
The Astrophysical Journal, 708:605–614, 2010 January 1 doi:10.1088/0004-637X/708/1/605
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

HYPERVELOCITY STARS AND THE RESTRICTED PARABOLIC THREE-BODY PROBLEM

Re’em Sari
1,2

, Shiho Kobayashi
1,3

, and Elena M. Rossi
1

1 Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
2 Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA
3 Astrophysics Research Institute, Liverpool John Moores University, Birkenhead CH41 1LD, UK

Received 2009 October 13; accepted 2009 November 16; published 2009 December 14

ABSTRACT

Motivated by detections of hypervelocity stars that may originate from the Galactic center, we revisit the problem of a
binary disruption by a passage near a much more massive point mass. The six orders of magnitude mass ratio between
the Galactic center black hole (BH) and the binary stars allows us to formulate the problem in the restricted parabolic
three-body approximation. In this framework, results can be simply rescaled in terms of binary masses, their initial
separation, and the binary-to-black hole mass ratio. Consequently, an advantage over the full three-body calculation
is that a much smaller set of simulations is needed to explore the relevant parameter space. Contrary to previous
claims, we show that, upon binary disruption, the lighter star does not remain preferentially bound to the black hole.
In fact, it is ejected in exactly 50% of the cases. Nonetheless, lighter objects have higher ejection velocities, since
the energy distribution is independent of mass. Focusing on the planar case, we provide the probability distributions
for disruption of circular binaries and for the ejection energy. We show that even binaries that penetrate deeply
into the tidal sphere of the BH are not doomed to disruption, but survive in 20% of the cases. Nor do these deep
encounters produce the highest ejection energies, which are instead obtained for binaries arriving to 0.1–0.5 of the
tidal radius in a prograde orbit. Interestingly, such deep-reaching binaries separate widely after penetrating the tidal
radius, but always approach each other again on their way out from the BH. Finally, our analytic method allows us
to account for a finite size of the stars and recast the ejection energy in terms of a minimal possible separation. We
find that, for a given minimal separation, the ejection energy is relatively insensitive to the initial binary separation.

Key words: binaries: general – Galaxy: center – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: stellar
content
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1. INTRODUCTION

Hypervelocity stars (HVSs) are stars with a velocity exceed-
ing the escape velocity of the Galaxy. Currently, 16 such stars
have been observed, 15 of which are thought to originate from
our Galactic center (Brown et al. 2005, 2006, 2007, 2009;
Hirsch et al. 2005) and one from the Large Magellanic Cloud
(Edelmann et al. 2005). All have been observed with radial ve-
locities between 300 km s−1 and 800 km s−1 and almost all are
located over 50 kpc away. For stars whose likely origin is within
the Galaxy and taking the Galactic potential into account, this
translates to velocities of over 1000 km s−1 from the bulge. The
observational strategy is such that most of the HVSs discovered
are faint B stars. They have escape velocities from the surface
of the order of 600 km s−1, well below the ejection velocity
of 1000 km s−1. Thus, the standard mechanisms for producing
high-velocity runaway stars, such as star scattering and explo-
sion as a supernova of one component of a binary, cannot work.
A dynamical interaction with a massive compact object is likely
involved.

In this paper, we adopt one of the leading models for the
formation of HVSs: the breakup of a binary as it approaches
the BH in the Galactic center (Hills 1988). Simple analytical
arguments can be made to show the potential of this model to
explain HVSs.

If the binary of total mass m has separation a, then tidal
forces from the BH overcome the binary’s mutual gravitational
forces at the tidal radius rt = a(M/m)1/3, where M is the mass
of the BH. The relative velocity of the binary components is
of order v0 = (Gm/a)1/2. If the binary approaches the BH

with negligible energy, its center of mass moves at the tidal
radius with velocity of order vBH = (GM/rt )1/2 = v0(M/m)1/3

relative to the BH. There are three ways to estimate the energies
of the individual components of the binary, assuming that they
arrived with negligible total energy. It is instructive to consider
all three:

1. Kinetic energy: adding or subtracting the relative velocity of
the components, v0, to the velocity around the BH results in
an additional kinetic energy of order v0vBH ∼ v2

0(M/m)1/3.
2. Gravitational potential energy: the displacement of order a

in the position of each component of the binary, at a distance
of about rt from the BH, results in a change in gravitational
energy of GMa/r2

t ∼ v2
0(M/m)1/3.

3. Work: the energy of each of the components in the BH
frame is changing only due to mutual forces between the
binary components. The force is of order Gm/a2 and the
length, in the BH frame, over which it acts is rt. Therefore,
the work is Gmrt/a

2 ∼ v2
0(M/m)1/3.

All these estimates provide an energy of order v2
0(M/m)1/3. If

the binary dissolves, one component of the binary stays bound
to the BH and the other escapes with a velocity at infinity4

of v0(M/m)1/6. The encounter with the BH, therefore, allows
for a larger velocity by a factor of (M/m)1/6 than the orbital
velocity of the binary. For the parameters of our Galaxy and
stars, (M/m)1/6 ∼ 10, allowing ejections with velocities of
thousands of kilometers per second.

4 We ignore the Galactic potential in this paper. By “the velocity at infinity”
we mean the velocity of the object once it escapes the gravitational potential of
the BH but has not yet climbed out of the potential of the rest of the Galaxy.
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This is the theoretical framework in which Hills (1988)
predicted the existence of HVSs. It was later discussed by
Yu & Tremaine (2003) and Gould & Quillen (2003). After
the observational discovery, many more papers on the subject
appeared (Gualandris et al. 2005; Ginsburg & Loeb 2006a,
2006b; Bromley et al. 2006; Sesana et al. 2007; Perets et al.
2007; Kenyon et al. 2008; Tutukov & Fedorova 2009), aiming
to predict the properties of the ejected and/or captured stars.
Other papers (e.g., Ginsburg & Loeb 2007; Antonini et al. 2009)
focused instead on the fate of binaries that are not dissolved,
but that in fact coalesce. The investigations so far have used
three-body simulations or analytic methods that relied on results
from three-body simulations. Consequently, only a limited set of
parameters (e.g., for the binary mass ratio) have been explored.

In this paper, we show that this problem can be investigated
with methods related to those used in the study of asteroids in the
solar system and which exploit the enormous disparity in mass
between the bodies involved. Specifically, we can formulate it
in terms of a restricted three-body problem, i.e., the motion
of a single massless particle under the influence of external
time-dependent forces. Our treatment is valid as long as the
binary components are closer to each other than to the BH. Since
rt = a(M/m)1/3 our approximation requires (M/m)1/3 � 1,
which is fully satisfied in the case of the BH at the Galactic center
and a binary of B stars, (M/m)1/3 ∼= 100. With the advantages
of this analytic method, we can reach general conclusions that
do not depend on the physical properties of the system such
as masses and the binary semimajor axis. Moreover, the orbit
integration is faster and more stable, allowing us to handle more
easily cases of close encounters between the bodies.

In Section 2, we outline the formulation of the three-body
problem in terms of a restricted parabolic problem. In Section 3,
we use the restricted radial problem to describe binaries that
penetrate deep into the tidal radius. The radial problem has
a singularity at the time that the binary encounters the BH,
and we use the results of the parabolic problem to pass the
singularity and continue to describe the evolution of the binary
on its trajectory away from the BH. In Section 4, we compare our
results with three-body numerical integrations and find excellent
agreement. We then use the parabolic and radial formalisms to
investigate the probability of dissolving a circular, planar binary
and to obtain quantitative estimates of the ejection velocities.
We outline these results in Section 5.

2. THE PARABOLIC RESTRICTED THREE-BODY
PROBLEM

2.1. The Orbit

In the case of interest M/m � 1 and the equation of motion
for each of the binary members reads

r̈1 = −GM

r3
1

r1 +
Gm2

|r1 − r2|3 (r2 − r1) (1)

r̈2 = −GM

r3
2

r2 − Gm1

|r1 − r2|3 (r2 − r1), (2)

where r1 and r2 are the respective distances from the BH. We
therefore obtain that the equation for the distance between the
two, r̃ ≡ r2 − r1, is given by

¨̃r = −GM

r3
2

r2 +
GM

r3
1

r1 − Gm

r̃3
r̃. (3)

Now, we assume that the two masses are much closer to each
other, and to some effective parabolic trajectory rm, than each
of them is to the central mass M. As we already noticed in our
introduction, this condition is actually enforced, up to the tidal
radius, by the requirement of a large mass ratio M/m � 1.
Deep inside the tidal sphere, this assumption may break and we
will discuss the relevant conditions in Section 3.2.

We define the effective trajectory, rm, to be the parabolic
orbit set by the position and velocity of the center of mass of
the binary when it is far away from the BH. The trajectory rm is
therefore described by

rm = 2rp

1 + cos f
, (4)

where rp is the distance of closest approach and f the angle from
the point of closest approach. The angle f, known as the true
anomaly, is a function of time, but analytically one has only the
time as a function of f:

t̃ =
√

2

3

√
r3
p

GM
tan(f/2)(3 + tan2(f/2)). (5)

Note that the actual center of mass will not generally move on
this orbit, since the total force on the binary does not equal the
force that would act if the binary was a single body.

Linearizing the first two terms of Equation (3) around rm, we
find that the zero orders cancel out and we obtain

¨̃r = −GM

r3
m

r̃ + 3
GM

r5
m

(r̃rm)rm − Gm

r̃3
r̃. (6)

Rescaling the distance between the bodies by (m/M)1/3rp

and the time by
√

r3
p/GM, we can re-write Equation (6) in terms

of the dimensionless variables5 r and t:

r̈ =
(

rp

rm

)3

[−r + 3(rr̂m)r̂m] − r
r3

. (7)

Since r̂m = (cos f, sin f, 0), rm/rp = 2/(1 + cos f ), and we
set r = (x, y, z), explicit equations in terms of dimensionless
Cartesian coordinates read

ẍ = (1 + cos f )3

8
[−x + 3(x cos f + y sin f ) cos f ]

− x

(x2 + y2 + z2)3/2
, (8)

ÿ = (1 + cos f )3

8
[−y + 3(x cos f + y sin f ) sin f ]

− y

(x2 + y2 + z2)3/2
, (9)

z̈ = − (1 + cos f )3

8
z − z

(x2 + y2 + z2)3/2
, (10)

t =
√

2

3
tan(f/2)(3 + tan2(f/2)). (11)

5 Later, for the radial problem (Section 3), we will rescale our variables
differently, keeping the same symbols. Therefore, throughout this paper, r and
t should be understood as dimensionless, with a normalization that should be
clear from the context.
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Equations (8)–(10) are the equivalent of the Hill equations (Hill
1886), for the parabolic rather than circular problem. Since
Equation (11) is implicit, for numerical applications it may be
preferable to use its differential form

ḟ =
√

2(1 + cos f )2/4. (12)

2.2. Free Solutions

Just like the Hill equations, Equations (8)–(10) have free
solutions, those that ignore the interaction term r/r3. These can
be found mathematically, but physical intuition facilitates a swift
solution. Since we have a set of three linear differential equations
of the second order, all solutions are a linear combination of six
independent solutions. Each could be physically obtained by
taking the difference between an orbit infinitesimally close to a
parabolic orbit and the parabolic orbit itself. We list the solutions
below, stating which orbital element has been varied.

1. Variation in the argument of periapsis:

x = − sin f

1 + cos f
, y = cos f

1 + cos f
. (13)

2. Variation in the time of periapsis:

x = −sin f, y = 1 + cos f. (14)

3. Variation in the periapsis distance:

x = 2 − cos f, y = −cos f tan(f/2). (15)

4. Variation in the eccentricity at fixed periapsis:

x = (8 + 12 cos f ) tan4(f/2), (16)

y = 35 sin f − 2 sin(2f ) + 3 sin(3f )

(1 + cos f )2
.

5. Rotation around the apsidal line:

x = y = 0, z = 2 sin f

1 + cos f
. (17)

6. Rotation around the latus rectum:

x = y = 0, z = 2 cos f

1 + cos f
. (18)

In the above expressions, f is a function of t as given by
Equation (11). The first four solutions are planar, i.e., z = 0,
while the last two solutions are one dimensional, x = y = 0. It
is easy to check the validity of these expressions by substituting
them into Equations (8)–(10) and using Equation (12).

2.3. The Energy

We are ultimately interested in the fate of a star in a binary,
following its encounter with the BH. If the binary—approaching
the hole on a parabolic orbit—is torn apart, a star can either
become bound to the BH or be ejected from the system. To
distinguish between these two possibilities, we calculate its
energy as a function of time, including the negative gravitational
energy due to the BH. Initially, at large distances, the specific
energy of one member is simply ∼ − v2

0. After the binary
disruption, the analytical arguments in our introduction suggest

that its energy is larger by a factor of (M/m)1/3 � 1. We thus
neglect the term due to the self-gravity of the binary. In addition,
for (M/m) � 1, the change in energy of the massive BH can
also be neglected and the total energy of m1 reads

E1 = −GMm1

r1
+ m1 |ṙ1|2 /2 . (19)

To zeroth order, we can replace r1 by rm, but since rm is a
parabolic orbit that zeroth-order energy vanishes. The first-order
terms are

E1 = GMm1

r2
m

(r1 − rm) + m1ṙm(ṙ1 − ṙm), (20)

or, using our rescaled variables,

E1 = −GMm1m2

mrp

( m

M

)1/3
[

r2
p

r2
m

rr̂m +
ṙm

rp

ṙ

]
. (21)

Since in our limit the total energy of the system is zero,
the energy of the other body, m2, is simply E2 = −E1.
In the following, it is useful to define the penetration factor
D = rp/rt . In terms of our dimensionless Cartesian coordinates
Equation (21) is given by

E1 = −E2 = −Gm1m2

a D

(
M

m

)1/3

(22)

×
[

(1 + cos f )2

4
(x cos f + y sin f ) +

−sin f ẋ + (1 + cos f )ẏ√
2

]
.

If the binary dissolves, this energy tends to a constant, since
the body is eventually moving only under the conservative force
of the BH. Mathematically, this means that the first term on the
right-hand side of Equation (7) now dominates, and the problem
is linear.

The negative of a solution is thus a solution. But the energy
is also linear in the coordinates. Therefore, a body starting with
a phase difference π will have the same final energy in absolute
value but opposite in sign. This is independent of the mass of
the star. The important consequence is that, of the disrupted
cases, half would have the heavier object bound and the lighter
escaping, while half would have the opposite. These findings
are at odds with those of Bromley et al (2006) who find that, for
large m1/m2 ratios, the lighter object usually becomes bound.

We also note that, to this lowest order, the z-component of
the binary motion has no effect on the energy; thus it does not
determine whether a body would be ejected.

Finally, we explicitly write the energy for the case that we can
neglect the interaction term between the two stars. The solution
in this “free” regime6 is a linear combination of Equations (13)–
(18). For each free solution the energy is a constant of motion.
Therefore, the total energy is a linear combination of these
constants. However, any solution constructed from two bodies
in infinitesimally close parabolic orbits has zero energy. Only
Equation (16), that describes the relative orbits of two bodies
where one has e �= 1, gives a finite constant energy when
substituted into Equation (22):

E1 = −E2 = −Gm1m2

a D

(
M

m

)1/3

20 B, (23)

6 Even in the non-free regime, where the gravitational forces between the two
stars are important, one can expand the solutions in terms of the free solutions,
except that the coefficients will be time dependent. Our expression of the
energy will still be given by B, except that B now is time dependent.
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where B is the coefficient of Equation (16) in the linear
expansion.

3. DEEP PENETRATORS AND THE RADIAL
RESTRICTED THREE-BODY PROBLEM

The previous section allowed for arbitrary penetration factors
D. The presence of the factor 1/D in Equation (23) seems to
suggest that, for a given initial star separation a, arbitrarily large
energies can be attained for binary trajectories penetrating far
into the tidal disruption region (D � 1). However, as we show
here, this is not the case. We proceed to investigate this case of
deep penetrators by considering a different, even simpler, limit
of the equations. The periapsis distance of the center of mass,
rp, becomes now irrelevant and instead the center of mass can
be taken to move on a radial orbit given by

rm =
(

9GMt̃2

2

)1/3

. (24)

We can now scale the distance to the initial semimajor axis of
the binary, a, and the time to the inverse angular frequency of the
binary with that semimajor axis,

√
Gm/a3. Taking the direction

of the binary center of mass with respect to the BH to be r̂m,
Equation (6) simplifies to

r̈ =
(

2

9t2

)
[−r + 3(rr̂m)r̂m] − r

r3
. (25)

In Cartesian coordinates, where x̂ is the direction of the binary’s
center of mass, we have

ẍ = 4

9t2
x − x

(x2 + y2 + z2)3/2
, (26)

ÿ = − 2

9t2
y − y

(x2 + y2 + z2)3/2
, (27)

z̈ = − 2

9t2
z − z

(x2 + y2 + z2)3/2
. (28)

The energy as given by Equation (20) is

E1 = −E2 = −Gm1m2

a

(
M

m

)1/3 (
2

9

)2/3

|t |−4/3 (x + 3t ẋ) .

(29)

3.1. Special Solutions to the Radial Restricted Problem

3.1.1. Homogeneous Collapse

It is simple to verify that the following

x(t) = ±
(

3

2

)1/3

|t |2/3, y(t) = z(t) = 0, (30)

is a solution to our equations. This solution is the analog of
a homogenous collapse. In these solutions, the small masses
m1 and m2 accelerate toward each other, by a combination of
tidal forces and mutual acceleration, at the same rate that their
center of mass is accelerating toward the central mass. These
solutions, just like the stationary solution at the L1 and L2 points
in the circular restricted problem, and just like the homogeneous
collapse of dust, are unstable for deviations in the x-direction.

3.1.2. Free Solutions

In the limit of large separation between the small masses or
close to t = 0, where the distance to the BH is small, tides
dominate over the mutual gravity, and the problem become
separable in x, y, and z. It admits the following solutions:

x(t) = Ax |t |−1/3 + Bx |t |4/3,

y(t) = Ay |t |1/3 + By |t |2/3, (31)

z(t) = Az|t |1/3 + Bz|t |2/3.

These are the equivalent of the free solutions given for the
parabolic restricted problem in Equations (13)–(18). Just like
them, they can be given physical interpretations. The Ax solution
describes two particles that have the same trajectory, but are
slightly separated in time. The By and Bz solutions describe
particles going on slightly different radial paths, each of zero
energy. The Bx solution describes the relative orbits of two
particles going on the same radial path, but with slightly different
energies. The Ay and Az solutions describe the relative orbits of
particles with slightly different angular momentum.

Note that both exponents of the y and z terms are positive,
while one exponent of the x term is negative. This means that
at times close to zero, the particles are very close in y and z
but are separated in x: y(t → −0) = z(t → −0) = 0 while
x(t → −0) = ±∞.

As in the parabolic case, one of the coefficients of the
solution is related to energy. Substituting the equation for the
x-component and its derivative into Equation (29), we get

E1 = Gm1m2

a

(
M

m

)1/3

5 (2/9)2/3 Bx. (32)

This can be regarded as the equivalent of Equation (23) in
the limit of D → 0. It is evident that the energy in this limit is
finite and the divergence suggested by Equation (23) is not real.
Moreover, as we will show later, the highest ejection velocities
are not obtained in this limit.

3.2. The t = 0 Singularity

From the discussion above, we learn that, beside a set of zero
measures of initial conditions, the binary components acquire an
increasingly large separation as they approach the large mass M.
It is therefore tempting to conclude that, for deep penetrators,
binaries always dissolve. In fact, the two components of the
binary approach each other again at later (positive) times. Thus,
to know the final outcome of the scattering, we should overcome
the singularity and follow the orbits of the light bodies beyond
the time of the encounter with the BH.

The difficulty arises from the assumption of a purely radial
orbit for the binary center of mass. A deep (D � 1) parabolic
orbit would parallel closely the radial one and get around the BH
smoothly. Once across the singular region, the radial equations
are valid and the integration of the orbit can be resumed. We
further notice that when the binary is well within the tidal radius,
|t | � 1, the mutual gravity of its members can be neglected and
their separation follows a free solution. Therefore, the resolution
of our problem ultimately lies in finding which free parabolic
orbit reduces—in the deep penetration approximation—to the
free radial orbit that an approaching binary is following while
still farther away from its periapsis, |t | � D3/2.
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This translates into expanding Equations (13)–(18) around
f = −π and comparing them with Equations (31). Interest-
ingly, we find that there is a one to one correspondence: solutions
with coefficients Ax, Ay, and Az correspond to Equations (14),
(15), and (17), respectively. Likewise, the solutions with Bx,
By, and Bz correspond to Equations (16), (13), and (18), respec-
tively. This is as expected, given their physical interpretation. As
an example, we expand Equation (11) and the x-component of
Equation (16) multiplied by some coefficient B around f = −π .
We obtain

x = −64/3 |t |4/3B. (33)

This is the behavior of the radial solution with coefficient Bx. In
fact, comparing the two solutions for x and accounting for the
different spatial and temporal dimensions, we get

Bx = −64/3 D−1 B. (34)

With this relation, the two Equations (23) and (32) are equiva-
lent, as we expect.

From this comparison, we also learn the behavior of the
binary separation around t = 0. There, the Ax |t |−1/3 term
dominates, corresponding to the free parabolic solution derived
by slightly varying the time at periapsis (Equation (14)). The
latter, however, does not diverge at t = 0. Instead, it describes a
circle centered around x = 0 with y = R, where R is the radius
of the circle.

A key observation for our problem is that all parabolic
orbits which reduce to the As (Bs) solutions are asymmetric
(symmetric) function of time where the subscript s stands for
x, y, or z. We conclude that we can ferry a free solution across
t = 0, from negative to positive times, by simply changing the
sign of its As coefficients.

A concern might arise from the fact that our assumption of
small binary separation relative to the BH may break down at
times where the binary is close to its periapsis. Indeed, at small
enough times, the binary separation is about a|t |−1/3 while
the distance to the BH decreases as rm ∼ a (M/m)1/3|t |2/3.
They match at |t | = (m/M)1/3, from which follows that, if the
binary gets within a distance of rm/a < (m/M)1/9 from the
BH, our approximation is no longer valid. This occurs for a
penetration factor for the orbit smaller than D < (m/M)2/9.
When this happens, the parabolic formalism also incorrectly
traces the trajectory for |t | < (m/M)1/3. Specifically, the true
orbit deviates from the circle given by Equation (14). Yet, the rest
of our conclusions, including the energy of the particles, will not
be affected. Using the same work argument in our introduction,
one derives that the energy gained during the periapsis passage is
smaller by a factor of D2 than that gained around the tidal radius.
One factor of D come from the smaller distance around the BH,
and the other from the larger distance between the stars resulting
in a smaller force between them. We conclude that—for any
impact parameter—both energy and orbit obtained with the
method described above are fairly accurate for |t | > (m/M)1/3.

4. NUMERICAL VERIFICATIONS

We test our approximated equations against three-body sim-
ulations of a binary evolving around a much more massive BH.

Both the three-body code and the code that numerically in-
tegrates our equations are provided with a fourth-order Runge–
Kutta integration scheme. In the three-body code, the binary
center of mass is initially either on a parabolic (Section 4.1) or
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Figure 1. Orbit of the secondary star in the primary comoving frame. The binary
center of mass is initially on a parabolic trajectory. We assume a prograde binary
orbit, M/m = 106, m1/m2 = 3,D = 0.1, φ = 4π/5, and r0 = 10rt . The
three-body solution (solid line) is compared with our approximated solution
(dashed line). Squared (three body) and cross (our solution) marks show the
position of the secondary at t = −3, 0, 3, and 15. Lengths and time are in units
of (m/M)1/3rp and (r3

p/GM)1/2, respectively.

on a radial (Section 4.2) orbit. The binary consists of a primary
star with mass m1 and of a secondary with m2 = m1/3. In the
examples shown in this section, the BH–binary mass ratio is set
to be M/m = 106. The binary’s orbit is assumed to be initially
circular in the comoving frame of the binary center of mass. The
initial configuration of the system is characterized by three pa-
rameters. First, the initial distance of the binary center of mass
to the BH, r0. However, as long as a simulation starts at a large
enough radius, r0 � rt, the orbits are largely independent of it.
In our runs, we assume r0 = 10rt , which is sufficient for con-
vergency. Second, the initial (at t0 = t(r0) < 0) binary phase,
φ0. We parameterize it using the effective phase φ at t = 0 (i.e.,
at the periapsis passage for a parabolic orbit or at r = 0 for a
radial one),

φ0 = S ωt0 + φ,

where ω is the (constant) angular velocity of the binary at r � rt .
Naturally, the actual phase at t = 0 is in general different
from φ, due to the BH tidal forces. All angles are measured
from the x-axis. Finally, we should specify the direction of
rotation of the binary, S, as viewed in the non-rotating frame:
i.e., the relative orientation of the angular momentum of the
binary around the BH and of a star around the binary center of
mass. For a planar orbit there are two possibilities: the angular
momenta are aligned, S = 1, in which case we call the orbit
prograde, or they are anti-aligned, S = −1, which we call a
retrograde orbit. In addition, for the parabolic case, the system
has a fourth parameter: the penetration factor D.

4.1. Parabolic Orbits

In this section, we compare the evolution of the binary stars
obtained with the three-body code and our parabolic formalism
(Equations (8)–(11)). We assume a prograde orbit for the binary,
D = 0.1 and φ = 4π/5. The result is shown in Figure 1, where
we plot the orbit of the secondary star in the comoving frame
of the primary. After disruption around periapsis, the secondary
star is captured by the BH on an elliptical orbit, while the primary
is ejected from the system. Clearly, the three-body curve is
accurately reproduced by our set of approximated equations.
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Figure 2. As Figure 1, but for an initial radial orbit for the binary center of
mass. All relevant parameters are the same. Here, the position of the secondary
is marked at t = −10−2, −10−1,−1, and −3. Length and time are in units of
a and

√
a3/Gm, respectively.

The energy, for example, differs at a 0.1% level after the binary
disruption.

In addition, we compared the performance of the two numeri-
cal methods for M/m � 1. The calculation of our approximated
solution is faster for two reasons. First, for the fourth-order
scheme, numerical convergence is achieved with a time-step
about ∼(M/m)1/12 times smaller. Second, we integrate seven
equations instead of eighteen, since we only follow the binary
star’s relative distance. This moderate speed-up, combined with
the fact that most dependencies are analytic, allows us to explore
more easily a wider portion of the parameter space.

4.2. Radial Orbits

We now consider a binary moving on a radial orbit of
zero energy and test the accuracy of our radial approximation
(Equations (26)–(28)). The trajectory of the separation between
the stars is shown in Figure 2 for a binary with a phase φ = 4π/5.
Here, we plot the orbit up to t = −2 × 10−3. The assumption of
a relatively small star separation is expected to become invalid
around |t | ∼ (m/M)1/3 = 10−2. Again, there is good agreement
between our solution and the three-body calculation. Comparing
the two terms on the right-hand side of Equation (26), one
expects that the tidal force dominates for |t | � 1. Indeed, we
find numerically that the deviation from the initially circular
orbit becomes significant around |t | ∼ 1. For |t | � 1, the orbit
approaches the free solutions x ∝ |t |−1/3 and y ∝ |t |1/3. Finally,
we also reproduce at a percentage level the energy evolution as
a function of time. For the specific example in Figure 2, we get
an energy that differs only by half a percent at t ∼ 0 from the
three-body result.

4.3. Deep Penetrators

In the previous sections, we have established that both our
sets of equations reproduce the full three-body calculation well.
We now investigate their relationship. In particular, we show
how a parabolic solution reduces to a radial one in the limit in
which a binary plunges deeply into the tidal sphere of influence
of the BH. With this aim, we employ our parabolic formalism
to numerically calculate binary orbits with increasingly smaller

Figure 3. As Figure 1, but for different penetration factors as labeled. The
binary’s orbit is prograde with parameters M/m = 106, φ = 0, and r0 =
10 rt . Lengths are in units of the initial binary separation. The parabolic
approximation (solid curves) and the three-body results (dotted curves) are
practically indistinguishable. In addition, we plot the radial orbit (dashed curve)
for the same parameters.
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Figure 4. Probability of disruption as a function of the penetration factor, D,
for prograde orbit (Pp, the red solid line), retrograde orbit (Pr, the blue solid
line), and total PT = (Pp +Pr)/2. The binary phase [0, π ] is sampled with 3000
equally spaced grid points for each penetration factor.

(A color version of this figure is available in the online journal.)

penetration factors (Figure 3, solid lines). In this example, the
orbit degenerates to a radial one (dashed line) for D ∼ 10−5.

5. RESULTS

We are now in the position to statistically describe the
properties of a binary after its encounter with a BH. We focus
here on the planar case. For given masses of the three bodies
and semimajor axis of the binary stars, the fate and the final
energy of the binary members depend only on the penetration
factor D = rp/rt and on the effective binary phase φ.

5.1. The Fate of the Binary

Contrary to naive expectations, we find that for D � 1 a non-
negligible fraction of the binaries are not disrupted (Figure 4).
For D < 10−1, the fraction of disrupted cases saturates at a
level of ∼80%. The best chance of disruption is for a binary
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Figure 5. Final energy contour plots, in the phase-penetration factor plane,
for a given initial separation a. Upper panel: prograde orbits. Lower panel:
retrograde orbits. Energy is in units of (Gm1m2/a)(M/m)1/3 and the phase
in units of π . In the lower panel axes are reversed. The energies have been
computed using the restricted parabolic formalism. The figure is constructed
with a grid of 400 φ values (equally spaced linearly) and 100 D values (equally
spaced logarithmically). We only plot the final energy of a member of a disrupted
binary, which can be either captured by the BH (E < 0) or ejected (E > 0). The
flat amaranth (dark red) region shows the region in the parameter space where
the binary survives disruption.

in prograde orbit with D = 0.15. A comparison between the
curves for prograde (labeled Pp) and retrograde (Pr) orbits
underlines the well known fact that retrograde binaries tend
to be more stable against tidal disruption. Nevertheless, the two
curves converge for D � 1. This is because in this limit the
binary center of mass approaches the BH in an almost radial
fashion, so that the angular momentum of the binary around
the BH is very close to zero. Indeed, in the radial formalism,
there is no distinction between prograde and retrograde orbits.
Consistently, when we calculate the disruption probability for
a binary on a radial orbit, we find a survival fraction of 19%.
Interestingly, we observe that binaries that avoid disruption tend
to tighten, with their final semimajor axis af < a. For instance,
for radial orbits, the encounter with the BH produces harder
binaries in about 90% of the cases.

5.2. Final Energy of Ejected Stars

In Figure 5, we show the contour plots for the final energy, at
t � 1, of a member of a binary in parabolic orbit that faces
either capture by the BH (E = constant < 0) or ejection
(E = constant > 0) from the three-body system. The flat
amaranth region is where binaries are not disrupted. For a binary
approaching the BH on a prograde orbit (upper panel), a rather
shallow penetration factor of D = 2.1 is already sufficient to
be torn apart by tidal forces, while no disruption occurs for
a retrograde orbit (lower panel) with D � 0.44. We chose
to plot the lower panel with reversed axes to emphasize how
they tend towards the same energy distribution for D → 0.
The limiting distribution depends only on φ and it is given, of
course, by the energy plot obtained for radial orbits (Figure 6).
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Figure 6. Final energy as a function of φ for a member of a deep penetrating
disrupted binary with a given initial separation a. Energy is in units of
(Gm1m2/a)(M/m)1/3 and the phase in units of π . The red solid line is for
a binary in radial orbit. Results for the parabolic formalism are shown for
prograde orbits with D = 10−3 (blue dotted line), 10−2 (green dash-dotted
line), and 3 × 10−2 (black dashed line). The boundaries of the intervals in φ,
where disruption of the binary occurs, are marked with the circles. The phase
range is sampled with 6000 equally spaced grid points.

Note again that in the radial limit there is a finite region
(−0.31π < φ < −0.12π and 0.69π < φ < 0.88π ) where
binaries survive.

Let us now consider the pattern of the energy contours
(Figures 5 and 6). For the same penetration factor, it shows how
a change of π in the effective phase translates into an energy
which is equal in absolute value but opposite in sign. Therefore,
as noted before, a uniform distribution in φ implies that, when
the binary is disrupted, each body has a 50% chance of being
ejected. Another noticeable feature is the presence and position
of steep narrow peaks next to large plateaux. For prograde orbits,
peaks of |E| � 27 are attained not in the radial limit but for a
finite penetration factor D � 10−1 (see also the solid red curve
in the lower panel of Figure 7). On the other hand, for retrograde
orbits, peaks—or rather “hills”—of a more modest maximum
energy of |E| � 1.8 emerge gradually as D gets smaller (see the
red dashed curve, same panel). As well as the maximal ejection
energy, we also plot in Figure 7 the ejection energy averaged
over the binary phase as a function of D (upper panel). In both
plots, a rather large peak is present only for prograde orbits (red
solid curves) and it is situated in the range 10−1 < D < 1.

A brief summary of the quantitative results of this section
follows.

1. The largest D for which there is disruption is D = 2.1 for
prograde orbits and D = 0.44 for retrograde orbits.

2. The maximum energy is 27.3 for prograde orbits and 1.8
for retrograde orbits.

3. The average energy is 1.46 for prograde orbits, 0.50 for
retrograde orbits, and 1.36 for prograde and retrograde
orbits together. In averaging, we have assumed that D, or
equivalently rp, is uniformly distributed.

4. The highest chance for disruption is for prograde orbits
with D = 0.15.
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Figure 7. Top panel: ejection energy averaged over binary phase as a function
of the penetration factor. The solid (dashed) line is for prograde (retrograde)
orbits. The energies for a binary with a given a are plotted as red lines, in
units of (Gm1m2/a)(M/m)1/3. The energies for a binary with a given Rmin are
plotted as blue lines, in units of (Gm1m2/Rmin)(M/m)1/3. Bottom panel: as
upper panel, but for the maximum ejection energy for a given D as a function of
D. The average and maximum values are evaluated for the absolute value of the
energy |E|.

6. FINITE STELLAR SIZES

Up until now, we have ignored the finite size of the stars.
However, the highest energies or ejection velocities are obtained
when stars, under the action of the BH tides, get closer to
each other before the binary dissolves. Specifically, note the
sharp peaks in Figure 7 (lower panel) with exceptional high
final energy. Inspection of these orbits reveals that the minimal
separation that these binaries attain over their evolution is more
than ten times smaller than their initial separation. Those orbits,
however, are not always physical: if two stars start as almost
contact binaries and contract further, they may collide and
merge or tidally disrupt each other. We therefore consider in
the following a given minimum separation Rmin—about the sum
of the radii of the two stars—below which a binary cannot
shrink.

The parabolic and radial formalisms discussed above pro-
vide the relative trajectory of the two stars, but the dimen-
sions are arbitrary and can be rescaled. For each of these tra-
jectories, we can find the minimum dimensionless distance√

x2 + y2 + z2|min over the whole orbit, and scale it to be
equal to Rmin. This amounts to deriving the initial binary sep-
aration results in orbits whose minimal separation is Rmin:
a = Rmin/D

√
x2 + y2 + z2|min in the parabolic formalism, and

a = Rmin/
√

x2 + y2 + z2|min in the radial formalism.
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Figure 8. As Figure 5 but for a given minimal distance Rmin. Here, energy is in
units of (Gm1m2/Rmin)(M/m)1/3 and the phase in units of π . Note the energy
scale, from −2 to 2, a factor of 5 smaller than the energy scale needed for
prograde orbits with a fixed a (Figure 5, upper panel).

Assuming this a as our initial condition, the energy is given
by

E1 = −E2 = −Gm1m2

Rmin

(
M

m

)1/3 √
x2 + y2 + z2|min (35)

×
[

(1 + cos f )2

4
(x cos f + y sin f ) +

−sin f ẋ + (1 + cos f )ẏ√
2

]
,

or by

E1 = −E2 = −Gm1m2

Rmin

(
M

m

)1/3 √
x2 + y2 + z2|min (36)

×
(

2

9

)2/3

|t |−4/3(x + 3t ẋ),

in our parabolic and radial formalism, respectively.
Our analytic approach therefore allows us to recast our results

in terms of a given minimal distance between the stars (Figures 8
and 9) rather than a given initial separation (Figures 5 and 6).
In comparison, the main notable feature is that the scale of
Figure 8 is much narrower, i.e., the energy is more sensitive
to Rmin than to a. This is shown more clearly in Figure 7,
where the mean and especially the maximal energy for a fixed
Rmin are flatter functions of D. The maximal energies in units
of (Gm1m2/Rmin) (M/m)1/3 are as follows: 1.64 for prograde
orbits (obtained for D = 0.12) and 1.60 for retrograde orbits
(obtained for D = 0).

7. EJECTION VELOCITIES

In the quest for HVSs, the observed quantities are the radial
velocity and the star mass. Neglecting the Galactic potential, an
ejected star (E1 > 0) with mass m1 has a velocity at infinity
of v1 = √

2E1/m1. A comprehensive study of velocity and
mass distributions under various assumptions for the binary
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Figure 9. As Figure 6 but for a given minimal distance Rmin. Energy is in unit
of (Gm1m2/Rmin)(M/m)1/3 and the phase in unit of π .
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Figure 10. Ejection velocity averaged uniformly over phase as a function of the
penetration factor. The average is over 3000 equally spaced φ. Upper panel: the
ejection velocity for a given a in units of

√
2Gm2/a (M/m)1/6. We plot it for

prograde orbits only (red solid line, 〈v〉p), for retrograde orbits only (blue solid
line, 〈v〉r) and the weighted average over these two orbital directions (black
dashed line, 〈v〉T). See text for details. Lower panel: as upper panel, but for a
given minimum possible distance Rmin between stars, where 〈v〉 is in units of√

2Gm2/Rmin (M/m)1/6.

population is deferred to a subsequent paper. Here, we calculate
the mean velocity for a given binary, assuming that the binary
plane is the same as the orbital plane around the BH and that the
binary phase is uniformly distributed. The results are shown
in Figure 10 (upper panel) as a function of the penetration
factor. If we call 〈v〉p the average velocity for a prograde orbit
(red solid line) and 〈v〉r that for a retrograde orbit (blue solid
line), then the total average is 〈v〉tot = np 〈v〉p + nr 〈v〉r (black-
dashed line), where nr and np are the fractions of ejected stars
that originate from retrograde and prograde binaries. Clearly
there is no gain in deeper impacts, where the mean saturates
at ∼0.99

√
2Gm2/a (M/m)1/6. Higher velocity—but only by

30%—can be attained closer to the tidal radius. We also calculate
similar means for binaries that, under the BH tides, shrink to

the minimum relative distance Rmin (see Section 6). Harder
binaries—which would be responsible for the higher mean
velocities—would now coalesce instead. This results in an
even flatter mean velocity as a function of D, which tends to
∼0.94

√
2Gm2/Rmin (M/m)1/6 for D → 0 (Figure 10 lower

panel).

8. DISCUSSION AND CONCLUSIONS

The ultimate goal of our work is to statistically characterize
the population of stars originating from tidally disrupted binaries
and compare it with observations of HVSs.

To this purpose, we derive in this paper the equations of
motion and energy for a member of a close binary which suffers
an encounter with a third, far more massive body. For the general
case, we assume a parabolic orbit for an effective center of mass
of the binary (Section 2). This is in contrast with previous works
(e.g., Bromley et al. 2006) that considered binaries on hyperbolic
or elliptical orbits. However, our assumption is justified since
the orbits of binaries that are candidates to produce HVSs are
very eccentric. The periapsis passage of a very eccentric orbit
could be modeled by a parabolic orbit to a good approximation.
This is in agreement with the finding of Bromley et al. (2006)
that the initial binary velocity is of little influence on the final
outcome. Nevertheless, a binary on a hyperbolic orbit has a
total positive energy, and allows for a new disruption channel
in which both stars are ejected. This channel is relatively rare,
since the energy of the binary is typically small compared to the
typical ejection energies. Moreover, such double ejections could
not lead to HVSs since the energy is limited to the original—
small— positive energy of the binary. Our formalism with zero
total energy (except the small negative binary binding energy)
does not allow for double ejections.

A parabolic trajectory for the binary approaches a radial
one for a very close encounter with the massive body. This
observation leads us to explicitly adopt a radial orbit with zero
energy in order to follow the limiting case of a deep penetrator
(Section 3). This simpler set of equations allows us to easily trace
a close encounter that otherwise would require high accuracy
when calculated with a full three-body code.

Our formalism can be applied quite generally to explore the
fate of a binary with arbitrary orbital parameters. However, in
this paper, we only focused on results for circular coplanar
binaries. The inclination of the binary, as well as its eccentricity,
is expected to affect our results quantitatively. We reserve such
a study to a forthcoming paper. Nevertheless, we can already
reach some conclusions and note quantitative differences with
results found in the literature.

The main feature of HVSs is of course their unusually high
radial velocity. For equal mass stars, m1 = m2 = m1,2, the
expression Gm1m2/Rmin is simply m1,2v

2
esc/4, where vesc is the

escape velocity from the surface of the stars. Since the maximal
ejection energy is 1.6Gm1m2/Rmin(M/m)1/3 (Figure 7), we
derive for the Galactic center BH a corresponding velocity
of 0.9vesc(M/m)1/6 ∼= 9 vesc. The escape velocity for main
sequence stars is about 600–800 km s−1 in the mass range of
1–10 M�. Therefore, velocities can be as large as ∼7000 km s−1

even for binaries limited to the plane. Scaling for the different
masses (and thus vesc) assumed by Hills (1988) and by Bromley
et al. (2006), we find that a velocity of 0.9vesc(M/m)1/6

is respectively a factor of ∼1.2 and ∼1.8 higher than their
maximum value of 4000 km s−1. Even higher velocities can be
achieved when the binary mass ratio is large and the lighter star
is ejected. Then, the ejected star travels with maximal velocity
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of 1.3 vesc(M/m)1/6, which is around ∼10, 000 km s−1 for our
Galactic center BH where M/m ∼ 106.

For a comparison with observations, it is also important to
determine the ejection probability. Bromley et al. (2006) find
that the probability for disruption as a function of the penetration
factor goes roughly as Pej ≈ 1 − D/2.2. The maximum D
for disruption is therefore very similar to ours, Dmax ∼ 2.1
(see Figure 10). In contrast, we note a quantitatively different
behavior of the probability function for binaries that approach
closely the BH, D → 0. Specifically, their Pej → 1 implies that
all binaries in this limit are disrupted. This may look intuitively
sound since binaries that penetrate so deeply experience very
strong tides. However, as we stressed in Section 3, the stars in
such binaries separate, but approach each other again on the
way back from the BH. In the planar case we find that ∼20% of
the deeply penetrating binaries survive (Figure 4). Even when
taking a uniform distribution for the inclination of the binary
plane into account, the percentage of survival is still 10% for
close encounters. In the planar case, Figure 4 indicates that
the disruption probability is, in fact, not monotonic in D: for
prograde orbits, it peaks at D = 0.15 and it is almost unity
(98.0 − 98.8%) for 0.06 < D < 0.3.

For large mass ratios m1/m2 > 10, Bromley et al. (2006) find
that the heavier star has consistently more chance to be ejected.
We showed here that the probability is 50%. This result is not
limited to zero inclination of eccentricity. This fact, together
with the rarity of a very massive star, somewhat weakens the
claim that the star SO-2 was created by a disruption of a binary in
which a 60 M� companion was ejected (Gould & Quillen 2003).
This conclusion was based on the observed orbital parameters of
SO-2. However, the timescale to significantly change its short
periapsis distance may quite short, and a careful study of the

dynamical processes in the inner regions of the Galactic center
is needed to assess it (Perets et al. 2009).

This research was partially supported by an ERC grant, a
Packard Fellowship, and a HEFCE PR fellowship. We thank
Ehud Nakar and Peter Goldreich for helpful discussions.
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