously posed questions will be provided. 

III. CONTINUUM BINDERS 

Much is and has been known, of course, about the mechanical behavior 
of continuum rubbers. (5) In addition, a three year study program (6) in 
GALCIT has provided additional information regarding failure properties 
of continuum rubbers. The complete response behavior of a continuum 
rubber is contained in the strain energy density (W) which, because of the 
principle of material indifference to rigid body motions in isotropic space, 
is an explicit function of the stretch invariants: 

J I = ~A.2 
1 

(1) 

12 
J 2 = ~-A. 

(2) 
1 

V 
J 3 = 7TA. 

V 0 - 1 
(3 ) 

where A. = stretch ratio along a principal geometric axis; i = 1, 2, 3. The 
constitufive equation derived from W by the principle of virtual work is 
given by: 

a1J 3 = a i ~i = z[ Wl~iZ - =~ ]+ J 3W 3 

where a. 
1 

a. 
1 

= true stre s s 

= engineering 
oW W =: 

k oJk 

1 

stress or load/undeformed area 

(4) 

For most rubberlike materials, WI and W 2 may be treated as constants, 
in which case we write: 

WI = t (f) 

W2 = t (I-f) 

(5) 

(6) 

WI + W2 = t in agreement with Hooke's Law (7) 

Page 9 



W13 = W 23 = 0 (8) 

(9) 

Furthermore, most continuum rubbers are practically incompressible, 
in which case (4) becomes: 

[ 
2 l-fJ -a i = a i~"i = f.L f}..i - 2 + kj J 3 = 1 (10) 

1 

where k is a parameter which depends linearly on the hydrostatic stress. 

For the special case of simple tension (}..l = }..; }..2 = }..3 = l/...[)::) to which 
we shall now restrict the discussion, (10) becomes: 

(11 ) 

where f.L I stands for non-linear shear modulus. Equation (11) suggests 
that a pfot of f.L 1. vs. l/}" should yielq a straight line if (5) and (6) are 
valid. n 

Figures 1, 2 and 3 show the form such plots take for data obtained on 
Neoprene - GNA Rubber >:< at + 75 of., 0 of., -75 of. In addition to the 
expected straight line region of each curve plotted at a given time and 
temperature, there is a region in Figures 1 and 2 beyond}" = 3, where 
the stress rises rapidly because of the onset of natural anisotropy. At 
the molecular level, this is due to the stretching of the chain to the limit 
of statistical extensibility. (7) Now it is noted that the slopes of the 
straight-line regions in Figures 1 and 3 remain constant, whereas, in 
the region of rapid up-sweep, the slope decreases rapidly with time 
until it is equal to the slope of the straight-line region. This implies 
that the chains are not well cured chemically and that, after they have 
been stretched out to the limit of their extensibility, either the chemical 
juncture points yield under stress or the entanglements slip. In either 
case, as time ensures, the character of the rubber become s Mooney
Rivlin. Furthermore, since the slope remains constant with time, this 
implies that 

f.L(l-f) = 2W 2 = constant (I2) 

and therefore, since f.L decreases with time, f and WI also decrease with 
time, and each becomes negative. Once they are negative, there is a 
maximum value of stretch which the network can sustain in tension, ob
tained by setting (11) equal to zero: 

(I 3) 

>:< Samples provided by courtesy of Dr. G. Kraus, Phillips Petroleum Corp. 
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It will be of interest to relate this value of x.>!< to the ultimate or failure 
properties of the material. 

Figure 4 shows how the shear modulus, obtained from the intercepts 
of the straight-line regions with the ordinates of Figures 1, 2 and 3 at 
X. = 1 varies with time at each of the three test temperatures. It is 
obvious that the 0 0 

- 75 of. data fall well within the range of rubbery 
behavior, where the shear modulus is of the order of 100 psi, while the 
-75°F. data fall well within the range of glassy behavior, where the 
shear modulus is of the order of 100, 000 psi, a thousandfold larger 
than the rubbery modulus. 

The glass-transition temperature is estimated to be at -25°F., where 
future tests will be run. From these data will be obtained a complete 
quantitative characterization of the mechanical response of a typical 
binder. For the present, it can be said qualitatively that a typical binder 
in the rubbery temperature range behaves as a representative of a 
Mooney-Rivlin strain energy density with all the time dependence con
tained in the first Mooney- Rivlin constant. 

This is a very important characterization for two reasons. First of 
all, it allows one to predict viscoelastic response to any kind of loading 
pattern-dynamic, quasi-static, which-have-you, by using the theory of 
non-linear viscoelasticity (8) which will be fully discus sed in the next 
interim report. 

In addition to the response behavior of a binder, it is important to 
characterize the failure behavior. In studies carried out in connection 
with a doctorate dis sertation, (9) Ko has shown that the failure surface 
of natural rubber (2% sulfur) in the +++ octant of principal stress space 
is a tetrahedron, the three faces of which intersect at a right angle at 
an apex on the hydro static vector. 

The projection of these three faces is of course the dilatational plane, 
so that the volume encompassed between the apex of the tetrahedron and 
the dilatational plane is 1/6 of a cube erected by mirrorlike reflection 
of the apex through each of the three coordinate planes. (d. Figure 5) 
The physical significance of the failure criterion associated with this 
surface is that rupture occurs when the mean deviatoric stress reaches 
a critical value. Thus natural rubber does not fail by a dilatational 
mode, but does in fact exceed the critical values associated with the 
dilatational plane to fail by a distortional mode. This type of distor
tional mode may not be evinced in the ++ - or + - - octants, in which case 
the failure surface would have to have convex discontinuities. 

IV. FOAMED BINDERS 

Although we have entered into a detailed discussion of the mechanical 
behavior of typical continuum rubbers in the previous discussion, we 
will only use this information to predict ab initio the mechanical behavior 
of foams in terms of the void content, hole size, and rubber phase prop
erties. The equilibrium mechanical behavior of foams can be interpreted, 
independently of the previously mentioned factors, in term s of a strain
energy density which is associated with compressibility and a constitutive 
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equation of the type (I 0). 

Both of these points have been investigated. Ko (II) has shown that a 
polyurethane foam containing 470/0 voids is, for example, characterized by, 

W =0 
1 

W =1: 2 2 

(14) 

(15 ) 

(16) 

Furthermore, he has been able to relate the measured value of v(= 1 /4) to 
the void content of the foam, assuming the rubber phase to be incompres
sible. Thus a foamed rubber differs from a continuum rubber only in the 
form of the dilatation term: for the continuum rubber, k is a linear 
function of hydrostatic pressure; for the foam, J3W3 is a linear function 
of the dilatation, with v = 1/4. Both species of rubber are Mooney
Rivlinear in their shear behavior. 

The equilibrium failure behavior of the polyurethane foam at 75 0 F. is 
quite simple. In the +++ octant, it occurs when the mean hydrostatic 
stress reaches a critical value. Thus the mode of failure is purely 
dilatational. It is not known where the distortional limit of failure occurs 
other than that it must occur in the ++ - and + - - octants. Further studies 
under hydrostatic pressure are contemplated to determine the complete 
failure surface as well as its time and temperature dependence. 

V. A FILLED BINDER 

Like the unfilled foam, the filled binder dilates upon stretch and the 
constitutive equation (4) must be used to characterize it. In simple 
tension, this becomes, assuming Mooney-Rivlin shear behavior: 

O"A = f.L[fA2 - ~~fJ+ J3W3 (17) 

0= [f J 3 - (l-f)A J+ J W (18) 
f.L A J

3 
3 3 

or equivalently, 

0" 

[ 
l-f ] =f.L f +

AJ3 
(19) 

(20) 

From a straight-line plot of f.L 1. vs. (1 /AJ ), one can determine f.L and f. 
Equation (20) then allows one Po calculate W3 which can then be curvefitted 
to some function of J 3. 
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This procedure was carried out for data obtained in simple tension at 
75 of. and 2 in. Imino on a polyurethane bind~r filled with 70 vol. % glass 
beads. Figure 6 shows how the n~m-linear shear modulus varies with 
stretch ratio. Apparently there are two regions of behavior, one below 
200/0 strain in which dewetting is complete. The reason for this latter 
conclusion become s obvious when one looks at Figure 7, where the dila
tational strain energy gradient is plotted vs. J 3' After A. = 1. 2, the 
relation become s linear. Within this range, one then has 

(21) 

Since this expres sion must reduce to Hooke! sLaw, A and B are uniquely 
determined in terms of Poisson! s ratio leading to the expression: 

_W_3 = [4(1-f) _ 2 (1- v) ] _ [2(1- v) - 1 ] J 
f-L l-2v -';-1--~2v- 3 (22) 

Since A and B are interrelated, the calculation of v serves as a double 
check on the self-consistency of the data and the assumption made in 
deriving (22). Both the measured slope and intercept of the straight-line 
region of Figure 7 give the same value of Poisson! s ratio, e. g. v = 1/4. 
This is in striking agreement with the re sults obtained on unfilled foams. 
Thus a polyurethane propellant behave s after pUllaway much like a foam. 

The region in which pullaway occurs is the region in which f and f-L 
fall off rapidly. After pullaway, f has become negative, so that we have 
the following comparison: 

Neo-Hookean Continuum Rubber - f = 1, v = 1/2 

Foamed Polyurethane Rubber 
(50 Vol. % Holes) 

Filled Polyurethane Rubber 
(70Vol. % Beads) 

- f = 0, v = 1/4 

-f= -0.6, v = 1/4 
Pull away at A. = 1. 2 

Before pullaway, f and f-L must needs be strongly time and rate dependent. 
This phenom enon will be inve stigated in the immediate future. 

In addition, a study of the relation between the above tabulated parame
ter and the state of adhesion of the binder to the beads is contemplated. 
For these studies, both Teflon and glass beads, along with various 
adhesives, will be used. 

V. THE UNBOUND FILLER, OR GRANULAR MEDIUM 

At room temperature, the average stress relaxation time for a con
tinuum rubber held at a given stretch is of the order of nanoseconds. 
Anyone who has stretched a rubber band to a given stretch level is aware 
of the absence of any decrease in stress after arriving at the fixed stretch 
level. On the other hand, composite propellants do evince long-time 
stress relaxation in this sort of test. For example, a sample stretched 
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40% will take six months to relax its stress to less than I % of the original 
value. Why this slow decay process? It is believed this is mostly due to 
parti~le - binder frictional force s, and partly to particle -particle frictional 
forces. Furthermore, it is believed that most binders filled with 80 - 90 
wt. % of particles are not well cured, and that, during the six months of 
relaxation, the chains disentangle and yield. This picture is consistent 
with the behavior shown in Figures I, 2, and 3. On the other hand this 
disentanglement is not a completely irreversible process, since it is 
known that, after removal of the applied strain, the sample will recover 
completely. This merely proves that the adhesion is strong enough to 
cause the chains to re -entangle, but not necessarily in their original con
figurations, so that chemical linkages playa secondary role relative to 
failure processes in highly filled composites. 

Accepting the picture that chains will disentangle and yield, and will 
flow slowly under the retardation by particle-binder frictional forces, one 
is forced to conclude that the particles as well will tend to move to new 
positions of equilibrium while the stress is relaxing. One would like to 
know what sort of forces act on the particles. In our studies at GAL CIT , 
we have separated this question into two parts, one of which we will dis
cuss here. That is, what are the forces operating between the unbound 
particles? The other part which deals with the filler-binder frictional 
forces will be discussed in a subsequent report. 

For the studies which we shall discus s, we worked with high speed 
micropulverized ammonium perchlorate particles ca. 40 J.l in diameter. 
This type of material will not lose weight after sitting in an oven for three 
hours at 250°F., and yet the particles are definitely sticky to the touch. 
Thus any surface moisture is chemically bound and the material must be 
classified as cohesive, in the sense that cohesi()n is promoted by inter
surface chemical forces. The precise nature of these forces does not 
concern us. 

In contrast to ammonium perchlorate particles, sand is a non-cohesive 
material. Both of these granular media can be characterized by the con
cepts of soil mechanics, but the application to a medium such as sand is 
much simpler. We shall thus discuss some of the ideas of granular 
mechanics which do apply to sand (I2) and simultaneously indicate the 
modifications that need to be introduced to characterize ammonium 
perchlorate. 

The basic idea of granular elasticity is that stress is transferred 
through a granular body by normal and shear forces operating at points 
of contact between more or less regularly packed particles. These 
points of contact are actually deformed into areas of contact; and, under 
the assumption that the radius of the area of contact is small with respect 
to the mean radius of curvature of the two particles at the point of contact, 
Hertzian mechanics prevails and predicts a non-linear stress-strain 
relation. Further discussion of this type of mechanics does not concern 
us. In fact, we shall treat the particles as rigid and inquire of the 
forces acting on them. 

In addition to forces generated by surface tractions, there may also be 
cohesive forces. This is certainly the case for ammonium perchlorate 
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particles, a measure of which is expressed by the statement that a cylin
drical hole III in diameter by 4 11 in depth may be dug with sheer sides. If 
the cohesion were zero, the hole would necessarily be conical, the angle 
of the cone depending on the static angle of repose of the particles. 

The basis of viscous response in a granular medium lies in the depar
ture of the packing from a so-called perfectly dense structure. Thus in 
any granular medium the result of viscous response is an increase in 
density termed compaction. In postulating the existence of a perfectly 
dense structure, it is assumed that all particles are spheres of the same 
diameter. This is a reasonable assumption for many granular materials. 
The perfectly dense structure for uniform spheres is either face -centered 
cubic or hexagonal in symmetry. It will be assumed that the reader is 
familiar with the basic geometries of these structures* Looseness in 
granular media may be promoted either by removing an occasional sphere 
from a close-packed structure, or by mixing islands of close- and loose
packed structures. An example of a loose -packed structure is a simple 
cubic one. 

Before discus sing the process of compaction, let us analyze the forces 
that must operate in order for a dense structure to flow. Knowing this, 
we then can make an estimate of the forces involved in causing a loose 
structure to become dense. In retarding the operation of the se frictional 
forces by some sort of relaxation process, we can then arrive at a basis 
for viscoelasticity in gra'nular media. Finally we shall demonstrate this 
experimentally, and compare its time scale with that observed in pro
pellants. 

We discuss first a cohesionless medium (face-centered cubic struc
ture). In the unit cell of this cube, there are four spheres, eight octants, 
the center of curvature of each octant placed at each of the eight apices 
of the cube, and six hemispheres, the center of curvature of each hemi
sphere placed at the center of each of the six faces of the cube. All 
octants and hemispheres are turned inward so as to be in interior contact, 
their plane surfaces facing outward. 

If a hydrostatic pressure 0'3 be applied to such an array of spheres, 
the forc e normal to each face of the unit cube will be 8R 20'3, since the 
edge of the unit cube is 2 ..fl R, where R is the radius of a sphere. The 
resultant force normal to the surface of the hemisphere in the center of 
a given face of the unit cube is 4R 20'3 since the total face exposes one 
circle (the plane surface of the hemisphere) and four quadrants (the plane 
surfaces of the solid octants). This force is reacted to by four equal 
forces at the four points of contact of the hemisphere with four of the five 
other hemispheres; it does not contact the fifth. Its contacts with the four 
octants are orthogonal to the direction of the force we are discussing, and 
since there are no tangential forces because the loading is hydrostatic 
these four contacts do not contribute a resultant to the reactant force. 
The angle of contact between each of the hemispheres is (71/4) measured 
relative to the direction of the force on the given face, so that the contact 
force between each pair of hemispheres is 

>:< Further information may be found in R. Scott's Soil Mechanics, 
Addison-Wesley (1962). 
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2 
4R °3 2 
---w- = ..fi R °3 
4cos 4 

Now consider a hexagonal plane in which a given sphere is surrounded 
by six spheres in-plane, three above, and three below, for a total of 
twelve. The three spheres above ;f0ntribute ~ total force normal to the 
given hexagonal plane 3..f213..[2 R 03 = 2...[3 R 03 where (...f2/3) is the 
direction cosine of each upper sphere with respect to the normal. Now 
suppose that, in addition to this normal force, a force D making angle 13 
with the y-axis, in the y -z plane is added to the force system, where z 
is the axis normal to the hexagonal plane, y is collinear with a row of 
spheres in the plane, and x of course is orthogonal to the other two axes. 
The extra force D will tend to lift one hexagonal layer out of the valleys 
and cause it to slide over the cols (saddle valleys) into the next set of 
valleys. A simple force balance shows the minimum force needed to 
cause slippage for an assumed friction constant f is given by: 

where 

k= 

D 
= 

2(..f6 - f) 

..f3 + 4..[2 f 

I 

R cos 13 - sin 13 
(23) 

(24) 

This force in turn is produced by a deviator stress acting at an angle 
13 on t2e hexagonal plane. Since the projected area of the unit hexagon is 
6...[3 R sin 13, and since one sphere occupies 1/3 the unit hexagon area, 
the force is given by: 

(25 ) 

Thus the work done in moving the sphere from a valley to a saddle point 
is proportional to (01 -°3), whereas by (23), the minimum force necessary 
to initiate motion is proportional to 03 and some functio:p. of the "friction 
constant. In the case of cohesive materials, the minimum force must 
include a constant term to overcome cohesion so that the work done 
includes an energy constant for the breaking of cohesion. Accordingly, 
we write for ammonium perchlorate spheres 

(26 ) 

where A and B will be adjusted to fit available data. Strictly speaking, 
we should express A and B as functions of 13 in an analogous fashion to 
what was done in leading up to (23); however, we shall present experi
mental data only for a given 13, and will not press the analysis further. 

It has already been pointed out that the time scale as sociated with 
stress relaxation in composite propellants is of the order of several 
months. In order to assess the time scale of frictional force relaxation 
among granular particles, a se;r-ies of tests was carried out in which 
HSMP ammonium perchlorate particles packed in a 4" x I" thin rubber 
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cylinder were loaded up with a constant hydrostatic pressure and an 
initial deviator load which was allowed to relax. Figure 8 shows the 
relaxation curves obtained at a given constant initial qisplacement. The 
precise value of this displacement is unimportant because of the lack of 
definition of the state of compaction of the sample from test to test. As 
a re sult the dimensionle s s ratio of instantaneous stre s s to initial stre s s 
is plotted. 

Now let us consider the nature of the processes which retard the 
relaxation of stress. Patently they are frictional processes; but at the 
molecular level, friction loses meaning. Instead it is suggested that 
the atoms in the contact area in jumping around with a quantum frequency 
kT/h, where k and hare Boltzmann1 s and Planck1 s constant, respectively. 
Eyring has shown that when an atom with such a frequency is urged by a 
local force to jump over a potential energy barrier, then the rate constant 
of this jump process is proportional to the hyperbolic sine of the local 
stress concentration. 

In order to define the rate constant for the jump proces s, we must 
take account of the realities of the packing. Actually there are probably 
islands of various types of regularity, various degrees of looseness, and 
various states of orientation. This is empirically equivalent to saying 
there is a distribution of relaxation times. A typical distribution function 
which works well for composite propellants (13) is the Cole distribution 
which leads to the following expression for stress relaxation. 

o 1 
= (27) 

where k is the rate constant. Fairly good straight-line plots of 10g(00/0-1) 
are shown in Figure 9. The order of magnitude of the log-log slopes n is 
just that found for composite propellants. (14) There is however an -
irregular variation of the slope with the hydrostatic pressure 03' Because 
of the lack of definition of the state of compaction, analysis of this effect 
cannot be pursued. Furthermore, in order to correlate the rate constant 
with the hyperbolic sine of the stress deviator, it is necessary to deter
mine the temperature dependence of the relaxation process since the 
proportionality constant (B) of equation (26) which multiplies the stress 
deviator should go as one over the absolute temperature. Without this 
information virtually any constant can be chosen to Rive a good straight
line relation between the rate constant and hyperbolic sine of the stress 
deviator work term. So the main conclusion we can draw from these 
relaxation experiments is that the distribution of relaxation times is 
similar to that observed in propellants but the time scale of relaxation 
is shorter by perhaps a factor of five. This latter estimate is based on 
the facts that the time to relax to I % of initial stress is six months for 
composites, one month for granular media of the type we are discussing. 

In addition to relaxation data, we also ran creep data, the main 
features of which are summarized in Figures 10, 11 and 12. In Figure 
10 we note that a sample subjected to initial constant load of 15 pounds 
creeps much more rapidly during the first cycle than the same sample 
in subsequent cycles. Furthermore, when the load is varied from 15 
pounds to 30 pounds on the same sample (Figure 11), the creep 
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displacement is not changed significantly. If a fresh sample (Figure 12) 
is cycled under a 30 pound load, again the first cycle produces much more 
creep than subsequent cycles which lie in the same range of displacement 
as was obtained with the first sample. Thus the first reaction of granular 
media to load is to compact. Presumably it does this under a minimum 
value of the stress deviator as shown by equations (23) and (25), modified 
to account for cohe sion. The secondary reaction is primarily elastic. 

Now by inference we can extend this line of thinking to bound granules, 
or composite propellants. Because of the elastic constraints of the 
binder, the amount of compaction is limited in that particles are not 
completely free to move in the direction of producing a dense structure. 
Furthermore, the amount of looseness in composites is much lower than 
that of granular media. The average soil has a porosity of 35%. The 
ammonium perchlorate we studied had a porosity of 48%, whereas a com
pletely dense structure has a porosity of 26%. In the propellant most of 
this porosity is filled up by binder, leaving only a few tenths of one per 
cent porosity. This does not mean however that particles cannot achieve 
better packing with change in porosity. Furthermore, as a sample is 
stretched, the reverse process can occur· in which particles decompact 
and then, under the influence of local stresses in the binder, can rear
range to new packing. This latter proce s s is facilitated by the dilatation 
of the composite which ensues with stretch (d. equation 7 and discussion). 

Because of the frictional constraints of the binder, the rates of com
paction, decompaction, rearrangement of particles, and slippage of the 
binder are all slower than in a granular medium. In fact, in most non
cohesive granular media, the relaxation is so fast as to be practically 
non-observable after a few seconds. Since this slow relaxation of stress 
in propellant s is of import in practically every application, we consider. 
it most important to determine next the time scale of the slippage of 
binder around particles. It is planned to initiate work in this area during 
the next report period. 

VI. CONCLUSION 

As the result of the creep and relaxation studies on ammonium per
chlorate particles, we are led to three important conclusions. First, 
the time scale associated with the relaxation of frictional forces between 
particles is not as long as that associated with forces between particles 
and binder. --

Secondly, the particles can compact or decompact, making for tremen
dous changes in the shear properties of a propellant as a function of super
imposed hydrostatic pressure. This dependence should show up in a 
Mohr-Coulomb failure trace and has indeed been verified by Surland. (15) 
Kruse, (16) Heller, (17) and Vernon (18). 

Thirdly, since ca. 800/0 of the propellant micro-structure is statically 
indeterminate, a deformed structure can accommodate a relatively large 
strain and hold it while relaxing the stress to zero. This strain is indeed 
elastic, but the instantaneous stress associated with it is not. Only after 
ca. six months will the stress have relaxed to its equilibrium elastic 
value of a few tenths of a psi. This implies that the effective modulus 
of an unfilled composite (one from which the ammonium perchlorat.e has 
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been leached out) is roughly a hundred times less than that of the filled 
composite; and this is exactly what one observes after removal of the 
perchlorate particles. The resultant binder is quite a soft" cheesy" 
material. This latter statement should be verified quantitatively and 
will be in a subsequent report period. FQr the present, we can observe 
however that the modulus of the 47 vol. % voided foam used by Ko (19) 
in his thesis studies has a value of 30 psi which is a good factor of ten 
less than the modulus of the same binder filled with AP. 

As a result of the stress relaxation studies on the glass-filled binder, 
we conclude that there are three regions of characteristic behavior 
evinced by most composites. In Figure 6 the region of rapid rise corres
ponds to storage of dilatational strain energy in the binder and filler in 
proportions determined by their respective bulk moduli. In this region, 
the value of Pois son l s ratio of the binder is close to one -half. The 
second region, on which dewetting occurs rapidly, is one in which bot~ 
Poisson l s ratio and shear modulus decrease in value while adhesion 
bonds are broken and voids formed around each particle. The third 
region is one in which a slow rearrangement of the filler particles occurs. 
This slippage of the particles is probably attended by rehealing of the 
bonds. This conclusion is evident from the fact that recovery takes as 
long as stress relaxation. 

REFERENCES 

1. Blatz, P. J.; Olsen, F. N.: Monthly Progress Reports to Polaris 
Division, 1954 - 1958. 

2. Blatz, P. J.: Fracture Studies on Composite Solid Propellants, 18th 
Meeting Bulletin of JANAF Panel on Physical Properties of Solid 
Propellants, p. 17. 

3. Blatz, P. J.: The Yield Surface in Principal Stress Space, 19th 
Meeting Bulletin of JANAF Panel on Physical Properties o'"f"'SOlid 
Propellants, p. 165. 

4. Blatz, P. J.; 0 1 Callaghan, T.: Application of Large Deformation 
Theory to the Determination of Stresses and Strains in Internally 
Pressurized Propellant Grains. Appendix to 20th Meeting Bulletin 
of JANAF Panel on Physical Properties of Solid Propellants. 

5. Treloar, L.R.G.: Physics of Rubber Elasticity, Oxford University 
Press (1958). 

6. Blatz, P. J.; Ko, W. L.; Zak, A. R.: Fundamental Studies Relatin
FcI to the Mechanical Behavior of Solid Propellants, Rocket Grains an 

Rocket Motor s. 

GALCIT SM 61-15 
GALCIT SM 61-19 
GALCIT SM 62-14 
GALCIT SM 62-23 
GALCIT SM 62-27 
GALCIT SM 63-5 
GALCIT SM 63-17 

California Institute of Technology 
California Institute of Technology 
California Institute of Technology 
California Institute of Technology 
California Institute of Technology 
California Institute of Technology 
California Institute of Technology 

June 1961 
Oct. 1961 
Feb. 1962 
May 1962 
Nov. 1962 
Feb. 1963 
May 1963 

Page 19 



7. Blatz, P. J.: A lication of Finite Elastic Theor to the Behavior of 
Rubberlike Mate.rials - To appear in emistry and Tech-
nology Reviews, 1963. 

8. Noll, W.: Arch. Rat. Mech. Anal. ~, 197 (1958). 

9. Ko, W. L.: Application of Finite Elastic Theory to the Behavior of 
Rubberlike Materials, Ph. D. Dissertation, California Institute of 
Technology, June 1963. 

10. Blatz, P. J.; Ko, W. L.: Application of Finite Elastic Theory to 
the Deformation of Rubbery Materials. Transactions of the Society 
of Rheology, Vol. ~ p. 223, 1962. 

11. Ibid, p. 241. 

12. Scott, R.: Soil Mechanics, Addison-Wesley (1963). 

13. Cole, R.: Dielectric Relaxation in Glycerin, J. Chem" Phys., 18, 
1417 (1950). 

14. Landel, R.: Dynamic Mechanical Properties of a Glass-Bead Filled 
Polyisobutylene Binder, Trans. Soc. Rheo. ~, 253 (1958). 

15. Surland, C. C.: Stress Measurements on Hydrostatically Stressed 
Materials, Experimental Mechanics, ~,No. 4,110, April 1962. 

16. Kruse, R. B.: Failure Behavior of Composj.te Solid Propellants, 
21st Meeting Bulletin of JANAF Phys. Prop. Panel of Solid 
Propellants. 

17. Heller, R. A.; Stoll, R. D.; Freudenthal, A. M.: Anelasti-Plastic 
Behavior of a Filled Elastomer, ONR Proj. #064-446, Columbia 
Univ. Report, June 1962. 

18. Vernon, J.: Biaxial Tensile Failure of Composite Solid Propellants, 
21 st Meeting Bulletin of J ANAF Phys. Prop. Panel of Solid Propel
lants. 

19. Ope cit. Ref. 9. 

Page 20 



ti 
0tI 
C1l 

f\) ..... 

I~O 

100 

80 

60 

'fo 

2.,0 

(j Yn, 

I A -\""'Z.. 
o 110 

fsL 

..L 

t, MI/'JUTES 

0.0 

o. f 
o."t. 
0,"" 
0.1 
1,0 
~.o 

s.o 
1(10 

2W2 = .Lf(I-t) ~ 69 PSL 

I Ao I 

o 0.00 0.'2.5" o.so 0.15' ,.00 

Figure 1. Stress Relaxation of Neoprene GNA at + 75° F . 



¢1 
~ 

t. MII\IUT~S CD 

~ 
J 

I\) 
I\) 0.1 

0.'1. 

201 ""-""- ............... ~~~ 
0·'1 
1.0 
Z.O 
14. 0 

/0 
20 
40 
/00 

I --~~ -----'DO 

So 

(Jun': 

''0 
, pSI.. 

I 

10 - A! 
2 \..v'2 M ( 1- f )::: ro I pSt 

4<> 

2.0 

_1_ 

o J ).0 

0.00 a'S O.SO 0.15" 1,00 

Figure 2. Stres s Relaxation of Neoprene GNA at OOF. 



}.A .4. M. 

i:.J ""'NI)T~S 

12.)(10'" 

tfo 

I / / 
10 

/ /C)(> 
/ 

/ 

... 
/ I 

3Z..> M zoo 
/ / 

8 

(j urIL 

I 

Ao - ~! 
) PSL 

6 

f.I. 

2. 

~ 
OQ 

CD ..L ...L -L 
0 I\) 

\..N 
• 

0.'8 0.", ,.00 O'i o.'lfl t.oo o.qS 0." ,.00 
Figure 3, Stress Relaxation of Neoprene GNA at - 75 0 F. 



T =. - 75 o F. Il -

JJ.) f SL 

- To: 0 0 1=. C 

T- +'15 0 F. J 

Page 24 

1,0 10 

Figure 4. Time and Temperature Dependence of the Shear Modulus 
of Neoprene GNA 

-

/00 



I 
I 
I 

~1</aT 

~~ 

",,' t 

0'" -+ OJ - 0( 0'1< ~ crT 

(-t~ol.~l) 

---------~---
I 

1 

OJ/O'T 

Oi./o-T 

.: Uniaxial Tension 1 

0: Strip-Biaxial Tension 0.70 

~: Homogeneous -Biaxial Tension O. 15 

(): Triaxial Tension 0.74 

0i/1f. T 
O"IC/ OT 

0 0 

0.25 0 

0.15 0 

0.51 0.51 

Z Figure 5. plots of Experimental Failure Points in Principal True Stress Space (Polyurethane Rubber). 
CD 

I\) 
VI 



~ 
Otl 
CD 

I\) 
~ 

6 

500 

LfXlI 6"~ )~ 
A - ;~ 

30 

g.oo 

too 

Ci""" == fI [ -f + {-'f J 
~ -.lL. ~J: Aa 3 

IJ== Lf50 ~ 
f == - O. b I 

---'" ..---'" 
---","---"'---

Point of Complete Dewetting 

0·7 

I 
,\~ 

Figo 6. 

o.<r 

Rectified Stress-Stretch Behavior of a 
Polyurethane Foam Filled with 70 vol ?c 
Glass Beads (40 p diameter). 

I 0·9 
A.~ 

---'" 

/.0 



• --

+ -~ 

Fig, 7. Dilatational Strain-Energy 
Gradient of a Filled Poly
urethahe Foam, 

r Point of Complete Dewetting 

~.15t-----------------~---------.----~ 
f,(j) I·()~ /,0' ,.06 I.~ './0 I. 

Page 27 



~ 
(JQ 
CI) 

I\) 
co 

1.000~i------------------------~j-----------~------------lr-------------------------' 

e~ e . ~ Q Q e e 89 8Q 0 __ _ " ~ ,clTa '" 8.0 pS':: 

PSL 

oo,ooL, ----------+----~---~--t_---------__, 

~ 
(fa, 

''-I 100 

-t:: J MIN UTeS 

Figure 8. Stress Relaxation of HSMP-AP Particles (40 f Diameter). 



I~p-------------------------r------------------------, 

'0~----~~-------------------'~~~----------------------~_:1 

D3::: 11.0 fSi. 

f,_OI------------~~------~I__--------------...... 
1.0 10 i: MINUTe'S 

J 
'00 

Figure 9. Stress Relaxation of AP Particles Rectified According to 
Cole Distribution Function. 

Page 29 



~ 
()Q 
CD 

VI o 

2.5' 

'2.0 

IS 

10 

s 

Figure 10. Cyclical Creep Displacement of AP Particles, Sample No. I, 
Uncompacted, under a 15 lb. load. 

DI S PLAC.e;'"ME:N"T 
J 

MIL.S 

Ruw·. 

'#1 

it? 

.ij3 

"'If 
~" 
,"7 

o~I--------------------------------------____________ ~ ______ ~~~~~ __________ ~ 
1.0 10 100 IQoO I~QDO 



~ 
~ 
\jI 
t-' 

10 

8 

6 

'4-

2. 

Figure 11. Cyclical Creep Displacement of AP Particles, Sample No.1, Partly Compacted, 
under a 30 lb. Load. 

1> \ S ,.lAc-!!' ME' ' .. IT) 

M IL.S 

RVN: 

:#1 

'#3 

":t:t4-

-:tic. 

"# !;)-

o J i: ) ~.c:.ON~.s I 
:0 /0 /00 /000 /0,000 



~ 
o:J 100 I 
\.N 
I\) 

5"0 

10 

s: 

1)1.5 PLf!\ Cc t-\IHJT 
J, 

MIL.S 

~ 

~ 

n __ - ..... --

9- i;I. 

:#'Z.. 

::tI3 

=#'+ 
:tiS-

Rv~ 

::ttl 

Figure 12. Cyclical Creep Displacement of AP Particles, Sample No, 2, 
Uncompacted, under a 30 lbo Load. 

'-
__________________________________________________ t~J~_S_E_C_O~~~~~S~ ______________________________________ ~ 

/.0_ 

10 100 /000 /0,000 


