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ABSTRACT

Strong gravitational lens systems with extended sources are of special interest because they

provide additional constraints on the models of the lens systems. To use a gravitational lens

system for measuring the Hubble constant, one would need to determine the lens potential

and the source intensity distribution simultaneously. A linear inversion method to reconstruct

a pixellated source brightness distribution of a given lens potential model was introduced by

Warren & Dye. In the inversion process, regularization on the source intensity is often needed

to ensure a successful inversion with a faithful resulting source. In this paper, we use Bayesian

analysis to determine the optimal regularization constant (strength of regularization) of a given

form of regularization and to objectively choose the optimal form of regularization given a

selection of regularizations. We consider and compare quantitatively three different forms of

regularization previously described in the literature for source inversions in gravitational lens-

ing: zeroth-order, gradient and curvature. We use simulated data with the exact lens potential

to demonstrate the method. We find that the preferred form of regularization depends on the

nature of the source distribution.

Key words: gravitational lensing – methods: data analysis.

1 I N T RO D U C T I O N

The use of strong gravitational lens systems to measure cosmolog-

ical parameters and to probe matter (including dark matter) is well

known (e.g. Refsdal 1964; Kochanek, Schneider & Wambsganss

2006). Lens systems with extended source brightness distributions

are particularly useful since they provide additional constraints for

the lens modelling due to surface brightness conservation. In such

a system, one would need to simultaneously fit the source intensity

distribution and the lens potential model (or, equivalently the lens

mass distribution) to the observational data. The use of a pixellated

source brightness distribution has the advantage over a parametric

source brightness distribution in that the source model is not re-

stricted to a particular parameter space. Warren & Dye (2003) intro-

duced a linear inversion method to obtain the best-fitting pixellated

source distribution given a lens model and the observational data.

Several groups of people (e.g. Wallington, Kochanek & Narayan

1996; Treu & Koopmans 2004; Dye & Warren 2005; Koopmans

2005; Brewer & Lewis 2006) have used pixellated source distribu-

tions, and some (Koopmans 2005; Suyu & Blandford 2006) even

used a pixellated potential model for the lens.

The method of source inversion described in Warren & Dye

(2003) requires the source distribution to be ‘regularized’ (i.e.

�E-mail: suyu@its.caltech.edu (SHS)

smoothness conditions on the inverted source intensities to be im-

posed) for reasonable source resolutions.1 For fixed pixel sizes, there

are various forms of regularization to use and the differences among

them have not been addressed in detail. In addition, associated with a

given form of regularization is a regularization constant (signifying

the strength of the regularization), and the way to set this constant

has been unclear. These two long-standing problems were noted in

Kochanek et al. (2006). Our goal in this paper is to use Bayesian

analysis to address the above two issues by quantitatively compar-

ing different values of the regularization constant and the forms of

regularization.

Brewer & Lewis (2006) also followed a Bayesian approach for

pixellated source inversions. The main difference between Brewer

& Lewis (2006) and this paper is the prior on the source intensity

1The source pixel sizes are fixed and are roughly a factor of the average

magnification smaller than the image pixel sizes. In this case, regularization

is needed because the number of source pixels is comparable to the number

of data pixels. On the other hand, if the number of source pixels is much

fewer than the effective number of data pixels (taking into account the signal-

to-noise ratio), the data alone could be sufficient to constrain the pixellated

source intensity values, and regularization would play little role. This is

equivalent to imposing a uniform prior on the source intensity distribution

(a prior on the source is a form of regularization), a point to which we will

return later in this article.
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distribution. Furthermore, this paper quantitatively compares the

various forms of regularization by evaluating the so-called ‘evi-

dence’ for each of the forms of regularization in the Bayesian frame-

work; Brewer & Lewis (2006) mentioned the concept of model

comparison but did not apply it.

Dye & Warren (2005) used adaptive source grids to avoid the use

of explicit regularization (i.e. uniform priors were imposed since

adapting the grids is an implicit form of regularization); however, the

Bayesian formalism would still be useful to set the optimal scales of

the adaptive pixel sizes objectively. Furthermore, regularized source

inversions (as opposed to unregularized – see footnote 1) permit the

use of smaller pixel sizes to obtain fine structures.

The outline of the paper is as follows. In Section 2, we introduce

the theory of Bayesian inference, describing how to fit a model

to a given set of data and how to rank the various models. In

Section 3, we apply the Bayesian analysis to source inversions in

strong gravitational lensing and show a way to rank the different

forms of regularizations quantitatively.

2 BAY E S I A N I N F E R E N C E

We follow MacKay (1992) for the theory of Bayesian analysis, but

use different notations that are more convenient for the application

to gravitational lensing in Section 3.

In Bayesian analysis, there are two levels of inference for data

modelling. In the first level of inference, we choose a model and fit

it to the data. This means characterizing the probability distribution

for the parameters of the model given the data. In the second level of

inference, we want to rank the models quantitatively in the light of

the data. By asking for the relative probabilities of models given the

data, Bayesian analysis incorporates Occam’s razor (which states

that overly complex models should not be preferred over simpler

models unless the data support them) in this second level of infer-

ence. The appearance of Occam’s razor will be evident at the end

of Section 2.2.1. In the following sections, we will describe the two

levels of inference in detail.

2.1 Model fitting

Let d be a vector of data points d j , where j = 1, . . . , Nd and Nd is

the total number of data points. Let si be the model parameters that

we want to infer given the data, where i = 1, . . . , Ns and Ns is the

number of parameters. Let f represent the response function that

relates the model parameters to the measured data. (In the applica-

tion of source reconstruction in gravitational lensing in Section 3,

f encodes information on the lens potential, which is fixed in each

iteration of source reconstruction.) For simplicity, consider f to be a

constant linear transformation matrix of dimensions Nd-by-Ns such

that

d = fs + n, (1)

where n is the noise in the data characterized by the covariance

matrix CD (here and below, subscript D indicates ‘data’).

Modelling the noise as Gaussian,2 the probability of the data given

the model parameters s is

2The Gaussian assumption is usually applicable to optical CCD data which

have noise at each pixel characterized by dispersion σj , the square root of

the corresponding diagonal entry of the covariance matrix. In general, there

is correlation between adjacent pixels due to charge transfer (bleeding) and

the drizzling process, which is characterized by the off-diagonal terms in the

covariance matrix.

P(d|s, f) = exp[−ED(d|s, f)]

ZD

, (2)

where

ED(d|s, f) = 1

2
(fs − d)T C−1

D (fs − d)

= 1

2
χ 2

(3)

and ZD = (2π)Nd/2(det CD)1/2 is the normalization for the prob-

ability. The probability P(d | s, f) is called the likelihood, and

ED(d | s, f) is half the standard value of χ2. In many cases, the

problem of finding the most likely solution sML that minimizes ED

is ill-posed. This indicates the need to set a prior P(s | g, λ) on the

parameters s. The prior can be thought of as ‘regularizing’ the pa-

rameters s to make the prediction fs smooth. We can express the

prior in the following form:

P(s|g, λ) = exp[−λES(s|g)]

ZS(λ)
, (4)

where λ, the so-called regularization constant, is the strength of

regularization and ZS(λ) = ∫
dNs s exp(−λES) is the normalization

of the prior probability distribution. The function ES is often called

the regularizing function. We focus on commonly used quadratic

forms of the regularizing function, and defer the discussion of other

priors to Section 2.2.2. As we will see in Section 2.2.1, Bayesian

analysis allows us to infer quantitatively the value of λ from the data

in the second level of inference.

Bayes’ rule tells us that the posterior probability of the parameters

s given the data, response function and prior is

P(s | d, λ, f, g) = P(d | s, f)P(s | g, λ)

P(d | λ, f, g)
, (5)

where P(d | λ, f, g) is the normalization that is called the evidence
for the model {λ, f, g}. Since both the likelihood and prior are either

approximated or set as Gaussians, the posterior probability distri-

bution is also a Gaussian. The evidence is irrelevant in the first level

of inference where we maximize the posterior (equation 5) of pa-

rameters s to obtain the most probable parameters sMP. However,

the evidence is important in the second level of inference for model

comparisons. Examples of using the evidence in astronomical con-

text are Hobson, Bridle & Lahav (2002) and Marshall et al. (2002).

To simplify the notation, let us define

M(s) = ED(s) + λES(s). (6)

With the above definition, we can write the posterior as

P(s | d, λ, f, g) = exp[−M(s)]

ZM(λ)
, (7)

where ZM(λ) = ∫
dNs s exp[−M(s)] is the normalization.

2.1.1 The most likely versus the most probable solution

By definition, the most likely solution sML maximizes the likelihood,

whereas the most probable solution sMP maximizes the posterior. In

other words, sML minimizes ED in equation (3) [∇ED(sML) = 0,

where ∇ ≡ ∂

∂s ] and sMP minimizes M in equation (6) [∇M(sMP) =
0].

Using the definition of the most likely solution, it is not difficult

to verify that it is

sML = F−1 D, (8)

where

F = fTC−1
D f (9)
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and

D = fTC−1
D d. (10)

The matrix F is square with dimensions Ns × Ns and the vector D

has dimensions Ns.

The most probable solution sMP can in fact be obtained from

the most likely solution sML. If the regularizing function ES

is a quadratic functional that obtains its minimum at sreg [i.e.

∇ES(sreg) = 0], then we can Taylor expand ED and ES to

ED(s) = ED(sML) + 1

2
(s − sML)TB(s − sML) (11)

and

ES(s) = ES(sreg) + 1

2
(s − sreg)TC(s − sreg), (12)

where B and C are Hessians of ED and ES, respectively: B =
∇∇ED(s) and C = ∇∇ES(s). Equations (11) and (12) are exact

for quadratic forms of ED and ES with the Hessians B and C as

constant matrices. For the form of ED in equation (3), B is equal to

F that is given by equation (9). We define A as the Hessian of M, i.e.

A = ∇∇M(s), and by equation (6), A = B + λC. Using equations

(6), (11) and (12) in ∇M(sMP) = 0, we can get the most probable so-

lution (that maximizes the posterior) as sMP = A−1(BsML +λCsreg).

The simplest forms of the prior, especially the ones we will use for

the gravitational lensing inversion in Section 3, have sreg = 0. In the

case where s corresponds to pixel intensity values, sreg = 0 implies

a prior preference towards a blank image. The noise suppression ef-

fect of the regularization follows from this supplied bias. Focusing

on such forms of prior, the most probable solution becomes

sMP = A−1BsML. (13)

This result agrees with equation (12) in Warren & Dye (2003). In

fact, equation (13) is always valid when the regularizing function

can be written as ES(s) = 1
2
sTCs.

Equation (13) indicates a one-time calculation of sML via equa-

tion (8) that permits the computation of the most probable solution

sMP by finding the optimal regularization constant of a given form

of regularization. The parameters sMP in equation (13) depend on

the regularization constant λ since the Hessian A depends on λ.

Bayesian analysis provides a method for setting the value of λ, as

described in the next section.

2.2 Model comparison

In the previous section, we found that for a given set of data d and a

model (response function f and regularization g with regularization

constant λ), we could calculate the most probable solution sMP for

the particular λ. In this section, we consider two main points: (i) how

to set the regularization constant λ for a given form of regularization

g and (ii) how to rank the different models f and g.

2.2.1 Finding λ

To find the optimal regularization constant λ, we want to maximize

P(λ | d, f, g) = P(d | λ, f, g)P(λ)

P(d | f, g)
, (14)

using Bayes’ rule. Assuming a flat prior in log λ,3 the evidence

3We use a flat prior that is uniform in log λ instead of λ because we do not

know the order of magnitude of λ a priori.

P(d | λ, f, g) which appeared in equation (5) is the quantity to con-

sider for optimizing λ.

Combining and rearranging equations (2), (4)–(7), we get

P(d | λ, f, g) = ZM(λ)

ZD ZS(λ)
. (15)

For quadratic functional forms of ES(s) with sreg = 0, we have

ZS(λ) = e−λES(0)

(
2π

λ

)Ns/2

(det C)−1/2, (16)

ZM(λ) = e−M(sMP)(2π)Ns/2(det A)−1/2, (17)

and recall

ZD = (2π)Nd/2(det CD)1/2. (18)

Remembering that optimizing a function is equivalent to optimizing

the logarithm of that function, we will work with log P(d | λ, f, g)

to simplify some of the terms. Recalling that sreg = 0, by combining

and simplifying equations (15)–(18), we have

log P(d | λ, f, g) = −λES(sMP) − ED(sMP)

− 1

2
log(det A) + Ns

2
log λ + λES(0)

+ 1

2
log(det C) − Nd

2
log(2π)

+ 1

2
log

(
det C−1

D

)
. (19)

In deriving equation (19) using equation (16), we implicitly assumed

that C, the Hessian of ES, is non-singular. The forms of regulariza-

tion we will use for gravitational lensing inversion in Section 3 have

non-singular Hessians so that equation (19) is applicable. For the

cases in which the Hessian is singular (i.e. at least one of the eigen-

values of the Hessian is zero), the prior probability distribution is

uniform along the eigendirections of the Hessian with zero eigenval-

ues. The prior probability distribution will need to be renormalized

in the construction of the log evidence expression. The resulting log

evidence expression can still be used to determine the optimal λ in

these cases because only the relative probability is important and

this normalizing factor of the uniform prior, though infinite, will

cancel in the ratios of probabilities.

Solving d
d log λ

log P(d | λ, f, g) = 0, we get the following equa-

tion for the optimal regularization constant λ̂:

2λ̂ES(sMP) = Ns − λ̂Tr(A−1C), (20)

where Tr denotes the trace. Since sMP and A depend on λ, the above

equation (20) is often non-linear and needs to be solved numerically

for λ̂.

For the reader’s convenience, we reproduce the explanation in

MacKay (1992) of equation (20). The equation is analogous to

the (perhaps) familiar statement that χ2 roughly equals the num-

ber of degrees of freedom (NDF). Focusing on the usual case where

ES(sreg = 0) = 0 and transforming to the basis in which the Hessian

of ES is the identity (i.e. C = I), the left-hand side of equation (20)

becomes 2λES(sMP) = λsT
MP sMP. This quantity can be thought of as

the ‘χ 2
S of the parameters’ if we associate λ with the width (σ S) of

the Gaussian prior: λ = 1/σ 2
S. The left-hand side of equation (20)

can be viewed as a measure of the amount of structure introduced by

the data in the parameter distribution (relative to the null distribution

of sreg = 0). Continuing the analogy, the right-hand side of equa-

tion (20) is a measure of the number of ‘good’ parameters (where

‘good’ here means well-determined by the data, as we explain be-

low). In the same basis where C = I, we can write the eigenvalues
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of A(= B + λC) as μa + λ, where μa are the eigenvalues of B and

index a = 1, . . . , Ns. In this basis, the right-hand side, which we

denote by γ , becomes

γ = Ns −
Ns∑

a=1

λ

μa + λ
=

Ns∑
a=1

μa

μa + λ
. (21)

For each eigenvalue of B, the fraction μa
μa+λ

is a value between 0 and

1, so γ is a value between 0 and Ns. If μa is much smaller than λ,

then the data are not sensitive to changes in the parameters along the

direction of the eigenvector of μa . This direction contributes little

to the value of γ with μa
μa+λ

� 1, and thus it does not constitute as a

good parameter. Similar arguments show that eigendirections with

eigenvalues much greater than λ form good parameters. Therefore

γ , which is a sum of all the factors μa
μa+λ

, is a measure of the effective

number of parameters determined by the data. Thus, the solution to

equation (20) is the optimal λ that matches the χ2
S of the parameters

to the number of effective parameters.

For a given form of regularization ES(s), we are letting the data

decide on the optimal λ by solving equation (20). Occam’s razor

is implicit in this evidence optimization. For overly small values

of λ, the model parameter space is overly large and Occam’s razor

penalizes such an overly powerful model; for overly large values of

λ, the model parameter space is restricted to a limited region that

the model can no longer fit to the data. Somewhere in between the

two extremes is the optimal λ that gives a model which fits to the

data without being overly complex.

There is a shortcut to obtaining an approximate value of the op-

timal λ instead of solving equation (20) (Bridle et al. 1998). Given

that γ is a measure of the effective number of parameters, the clas-

sical NDF should be Nd − γ . At the optimal λ, we thus expect

ED(sMP) = 1
2
χ 2 ∼ 1

2
(Nd − γ ). Inserting this and the expression

of λES(sMP) from equation (20) into equation (6), we find that

M(sMP) ∼ 1
2

Nd. In other words, one can choose the value of λ

such that M evaluated at the resulting most probable parameters

(sMP) is equal to half the number of data points. We emphasize that

this will give only an approximate result for the optimal λ due to the

fuzzy association of NDF with Nd − γ , but it may serve as a useful

hack.

2.2.2 Ranking models

We can compare the different regularizations g and responses f by

examining the posterior probability of g and f:

P(f, g | d) ∝ P(d | f, g)P(f, g). (22)

If the prior P(f ,g) is flat, then P(d | f, g) can be used to rank the

different models and regularizations. We can write P(d | f, g) as

P(d | f, g) =
∫

P(d | f, g, λ)P(λ)dλ, (23)

where P(d | f, g, λ) is precisely the evidence in equation (19).

As seen in equation (23) above, the regularization constant λ is

a nuisance parameter which invariably ends up being marginalized

over. We might well expect the corresponding distribution for λ to

be sharply peaked, since we expect the value of λ to be estimable

from the data (as shown in Section 2.2.1); a particular value of λ is

preferred as a consequence of the balance between goodness of fit

and Occam’s razor. Consequently, we can approximate P(λ | d, f, g)

by a delta function centred on the most probable constant, λ̂. The

model-ranking evidence P(d | f, g) in equation (23) can then be

approximated by P(d | f, g, λ̂) in equation (19).

The approximation of using equation (19) to rank regularizations

is only valid if the Hessians of the different regularizing functions are

non-singular. When the Hessian is singular, equation (19) will need

to be modified to include a (infinite) normalization constant that is

regularization dependent. The constants for different regularization

schemes generally will not cancel when one considers evidence

ratios, thus prohibiting one from comparing different regularization

schemes.

One can imagine there being much debate on the form of the prior

P(f, g) that should be used. For example, some success has been

achieved using maximum entropy methods (e.g. Gull & Daniell

1978; Skilling 1989), whose prior form enforces positivity in the

image and is maximally non-committal with regard to missing data.

One practical problem with using the entropic prior is its non-

linearity. In this work, we take a modern Bayesian view and argue

that while we will always have some a priori prejudice about the re-

constructed image (e.g., favouring zero flux, or insisting on positive

images), we would do well to try and learn from the data itself, as-

signing series of sensible priors and using the evidence to compare

them quantitatively. In this context, we examine a small number

of sensibly chosen priors (regularization schemes), and compute

the evidence for each. We do not exhaustively seek the prior that

maximizes the evidence, noting that this will change from object to

object, and observation to observation. What we do provide is the

mechanism by which prior forms can be compared, and demonstrate

that good quality reconstructions can be obtained by optimizing over

our set of candidate priors. In Section 3.1, we discuss the various

forms of prior that have been used in strong gravitational lensing.

3 A P P L I C AT I O N TO G R AV I TAT I O NA L

L E N S I N G

We apply the Bayesian formalism developed in the previous section

to source inversions in strong gravitational lensing. The process

of finding the best-fitting pixellated source brightness distribution

given a lens potential model and an observed image has been stud-

ied by, for example, Wallington et al. (1996), Warren & Dye (2003),

Treu & Koopmans (2004), Koopmans (2005), Dye & Warren (2005)

and Brewer & Lewis (2006). The authors regularized the source in-

version in order to obtain a smooth (physical) source intensity distri-

bution. The forms of regularization used in this paper are addressed

in detail in Appendix A. In Section 3.1, we describe the Bayesian

analysis of source inversions in gravitational lensing. Sections 3.2

and 3.3 are two examples illustrating regularized source inversions.

In both examples, we use simulated data to demonstrate for the first

time the Bayesian technique of quantitatively comparing the differ-

ent types of regularization. Finally, Section 3.4 contains additional

discussions based on the two examples.

3.1 Regularized source inversion

To describe the regularized source inversion problem, we follow

Warren & Dye (2003) but in the Bayesian language. Let d j , where

j = 1, . . . , Nd, be the observed image intensity value at each pixel j
and let CD be the covariance matrix associated with the image data.

Let si , where i = 1, . . . , Ns, be the source intensity value at each

pixel i that we would like to reconstruct. For a given lens potential

and point spread function (PSF) model, we can construct the Nd-by-

Ns matrix f that maps a source plane of unit intensity pixels to the

image plane by using the lens equation [a practical and fast method
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to compute f is described in the appendices of Treu & Koopmans

(2004), and an alternative method is discussed in Wallington et al.

(1996)]. We identify ED with 1
2
χ2 (equation 3) and ES with the

quadratic regularizing function whose form is discussed in detail

in Appendix A. The definitions and notations in our regularized

source inversion problem are thus identical to the Bayesian analysis

in Section 2 with data d and mapping matrix (response function)

f . Therefore, all equations in Section 2 are immediately applicable

to this source inversion problem, for example the most probable

(regularized) source intensity is given by equation (13). We take

as estimates of the 1σ uncertainty on each pixel value the square

root of the corresponding diagonal element of the source covariance

matrix given by

CS = A−1 (24)

(here and below, subscript S indicates ‘source’), where A is the

Hessian defined in Section 2.1.1. Equation (24) differs from the

source covariance matrix used by Warren & Dye (2003). We refer

the reader to Appendix B for details on the difference.

In summary, to find the most probable source given an image

(data) d, a lens and PSF model f and a form of regularization g,

the three steps are (i) find the most likely source intensity, sML (the

unregularized source inversion with λ = 0); (ii) solve equation (20)

for the optimal λ of the particular form of regularization, where sMP

is given by equation (13) and (iii) use equations (13) and (24) to

compute the most probable source intensity and its 1σ error with

the optimal λ from step (ii).

Having found a recipe to compute the optimal λ and the most

probable inverted source intensity sMP for a given form of regular-

ization g and a lens and PSF model f , we can rank the different

forms of regularization. For a given potential and PSF model f , we

can compare the different forms of regularization by assuming the

prior on regularization g to be flat and using equations (22), (23)

and (19) to evaluate P(f, g | d).

In this paper, we consider three quadratic functional forms of

regularization: zeroth-order, gradient and curvature (see Appendix

A for details). These were used in Warren & Dye (2003) and

Koopmans (2005). The zeroth-order regularization tries to suppress

the noise in the reconstructed source brightness distribution as a way

to impose smoothness by minimizing the source intensity at each

pixel. The gradient regularization tries to minimize the gradient of

the source distribution, which is equivalent to minimizing the dif-

ference in the source intensities between adjacent pixels. Finally,

the curvature regularization minimizes the curvature in the source

brightness distribution. The two examples in the following sections

apply the three forms of regularization to the inversion of simu-

lated data to demonstrate the Bayesian regularized source inversion

technique.

Our choice of using quadratic functional forms of the prior is

encouraged by the resulting linearity in the inversion. The linear-

ity permits fast computation of the maximization of the posterior

without the risk of being trapped in a local maximum during the

optimization process. However, the quadratic functional forms may

not be the most physically motivated. For example, positive and neg-

ative values of the source intensity pixels are equally preferred, even

though we know that intensities must be positive. Wallington et al.

(1996) and Wayth et al. (2005) used maximum entropy methods that

enforced positivity on the source brightness distribution. Such forms

of the prior would help confine the parameter space of the source

distribution and result in a perhaps more acceptable reconstruction.

The disadvantage of using the entropic prior is its resulting non-

linear inversion, though we emphasize that Bayesian analysis can

still be applied to these situations to rank models. Another example

is Brewer & Lewis (2006) who used priors suited for astronomi-

cal images that are mostly blank. This form of prior also led to a

non-linear system. In the following sections, we merely focus on

quadratic forms of the prior because (i) it has computational effi-

ciency, and (ii) we could obtain good quality reconstruction without

considering more complex regularization schemes.

3.2 Demonstration 1: Gaussian sources

3.2.1 Simulated data

As the first example to demonstrate the Bayesian approach to source

inversion, we use the same lens potential and source brightness

distribution as that in Warren & Dye (2003). The lens is a singu-

lar isothermal ellipsoid (SIE) at a redshift of zd = 0.3 with one-

dimensional velocity dispersion of 260 km s−1, axis ratio of 0.75

and semimajor axis position angle of 40◦ (from vertical in counter-

clockwise direction). We use Kormann, Schneider & Bartelmann

(1994) for the SIE model. We assume a flat � cold dark matter

(�CDM) universe with cosmological parameters of 	m = 0.3 and

	� = 0.7. The image pixels are square and have sizes 0.05 arcsec

in each direction. We use 100 × 100 image pixels (Nd = 10000) in

the simulated data.

We model the source as having two identical Gaussians with

variance 0.05 arcsec and peak intensity of 1.0 in arbitrary units. The

source redshift is zs = 3.0. We set the source pixels to be half the

size of the image pixels (0.025 arcsec) and have 30 × 30 source

pixels (Ns = 900). Fig. 1 shows the source in the left-hand panel

with the caustic curve of the SIE potential. One of the Gaussians is

located within the astroid caustic and the other is centred outside

the caustic.

To obtain the simulated data, we use the SIE lens model and the

lens equation to map the source intensity to the image plane. We

then convolve the resulting image with a Gaussian PSF whose full

width at half-maximum (FWHM) is 0.08 arcsec and add Gaussian

noise of variance 0.067 to the convolved image. For simplicity, the

noise is uncorrelated, which is a good approximation to realistic

noise with minimal charge transfer and drizzling. The right-hand

panel of Fig. 1 shows the simulated data with the critical curve of

the SIE model.

3.2.2 Most likely inverted source

We use the original SIE potential, PSF and Gaussian noise models

of the simulated data for the source inversion to demonstrate the

technique.

The appendices of Treu & Koopmans (2004) describe a compu-

tationally efficient method to construct the f matrix. Following the

method, we discretize the SIE potential to the 100 × 100 grid and

model the PSF on a 5 × 5 grid (which is a sufficient size since the 5

× 5 grid centred on the Gaussian PSF of FWHM 0.08 arcsec con-

tains 99.99 per cent of the total intensity). Subsequently, for every

image pixel j, we use the lens equation to trace to the source plane

labelled by pixels i and interpolate to get the elements of unblurred

f . Lastly, we multiply the unblurred f by the blurring (convolution)

operator constructed from the 5 × 5 PSF model to get the full f
matrix. With j = 1, . . . , Nd and i = 1, . . . , Ns, the matrix f is large

(10 000 × 900) but fortunately sparse.

In the right-hand panel of Fig. 1, the dotted lines on the simulated

data mark an annular region where the image pixels map to the finite

source plane. In other words, the image pixels within the dotted
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Figure 1. Left-hand panel: the simulated Gaussian sources with peak intensities of 1.0 and FWHM of 0.05 arcsec, shown with the astroid caustic curve of the

SIE potential. Right-hand panel: the simulated image of the Gaussian sources (after convolution with Gaussian PSF and addition of noise, as described in the

text). The solid line is the critical curve of the SIE potential, and the dotted lines mark the annular region where the source grid maps using the mapping matrix

f .

annulus correspond to the non-empty rows of the f matrix. The

annular region thus marks the set of data that will be used for the

source inversion process.

With the f matrix and the data of simulated image intensities in

the annulus, we can construct matrix F and vector D using equations

(9) and (10)4 for the unregularized inversion (the most likely source

intensity, in Bayesian language). We use UMFPACK
5 for sparse matrix

inversions and determinant calculations. We compute the inverse of

the matrix F and apply equation (8) to get the most likely source

intensity. Using UMFPACK, the computation time for the inversion of

F, a 900 × 900 matrix in this example is only ∼20 s on a 3.6-GHz

CPU. Setting λ = 0 (implicit in A) in equation (24), we obtain the

covariance matrix of the inverted source intensity and hence the 1σ

error and the signal-to-noise ratio.

The top row of Fig. 2 shows the unregularized inverted source

intensity in the left-hand panel, the 1σ error of the intensity in the

middle panel and the signal-to-noise ratio in the right-hand panel.

The unregularized inverted source intensity is smoother inside than

outside the caustic curve because the source pixels within the caustic

have additional constraints due to higher image multiplicities. The

higher image multiplicities also explain the lower magnitude of the

1σ error inside the caustic curve. Despite the noisy reconstruction

especially outside the caustic curve, the two Gaussian sources have

significant signal-to-noise ratio in the right-hand panel. These results

agree with fig. 2 in Warren & Dye (2003).

The bottom row of Fig. 2 shows the simulated data in the left-hand

panel (from Fig. 1 for comparison purposes), the reconstructed data

(from the most likely inverted source in the top left-hand panel and

the f matrix) in the middle panel and the residual (the difference

between the simulated and reconstructed data) in the right-hand

panel. The annular region containing the data used for inversion is

marked by dotted lines in the reconstructed and residual images.

Visual inspection of the residual image shows that pixels inside the

annulus are slightly less noisy than those outside. This is due to

4The summations associated with the matrix multiplications in equations (9)

and (10) are now summed over the pixels in the annulus instead of all the

pixels on the image plane.
5A sparse matrix package developed by Timothy A. Davis, University of

Florida.

over-fitting with the unregularized inversion. As we will see in the

next section, Occam’s razor that is incorporated in the Bayesian

analysis will penalize such overly powerful models.

3.2.3 Most probable inverted source

Having obtained the most likely inverted source, we can calculate

the most probable source of a given form of regularization with a

given value of the regularization constant λ using equation (13).

In the remainder of this section, we focus on the three forms of

regularization (zeroth-order, gradient and curvature) discussed in

Appendix A. For each form of regularization, we numerically solve

equation (20) for the optimal value of regularization constant λ using

equation (13) for the values of sMP. Table 1 shows the optimal regu-

larization constant, λ̂, for each of the three forms of regularization.

The table also includes the value of the evidence in equation (19)

evaluated at λ̂, which is needed for ranking the different forms of

regularization in the next section.

Fig. 3 verifies the optimization results for the gradient form of

regularization. The evidence in dot–dashed lines (rescaled) is in-

deed a sharply peaked function of λ, justifying the delta-function

approximation; the optimal regularization constant λ̂ = 34.2 (listed

in Table 1) is marked by the crossing point of the dashed and dotted

lines, demonstrating the balance between goodness of fit and sim-

plicity of model that maximizing the evidence achieves. The plots

of equations (20) and (19) for zeroth-order and curvature regular-

izations look similar to Fig. 3 and are thus not shown.

In Table 1, we constructed three reduced χ2 using the NDF as

Nannulus, Nannulus − Ns, or Nannulus − γ , where Nannulus is the number

of data pixels used in the inversion and recall Ns is the number of

source pixels reconstructed. In each of the three forms of regular-

ization, the reduced χ 2 with NDF = Nannulus − γ is closest to 1.0,

which is the criterion commonly used to determine the goodness

of fit. This supports our interpretation of the γ , the right-hand side

of equation (20), as the number of ‘good’ parameters determined

by the data. The values of the reduced χ 2 is not strictly 1.0 be-

cause Bayesian analysis determines the optimal λ by maximizing

the evidence instead of setting the reduced χ2 to 1.0.

For each of the three forms of regularization and its optimal regu-

larization constant listed in Table 1, we use equations (13) and (24)

to obtain the most probable source intensity and its 1σ error. Fig. 4
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Figure 2. Unregularized inversion of Gaussian sources. Top left-hand panel: the most likely reconstructed source intensity distribution. The intensities outside

the caustic curve of the potential model are not well-reconstructed due to fewer constraints (lower image multiplicities) outside the caustic curve. Top middle

panel: the 1σ error of the inverted source intensity. The error is smaller inside the caustics due to additional multiple image constraints. Top right-hand panel:

the signal-to-noise ratio of the inverted source intensity. The presence of the Gaussian sources is clear in this panel even though the reconstruction in the top

left-hand panel is noisy. Bottom left-hand panel: the simulated data. Bottom middle panel: the reconstructed image using the most likely reconstructed source

(top left-hand panel) and the f matrix from the potential and PSF models. Reconstructed data are confined to an annular region that maps on to the source

plane. Bottom right-hand panel: the residual image obtained by subtracting the bottom middle panel from the bottom left-hand panel. The interior of the annular

region is less noisy than the exterior, indicating that the unregularized reconstructed source is fitting to the noise in the simulated data.

Table 1. The optimal regularization constant for each of the three forms of

regularization for the inversion of two Gaussian sources. The log evidence,

γ (the right-hand side of equation 20) and the χ2 evaluated at the optimal

regularization constant are also listed. The number of data pixels in the

annulus for inversion, Nannulus, and three possible forms of constructing the

reduced χ2 are shown.

Regularization Zeroth-order Gradient Curvature

λ̂ 17.7 34.2 68.5

log P(d | λ̂, f, g) 5086 5367 5410

γ = Ns − λ̂Tr(A−1C) 536 287 177

χ2 = 2ED 3583 3856 4019

Nannulus 4325 4325 4325

χ2/Nannulus 0.83 0.89 0.93

χ2/(Nannulus − Ns) 1.05 1.12 1.17

χ2/(Nannulus − γ ) 0.95 0.95 0.97

shows the most probable source intensity (left-hand panels), the 1σ

error (middle panels) and the signal-to-noise ratio (right-hand pan-

els) for zeroth-order (top row), gradient (middle row) and curvature

(bottom row) regularizations. The panels in each column are plotted

on the same scales in order to compare the different forms of regu-

larization. The regularized inverted sources in the left-hand panels

clearly show the two Gaussians for all the three regularizations.
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Figure 3. To demonstrate the λ optimization process, equations (19) and

(20) are plotted as functions of λ for the gradient regularization. The left-

and right-hand sides of equation (20) are in dashed lines and dotted lines,

respectively. The log evidence in equation (19) is shown in solid lines. The

evidence, which has been rescaled to fit on the graph, is in dot–dashed lines.

The left and right vertical axes are for equations (20) and (19), respectively.

The crossing point of the left- and right-hand side of equation (20) gives the

optimal λ̂, the position where the log evidence (hence evidence) obtains its

maximum.
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Figure 4. The regularized source inversions of Gaussian sources with zeroth-order, gradient and curvature regularizations. Top row (from left to right): most

probable inverted source, the 1σ error and the signal-to-noise ratio with zeroth-order regularization. Middle row (from left to right): same as top row but with

gradient regularization. Bottom row (from left to right): same as top row but with curvature regularization. The panels in each column are plotted on the same

scales for comparison among the different forms of regularization.

Curvature regularization results in a smoother source reconstruction

than gradient regularization which in turn gives smoother source in-

tensities than zeroth-order regularization. The 1σ errors in the mid-

dle column also indicate the increase in the smoothness of the source

from zeroth-order to gradient to curvature regularization due to a

decrease in the error. This smoothness behaviour agrees with our

claim in Appendix A that regularizations associated with higher

derivatives in general result in smoother source reconstructions.

Since the error in the middle column decreases from the top to

the bottom panel, the signal-to-noise ratio of the source reconstruc-

tion increases in that order. Looking closely at the 1σ error in the

middle column for gradient and curvature regularizations, the pixels

in the left and bottom borders have larger error values. This can be

explained by the explicit forms of regularization in equations (A2)

and (A3). The pixels at the bottom and left borders are only con-

strained by their values relative to their neighbours, whereas the

pixels at the top and right borders have additional constraints on

their values directly (last two terms in the equations). Visually, we

observe that the source reconstruction with curvature regularization

matches the original source in Fig. 1 the best. In the next section, we

will quantitatively justify that curvature regularization is preferred

to gradient and zeroth-order regularizations in this example with

two Gaussian sources.

In Fig. 5, we show the reconstructed image and the image resid-

ual for the most probable inverted source with curvature regular-

ization. We omit the analogous figures for zeroth-order and gradi-

ent regularizations because they look very similar to Fig. 5. The

left-hand panel is the simulated data in Fig. 1 that is shown for
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Figure 5. The image residual for curvature regularized source inversion with Gaussian sources. From left to right: simulated data, reconstructed data using the

corresponding most probable inverted source in Fig. 4 and the residual equalling the difference between simulated and reconstructed data. The reconstructed

data are restricted to the annulus marked by dotted lines that is mapped from the finite source grid using f . The noise in the residual image is more uniform

compared to that of the unregularized inversion in Fig. 2.

convenience for comparing to the reconstructed data. The middle

panel is the reconstructed data obtained by multiplying the corre-

sponding regularized inverted source in Fig. 4 by the f mapping

matrix [only the pixels within the annulus (dotted lines) are recon-

structed due to the finite source grid and PSF]. The right-hand panel

is the residual image, which is the difference between the simulated

and the reconstructed data. The slight difference among the recon-

structed data of the three forms of regularizations is the amount

of noise. Since the most probable inverted source gets less noisy

from zeroth-order to gradient to curvature regularization, the recon-

structed data also get less noisy in that order. The residual images

of all the three forms of regularization look almost identical and

match the input (uniform Gaussian) noise, a sign of proper source

reconstruction.

In contrast to the residual image for the unregularized case in

Fig. 2, the noise in the residual image in Fig. 5 is more uniform.

This is Occam’s razor in action – the presence of regularization pre-

vents the over-fitting to the noise within the annulus. For each form

of regularization, the value of λ̂ (Table 1) is optimal since it leads to

the residual image in Fig. 5 having the input noise, which is uniform

Gaussian noise in our example. If we over-regularize (i.e. use overly

large λ), then we expect the model to no longer fit to the data. This

is shown in Fig. 6 which was obtained using curvature regulariza-

tion with λ = 2000. The panels in the figure are displayed in the

same way as in Fig. 2. The inverted source (top left hand panel)

in Fig. 6 shows the smearing of the two Gaussian sources due to

overly minimized curvature among adjacent pixels. The resulting

residual image (bottom right-hand panel) in Fig. 6 thus shows arc

features that are not fitted by the model. However, note that the

inferred signal-to-noise ratio in the source plane is very high; mod-

els that overly regularize the source intensities give precise (with

small magnitudes for the error) but inaccurate results. Such overly

regularized models lead to low values of the evidence, which is the

quantity to consider for the goodness of reconstruction. We seek

an accurate reconstruction of the source, and a signal-to-noise ra-

tio that accurately reflects the noise in the data. The comparison

among the unregularized, optimally regularized and overly regu-

larized inversions shows the power of the Bayesian approach to

objectively determine the optimal λ̂ (of a given form of regulariza-

tion) that minimizes the residual without fitting to the noise. In the

next section, we will see how Bayesian analysis can also be used to

determine the preferred form of regularization given the selection of

regularizations.

3.2.4 Optimal form of regularization

In the previous section, we showed how Bayesian analysis allowed

us to objectively determine the optimal regularization constant for

a given form of regularization by maximizing the evidence in equa-

tion (19). In this section, we look for the optimal form of regular-

ization given the selection of regularizations.

Since there is no obvious prior on the regularization, we assume

that the prior on the regularization is flat. In this case, the different

forms of regularization is ranked by the value of P(d | f, g) in equa-

tion (23). Since the evidence P(d | f, g, λ) is sharply peaked at λ̂ (as

seen in Fig. 3), P(d | f, g) can be approximated by P(d | f, g, λ̂).

The values of the evidence P(d | f, g, λ̂) in Table 1 indicate that

the evidence for curvature regularization is ∼e43 and ∼e324 higher

than that of gradient and zeroth-order regularizations, respectively.

Therefore, curvature regularization with the highest evidence is pre-

ferred to zeroth-order and gradient for the two Gaussian sources.

In quantitative terms, curvature regularization is ∼e43 more proba-

ble than gradient regularization, which is ∼e281 more probable than

zeroth-order regularization. This agrees with our comment based on

Fig. 4 in Section 3.2.3 that visually, curvature regularization leads

to an inverted source that best matches the original source of two

Gaussians.

The values of the reduced χ2 using NDF = Nannulus − γ in Table 1

show that curvature regularization has the highest reduced χ 2 among

the three forms of regularization. The higher χ2 value means a

higher misfit due to fewer degrees of freedom (with more correlated

adjacent pixels) in curvature regularization. None the less, the misfit

is noise dominated since Fig. 5 shows uniform residual and the

reducedχ 2 is∼1.0. Therefore, the evidence optimization is selecting

the simplest model of the three regularization schemes that fits to

the data, enforcing Occam’s razor.

For general source brightness distributions, one may expect that

curvature regularization with its complex structure will always be

preferred to the simplistic gradient and zeroth-order forms of reg-

ularization. We show that this is not the case by considering the

source inversion of a box source (region of uniform intensity) and

two point sources as our next example.
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Figure 6. Overly regularized source inversion of Gaussian sources using curvature regularization with λ = 2000. Top row: the overly regularized source shows

smearing of the original two Gaussians (left-hand panel), the 1σ error of the source intensity (middle panel) and the signal-to-noise ratio (right-hand panel).

Bottom row: simulated data (left-hand panel), reconstructed data using the reconstructed source in the top left-hand panel and the f mapping matrix (middle

panel) and the image residual showing arc features due to the overly regularized inverted source (right-hand panel).

3.3 Demonstration 2: box and point sources

3.3.1 Simulated data

To generate the simulated data of the box and point sources, we keep

the following things the same as those in the example of two Gaus-

sian sources: number of source pixels, source pixel size, number of

image pixels, image pixel size, SIE potential model and PSF model.

The variance of the uniform uncorrelated Gaussian noise for the box

Figure 7. Left-hand panel: the simulated box and point sources with intensities of 1.0, shown with the astroid caustic curve of the SIE potential. Right-hand

panel: the simulated image of the box and point sources (after convolution with Gaussian PSF and addition of noise as described in the text). The solid line is

the critical curve of the SIE potential and the dotted lines mark the annular region where the source grid maps using the f mapping matrix.

and point sources is 0.049, which leads to the same signal-to-noise

ratio within the annular region as that in the two Gaussian sources.

Fig. 7 shows the box source and two point sources of unit intensities

with the caustic curves of the SIE in the left-hand panel, and the

simulated image in the right-hand panel.

We follow the same procedure as that in the previous example of

two Gaussian sources to obtain the most likely inverted source, the

most probable inverted source of a given form of regularization, and
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Figure 8. Unregularized source inversion of box and point sources. Top left-hand panel: the most likely reconstructed source intensity distribution. The

intensities outside the caustic curve of the potential model are not well-reconstructed due to fewer constraints (lower image multiplicities) outside the caustic

curve. Top middle panel: the 1σ error of the inverted source intensity. The error is smaller inside the caustics due additional multiple image constraints. Top

right-hand panel: the signal-to-noise ratio of the inverted source intensity. Bottom left-hand panel: the simulated data. Bottom middle panel: the reconstructed

image using the most likely reconstructed source (top left-hand panel) and the f matrix from the potential and PSF models. Reconstructed data are confined

to an annular region that maps on to the source plane. Bottom right-hand panel: the residual image obtained by subtracting the bottom middle panel from the

bottom left-hand panel. The interior of the annular region is less noisy than the exterior, indicating that the reconstructed image is fitting to the noise in the

simulated data.

the optimal form of regularization. Furthermore, we plot the results

in the same format as that in the example of two Gaussian sources

in Section 3.2.

3.3.2 Most likely inverted source, most probable inverted source
and optimal form of regularization

Fig. 8 shows the most likely inverted source in the top row and the

corresponding image residual in the bottom row. Similar to Fig. 2,

the most likely inverted source in the top left-hand panel of Fig. 8 has

poorly constrained pixels outside the caustic curves due to lower im-

age multiplicities. The residual image in the bottom right-hand panel

of Fig. 8 shows slight over-fitting to the noise inside the annulus.

For regularized inversions, we solve equation (20) for the optimal

regularization constant for each of the three forms of regularization.

We list the optimal regularization constants, λ̂, and the associated log

evidence evaluated at λ̂ in Table 2. Fig. 9 shows the most probable

inverted source using the optimal regularization constant in Table 2

for each of the three forms of regularization. By visual inspection,

the inverted source intensities (left-hand panels) with gradient regu-

larization matches the original source brightness distribution (Fig. 7)

the best since curvature regularization overly smears the sharp edges

and zeroth-order regularization leads to higher background noise.

This is supported quantitatively by the values of the evidence in

Table 2 with the highest value for gradient regularization (which is

∼e37 more probable than curvature regularization and ∼e222 more

probable than zeroth-order regularization). Again, this example il-

lustrates that the signal-to-noise ratio does not determine the op-

timal regularization – the right-hand panels of Fig. 9 show that

curvature regularization leads to the highest signal-to-noise ratio,

but the Bayesian analysis objectively ranks gradient over curvature!

Finally, Fig. 10 shows the reconstructed image (middle panel) and

the image residual (right-hand panel) using the gradient regular-

ization. The corresponding plots for the zeroth-order and curvature

regularizations are similar and hence are not shown.

3.4 Discussion

3.4.1 Preferred form of regularization

The two examples of source inversion considered in Sections 3.2 and

3.3 show that the form of regularization that is optimally selected

in the Bayesian approach depends on the nature of the source. Gen-

erally, with the three forms of regularization considered, curvature

regularization is preferred for smooth sources and gradient (or even

zeroth-order) is preferred for sources with sharp intensity variations.

In the two examples of source inversion, we found that at least one of

the three considered forms of regularization (which is not always the

curvature form) allowed us to successfully reconstruct the original

source in the inversion. Therefore, we did not need to consider other
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Figure 9. The regularized source inversions of box and point sources with zeroth-order, gradient and curvature regularizations. Top row (from left to right):

most probable inverted source, the 1σ error and the signal-to-noise ratio with zeroth-order regularization. Middle row (from left to right): same as top row but

with gradient regularization. Bottom row (from left to right): same as top row but with curvature regularization. The panels in each column are plotted on the

same scales for comparison among the different forms of regularization.

Table 2. The optimal regularization constant for each of the three forms of

regularization for the inversion of box and point sources. The log evidence

evaluated at the optimal regularization constant is also listed.

Regularization Zeroth-order Gradient Curvature

λ̂ 19.8 21.0 17.1

log P(d | λ̂, f, g) 6298 6520 6483

forms of regularization. None the less, this does not preclude other

forms of regularization to be used. Even with additional types of

regularization, Bayesian analysis can always be used to choose the

optimal one from the selection of forms of regularization.

3.4.2 Optimal number of source pixels

So far, we have not discussed the size and the region of the source

pixels to use. In both demonstration examples in Sections 3.2 and

3.3, we used source pixels that were half the size of the image pixels.

In reality, one has to find the source region and the size of source

pixels to use.

The selection of the source pixel size for a given source region can

be accomplished using Bayesian analysis in the model comparison

step of Section 2.2.2. (The size of the source pixels is part of f since

different source pixel sizes result in different matrices f .) We find

that source pixel sizes that are too large do not have enough degrees

of freedom to fit to the data. On the other hand, source pixels that

are too small will result in some source pixels being excluded in

the f matrix [using the f construction method in Treu & Koopmans
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Figure 10. The image residual for gradient regularized source inversion with box and point sources. From left to right: simulated data, reconstructed data using

the corresponding most probable inverted source in Fig. 9 and the residual equalling the difference between simulated and reconstructed data. The reconstructed

data are restricted to the annulus marked by dotted lines that is mapped from the finite source grid using f . The noise in the residual image is more uniform

compared to that of the unregularized inversion in Fig. 8.

(2004)], which leads to a failure in the most likely source inversion

since some pixels will be unconstrained. Therefore, for fixed pixel

sizes over a source region (which our codes assume), the minimum

source pixel size will be set by the minimum magnification over the

source region. To improve the resolution in areas where there is more

information, one would need to use adaptive grids. Dye & Warren

(2005) have used adaptive grids in their source inversion routine,

and we are also in the process of developing a code with adaptive

gridding that will appear in a future paper. Our methods differ from

that of Dye & Warren (2005) in that we follow a Bayesian approach

and can thus quantitatively compare the forms of regularization and

the structure of source pixellation.

At this stage, we cannot compare different source regions since

the annular region on the image plane that maps to the source plane

changes when the source region is altered. Recall that we only use

the data within the annulus for source inversion. If the annular region

changes, the data for inversion also change. For model comparison

between different data sets, we would need to know the normaliza-

tion in equation (22), which we do not. Therefore, the best we can

do in terms of source region selection is to pick a region that is large

enough to enclose the entire luminous source, but small enough to

not have the corresponding annular region exceeding the image re-

gion where we have data. Once the source region is selected, we

can apply Bayesian analysis to determine the optimal source pixel

size (subject to the minimum limit discussed above) and the optimal

form of regularization given the data.

4 C O N C L U S I O N S A N D F U RT H E R WO R K

We introduced and applied Bayesian analysis to the problem of

regularized source inversion in strong gravitational lensing. In the

first level of Bayesian inference, we obtained the most probable

inverted source of a given lens potential and PSF model f , a given

form of regularization g and an associated regularization constant λ;

in the second level of inference, we used the evidence P(d | λ, f, g)

to obtain the optimal λ and rank the different forms of regularization,

assuming flat priors in λ and g.

We considered three different types of regularization (zeroth-

order, gradient and curvature) for source inversions. Of these three,

the preferred form of regularization depended on the intrinsic shape

of the source intensity distribution: in general, the smoother the

source, the higher the derivatives of the source intensity in the pre-

ferred form of regularization. In the demonstrated examples of first

two Gaussian sources, and then a box with point sources, we op-

timized the evidence P(d | λ, f, g) and numerically solved for the

regularization constant for each of the three forms of regularization.

By comparing the evidence of each regularization evaluated at the

optimal λ, we found that the curvature regularization was preferred

with the highest value of evidence for the two Gaussian sources, and

gradient regularization was preferred for the box with point sources.

The study of the three forms of regularization demonstrated

the Bayesian technique used to compare different regularization

schemes objectively. The method is general, and the evidence can be

used to rank other forms of regularization, including non-quadratic

forms (e.g. maximum entropy methods) that lead to non-linear in-

versions (e.g. Wallington et al. 1996; Wayth et al. 2005; Brewer &

Lewis 2006). We restricted ourselves to linear inversion problems

with quadratic forms of regularizing function for computational ef-

ficiency.

In the demonstration of the Bayesian technique for regularized

source inversion, we assumed Gaussian noise, which may not be

applicable to real data. In particular, Poisson noise may be more

appropriate for real data, but the use of Poisson noise distributions

would lead to non-linear inversions that we tried to avoid for com-

putational efficiency. None the less, the Bayesian method of using

the evidence to rank the different models (including noise models)

is still valid, irrespective of the linearity in the inversions.

We could also use Bayesian analysis to determine the optimal size

of source pixels for the reconstruction. The caveat is to ensure that

the annular region on the image plane where the source plane maps is

unchanged for different pixel sizes. Currently, the smallest pixel size

is limited by the region of low magnifications on the source plane.

In order to use smaller pixels in regions of high magnifications,

adaptive source gridding is needed. This has been studied by Dye &

Warren (2005), and we are currently upgrading our codes to include

this.

The Bayesian approach can also be applied to potential recon-

struction on a pixellated potential grid. Blandford, Surpi & Kundić

(2001) proposed a method to perturbatively and iteratively cor-

rect the lens potential from a starting model by solving a first-

order partial differential equation. This method has been studied by

Koopmans (2005) and Suyu & Blandford (2006). The perturba-

tion differential equation can be written in terms of matrices for a

pixellated source brightness distribution and a pixellated potential,
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and the potential correction of each iteration can be obtained via a

linear matrix inversion. This pixellated potential reconstruction is

very similar to the source inversion problem and we are currently

studying it in the Bayesian framework.

The Bayesian analysis introduced in this paper is general and

was so naturally applicable to both the source and potential recon-

structions in strong gravitational lensing that we feel the Bayesian

approach could be useful in other problems involving model com-

parison.
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A P P E N D I X A : F O R M S O F R E G U L A R I Z AT I O N

We consider the three most common quadratic functional forms

of the regularization found in the local literature: ‘zeroth-order,’

‘gradient’ and ‘curvature’ (Press et al. 1992, sections 18.4 and 18.5).

For clarity, we use explicit index and summation notation instead

of vector and matrix notation for the expression of the regularizing

function ES(s).

Zeroth-order regularization is the simplest case. The functional

form is

ES(s) = 1

2

Ns∑
i=1

s2
i , (A1)

and its Hessian is the identity operator C = I. This form of regu-

larization tries to minimize the intensity at every source pixel as a

way to smoothen the source intensity distribution. It introduces no

correlation between the reconstruction pixel values.

To discuss gradient and curvature forms of regularization, we

label the pixels by their x and y locations [i.e. have two labels (i1, i2)

for each pixel location instead of only one label (i) as in Section 3.1]

since the mathematical structure and nomenclature of the two forms

of regularization are clearer with the two-dimensional labelling. Let

si1,i2 be the source intensity at pixel (i1, i2), where i1 and i2 range from

i1 = 1, . . . , N1s and i2 = 1, . . . , N2s. The total number of source pixels

is thus Ns = N1s N2s. It is not difficult to translate the labelling of

pixels on a rectangular grid from two dimensions to one dimension

for Bayesian analysis. For example, one way is to let i = i1 + (i2 −
1) N2s.

A form of gradient regularization is

ES(s) = 1

2

N1s−1∑
i1=1

N2s∑
i2=1

[
si1,i2 − si1+1,i2

]2

+ 1

2

N1s∑
i1=1

N2s−1∑
i2=1

[
si1,i2 − si1,i2+1

]2

+ 1

2

N1s∑
i1=1

s2
i1,N2s

+ 1

2

N2s∑
i2=1

s2
N1s,i2

. (A2)

The first two terms are proportional to the gradient values of the pix-

els, so this form of regularization tries to minimize the difference

in the intensity between adjacent pixels. The last two terms can be

viewed as gradient terms if we assume that the source intensities out-

side the grid are zeros. Although the non-singularity of the Hessian

of ES is not required for equation (13) since equation (A2) is of the

form ES(s) = 1
2
sTCs, these last two terms ensure that the Hessian

of ES is non-singular and lead to sreg = 0. The non-singularity of the

Hessian of ES (i.e. det C 	= 0) is crucial to the model comparison

process described in Section 2.2.2 that requires the evaluation of the

log evidence in equation (19).

A form of curvature regularization is

ES(s) = 1

2

N1s−2∑
i1=1

N2s∑
i2=1

[
si1,i2 − 2si1+1,i2 + si1+2,i2

]2

+ 1

2

N1s∑
i1=1

N2s−2∑
i2=1

[
si1,i2 − 2si1,i2+1 + si1,i2+2

]2

+ 1

2

N1s∑
i1=1

[
si1,N2s−1 − si1,N2s

]2

+ 1

2

N2s∑
i2=1

[
sN1s−1,i2 − sN1s,i2

]2

+ 1

2

N1s∑
i1=1

s2
i1,N2s

+ 1

2

N2s∑
i2=1

s2
N1s,i2

.
(A3)

The first two terms measure the second derivatives (curvature) in

the x and y directions of the pixels. The remaining terms are added

to enforce our a priori preference towards a blank image with

non-singular Hessian (important for the model ranking) that gives

sreg = 0. In essence, the majority of the source pixels have curvature

regularization, but two sides of the bordering pixels that do not have
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neighbouring pixels for the construction of curvature terms have

gradient and zeroth-order terms instead.

It is not difficult to verify that all three forms of regularization

have sreg = 0 in the expansion in equation (12). Therefore, equa-

tion (13) for the most probable solution is applicable, as asserted in

Section 3.1.

None of the three forms of regularization imposes the source

intensity to be positive. In fact, equations (A1)–(A3) suggest that

the source intensities are equally likely to be positive or negative

based on only the prior.

In principle, one can continue the process and construct regular-

izations of higher derivatives. Regularizations with higher deriva-

tives usually imply smoother source reconstructions, as the corre-

lations introduced by the gradient operator extend over larger dis-

tances. Depending on the nature of the source, regularizations of

higher derivatives may not necessarily be preferred over those of

lower derivatives: astronomical sources tend to be fairly compact.

Therefore, we restrict ourselves to the three lowest derivative forms

of the regularization for the source inversion problem.

A P P E N D I X B : E X P L A NAT I O N O F T H E

S O U R C E C OVA R I A N C E M AT R I X I N

BAY E S I A N A NA LY S I S

B1 Notation

Expressed in terms of matrix and vector multiplications, recall equa-

tion (1) for the image intensity vector is

d = fs + n, (B1)

where f is the lensing (response) matrix, s is the source intensity

vector and n is the noise vector. Recall equation (3) is

ED(s) = 1

2
(fs − d)TC−1

D (fs − d), (B2)

where CD = 〈nnT〉 is the image noise covariance matrix. We write

the prior exponent as

λES(s) = 1

2
sTS−1s, (B3)

where, for simplicity, we have set sreg = 0 and ES(0) = 0 (valid for the

regularization schemes considered in Appendix A), and S = 〈ssT〉
is the a priori source covariance matrix. Comparing to equation (12),

S = (λC)−1. Combining equations (B2) and (B3), the exponent of

the posterior is

M(s) = ED(s) + λES(s)

= 1

2
(fs − d)TC−1

D (fs − d) + 1

2
sTS−1s. (B4)

B2 Most likely estimate

The most likely estimate is given by ∇ED(sML) = 0, which gives

fTC−1
D (fsML − d) = 0. (B5)

Rearranging the previous equation, we obtain

sML = (fTC−1
D f)−1fTC−1

D d. (B6)

Differentiating ED(s) again gives the Hessian

B ≡ ∇∇ED(s) = fTC−1
D f. (B7)

This in turn allows us to write

sML = B−1fTC−1
D d, (B8)

which is equation (8).

By construction, CD, S and B are symmetric matrices.

B3 Error on most likely estimate

Let us assume that the true source intensity is s∗ (i.e. the actual true

source intensity for the particular image we are considering). Now

consider the expectation value of sML over realizations of the noise

n:

〈sML〉 = B−1fTC−1
D 〈fs∗ + n〉 = B−1fTC−1

D fs∗ = s∗, (B9)

where we have used 〈n〉 = 0 and angle brackets denote averages over

noise realizations. Thus, we see that sML is an unbiassed estimator

of s∗.

Now consider the covariance of sML. Since 〈sML〉 = s∗, the co-

variance is given by〈
(sML − s∗)(sML − s∗)T

〉 = 〈
sMLsT

ML

〉 + s∗sT
∗

−s∗
〈

sT
ML

〉 − 〈sML〉sT
∗

= 〈
sMLsT

ML

〉 − S∗, (B10)

where S∗ = s∗sT
∗ is the covariance matrix of the true signal and,

once again, angle brackets denote averages over noise realizations.

The term 〈sML sT
ML〉 above is given by

〈sMLsT
ML〉 = B−1fTC−1

D 〈ddT〉C−1
D fB−1

= B−1fTC−1
D 〈(fs∗ + n)(fs∗ + n)T〉C−1

D fB−1

= B−1fTC−1
D (fs∗sT

∗ fT + CD)C−1
D fB−1

= B−1BS∗BB−1 + B−1BB−1

= S∗ + B−1.

(B11)

Inserting equation (B11) in (B10), the covariance of sML is given

simply by

〈(sML − s∗)(sML − s∗)T〉 = B−1, (B12)

which agrees with equation (24) since A=B for the most likely

solution (with λ = 0).

B4 Most probable estimate

The most probable estimate is given by ∇M(sMP) = 0, which gives

fTC−1
D (fsMP − d) + S−1sMP = 0. (B13)

Rearranging, we get

sMP = (
S−1 + fTC−1

D f
)−1

fTC−1
D d. (B14)

Differentiating M(s) again gives the Hessian

A ≡ ∇∇M(s) = S−1 + fTC−1
D f = S−1 + B, (B15)

which, in turn, allows us to write

sMP = A−1fTC−1
D d = A−1BB−1fTC−1

D d = A−1BsML, (B16)

which agrees with equation (13).

The Hessian A is symmetric by construction.
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B5 Error on MP estimate

Let us again assume that the true source intensity is s∗. Using equa-

tions (B16) and (B9), the expectation value of sMP over realizations

of the noise n is

〈sMP〉 = A−1B〈sML〉 = A−1Bs∗, (B17)

where angle brackets denote averages over noise realizations. Thus,

we see that sMP is a biassed estimator (in general) of s∗. We must

therefore be careful when considering errors.

First consider the covariance of sMP, which is given by〈
(sMP − 〈sMP〉)(sMP − 〈sMP〉)T

〉 = A−1BA−1, (B18)

where we have used equations (B16), (B17) and (B11). Remember-

ing that A = S−1 + B, we have B = A − S−1, so the final result

is〈
(sMP − 〈sMP〉)(sMP − 〈sMP〉)T

〉 = A−1 − A−1S−1A−1, (B19)

which is equivalent to the equation (17) in Warren & Dye (2003).

We verified equation (B19) by a Monte Carlo simulation of 1000

noise realizations of the source brightness distribution described in

Section 3.2.1. The noise realizations differ only in the values of the

random seed used to generate random noise in the simulated data.

We used curvature regularization (see Appendix A) with a fixed (and

nearly optimal) value of the regularization constant λ for each of

the 1000 source inversions. The standard deviation of sMP calculated

from the 1000 inverted source distributions agrees with the 1σ error

from equation (B19).

Equation (B19) gives the error from the reconstructed source sMP.

Since sMP is a biassed estimator of s∗, what we really want to know

is not the covariance above, but the quantity 〈(sMP −s∗)(sMP −s∗)T〉,

which gives us the distribution of errors from the true source. This

is given by〈
(sMP − s∗)(sMP − s∗)T

〉 = A−1BS∗BA−1 + A−1BA−1

+S∗ − S∗BA−1

−A−1BS∗, (B20)

where we have again used equations (B16), (B17) and (B11). Sub-

stituting B = A − S−1 gives, after simplifying,〈
(sMP − s∗)(sMP − s∗)T

〉 = A−1 + A−1S−1

(S∗S
−1 − I)A−1. (B21)

In reality, we do not know S∗ (as this would require knowing

the true source intensity s∗). However, by averaging over source

brightness distributions (denoted by a bar), we have S∗ = S. This is

the manifestation of our explicit assumption that all source intensity

distributions are drawn from the prior probability density defined

by equation (4). Thus,

〈(sMP − s∗)(sMP − s∗)T〉 = A−1, (B22)

which is the inverse of ∇∇M(s). In words, the covariance matrix

describing the uncertainties in the inverted source intensity is given

by the width of the approximated Gaussian posterior in equation (7),

which is A−1. The covariance matrix of sMP in equation (B19) in

general underestimates the error relative to the true source im-

age because it does not incorporate the bias in the reconstructed

source.
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