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INTRODUC TION 

The problem of determining the effective compressibility of a 
hollow sphere is practically important because it relates to the 
problem of compacting a real material containing voids. For example, 
the void content in propellants is such that the initial slope of the P- V 
curve is three-to-ten times lower than the limiting slope obtained after 
all the voids have been collapsed. The phenomenon of compaction­
decompaction is extremely important in determining the mechanical 
properties of propellants since it accounts for much of the batch-to­
batch variability and also is a function of the stress-time-temperature 
history of the material. In this memo we consider only a very special 
type of compaction, but it is believed that this will pave the way for 
further analysis along these lines. 

DEFINITION OF THE PROBLEM 

A real material with void defects usually entrains up to a few-tenths 
per cent of such pinholes, ranging from one to several hundred microns 
in diameter. This scale of dimensions is particularly true in composite 
propellants, where a void may be the occasion of a missing oxidizer par­
ticle. Because of the relatively low number of such holes, it is assumed 
that the stress fields do not interact. Thus the problem of how much a 
voided material compacts as a result of external forces reduced to that 
of the effective compressibility of a hollow sphere, internal radius a, 
external radius b. For simplicity, we assume point-symmetric loading. 
The more general problem is extremev difficult. We denote the fractional 
cavity volume by the symbol ~ = a~b ; and we assume that the sphere is 
subjected to hydrostatic pressure Pat r=b, and stress-free at r=a. 
The problem is to calculate the effective P- V curve, and the initial effec­
tive bulk modulus. 

We denote coordinates in the deformed body by capital symbols, in 
the undeformed body, by small symbols, and look upon the undeformed 
coordinates as functions of the deformed coordinates, or, because of sym­
metry, 

r= ( 1 ) 

It is easily established that the four metric tensors (d. Green and Zerna l S 

Theoretical Elasticity) are given by: 
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The mixed stretch tensor is defined by: 

1 '. ( ~1.. M = 1) G -
·k <J jlt.. -

The invariants of M~" are important: 
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For a constitutive law we choose a form which is both mathematically con­
venient and in excellent agreement with Bridgman1s hydrostatic data (1) on 
rubberlike materials: 

1'" i.~ -
a 

9 0 C ) iQ -- + C-I-t- G X. v., 
:3 J s 

(10) 

where c= 3K;',ll. This value for C is needed to guarantee that (10) reduces 
to Hooke I s law for small strains. 

Since the stre ss tensor is diagonal and the coordinates in the deformed 
body orthogonal, we can establish equilibrium by computing the physical 
stresses and substituting in the equation: 

d cr &.R. + 2.. ( cr ~R. - (J e e) = 0 ( 11 ) 
dR - R. -

':< Primes denote differentiation reR.; zeros have been omitted. 
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where 

Making the appropriate substitution, we obtain: 

'2. " , r r 
Zr-2R..r-­r''2.. 

CRz.J:' 
+ z,=O ::3:r 4/"?I 

We set: 

and get: 

Now set: 

R= 

A = ~ r 

s 
e... 

Equation (9) becomes: 

~= 

or 

/ __ I dX 
Ads 

3 

Substitution of (I9) and (20) into (I7) yields: 

=0 

=0 

_ 2 j~ (1- A '] )~+ I (1_ K) d ]"3 + Co R ~ = a 
A 4- To -;:: ]"3 d A 3 ]"3 4/:) 

( 12) 

(13 ) 

(14) 

(15 ) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21 ) 
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Division of (21) by (19) eliminates ds: 

2. (J~ - ,\3) 
- f... ( I + C ,\4 ) 

3I
J 

4/'3 

We now set J
3

= A3/W 3 

whereupon (22) reduces to: 
4-

d In A = c.. w +-:3 
C w4- -+ 1- w?J +' 

(22) 

(23) 

(24) 

Now we note that W -- A, since j:) is of the order of unity, i. e., unless 
pressure become extremely high, the material itself will not compress 
significantly. Furthermore, most of the initial effective compression is 
provided by the collapse of the void, as A ~ O. We shall as sume that, 
within the range of pressures ordinarily encountered C w» \. Since for 
most real materials, K/.-u is of the order of 1000, this is equivalent to 
stating that W or A never becomes less than 1 • Thus we gain an impor­
tant algebraic simplification as long as we do not decrease the radius of the 
cavity by more than one-hundred fold. Now (24) becomes, to the first order 
in ( Vel: 

d l ~ = d w _ ~ (~ _ d w ) + " . 
n 1\ W (, W w4 

which integrates to: 

.A = Awe X p [~t~ - iw 4- ) J 
_:3 [ 3 ( I I)] J,:} - A exp C w - 'Lw4-

with A an integration constant. 

If lIn wi» l-t(~ - Z
I
w4-) I 

the (26) and (27) reduce to: 

).=Aw 

J~~Afj 

(25 ) 

(26) 

(27) 

(28) 

(29) 

(30) 

Actually, assumption (28) is valid only for W:>lO%, so it restricts our 
area of analysis somewhat further, but affords an even more useful alge­
braic simplification. From here on, we treat Js as a constant. 

Combining (14) and (19), we obtain 

d In r'.}:::' d(,>\~) _ d In (J~ -A '3) 
J~- ),.3 

(31 ) 
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or 

B 
(32) 

with B another integration constant. The radial component of the physical 
stresses assumes the form, using (3), (10), and (12): 

crR.~ = ~ -+- C- I - ~ 
fo.< A 4- :r y~ 

.3 

(33) 

Equations (32) and (33), evaluated at r=a, and r=b, form a set of four 
simultaneous algebraic equations in the unknowns: i J" 3) B,.J Aa,and A. b] . 
We can eliminate B immediately by using the definition for the fractional 
void volume <5, whereupon we obtain: 

'3 _ 3 
~ :c_J3- Ab 
b 3 -0- J

3 

_ A~ (34) 

_-.e..=,J, + C-I-~ (35) 
fi,( A: J~ Y3 

o = ---L.. + C-I-~ (36) 
A~ I:/"3 

In order to relate the pressure P to the volume of the sphere including 
ca vi ty, we note that 

(37) 

so that it is merely necessary to eliminate J; and Aafrom the set (34, 35, 36). 
This, of course, involves the solution of a fourth order algebraic equation, 
which is best done by plotting. Since it is not our interest to perform data 
analysis, we shall not pursue this point further. 

We can however establish the analytic flavor of the effective bulk 
modulus by setting 

Aa -

Ab 
~ 

Vo 

+ 

+ 

\-

ta 

tb 

V 
Vo 

to obtain the following linear approximations: 

J 3 = 1- E 
K 

PCI - ~) 

(38 ) 

(39) 

(40) 

(41 ) 

(42) 
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Eb =- - P(I-S)(L +_1_) 
4),.< 3K 

6V = P(I-~)(f~ + _I) -
Vo jJ. K 

where K* is the effective bulk modulus. 

P (1- S) 
K* 

(43) 

(44) 

Equation (41) states the dilatation of the material alone is never sig­
nificantly different from unity, in agreement with our original assumption, 
as long as P<:< K. Since K for real materials is of the order of 106 psi, 
(41) is probably good up to la, 000 psi, much higher than is encountered in 
rocket motors. The tangential strain at the surface of the cavity, given by 
(42), should not exceed 10'% in order for the linear approximation to be 
valid. For a value of shear modulus of 500 psi, this severely limits the 
range of pressure to no higher than 50 psi, within which (41) - (44) are use­
ful. Thus for higher pressure it is necessary to return to (34) - (37) and 
plot. The hoop strain at the outer surface of the sphere is of the order of 
10-6 P, and is practically negligible. Similarly the volume change of 
sphere plus cavity is practically negligible. Equation (44) does display, 
however, the fact that the effective bulk modulus depends on the shear 
modulus and fractional volume of the void. 

In conclusion, it is interesting to note the form of the collapse radius 
of the void, i. e. we set A a equal to a small quantity and obtain: 

I .!. 

A = IY)3 = (I - ~) 3 

b \ Vo I + 3~ 
4- \ 

A a = (\ + ,Z) (I + :K) 3 

4 r ---,,;--

\ ~ 112.. 7 K~ 
or 1\ a p 

2..7 KP 
p+ 

(45) 

(46) 

(47) 

(48) 

Thus (47) shows that the collapse radius goes as one over the pressure. 
On the other hand (48) shows that the dilatation is far from constant at 
large pressure. Therefore, it is better to seek an asymptotic solution to 
(22), which is: 

J = 3 
(49) 

Equation (49) shows that the order of dependence of :r~ on P is double that 
of A on P, whereas (47) and (48) show that the order of dependence of .:r~ 
is triple that of A on P. The exact ratio is probably somewhere between 
two and three, but cannot be determined without numerical integration. 
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