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A FORMULA FOR INSERTING POINT MASSES

MANWAH LILIAN WONG

Abstract. Let dµ be a probability measure on the unit circle and

dν be the measure formed by adding a pure point to dµ. We give

a formula for the Verblunsky coefficients of dν, based on a result

of Simon.

1. Introduction

Suppose we have a probability measure dµ on the unit circle ∂D =

{z ∈ C : |z| = 1}. We define the inner product associated with dµ and

the norm on L2(∂D, dµ) respectively by

〈f, g〉 =

∫

∂D

f(eiθ)g(eiθ)dµ(θ) (1.1)

‖f‖dµ =

(
∫

∂D

|f(eiθ)|2dµ(θ)

)1/2

(1.2)

The family of monic orthogonal polynomials associated with the

measure dµ is denoted as (Φn(z, dµ))
∞
n=0, while the normalized fam-

ily is denoted as (ϕn(z, dµ))
∞
n=0.

Let Φ∗
n(z) = znΦn(1/z) and ϕ∗

n(z) = Φ∗
n(z)/‖Φn‖ be the reversed

polynomials. Orthogonal polynomials obey the Szegő recursion relation

Φn+1(z) = zΦn(z)− αnΦ
∗
n(z) (1.3)

αn is called the nth Verblunsky coefficient. It is well known that there

is a one-to-one correspondence between dµ and (αj(dµ))
∞
j=0 and that
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the Verblunsky coefficients carry much information about the family of

orthogonal polynomials. For example,

‖Φn‖
2 =

n−1
∏

j=0

(1− |αj|
2) (1.4)

For a comprehensive introduction to the theory of orthogonal poly-

nomials on the unit circle, the reader should refer to [4, 5], or the classic

reference [6].

The result that we would like to present is the following

Theorem 1.1. Suppose dµ is a probability measure on the unit circle

and 0 < γ < 1. Let dν be the probability measure formed by adding a

point mass ζ = eiω ∈ ∂D to dµ in the following manner

dν = (1− γ)dµ+ γδω (1.5)

Then the Verblunsky coefficients of dν are given by

αn(dν) = αn +
(1− |αn|

2)1/2

(1− γ)γ−1 +Kn(ζ)
ϕn+1(ζ)ϕ

∗
n(ζ) (1.6)

where

Kn(ζ) =
n
∑

j=0

|ϕj(ζ)|
2 (1.7)

and all objects without the label (dν) are associated with the measure

dµ.

The proof is based on a result obtained by Simon in the proof of

Theorem 10.13.7 in [5] (See Theorem 2.1 below).

In fact, the following formula had been found by Geronimus [2]

Φn(z, dν) = Φn(z)−
Φn(ζ)Kn−1(z, ζ)

(1− γ)γ−1 +Kn−1(ζ, ζ)
(1.8)

The formula for the real case was rediscovered by Nevai [3], Later, the

same formula for the unit circle case was rediscovered by Cachafeiro-

Marcellan [1]. Unaware of Geronimus’ result and the fact that Nevai’s

result also applies to the unit circle, Simon reconsidered this prob-

lem and proved formula (2.7) independently using a totally different

method.

For applications of formula (1.6), the reader may refer to [7] and [8].
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2. The Proof

First, we will prove a few lemmas.

Lemma 2.1. Let βjk = 〈Φj(dµ),Φk(dµ)〉dν. Then

Φn(dν)(z) =
1

D(n−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β00 β0 1 . . . β0n

...
...

βn−1 0 βn−1 1 . . . βn−1n

Φ0(dµ) . . . . . . Φn(dµ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.1)

where

D(n−1) =

∣

∣

∣

∣

∣

∣

∣

β0 0 β0 1 . . . β0n−1

...
...

βn−1 0 βn−1 1 . . . βn−1n−1

∣

∣

∣

∣

∣

∣

∣

(2.2)

Proof. Let Φ̃n(dν) be the right hand side of (2.1). We observe that the

inner product 〈Φj(dµ), Φ̃n(dν)〉dν is zero for j = 0, 1, . . . , n − 1 as the

last row and the jth row of the determinant are the same. By expanding

in minors, we see that the leading coefficient of Φ̃n(dν) in (2.1) is one.

In other words, Φ̃n(dν) is an nth degree monic polynomial which is

orthogonal to 1, z, . . . , zn−1 with respect to 〈 , 〉dν , hence Φ̃n(dν) equals

Φn(dν). �

Lemma 2.2. Let C be the following (n+ 1)× (n + 1) matrix
(

A v

w β

)

(2.3)

where A is an n×n matrix, β is in C, v is the column vector (v0, v1, . . . , vn−1)
T

and w is the row vector (w0, w1, . . . , wn−1). If det(A) 6= 0, we have

det(C) = det(A)

(

β −
∑

0≤j,k≤n−1

wkvj(A
−1)jk

)

(2.4)

Proof. We expand in minors, starting from the bottom row to get

det(C) = βdet(A) +
∑

0≤j,k≤n−1

wkvj(−1)j+k+1 det(Ãjk) (2.5)

where Ãjk is the matrix A with the jth row and kth column removed.
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By Cramer’s rule, since det(A) 6= 0,

Ãjk = (−1)j+k det(A)(A−1)jk (2.6)

proving Lemma 2.2. �

Next, we are going to prove the following formula by Simon [5]:

Theorem 2.1. The Verblunsky coefficient of dν (as defined in (1.5))

is given by

αn(dν) = αn − q−1
n γϕn+1(ζ)

(

n
∑

j=0

αj−1
‖Φn+1‖

‖Φj‖
ϕj(ζ)

)

(2.7)

where

Kn(ζ) =
n
∑

j=0

|ϕj(ζ)|
2 (2.8)

qn = (1− γ) + γKn(ζ) (2.9)

α−1 = −1 (2.10)

and all objects without the label (dν) are associated with the measure

dµ.

Proof. Since αn−1(dν) = −Φn(0, dν) and βjk = βkj, by Lemma 2.1,

αn−1(dν) =
1

D(n−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β0 0 β1 0 . . . βn 0

...
...

β0n−1 β1n−1 . . . βnn−1

−1 α0 . . . αn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.11)

Let C be the matrix with entries as in the determinant in (2.11) above.

It could be expressed as follows

C =

(

A v

w αn−1

)

(2.12)

where A is the n × n matrix with entries Ajk = βkj, v is the column

vector (βn0, . . . , βnn−1)
T and w is the row vector (−1, α0, . . . , αn−2).

Note that det(A) = D(n−1) and it is real as A is Hermitian.

Now we use Lemma 2.2 to compute det(C). To do that, we need to

find out what A−1 is.
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By the definition of ν,

Ajk = (1− γ)‖Φk‖
2δkj + γΦk(ζ)Φj(ζ) = ‖Φk‖‖Φj‖Mjk (2.13)

where

Mjk = (1− γ)δkj + γϕk(ζ)ϕj(ζ) (2.14)

Observe that for any column vector x = (x0, x1, . . . , xn−1)
T ,

Mx = (1− γ)x+ γ

(

n−1
∑

j=0

ϕj(ζ)xj

)

(ϕ0(ζ), ϕ1(ζ), . . . , ϕ0(ζ))
T (2.15)

Therefore, if Pϕ denotes the orthogonal projection onto the space spanned

by the vector ϕ = (ϕ0(ζ), ϕ1(ζ), . . . , ϕ0(ζ)), we can write

M = (1− γ)1+ γKn−1Pϕ (2.16)

Hence, the inverse of M is

M−1 = (1− γ)−1(1− Pϕ) + ((1− γ) + γKn−1)
−1Pϕ (2.17)

and the inverse of A is

A−1 = D−1M−1D−1 (2.18)

where Dij = ‖Φi‖δij.

Recall that v = (βn0, βn1, . . . , βnn−1)
T , which is a multiple of ϕ.

Therefore,

(A−1v)j = ((1− γ) + γKn−1)
−1 γ Φn(ζ) ‖Φj‖

−1ϕj(ζ) (2.19)

(2.19), (2.11) and Lemma 2.2 then imply

αn−1(dν) = αn−1−((1− γ) + γKn−1)
−1 γ ϕn(ζ)

(

n−1
∑

j=0

αj−1
‖Φn‖

‖Φj‖
ϕj(z0)

)

(2.20)

�

This concludes the proof of Theorem 2.1.

Now we are going to prove Theorem 1.1.
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Proof. First, observe that αj−1 = −Φj(0). Therefore, αj−1/‖Φj‖ =

−ϕj(0). Second, observe that ‖Φn+1‖ is independent of j so it could

be taken out from the summation. As a result, (2.7) in Theorem 2.1

becomes

αn(dν) = αn(dµ) + q−1
n γ ϕn+1(ζ) ‖Φn+1‖

(

n
∑

j=0

ϕj(0)ϕj(ζ)

)

(2.21)

Then we use the Christoffel-Darboux formula, which states that for

x, y ∈ C with xȳ 6= 1,

(1− xy)

(

n
∑

j=0

ϕj(x)ϕj(y)

)

= ϕ∗
n(x)ϕ

∗
n(y)− xyϕn(x)ϕn(y) (2.22)

Moreover, note that q−1
n γ = ((1−γ)γ−1+Kn(ζ))

−1 Therefore, (2.21)

could be simplified as follows

αn(dν) = αn +
ϕn+1(ζ)ϕ

∗
n(0)ϕ

∗
n(ζ)

(1− γ)γ−1 +Kn(ζ)
‖Φn+1‖ (2.23)

Finally, observe that ϕ∗
n(0) = ‖Φn‖

−1 and that by (1.4), ‖Φn+1‖/‖Φn‖ =

(1− |αn|
2)1/2. This completes the proof. �
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[6] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23,

American Mathematical Society, Providence, RI, 1939; third edition, 1967.



A FORMULA FOR INSERTING POINT MASSES 7

[7] M.-W. L. Wong, Generalized bounded variations and inserting point masses, to

appear in Constr. Approx.

[8] M.-W. L. Wong, Asymptotics of polynomials and point perturbation in a gap,

preprint.


	1. Introduction
	2. The Proof
	3. Acknowledgements
	References

